Lawrence Berkeley National Laboratory

Recent Work

Title

Comparison of Single and Multiphase Tracer Test Results from the Frio CO2 Pilot Study, Dayton, Texas

Permalink

https://escholarship.org/uc/item/2t78x6z6

Authors

Trautz, Robert Freifeld, Barry Doughty, Christine

Publication Date

2005-03-04

Comparison of Single and Multiphase Tracer Test Results from the Frio CO₂ Pilot Study, Dayton, Texas

Robert Trautz*, Barry Freifeld, and Christine Doughty Earth Science Division, Lawrence Berkeley National Laboratory

Injection of CO₂ into deep-brine reservoirs is one of several solutions under consideration to mitigate the effect of global warming caused by the release of man-made greenhouse gases to the atmosphere. An important issue related to subsurface CO₂ storage is whether the target reservoirs will have adequate volume to economically store large volumes of CO₂ gases sequestered from fossil-fuel-burning power plants, and how effective gas injection will be in sweeping or displacing native reservoir fluids.

We performed a series of tracer tests to study miscible and immiscible fluid displacement through the Frio sandstone, a deep saline reservoir located beneath the Gulf Coast Region of Texas. To study miscible displacement and help characterize the reservoir, we pumped brine from the reservoir and then injected it back into the reservoir to produce a steady-state flow field, referred to as a dipole test. A tracer, added to the injected water and monitored at the pumping well, allowed us to evaluate interwell travel times and tracer-breakthrough curves. These results are compared to CO₂ travel times and gas-tracer-breakthough curves resulting from multiphase immiscible displacement of brine by CO₂, observed during subsequent CO₂ injection. CO₂ breakthrough occurred within 51 hours of the start of injection compared to 8.9 days for the liquid tracer. CO₂ breakthrough was also faster than model predictions, suggesting that gas movement occurred along preferential pathways. The tracer-test data are evaluated using a combination of methods including a three-dimensional numerical model developed to predict the performance of CO₂ injection during geologic sequestration.

*presenting author: Robert C. Trautz MS 90-1116 1 Cyclotron Rd., Berkeley, CA 94720 Phone (510) 486-7954 Fax (510) 486-5686 rctrautz@lbl.gov,

Barry Freifeld phone (510) 486-4381 email bmfreifeld@lbl.gov, Christine Doughty phone (510) 486-6453 email cadoughty@lbl.gov