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Ensemble-Based Virtual Screening Reveals Potential Novel Antiviral Compounds for Avian
Influenza Neuraminidase
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La Jolla, California 92093-0365, Howard Hughes Medical Institute, UniVersity of California, San Diego, La Jolla, California 92093-0365,
and Department of Pharmacology, UniVersity of California, San Diego, La Jolla, California 92093-0365

ReceiVed February 4, 2008

Avian influenza virus subtype H5N1 is a potential pandemic threat with human-adapted strains resistant to
antiviral drugs. Although virtual screening (VS) against a crystal or relaxed receptor structure is an established
method to identify potential inhibitors, the more dynamic changes within binding sites are neglected. To
accommodate full receptor flexibility, we use AutoDock4 to screen the NCI diversity set against representative
receptor ensembles extracted from explicitly solvated molecular dynamics simulations of the neuraminidase
system. The top hits are redocked to the entire nonredundant receptor ensemble and rescored using the
relaxed complex scheme (RCS). Of the 27 top hits reported, half ranked very poorly if only crystal structures
are used. These compounds target the catalytic cavity as well as the newly identified 150- and 430-cavities,
which exhibit dynamic properties in electrostatic surface and geometric shape. This ensemble-based VS
and RCS approach may offer improvement over existing strategies for structure-based drug discovery.

Introduction

Avian influenza has received worldwide attention due to its
rapid global spread via migratory birds and the growing number
of human cases. The highly pathogenic avian influenza virus
that the World Health Organization fears may cause a pandemic
in humans comprises strains from the subtype H5N1 of influenza
type A.1 Subtypes of influenza virus are named based on the
observed combinations of two viral surface membrane glyco-
proteins, hemagglutinin (HA)a and neuraminidase (NA), with
16 and 9 types known to date, respectively.2 Three historical
pandemic flu viruses were caused by H1N1 (1918), H2N2 (1957),
and H3N2 (1968).

HA is involved in the attachment of viral particles to host
cell surface glycoproteins, whereas NA plays a role in the release
of newly synthesized viral particles (for a recent review, see
ref 3). NA, a membrane-bound homotetrameric enzyme, releases

viral paricles by cleaving terminal sialic acid (SA) residues on
the host cell surface proteoglycans, bound by HA.4 As the NA
active site is relatively well-conserved, it became a good target
for structure-based antiviral drug development.5 Commercial
inhibitors such as zanamivir and oseltamivir are stockpiled by
various countries in case of a pandemic outbreak. While both
drugs are successful in treating several human cases,6 drug-
resistant strains have quickly emerged due to antigenic drift.7,8

In 2006, Russell et al. reported the first crystal structures of
a group-1 NA (N1), which revealed the existence of a “150-
cavity” that, under various crystallization conditions, closed upon
ligand binding to the active site through movement of the 150-
loop.9 To further probe the structure and dynamics of N1,
explicitly solvated molecular dynamics (MD) simulations on
the tetrameric N1 systems with (holo) or without (apo) oselta-
mivir bound were performed.10 The simulations indicated that
the flexibility of the 150-loop may be even greater than previ-
ously anticipated and that the dynamics of the neighboring 430-
loop also influenced the topology of the binding site.

More recently, representative conformations of the N1 binding
site (including the flexible 150- and 430-loop regions), extracted
from a clustering analysis of the N1 MD simulations, were used
for computational solvent mapping (CS-Map), which assessed
the binding affinity of small, solvent-sized probe molecules
within these areas.11 The mapping analyses revealed the pre-
sence of novel druggable hot spots in the 150- and 430-loop
regions, providing further support for the feasibility of develop-
ing high-affinity inhibitors capable of binding these areas. Such
inhibitors may be applicable to the group-1 NA’s including N1,
N4, N5, and N8, which have nearly identical active site regions,9

but not necessarily group-2 enzymes (N2, N3, N6, N7, and N9),
which appear to lack such well defined cavities.

Structure-based drug discovery has made significant progress
in the past 30 years,12 benefiting from recent advances in high
performance and distributed grid computing.13 However, the
drawbacks are well documented (reviewed in refs 14, 17), and
only in the past decade have methods able to treat receptor
flexibility been developed.18–25 A related challenge is the iden-
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tification of drug leads out of large compound libraries through
receptor-based virtual screening (VS). VS is a widely used
method that has been shown to be successful in a variety of
studies, although it also has many shortcomings (reviewed in
refs 26 and 27). The treatment of receptor flexibility within the
scope of VS is still in its infancy and a very active area of
research, as it is widely accepted that receptor flexibility plays
an important role in molecular recognition. The use of multiple
experimentally derived protein structures in VS has been shown
to effectively improve enrichment factors28,29 and, most recently,
aid in the discovery of novel compounds active against the p53
tumor repressor.30

The relaxed complex scheme (RCS), a hybrid computational
method that combines the advantages of docking algorithms with
dynamic structural information provided by MD simulations,
has been successfully applied to a number of systems.22,23,31

Recently, raltegravir became the first FDA approved drug
targeting HIV integrase,32 and the treatment of receptor flex-
ibility with MD simulations played a critical role in understand-
ing the mechanism of action for this new class of inhibitors.33

During MD simulations of the integrase enzyme in complex
with the known inhibitor 5CITEP, a new pocket adjacent to
the binding site was revealed, and docking of ligands into this
new area indicated favorable binding.34 The development of
compounds capable of binding to both the original binding site
and the new cavity, so-called “butterfly” compounds, formed
the basis for this new class of integrase inhibitors.

In this work, we build upon these recent advances and present
a novel, systematic, in silico lead identification strategy, with
the goal of taking full receptor flexibility into account in the
lead identification and scoring stages. VS experiments are carried
out against the NCI diversity set (NCIDS) on a set of eight N1
representative receptor structures,31 consisting of two crystal
structures and the three most dominant cluster-representative
receptor structures as extracted from the explicitly solvated apo
and holo MD simulations.10 The use of the most dominant MD-
generated structures systematically incorporates a broader range
of receptor configurations into the hit identification process, in
contrast to screening the crystal structures alone. We anticipate
that for very flexible receptors, such as N1, the incorporation
of this variable structural information may identify new drug
leads. Indeed, comparison of the cluster representative structures
suggests that the remarkable flexibility of the 150- and 430-
loops results in correspondingly different 150-, 430-, and binding
site cavities.

This novel VS approach is further combined with the RCS,
a lead validation and refinement technique in which the top N
hits are redocked to the entire nonredundant receptor ensemble
and rescored. Ultimately, we report 27 experimentally available
compounds that are predicted to have a binding affinity equal
to or better than four known N1 antivirals. Importantly, half of
these compounds would have been neglected based on the
crystal structure VS scores alone. Examination of the interactions
of these top hits within the NA active site region reveals different
classes of compounds with binding preference to the 150-, 430-,
and catalytic cavities. Several compounds are predicted to
interact with key residues across two cavities and may provide
novel bridging compound scaffolds. We anticipate that this
ensemble-based virtual screen with relaxed complex scheme
(EVSRCS) approach may contribute to better structure-based
drug design strategies for very flexible receptors.

Materials And Methods

Apo System Setup. Details of the simulation setup without any
ligand bound are as previously described.10Briefly, the apo system

was built with the avian H5N1 NA crystal structure 2HTY.9

Protonation states for histidine residues were defined at an apparent
pH 6.5 using the PDB2PQR web server.35 All crystallographically
resolved water oxygen positions were retained in the apo system,
as well as Ca2+ ions, which are required for optimal NA function.36

To mimic experimental inhibition assay conditions, a 150 mM NaCl
salt bath was introduced. The simulated system contained 112311
atoms.

Holo System Setup. Details of the simulation setup with ose-
ltamivir bound are as previously described.10 Briefly, the 2HU0
structure used for the holo system initially had a single oseltamivir
molecule bound in the active site of chain B.9 To introduce
oseltamivir within each of the other chains, chain B was aligned to
chain A, C, and D by superimposition of the backbone CR atoms,
and the resulting transformation matrix was applied to the oselta-
mivir molecule. Amber9 was used to set up the oseltamivir-bound
system using an identical protocol to the apo system, with the
exception of the additional oseltamivir parameters. The composite
tetrameric oseltamivir-bound system, comprising one oseltamivir
molecule in each of the four active sites and calcium ions in 150
mM NaCl salt bath, contained 112457 atoms.

Molecular Dynamics Simulations. The apo and holo systems
were energy minimized for 5 × 104 steps using NAMD version
2.6b1 (http://www.ks.uiuc.edu/Research/namd).37 The MD methods
have been previously described in refs 10, 11. Free dynamics were
subsequently performed using a 2 fs time step for a total of 40 ns
for each system. Trajectories were generated on the San Diego
Supercomputing Center’s DataStar machine (benchmark time of
0.3 days/ns using 112 parallel processors).

RMSD Clustering to Extract Representative MD Structures.
To generate a reduced, representative set of N1 structures, root-
mean-square difference (RMSD) conformational clustering was
performed as previously described in ref 11 with the GROMOS++
analysis software,38 part of the GROMOS05 software for biomo-
lecular simulation (http://www.igc.ethz.ch/GROMOS). Briefly, for
the apo and holo simulations, each chain of the tetramer was
extracted at 10 ps intervals over the 40 ns simulation. The resulting
1.6 × 104 trajectory structures for each simulation were superim-
posed using all CR atoms to remove overall rotation and translation.
The RMSD-clustering was performed on the subset of 62 residues
that line the entire binding-site area, which we define here as the
binding-site residues: 117-119, 133-138, 146-152, 156, 179, 180,
196-200, 223-228, 243-247, 277, 278, 293, 295, 344-347, 368,
401, 402, and 426-441. These residues were clustered into batches
of similar configurations using the atom-positional RMSD of all
atoms (including side chains and hydrogens) as the similarity
criterion. A cutoff of 1.3 Å was chosen after evaluation of the
dependence of cluster populations against the total number of
clusters found for each simulation using a cutoff in the range
1.0-1.5 Å. The central member cluster structure, the structure
within the cluster having the smallest RMSD to all other structures
within the cluster (i.e., the centroid), was chosen as the cluster
representative structure. Fifty-one clusters were obtained for the
apo system, and 27 clusters for the holo system, the three most
dominant configurations represented about 21%, 20%, and 19%
and 38%, 22%, and 14% of the apo and holo ensembles,
respectively.39 In Figure 2, we indicate the time points that
correspond to each of the central member cluster structures. We
do not mean to imply that all members of each cluster always form
a continuous portion of the trajectory. In fact, although many
structures near a similar time point can be found within any given
cluster, multiple discontinuous time points are represented in the
larger clusters. This indicates that areas of configurational space
may be sampled multiple times within a single long trajectory.

Virtual Screening with AutoDock. The three most dominant
clusters from each of the apo and holo system and the two original
crystal structures are used as receptors for virtual screening against
the NCIDS library of compounds. AutoDockTools version 1.4.540

was used to add polar hydrogens and assign Gasteiger charges41

to each of the eight NA structures. The PDB2PQR web server
(http://nbcr.net/pdb2pqr) was used to simulate a biological assay
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pH of 6.5.35 For each of the eight NA structures, AutoGrid version
4.0 was used to create affinity grids centered on the active site.
Each grid enclosed an area of 64 Å by 72 Å by 66 Å with 0.375
Å spacing, and affinity grids were calculated for all of the following
atom types: A (aromatic carbon), C, F, I, N, NA (hydrogen-bond-
accepting N) Cl, O, OA (hydrogen-bond-accepting O), P, S, SA
(hydrogen-bond-accepting S), Br, H, and e (electrostatic). All NA
structures from simulations were aligned with the closed 150-loop
crystal structure (2HU4, chain B) to maintain a consistent grid
location.

The NCIDS is a collection of approximately 2000 compounds
that are structurally representative of a wide range of pharmacoph-
ores.42 AutoDockTools version 1.4.5 was used to merge nonpolar
hydrogens, add Gasteiger charges to each ligand, and set up
rotatable bonds through AutoTors. A number of ligands containing
rare earth elements could not be processed and were excluded. A
total of 1883 compounds from the NCIDS were included in the
screen. Five additional compounds experimentally known to bind
avian influenza N1 were also included in the screen: sialic acid
(N-acetyl neuraminic acid, aka, NANA or Neu5Ac, SA), 2,3-
didehydro-2-deoxy-N-acetyl neuraminic acid (DANA), oseltamivir,
zanamivir, and peramivir (an experimental inhibitor in phase II
clinical trials43).

AutoDock version 4.0.1 with the Lamarckian genetic algorithm
was used to simulate ligand-receptor docking.44 Docking param-
eters were optimized for the positive control docking of oseltamivir
to the closed 150-loop conformation of NA (2HU4) and were as
follows: trials of 100 dockings, population size of 200, random
starting position and conformation, translation step ranges of 2.0
Å, rotation step ranges of 50°, elitism of 1, mutation rate of 0.02,
crossover rate of 0.8, local search rate of 0.06, and 5 million energy
evaluations. A total of 15104 docking jobs were run on the National
Biomedical Computation Resource (NBCR, http://nbcr.net) Kryp-
tonite cluster. Docked conformations were clustered using a
tolerance of 2.0 Å RMSD using the external clustering script
provided with AutoDockTools version 1.4.5.

Docking results were sorted by the lowest binding energy of the
most populated cluster using AutoDockTools version 1.4.5, and

the top 30 hits from each of the eight systems were chosen for
further analysis. The top hits from each screen were initially filtered
for druglikeness by their adherence to Lipinski’s “rule of fives”.45

It is recommended that compounds should conform to two or more
of these rules,46 and we only considered compounds conforming
all rules in this study, i.e., having no more than five hydrogen bond
donors, no more than 10 hydrogen bond acceptors, a molecular
weight under 500 g/mol, and a partition coefficient (log P) under
5.45 Compounds were filtered after rather than prior to docking to
prevent premature exclusion of compounds that do not meet this
criterion. A brief analysis of top binders, however, revealed that
most compounds that failed the Lipinski rules were unlikely drug
candidates. Although some compounds that failed the Lipsinki rules
also had good docking scores, this cutoff criterion was imposed to
focus the scope of our search to the more promising compounds.
The remaining hits were further filtered based on clustering criteria
in AutoDock: we only consider a compound among the top hits if
the most populated cluster included at least 25% of all docked
conformations. Receptor-ligand interactions, including hydrogen-
bonding interactions and molecular surfaces, were calculated in
AutoDockTools version 1.4.5.47,48

A crucial metric for assessing the performance of high-throughput
virtual screening is the extent to which a database of compounds
could be enriched such that only a much smaller subset needs to
be prepared and assayed to identify leads. The metric is often
quantified by the enrichment factor (EF):19

EF)
Sact

Sall
⁄
Dact

Dall
(1)

where D is the total number of compound in the data set and S is
a subset (e.g., < 2%) of the data set.

Possible Aggregator Identification. Top hits were compared
to a list of 263 known false positives.49 These so-called “promiscu-
ous inhibitors” are irregular compounds that inhibit nonspecifically
by forming aggregates onto which the protein will adsorb and thus
block activity.49,50 A similarity search was performed to identify
false-positive aggregators within the 27 top hits, and none were
found using the Tanimoto index at 98% cutoff.

Figure 1. Three cluster representative structures for the three most dominant clusters from the (A) apo and (B) holo simulations. The structures
from the most dominant clusters are colored in pink (Apo-1, Holo-1), the second most dominant in green (Apo-2, Holo-2), and the third most
dominant in orange (Apo-3, Holo-3). The apo crystal structure (open 150-loop) is shown in silver, and the holo crystal structure (closed 150-loop)
is shown in blue. The 150- and 430-loops are indicated.
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Relaxed Complex Scheme. To validate and refine the virtual
screening results, redocking experiments were performed on the
combined top 27 hits plus oseltamivir, zanamivir, peramivir, DANA,
and SA. Each compound was redocked into the 27 central member
cluster structures, which accounts for 100% of the ensemble
variance from the holo simulation at 1.3 Å cutoffs. Following the
same docking procedure and parameter set described in the previous
section, 756 redocking calculations were distributed to the Pacific
Rim Application and Grid Middleware Assembly (PRAGMA, http://
www.pragma-grid.net) grid using the metascheduler Community
Scheduler Framework (CSF4, http://sourceforge.net/projects/gcsf)
command line client and the output transferred back to the NBCR
kryptonite cluster. The binding free energies were extracted with
AutoDockTools 1.4.5 scripts, and the ligand binding spectra were
plotted for further analysis.

For the weight means and standard deviations calculations, the
following formula was used.

RC weighted arithmetic mean)

∑
i)1

27

percent distribution(i) × binding energy(i) (2)

RC weighted std)

�∑
i)1

27

percent distribution(i) × (binding energy(i)-

RC weighted arithmetic mean)2

(3)

i is the index number of each holo ensemble cluster, whose
percent distribution sums up to 100%. The selection criteria are
identical to that used in the earlier virtual screening steps. In cases
where the AutoDock cluster size does not meet the 25% cluster
size cutoff, the lowest binding energy of the most populated cluster
is still used for calculation of the weighted mean of binding energies.

RC weighted harmonic mean is calculated by first converting
the binding energies to inhibition constants Ki as follows:

Ki ) ebinding energy×1000⁄RT (4)

where R is 1.98719 and T is 298.15. The weighted harmonic mean
Ki value is then calculated from:

Ki )
1

∑
i)1

27
percent distribution(i)

Ki(i)

(5)

At the end, Ki is converted back to the RC harmonic weighted mean
binding energy.

Electrostatic Surface Calculation and Visualization. Electro-
staticpotentialswerecalculatedusingtheAdaptivePoisson-Boltzmann
Solver (APBS) and mapped to the reduced molecular surface by
Python Molecular Viewer.48,51

Solvent Accessible Surface Area. To further quantify the
changes in the binding site, the solvent accessible surface area was
computed for each of the eight screened structures using VMD
1.8.652 with a probe radius of 1.4 Å. To maintain consistency in
the comparisons to the crystal structures, the hydrogens were not
included for the cluster representative structures.

Results

Structural Variability of the N1 Active Site. The two crystal
structures of N1, 2HTY (apo crystal) with the “open 150-loop”,
2HU4 (holo crystal) with the “closed 150-loop”, and the
corresponding three most dominant representative cluster mem-
bers from the MD trajectories of the two structures are examined
in parts A and B of Figure 1, respectively. The three most
dominant clusters accounted for approximately 60% and 75%
of the overall MD ensembles, respectively. Pairwise RMSD’s
are presented in Table 1 for all structures over four R carbon
subsets: (i) all N1 atoms, (ii) the 62 residues lining the binding

site, (iii) the 150-loop residues 146-152, and (iv) the 430-loop
residues 430-439. As shown in Table 1B and Figure 1, Apo-1
exhibits the biggest differences in the 430-loop compared to
the other structures except for Apo-2. On the other hand, the
apo crystal is significantly different from Apo-1, Apo-3, Holo-
1, and Holo-3 but more similar to Apo-2 and Holo-1 in the
150-loop; the holo crystal exhibits 3 Å RMSD to all other
structures in terms of the 150-loop. Overall, this analysis
indicates the areas of greatest structural diversity and similarity
among the different structures.

Positive Controls. The docking conditions for VS have been
optimized using the oseltamivir-bound holo crystal structure
(Figure S1, Supporting Information). Oseltamivir docks to the
apo and holo crystal structures in a manner consistent with its
crystallized conformation. The overall RMSD (all-atoms) of the
predicted binding pose compared to the crystal structure pose
is 1.8 Å for the Holo crystal structure and 2.1 Å for the apo
crystal structure (Figure S1, Supporting Information). In the
redocking of oseltamivir to the closed N1 structure, the
differences between docked and crystal poses lie primarily in
the orientation of the pentyl ether group, which interacts with
the protein through variable hydrophobic interactions. The
negatively charged carboxylate group is anchored through
electrostatic interactions to the arginine trio (R118, R292, and
R371) and its position does not differ significantly between the
docked and crystal poses. The successful redocking of oselta-
mivir confirms that AutoDock 4.0.1 is able to emulate experi-
mental binding with an excellent degree of accuracy and
precision, serving as a positive control to validate our virtual
screening hits.

To examine whether the screening conditions offer satisfac-
tory discrimination of known NA inhibitors and to provide
positive controls for our larger scale VS analysis, we docked
the set of five known inhibitors to the holo crystal (with
oseltamivir in the crystal structure removed) as well as the 27
clusters obtained from the MD trajectory clustering analysis
(Figure 2). Both weighed harmonic mean and weighted arith-
metic mean were used to calculate the binding affinity estimates,
and both yield qualitatively similar results for the five control
compounds (Figure 2B). In this work, we chose the weighed
harmonic mean to rank the top hits because it tends to favor
the lower binding energies, which should be given more weight
in the evaluation of the overall binding affinity, and its better
performance is supported by previous studies.53,54

For the control compounds, the binding energy difference
fluctuates from 2.5 to 5 kcal/mol for DANA and zanamivir,
respectively. For zanamivir, the experimental IC50 is from
0.5-2.5 µM,55 the range we observed is from 0.05 µM (-10
kcal/mol) to 215 µM (-5 kcal/mol). In agreement with what is
known experimentally of the sialic-acid analogs, oseltamivir is
predicted to be the best overall binder, followed by zanamivir
and DANA. However, peramivir is much more potent than
DANA, oseltamivir, and zanamivir, but its average binding
profile is closer to that of DANA (Figure 2). As the cluster size
represented by each structure used in the redocking varies, as
shown in the lower half of the Figure 2B, the weighted harmonic
and arithmetic mean binding energies for each compound is
calculated and the ranking is consistent with the visual examina-
tion described above.

Ensemble-Based Virtual Screens Define Top 27 Hits. The
VS results performed with the two crystal structures and 6 most
dominant MD ensemble representative structures are sum-
marized in Tables S1 and S2, Supporting Information. Only
hits that are in the top 30 and have at least 25% of the total
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Figure 2. (A) Binding energy spectra of two known antivirals and the natural sialic acid substrate (SA) from the RC redocking against the 27 holo ensemble
cluster representatives. The bar graph shows the percent ensemble population represented by each cluster, ordered by their corresponding MD simulation time step.
(B) Binding energy statistics of the five control ligands from the RC redocking. The standard deviation of each RC weighted arithmetic mean of the binding
energies is represented by an error bar.
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population in their most populated cluster are selected from each
set of VS results and indicated in bold. As is evident, the number
of structure variants captured different compounds with binding
energies ranging from -11.6 to -9.25 kcal/mol. Note that at
this cutoff of -9.25 kcal/mol, peramivir and DANA are actually
not selected, which will be discussed later. As some hits are
ranked among the top 30 in more than one structure or cluster
representative, a total of 27 top hits are reported in this work
(see Table 3for a preview). Given the size of the screening
library employed here (1883 compounds), an enrichment factor
of 20 is achieved for the top 2% ranked list and 40 for the top
1% ranked list.

Rescoring Using the Relaxed Complex Scheme. The sele-
cted top hits are redocked into the 27 nonredundant structures
representing the entire holo MD ensemble. For each compound,
the mean and minimum binding energies of a compound docked
to the three most dominant clusters (ensemble mean), all 27
holo-ensemble cluster representative structures (RC mean), as
well as the weighted harmonic mean of the binding energies to
the full ensemble (RC weighted harmonic mean), are plotted
in Figure 3. For most of the compounds, the RC mean and the
ensemble mean differ by less than 0.5 kcal/mol. Only three
compounds, 3, 4, and 15, had binding energies differing by more
than 1 kcal/mol. In addition, when the RC weighted harmonic
mean method is used with compounds that may not have met
the 25% cluster size cutoff, DANA and peramivir are ranked
higher than several of the top 27 hits.

Ligand Binding Cavities in N1. The active site of N1 may
be best described in three cavities for convenience: (i) the sialic
acid (SA) cavity and (ii) the 150-cavity, which have been
previously named,4,9 and (iii) the 430-cavity, the presence and
size of which is controlled by movement of the 430-loop. An
examination of the top 27 hits and their interactions with the
crystal structures and the cluster representatives clearly indicates
that three cavities are areas of favorable binding (Figures 4 and
5, and Table 3). The residues lining the three binding site
cavities, which interact with the identified top hits and known
inhibitors, are summarized in Table 2 and are illustrated in
Figure S3 and S4 of the Supporting Information for selected
compounds. The specific cavities each ligand interacts with are
summarized in Table 3.

The electrostatic surface maps for these ensemble structures
are included to provide an additional perspective of the dynamic
properties of these cavities. As shown in Figures 4 and 5, the
SA cavity is largely negatively charged, whereas the 430-cavity
is relatively positively charged and the 150-cavity remains
relatively neutral in our docking conditions. The variations in
the electrostatic surfaces are due to the changing surface
topology (e.g., exposed residues) between the different structures.

The solvent accessible surface areas (SASA) of the cavities
also vary greatly. To compare the changes in the binding site,
the SASAs were computed for the 62 residues lining the binding
site and are as follows in decreasing order (in Å2): Apo-1, 6125;
Holo-3, 5844; Apo-2, 5812; Apo-3, 5793; Holo-2, 5731; Holo-
1, 5658; 2HTY, 5467; 2HU4, 5197.

The apo ensemble representative structures illustrate the large
changes in the SASAs during the apo simulation. In Apo-1,
the 430-cavity is wide open (Figure 2b); the 430-loop CR RMSD
is almost 4 Å from either of the crystal structures (Table 1),
and this is reflected in the largest exhibited SASA. Apo-2,
however, with the 150-loop CR RMSD at 1.14 Å from the Apo
crystal structure, has a much larger 3.88 Å RMSD from the
holo crystal structure. This shift has an effect of reducing the
size of the 150-cavity. Apo-3 exhibits significant outward
movement of both the 430-loop and the 150-loop, with the 150
loop CR RMSD 1.17 Å from the Apo crystal and 3.93 Å from
the holo crystal.

Overall, the holo ensemble generated structures exhibit a
tighter range of values for their respective SASAs as compared
to the Apo ensemble. Holo-1, which represents 40% of the MD
snapshots, is most similar to Apo-2 in the 150-loop CR RMSD,
and with a similar 150-cavity empty with no ligand bound.
Holo-2 shows significant movement of the 150-loop, with the
150 cavity smaller, yet allowing a bridging compound to interact
in the cavity. Holo-3, which presents the largest SASA of the
holo ensemble representative structures and shows significant

Table 1. Distance Matricesa

a Distance matrices based on pairwise RMSD’s calculated using (A) all
N1 atoms (lower triangle) and the 62 residues lining the binding site (upper
triangle); (B) the 150-loop residues (lower triangle) and the 430-loop
residues (upper triangle). In (B), the RMSD values of the Holo-1 cluster
representative to the other structures are shown in grey, with the arrows
illustrating the originating holo1 label for the 150-loop (solid arrow) and
430-loop (broken arrow). Bold numbers indicate the smallest RMSD value
for a structure and italics indicate the largest value for a structure in
comparison to all the other seven structures.

Table 2. Binding Cavity Residuesa

sialic acid cavity R118, E119, L134, V149*, K150*, D151, R152, S153,
P154, R156, W178, S179, S195, G196, I222, R224,
E227, S246, E276, E277, R292, N294, Y347,
R371, Y406

150-cavity V116, I117, R118, L134, T135, Q136, S145, G147,
T148, V149*, K150*, D151,R156, R430, P431,
I437, W438, T439

430-cavity N325, P326, Y347, N369, S370, R371, W403, S404,
Y406, I427, R428, G429, R430, P431, K432,
E433, I437, W438, T439

a Italicized residues are those required for catalysis. Bold face identify
those highlighted by the CS-Map analysis.39 Underlined residues participate
in interactions in more than one cavity across “cavity boundaries”. An
asterisk indicates the residues that are found in the 150-cavity, but line the
SA cavity when the 150-loop assumes a closed conformation.
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changes in its electrostatic surface properties, is also capable
of binding bridging compounds.

Characteristics of Top Hits. The two top ranked hits, 1 and
2, both contain a nitrogen-heavy six-membered ring. Compound
2 has a pyrimidinecarbonitrile scaffold and is the parental com-
pound for several existing compounds found in the patent
database. It binds consistently in the SA cavity regardless of
150- or 430-loop motion (Figure S4a of the Supporting
Information). In its lowest energy pose docked to Apo-3, it forms
hydrogen bonds to framework residues E119 and E227,56 non-
hydrogen bonding interactions with catalytic residues D151,
R152, and Y406, and with framework residue W178.56 Com-
pound 1 has a triazinane scaffold, derivatives of which are also
found in the patent database with biological effects (Figure 6a).
In the lowest energy conformation docked to the holo crystal
structure, its diimino-triazinane functional group forms hydrogen
bonds to framework residues E119 and S179 and the hydoxy-
(oxido)amino functional group forms hydrogen bonds to the
catalytic arginine trio (R118, R292, and R371) in the same
manner as the carboxylate functional group of oseltamivir.56

Compound 1 also forms non-hydrogen-bonding interactions with
known catalytic residues D151, R224, E276, and Y406 and
framework residues R156, W178, E227, and E277.56 Compound
1 was ranked high when the VS was conducted with the holo
crystal alone. However, Compound 2 dropped to no. 212 when
the apo crystal is used.

Potential 150- and 430-Cavity Binders. A number of the
compounds targeting the 150-cavity would not have been
discovered or ranked extremely low (Table 3) based on the
crystal structure screens alone. Some of the highest affinity hits
to the open and wide-open 150-cavity are steroids such as 5,
23, and 25. These compounds interact with the 150-cavity
primarily through hydrophobic interactions, specifically to
hydrophobic residues V116, I117, L134, T135, S145, T148,
V149, P431, I437, W438, and T439. Several other naphthalene-
based compounds also bind with high affinity in the 150-cavity,
interacting through hydrophobic interactions to the hydrophobic
naphthalene group and through hydrogen-bonding interactions
to polar functional groups on the naphthalene base (Table 3).
These compounds include compounds 3, 9, 13, and 20.

Table 3. Continued

a The top 27 recommended compounds ranked by their weighted harmonic mean energy (kcal/mol) from the RCS. The first column lists the final compound
rank, which is also each compounds’ identification42 (Comp ID). Also listed are the predicted Ki (µM) as calculated from the weighted harmonic mean
binding energy, the chemical structure, and the predicted binding sites. Experimental IC50 values (nM/L) for oseltamivir, zanamivir, and peramivir are
denoted with parenthesis.55 For comparison, the last two columns indicate the compounds’ relative rank (among all 1883 NCIDS compounds and the five
control compounds screened) in the crystal structure screenings. Underlined hits are those identified from the ensemble screens but ranked very poorly in the
crystal structure screens.
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Similar to the wide-open 150-cavity, the open 430-cavity is
seen only in MD simulations and not observed in the crystal
structures. Thirteen hits to the 430-cavity were identified among
the top 27 hits (Table 3). The 430-cavity also seems to favor
naphthalene-based compounds, namely compounds 9, 13, 7, and
10. These compounds interact through hydrophobic interactions
to hydrophobic residues P326, Y347, S370, W403, S404, Y406,
I427, G429, P431, I437, W438, and T439 in the 430-cavity.
Compound 7 is one example of a naphthalene-based compound
that binds with high affinity to the open 430-cavity.

Other compounds with hydrophobic benzene rings, similar
to naphthalene, also bind in the open 430-cavity with high
affinity, for example, compounds 4, 11, 16, 21, 22, and 26.
Compound 21 is an interesting benzodiazepine that is highly
ranked in the crystal structure screens but poorly ranked in
the apo- and holo-ensemble screens and the RCS redocking
(Table 3).

Potential Bridging Compounds. Of the top 27 hits, seven
hits dock simultaneously to more than one cavity (Table 3).
Four hits dock in the SA cavity and either the 150-cavity or
the 430-cavity (see Figure S2 of the Supporting Information
for examples of the apo ensemble). These hits are of particular
interest because they may be linked to known inhibitors to form
a novel, bridged inhibitor that binds with higher affinity.

Three hits, compounds 3, 15, and 16, dock primarily with
hydrophobic interactions in the 430-cavity and extend a polar
functional group into the SA cavity. Compound 18 appears to
be a particularly promising cavity-bridging compound. The
compound contains a diamino-triazine group that binds in the

SA cavity and forms hydrogen bonds to catalytic residue R118
and to framework residues S179 and E277.56 Of these three
residues, S179 and E277 are also predicted to mediate hydrogen-
bonding by the CS-Map analysis.39 It also interacts through
nonbonded interactions to catalytic residues D151 and Y406
and framework residues E119, R156, W178, and E227.56

Compound 18 binds simultaneously to the open 150-cavity
through hydrophobic contacts to residues I117, T135, Q136 and
T439, which are mediated by a methyl-chlorobenzene group
on the ligand. Unlike the other three hits that bind in the SA
cavity, compound 18 need not be linked to SA. It is predicted
to be a compound that will naturally bridge the catalytic residues
in the SA cavity to the high-affinity open 150-cavity.

Discussion

Ensemble-Based Virtual Screening and Relaxed Com-
plex Scheme. The development of computational tools for
computer-aided drug design depends on the critical compromise
between accuracy and computational costs. Ideally, the most
reliable prediction of molecular affinity can be obtained through
rigorous free energy calculations of the ligand-binding process
(ref 57 and references within). Although the theory and methods
are well established for calculating free energies, in practice,
however, they are still prohibitively expensive to be employed
in virtual screening of drug-like databases.

Sampling Space for Receptor Flexibility. To account for
receptor flexibility in ligand binding, we have included repre-
sentative snapshots from the MD clustering analysis as part of

Figure 3. Binding energy statistics of the 27 top hits and five control compounds. Ensemble mean and ensemble minimum are the arithmetic mean
and minimum of the binding energies obtained from screening against the three most dominant holo-ensemble structures. RC weighted harmonic
nean, RC mean and RC minimum are the weighted harmonic mean, arithmetic mean, and minimum of the binding energies obtained from the RC
redocking against the 27 holo ensemble cluster representatives. The percentages of the represented ensemble populations are shown in the bar graph
scaled by the right axis.
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the receptor ensemble, in addition to the crystal structures. In
total, the four concatenated monomer trajectories (extracted from
the tetramer simulation) are equivalent to 160 ns of MD simu-
lation. By choosing the three most dominant clusters from each
simulation, the coverage of 60% of the apo simulation and 75%
of the holo simulation accounts for a generous sampling of
configurational space for N1. Still, the question remains whether
the reduced set of cluster representative structures are biologi-
cally relevant. We have used the set of known inhibitors to
investigate the behavior of the system. As shown in Figure 2,
some configurations, e.g., 3.41, 29.68 ns, seem unfavorable to
all the inhibitors, with as much as 5 kcal/mol difference observed
for zanamivir. It is also evident that the three most dominant
clusters, which correspond to 2.65, 5.76, and 22.02 ns, do not
always have the lowest binding energy, which is often found

in clusters with less than 0.01% of the total population of MD
snapshots. However, considering that the dominant configura-
tions are most likely to be encountered by a ligand, we
conjecture that the dominant clusters will be good candidates
to represent the diversity of configurational space, within the
sampling limitations of the MD simulations.

Rescoring the Top Hits. The top compounds were redocked
into the entire, nonredundant holo-ensemble. There are several
reasons to use the holo-enzyme. First, the oseltamivir-bound
holo-ensemble accounts for ligand-induced effects on the bind-
ing site. Second, any inhibitors may have to compete for the
binding site with a favored natural substrate already bound.
Third, the holo ensemble contains oseltamivir, an analogue of
the natural substrate SA. In fact, from this study, as shown in
Figure 2B, the Apo-1 cluster representative has oseltamivir

Figure 4. Selected hits clustered in the (A) apo crystal, (B) Apo-1, (C) Apo-2, and (D) Apo-3 structures. The electrostatic surface maps were
generated using APBS and PMV using 85% opacity for the surface (scale shown in panel D).
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bound at the 150-cavity, albeit with a higher binding energy
(-7.22 kcal/mol) This further suggests that the holo ensemble
is more appropriate to use for rescoring the hits. Last, the choice
to use a holo-ensemble has also been shown to perform well in
other works on the RC methodology31 and the discovery of
inhibitors against an RNA editing ligase in Trypanosoma brucei,
the parasite responsible for African sleeping sickness.58 The
latter study used the QR-factorization method to extract a
nonredundant ensemble of MD snapshots and the RCS for
rescoring of hits from a VS against a single crystal structure.

A preliminary study using the known set of inhibitors indi-
cated that the weighted harmonic mean method is able to rank
the controls relative to one another for three out of the four
inhibitors (Figure 3). The natural substrate SA ranks closely to
DANA, with oseltamivir and zanamivir correctly ranked with

higher affinity. The exception is peramivir, which is ranked
lower than what is expected based on its experimental IC50

values. Closer examination of the N8 with peramivir bound
(2HTU)9 and the docking pose of peramivir in 2HTY revealed
no differences in the position and orientation of the ligand (data
not shown). It is possible that the current docking condition
does not account for stabilizing interactions conferred by the
solvent, water molecules, or other potential ligand induced
conformational changes. On the other hand, the standard error
(-2 kcal/mol) of AutoDock4 may be the limiting factor and
the rescoring and reranking would be able to discriminate the
true differences between some hits. This is consistent with the
general observation that docking programs are good at separating
the binders from nonbinders, but poor at ordering the hits based
on their affinity.59 However, by taking into account the different

Figure 5. Selected hits clustered in the (A) holo crystal, (B) Holo-1, (C) Holo-2, and (D) Holo-3 structures. The electrostatics surface map was
generated using APBS and PMV using 85% opacity for the surface (scale shown in panel D).
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distributions of the cluster size, giving more weight to the
clusters with more substantial populations in the calculation of
the mean binding energy, the weighted harmonic mean method
may be able to improve the rankings, and may offer an inter-
esting area for future methodological development.

For example, for each compound, we have examined the
ensemble minimum binding energy, the lowest value from one
of the three most dominant clusters, and the RC minimum
binding energy, from the cluster with the lowest binding energy
of all the 27 clusters (Figure 3). Eleven out of the 27 compounds
had the ensemble minimum in the most abundant cluster, but
only one of which, compound 10, had a RC minimum also in
an abundant cluster. Overall, six out of 27 compounds had the
ensemble minimum and RC minimum occurring in abundant
clusters. The co-occurrence of ensemble minimum (lowest bind-
ing energy of one of the top three clusters) and the RC minimum
(lowest possible observed energy) may indicate that a highly
abundant configurational space (i.e., ensemble of substates) is
also favored by the ligand for most stable interaction. In fact,
four out of the six co-occurrences occurred for compounds
ranked within the top 10 hits, and all six ranked within the top
20 hits. In terms of binding energy, four out the six had identical
binding energy between the ensemble minimum and RC
minimum; the other two had binding energy differing less than
1 kcal/mol. Although the most populated structures may be most
relevant to the initiation of binding events, it seems unlikely
that they would be truly precatalytic states.

Some compounds that score poorly in the crystal-structure-only
screen score well when MD structures are used, demonstrating the
advantages of using MD structures to expand the description of
the receptor’s structure. Conversely, other compounds that score
well in the crystal-structure-only screen move down the list when
the MD structures are included (e.g., compound 21) (Figure 6).
This reordering happens for two reasons: first, because other
compounds move up the list by producing better binding energies,
and second, because some compounds produce a significantly
worse binding energy when the MD structures are included. For
example, compound 21 appears to move down the list due to a

combination of both reasons mentioned above. Other compounds
rank better in the MD structures and thus move up the list. Closer
examination of compound 21 reveals that its position in the 430-
cavity is compromised when the 430-loop opens during the MD
simulation; as the loop opens, compound 21 loses contact with
several stabilizing residues and thus the affinity is reduced.
Therefore, loop motion and the subsequent interactions gained and/
or lost is the cause of many compounds’ movements up and/or
down the reranked list.

Rescoring a Larger List of Hits. In Table S1 of the Sup-
porting Information, we noted that the cutoff of -9.25 kcal/
mol meant that peramivir and DANA would not have been
selected. On the other hand, when these compounds were
rescored together with the other top hits, taking into account
all the lowest binding energies regardless of the size of the most
populated cluster, peramivir and DANA actually ranked better
than some of the top hits. These data suggest that, given the
current standard error of 2 kcal/mol for AutoDock4, and the
somewhat arbitrary nature of the 25% cutoff, the weighted
harmonic mean or some improved knowledge-based heuristics
may be applied to rescore an expanded list of hits and potentially
recover some lost hits (i.e., false negatives).

Dynamic Nature of N1 Active Site. The MD simulations
offer representative conformations of the protein beyond what
is provided by the static crystal structures alone, and they offer
a possible description of the energy landscape where ligand-
receptor interactions take place. The visual examination of the
electrostatic surface maps for the different cavities, the various
150- and 430-loop configurations, and the SASA analyses
indicate that at the monomer level, the N1 active site is highly
dynamic.

Electrostatic Gradient and Substrate Movement. At the
monomeric level, the dynamic opening and closing of the 150-
and 430-cavities, with the corresponding change in the electrostatic
field, may help target and orient the appropriate substrate to the
catalytic site. In Figure 2B, oseltamivir interacts in the 150-cavity
of the Apo-1 cluster representative structure, which represents a
population size of about 20%. In Figure 3, oseltamivir is very stably

Figure 6. (A) The apo crystal structure (2HTY) is shown above in silver with top hits 1 and 21 bound. These two compounds dock similarly in
both crystal structures and their overlapping positions in both are pictured above. (B) A large number of hits docked to the wide-open 150-cavity
in Apo-1, shown above in pink with compound 27 bound.

AntiViral Compounds for AVian Influenza Neuraminidase Journal of Medicinal Chemistry, 2008, Vol. 51, No. 13 3891



found in the SA cavity of the holo clusters. It is possible that the
open 150-cavity provides an initial binding site, helping to guide
the substrate into contacts with the catalytic residues through further
closing motion of the 150-loop. Both crystallographic evidence and
the MD simulations indicate that this closed 150-loop is stabilized
by oseltamivir in the active site,9,10 primarily through interactions
with D151 and R152. Collectively, these observations may suggest
that the closed substate is preferred when ligands are bound in the
active site.

Interestingly, on the other side of the 430-cavity is an area
known to be a second SA binding site in N960 and N2,61 with
hemadsorption activity.62,63 Notably, sialic acid (in the boat,
chair, or twist conformation) shows a preference to bind near
this alternate site or the 430-cavity in 12 out of 18 docking
experiments, albeit with lower energy and, often, lower cluster-
ing percentage than the SA cavity (data not shown). Moreover,
the electrostatic surface potential maps indicate that this alternate
SA binding site may exhibit a weak negative electrostatic
potential. Therefore it is possible that this alternate site acts to
attract SA or to extend its interactions with the N1 binding site.
The comparatively stronger electrostatic potential in the SA
cavity may provide an electrostatic gradient to steer SA into
the requisite catalytic location. The effect of electrostatics is
well-known to play an influential role in controlling the diffusion
of substrates into charged active site areas, as shown in the
acetylcholinesterase system.64,65 More extensive electrostatic
calculations are required to test this hypothesis in the N1 system.

Hot Spots for Ligand-Protein Interactions. Previously, a
CS-Map analysis on the N1 cluster representative structures
assessed the druggability of the newly defined areas identified
in the MD simulations.11 Using a complementary computational
physics-based approach, CS-Map identified suitable sites for
potential ligand interactions, which were presented as probe
clusters near the 150- and 430-loop regions. The consensus
approach adopted in the CS-Map analysis indicates that despite
protein motion, the existence of hot spots over the binding site
may persist, and that these areas may be relevant for drug
discovery and design, as has also been shown through a variety
of other methods.18,25,66–70 The work we present here provides
support for the CS-Map analysis through the docking of the
NCIDS compound library to these novel hot spots (Table 2).
Many of the ligands we present make contacts to the residues
that were found to mediate a consistent probe contact, such as
R152, S153, etc., in the SA cavity, Q136 and S145, etc., in the
150-cavity, and N369, S370 in the 430-cavities, as illustrated
in Figure 6 and Figures S3 and S4 of the Supporting Informa-
tion. The CS-Map analysis also predicted that Q136 and T439
are important mediators of nonbonded interactions and our
docking studies support that claim.39 We anticipate that ligands
that make contact to these hot spots are more likely to be
biologically relevant.

Hit Identification and Hit to Lead Optimizations. The com-
putationally derived potential hits as listed in Table 3 are ranked
using the RC weighted harmonic means, and their predicted
site(s) of interactions are indicated. The names of these com-
pounds are shown in Table S3 of the Supporting Information,
along with the mean binding energy values shown in Figure 3.

Fragment-Based Approach. The differential preference of
binding cavities by the top hits for the apo ensemble of receptors
is illustrated in Figure S1 of the Supporting Information. The
individual hits to each cavity may offer good starting points
for hit to lead optimization, especially for those interested in
using fragment-based approaches. Compounds that are predicted
to bridge two cavities simultaneously are especially interesting,

particularly those that bridge either the 430- or 150-cavity to
the SA cavity. In theory, these compounds should interfere with
the binding of SA to the catalytic residues, represented in italics
in Table 2, while providing additional selectivity for N1 through
binding to the 150- or 430-cavities. Clearly, these compounds
will require further optimizations because their current binding
energies and predicted Ki’s are not necessarily higher than those
compounds that only interact with a single cavity. However,
they provide an initial set of experimentally testable predictions
regarding the capability of any compounds to bind to these
newly identified, druggable areas. Additional fragment-based
approaches (either computational or experimental) to bridge
known SA cavity binders with 150- and/or 430-cavity binding
compounds can easily be envisioned.

Drug Resistant Mutations. The influenza virus undergoes
constant antigenic drift with a very high mutation rate yielding
many different strains except for the essential catalytic residues
that are conserved across species. Therefore, it is important to
consider known mutations and avoid compounds that interact
with experimentally verified mutational hot spots. One set of
the published mutations found in ViVo or in Vitro for H5N1 was
H274Y and N294S.71 H274Y results in resistance to oseltamivir,
but not to zanamivir, whereas N294S results in low resistance
to oseltamivir. None of the 27 top hits are predicted to make
contacts to H274. Compound 1 makes a nonbonded contact to
N294 in Holo-1; no other hits do. In addition, the E276D
mutation has been shown to confer resistance without sacrificing
the viability or genetic stability of the virus.72 E276 is located
directly in the sialic acid cavity and illustrates that even a subtle
reduction in side chain length can be enough to confer resistance,
further underscoring the need to develop new antivirals that
target alternate areas such as the 150- and 430-cavities. Other
mutations have been identified in group-2 neuraminidases (N2,
N9) and influenza type-B viruses, but it is often observed that
mutant residues in one group are unrelated to those in another.73

Furthermore, when mutations from N2 are introduced into
H5N1, they result in significantly reduced viral viability.74

Another intriguing consideration is that the inhibitor does not
necessarily need to make contact with the mutated residues in
order for it to confer resistance. For example, oseltamivir does
not make immediate contacts with H274, but the mutation to
tyrosine very likely causes tertiary changes in the protein that
affect oseltamivir binding. Additionally, it has been shown that
changes in the HA glycosylation patterns can confer antiviral
resistance in an NA-independent manner.75,76 Although our
understanding of the complex interplay of interactions that confer
resistance is incomplete, these factors can still be considered in
the selection and design of N1 antivirals.

Conclusions

Through eight different virtual screens of the NCI diversity
set, which employed structures taken from crystallographic
studies as well as representative structures from apo and holo
MD simulations, 27 drug-like ligands have been identified,
which are predicted to bind with high affinity to avian influenza
N1. Fourteen of these compounds are unique hits that would
not have been found based on the crystal structure screens alone,
and they include compounds that bind to flexible loop regions
unseen in the crystal structures. Importantly, the docking of
thousands of compounds to the N1 binding site elucidated
specific regions of high ligand-binding affinity in the flexible
150- and 430- cavities. These cavities and the residue contacts
observed among the top hits strongly agree with the location
of hot spots and residues predicted to mediate receptor-ligand
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interactions by a recent CS-Map analysis. The top hits are
validated and ranked through redocking experiments into a set
of structures representing the holo ensemble within the RCS
framework. This novel strategy for identifying NA inhibitors
may facilitate the design of better drugs in the fight against
global pandemic influenza and be applicable in structure-based
drug discovery initiatives.
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