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Analogy and Learning in Programming

A Model of Purpose-driven Analogy and

Skill Acquisition In Programming
Peter Pirolli
University of California, Berkeley

Abstract

X is a production system model of the acquisition of programming skill. Skilled
programming is modelled by the goal-driven application of production rules (productions).
Knowledge compilation mechanisms produce new productions that summarize successful
problem solving experiences. Analogical problem solving mechanisms use representations of
example solutions to overcome problem solving impasses. The interaction of these two
mechanisms yields productions that generalize over example and target problem solutions.
Simulations of subjects learning to program recursive functions are presented to illustrate the
operation of X.

Introduction

Theoretical progress in cognitive science hinges crucially on the ability of theories to
address issues of knowledge acquisition. In turn, theories of knowledge acquisition have direct
bearing on theoretical and practical issues in instruction. | present a model of analogical
problem solving and skill acquisition, called X, developed as an extension of the ACT* theory
(Anderson, 1983) for the domain of learning to program recursive functions. This model was
developed to explore the notion insightful conceptual understandings of example solutions are
instrumental in skill acquisition. Analogical problem solving makes use of goal-relevant and
plan-relevant information that is encoded in a mental representation of an example solution.
The content and detail of this information has an impact on the success of analogical problem
solving. In turn, skill acquisition mechanisms transform these analogical problem solving
experiences into skills. Ultimately, the quality of the skills acquired from analogy rests upon
the content and detail of the goal-relevant and plan-relevant information in the example
representation. Analogy thus serves as a means towards effecting repairs (Brown & Van Lehn,
1980) to domain-specific problem solving procedures.

Analogy is a term with many denotations and connotations in cognitive science as well as
everday language. The particular analogical problem solving mechanisms implemented in X
work from representations of example solutions that might be presented by a textbook or
teacher. Basically, these representations constitute an explanation of the structure and
functionality of components of the solution structure along with constraints on the conditions
under which such components apply. In this respect, the X analogical problem solving
mechanisms are similar to machine learning work on explanation-based learning (DedJong &
Mooney, 1986; Mitchell, Kellar, & Kedar-Cabelli, 1986). The invocation of analogical
problem solving and the selection of relevant analogs is driven by active problem solving goals.
This aspect of X is similar to machine learning work on purpose-driven analogy (Kedar-
Cabelli, 1985). Although similar in spirit to these clusters of machine learning research, X
evolved from the ACT* production system theory of problem solving and is a minor variant of
another descendent of ACT*, the PUPS production system (Anderson & Thompson, 1986). Like
other members of the ACT* family, accounting for phenomena of human cognition is one major
impetus for developing X. Another motivation for developing X, is the notion that richer
theories of learning will lead to richer, more effective, and more efficient means of instruction.
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Programming Recursion
An Ideal Model

The X model was initially developed to address observations of people learning to
program recursive functions. Recursion is usually a novel concept for introductory
programming students and consequently serves as a useful domain for studying knowledge
acquisition. A typical example of a recursive function in LISP is the definition of the function
FACT to compute factorials presented in Table 1. Like all recursive functions, FACT is defined
in terms of itself. The body of the definition for FACT consists of a conditional structure
containing a series of conditional clauses. The conditional structure is implemented by the LISP
form COND and each conditional clause is represented as a list within the COND structure (a list
in LISP is anything enclosed in parentheses; e.g., (A B C) is a list). Each conditional clause
contains two parts. The first part is a list that specifies a condition and the second part
specifies an action to take if the condition does not evaluate to NIL, which stands for "false." The
first clause in FACT states that if the input N is equal to zero, then the result of FACT will be 1.
The second clause, states that in all other cases, the result of FACT will be N times the result of
FACT applied to N - 1.

Table 1

A recursive LISP function to compute factorials

Definition Comments
(DEFUN FACT (N) ; define n!
(COND ((ZEROP N) 1) ;If n = 0 then return 1
(T (TIMES N (FACT (SUB1 N)))))) :Else return n x (n - 1)!

In previous studies of expert and novice programming (Pirolli & Anderson, 1985) we
identified concepts that appeared to be crucial to efficiently learning general skills for
programming recursion. A prescriptive model of programming skills for recursion, called an
ideal model, has been implemented in the GRAPES production system and used as the basis for
instruction on recursion in an intelligent tutoring system (Pirolli, in press). GRAPES is a
system that emulates a subset of the ACT" theory (Anderson, 1983).

Recursive functions, in general, have a conditional structure consisting of two types of
cases. The recursive cases compute a result by using the results of one or more recursive calls
to the function. For example, the last conditional clause of the FACT function presented in Table
1 is a recursive case that involves computing the result of the recursive call, (FACT (SUB1
N)), and uses that result to compute the result of (FACT N). The terminating cases terminate
the recursive process. In Table 1 the terminating case is the first conditional clause, which
returns the value 1 when the input N = 0.
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The recursive relation holds between the value of the function and the value of a
recursive call to the function. In FACT, the recursive relation is the relation between between
the result of nl and (n - 1)l--that is, nl=n x(n - 1)l. Students often have a great deal of
difficulty identifying and planning out the recursive cases of recursive functions. Based on our
analyses of expert problem solving with recursive functions (Pirolli & Anderson, 1985) the
general method for determining the recursive relation is to: (a) assume that the result of a
recursive call can be achieved, then (b) determine how to achieve the result of the function
using the result of the recursive call.

GRAPES productions, in general, decompose programming goals into subgoals until some
action can be achieved, forming a hierarchical goal tree. A typical production for programming
LISP might be:

P1: IF the goal is to write a function definition in LISP
and the name of the function is given
and the arguments to the function are given

THEN write "(DEFUN <name> <arguments> <body>)"

where <name> is the name of the function
and <arguments> are the arguments to the function
and set a subgoal to code the <body> of the function
which implements a process that achieves the function

Some observations on analogical problem solving

Instruction in problem solving domains usually includes descriptions of the entities in
the domain, general rules for problem solving, and example solutions. Protocol studies (Pirolli
& Anderson, 1985) have indicated that subjects have a tough time deriving solution methods
from general definitions or rules of thumb for a domain and turn to example solutions for
guidance in early problem solving attempts . These subjects are usually successful in producing
some solution by analogy to an example once the example has been selected (see also Gick &
Hoyoak, 1980; Reed, Dempster, and Ettinger, 1985; Reed, Ernst, and Banerji, 1974). We
also observed (Pirolli & Anderson, 1985) that problem solving procedures are learned from
such analogical problem solving (see also Gick & Holyoak, 1983; Sweller & Cooper, 1985).
However, subjects sometimes conceptualize examples in a shallow and literal manner and
sometimes conceptualize examples in a deep and insightful manner (Pirolli & Anderson, 1985).
These variations have an impact on the problem solving behavior generated by analogy to
examples. In some cases subjects basically copy program code that they do not understand and in
other cases they produce solutions based on the more principled methods they see embodied in
the example programs. These variations in early problem solving experiences involving the use
of examples in turn have an impact on early skill development (Pirolli & Anderson, 1985).

The pervasiveness of analogical problem solving in the early stages of skill acquisition is
borne out by an experiment in which subjects had access to an online example of a recursive
function, that had been part of their instruction. While coding their first recursive function,
subjects spent approximately 30% of their time looking at the example. Analysis of target
problem solutions revealed that portions that were similar to the example accounted for fewer
errors. Later, when subjects were coding their fourth recursive function, looking at the
example solution only accounted for about 5% of their problem solving time.

The impact on skill acquisition of the particular manner in which an example is encoded
is illustrated by another experiment in which the same example program was presented to one
group of subjects (structure group) in the context of an explanation of how recursive functions
are written (based on the GRAPES ideal model) and to another group (process group) in the
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context of how recursive functions execute (the typical pedagogical approach). The structure
group took less training time than the process group in achieving the same level of proficiency
indicating that knowing how an example recursive function is written yields more efficient
learning than knowing how a recursive function works. A simulation of a structure group
subject is presented later in this paper.

The X Model

The X model of analogical problem solving was implemented as an extension of the
GRAPES production system. The X model is also a subset of a production system architecture for
analogical problem solving and skill acquisition, called PUPS, that is being developed by
Anderson and Thompson (1986). Basically, X takes several ideas developed in PUPS about
analogical problem solving and instantiates them in the GRAPES architecture.

Like several other proposals for problem solving by analogy (e.g., Carbonell, 1986;
Gick & Holyoak, 1980, 1983) the X analogy mechanisms supply a method for problem solving
when domain-specific methods are lacking or inadequate. The general notion is that the learner
has some declarative knowledge of how the structure, Sg, of an example achieves various

functions, Fg, under certain preconditions, Cg and is faced with achieving goals Gy ,under
conditions C;in a target problem. The task in analogical problem solving is to come up with a
target solution S; by solving the analogy Sg:Fg::S;:Gy . subject to the constraint that the mapping
of Sg onto S; transforms Cg into a set of preconditions that are in Cy or satisfiable in the target
solution.

Representation

The X system makes use of a representation scheme for declarative knowledge that
captures the functionality, structure, and conditionality, of concepts or actions in a problem
solving domain. This knowledge representation scheme is crucial to the working of analogy and
is an important addition to the ACT" theory. The principle components of this scheme are
schematic knowledge structures called units that have slots that are filled or instantiated by
particular values. Although arbitrary slots are allowed, there are three types of slots that have
preeminance in the representation: (a) functionality which describes the purpose or goals
achieved by a unit, (b) structure which describes the composition of a unit from other units,
and (c) conditionality which describe constraints on the unit.
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Table 2

Examples of X representations

The POWER program.

power-definition
functionality: defines(power-function args power-result)
preconditions: implemented-in(power-function LISP)
structure: steps(defun power-name args body)

The Factorial Problem.
fact-definition

functionality: defines(fact-function x-arg fact-result)
preconditions: implemented-in(fact-function LISP)

Some examples of the representation can be seen in Table 2, which presents a
declarative description of part of an example program and a target problem in LISP. The

example is a recursive definition of a function, POWER, that computes m”1. The target program
is the factorial function presented in Table 1. Units thus provide a knowledge representation
scheme that captures important goal-relevant and plan-relevant information for use in

problem solving. A unit can be thought of as rule of the form

conditionality  astructure = functionality

So, power-definition in Table 2 can be translated into the rule

steps(defun power-name args body)
Aimplemented-in(power-function LISP)
= defines(power-function args power-result)

Problem solving

Goals in the X system are to-be-achieved units that have functionality but no structure.
An example of a to-be-achieved goal in the Table 2 is fact-definition. The X system considers
one goal at a time and considers only productions that are applicable to that goal. The
propositions on the structure slots represent orderings, partial orderings, and hierarchical
relationships among the actions represented by units. The agenda for goal processing is achieved
by productions that search through the structural links from a current active goal. Units
encountered in this search that have a specified functionality but no structure are placed on the
goal agenda. Analogical problem solving is invoked by X at problem solving impasses--in other
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words, when a goal is activated and no production matches, analogical problem solving is
invoked. X selects an analog for further processing based on a specificity principle. In theory,
this is an associative memory retrieval achieved by the spreading activation mechanisms of
ACT* (Anderson, 1983; Anderson & Pirolli, 1985). In the computer implementation of X, the
effects of spreading activation are approximated by a specificity principle based on the number
of correspondences and identical elements that hold between the the example and target. Since
the goal of analogical problem solving is to map an existing solution structure from an analog
unit to a target unit, one constraint on the selection of an analog unit is that it must have a
filled-in structure slot. There are three major subprocesses involved in solving a target
problem by analogy:

* Function matching. the first step taken by X is to place the target goal unit into
correspondence with the functionality of potential analogs and to select the best
analog. Two function propositions can be placed into correspondence if the predicates
in both functions are identical. The arguments of one function proposition are placed
into correspondence with a another function proposition by virtue of the slots they
fill within the propositions. These correspondences are used to map information
about the analog onto new information in the target. Function matching also checks
that the conditions on the analog unit are not violated in the target problem. If there
is a violation then there is no match.

» Structure mapping. This involves mapping an analog structure onto a new target
structure. However, there is no guarantee that the correspondence set will be
elaborate enough to permit such a mapping.

« Function elaboration. This occurs when an element of an analog's structure has no
correspondence. There are a number of ways that function elaboration can be carried
out in order to map a particular structural element ez of an analog onto a new

structural element e;in a target. First, the functionality of e; may match the
functionality of some existing target unit e;. The correspondence set can be

elaborated with this correspondence plus the correspondences resulting from the
function match of ez and e;. Second, a new target unit can be created and assigned a

functionality mapped from ez and this may recursively invoke further function

elaboration. Third, additional correspondences can be found by elaborating the match
of an analog unit to a target unit. This is achieved by recursively matching the
functions of elements already placed into correspondence. This may lead to an
elaborated set of correspondences that permits e to be mapped onto a new ey.

Learning from Analogy

One major outcome of analogical problem solving is the induction of new production
rules by a set of knowledge compilation mechanisms that generalize over information present in
the declaralive units representing analog and target problems and their solutions. Knowledge
compilation mechanisms create new productions that summarize the problem solving involved
in analogy (for the details of knowledge compilation see Anderson, 1983). These new
productions apply in situations similar to those that invoked analogical problem solving in the
first place. The compilation of solutions produced by analogy yield general problem solving
operators and thus the interaction of analogy and knowledge compilation offers an alternative
procedure for the generalization of cognitive skills in ACT* (Anderson, 1986).
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To see how skills are acquired from analogy, consider that analogical problem solving in
X consists of two things: (a) matching conditions and functionalities of the analog and target, and
(b) creating target conditions, functionalities, and structures based on the analog. Knowledge
compilation creates new productions with conditions that specify the target functions and
conditions that were matched in the analogy process and that have actions that specify the
structures, functions, and conditions that were created in the target by analogy. The conditions
created by compilation retain the components of the target that matched exactly to the analog and
variablizes over target information that mismatched. Thus, a compilation of the analogical
problem solving involved in achieving the goal unit fact-definition based on the example power-
definition produces the production:

Li: IF the goalis to achieve

=definition
functionality: defines(=function =arguments =result)
precondition: implemented-in(=function LISP)

and

=name
functionality: name-of(=function)

THEN the structure of =definition is

steps(defun =name =arguments =body)

and the functionality of =body is
implements(=function)

where the items preceded by the equal sign denote variables. Production L1 applies when the
goal is to achieve a function definition in LISP when the name of the function has been decided on.
The action specified by L1 lays out a template for the code to define the function. Production L1
has the same semantics as production P1 presented earlier.

Example Simulations

Previous protocol analyses and experiments on learning recursion (Pirolli, 1985;
Pirolli & Anderson, 1985) indicate that subjects with richer representations of how recursive
functions are written learn more efficiently and effectively than subjects who either just
understand how recursive functions operate or who have a encoded a rather literal
representation of examples. With X it is possible to explore in greater detail what knowledge
promotes efficient and effective learning. Two simulations of X are presented here. These
simulations address verbal protocol data analysed and modelled previously (Pirolli & Anderson,
1985) in a more general manner. The first simulation illustrates how a rather literal
representation of an example can lead to a successful solution by analogical problem solving,
with very little gain in skill acquisition. The second simulation illustrates a case of analogical
problem solving that lead to effective problem solving skills for programming recursion.

Literal Analogy

The first simulation addressed the data gathered from subject JP, an eight year old
learning recursion in LOGO. Her first programming problem was to write a function that would
recursively draw a set of squares of increasing size. JP's final solution, called TUNNLE ([sic]
was
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TO TUNNLE X
SQUARE X

IF :X = 42 THEN STOP
TUNNLE :X +10

END

In coding TUNNLE, JP used an example program, CIRCLES, to guide her analogical
problem solving. After writing TUNNLE (which works), JP was unable to code even slight
variants of TUNNLE (e.g., drawing more squares).

The analysis of protocol data and interview data suggested that JP has a very literal
representation of the CIRCLES program and largely copied that solution onto the TUNNLE [sic]
solution. Figure 1 presents the representation of CIRCLES that is encoded initially in X for the
simulation of JP. In Figure 1, literal code from the example is in uppercase. The structure of
the CIRCLES code is not represented at any deeper level (e.g., as a tree structure representing
the different LOGO structures, terminating cases, recursive cases, etc.). The functionality of
only some of the program symbols are elaborated (e.g., CIRCLES is the name of the function,

"50" is the maximum size of the circles).
define
f/'( ircles-function
input

circles-definition ircles-figure

name-of s size-of
§ : i .
\ circles-figure
circles-function ~C v
TO circles input s

S| _— — X

CIRCLES
_~rcircle

Draw ‘f//

cirel / IF input = max-size THEN STOP
input \ '

~A [
s circle input + 10 S0 .

Figure 1: JP's representation of the CIRCLES example. Arrows labelled s

indicate structure slots; f indicates function slots. Boxes indicate structures
that fill structure slots.
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Analogical problem solving works in this case because the target problem is similar
enough to the example representation to permit successful mappings. The following matches are
made in the simulation:

« Both definitions define a function taking an input and produce a composite figure

« The process implemented by both functions is to repeatedly draw a figure of
increasing size

« RCIRCLE draws an element of the composite circles figure and SQUARE draws an
element of the composite squares figure

» 50 is the maximum size of the circles figure and 42 is the maximum size of the
square figure

+ The functionality of the inputs match

Knowledge compilation of this analogical problem solving yields the following production

L2: IF the goal is to define a function =name with input =x

that draws a =composite-figure

by repeatedly drawing a figure with a function =figure-drawer

up to maximum size =number

THEN write

TO =name =x
=figure-drawer
IF =x = =number THEN STOP
=name =x + 10

Production L2 will basically code other fuctions that draw composite figures of increasing size
like CIRCLES, but is not effective for coding recursive functions in general.

Insightful Analogy

The second simulation addressed data gathered from subject AD, a college student
learning recursion in SIMPLE (Shrager & Pirolli, 1983). AD's programming tasks centered on
writing functions that searched and gathered selections from a database of library entries.
These library entries could be identified by a number or title, and SIMPLE predicates were
available to test whether entries belonged in one of three categories (science, religion, or
fiction). The recursion problems assigned to AD involved collecting library entries of various
categories into lists with different orderings placed on the list items. AD's instruction on
recursion was identical to that given to the structure group in the experiment discussed
earlier--that is, it emphasized how recursive functions are written. The example discussed in
this instruction was SORT, a function that sorted a list of entries such that science books were at
the beginning of the list result of SORT.

From AD's protocol gathered as she read instructions out loud and wrote her first
recursive function, it was clear that she had encoded a rich representation of the SORT example.
After writing her first recursive function, AD coded an additional 19 recursive functions
without error. Part of the encoding of SORT given to X in simulating AD is presented in Figure
2, which depicts the representation of a recursive case of SORT. The representation includes
the notion that the recursive case is a conditional structure and that the action in this case
involves a recursive relation. The recursive relation is achieved by determining the result of a
recursive call to SORT and then comparing it to the result of SORT.
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/'D/ conditional
f

sort-case2

\{

) ) IF test2 THEN action2
recursive-relation

/\D'\f °

sort-result - r .
—— sort-recursive-relation reduce-difference

t
|
sort-recursive-result sort-difference-reduction

result-of ‘T” )

sort-process S

sort-next-step first-element PRE sort-recursive-result

SORT rest-list

Figure 2: AD's representation of the recursive case of the SORT example.
Arrows labelled s indicate structure slots; f indicates function slots. Boxes
indicate structures that fill structure slots.

Knowledge compilation of AD's analogical problem solving yield the following productions
L3: IF the goal is to code the action of a conditional clause
of a function that places all elements

of a specified type into a result in a specified order
THEN set a goal to code the recursive relation
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L4: IF the goal is to code a recursive relation
THEN set subgoals to
1. refine the recursive call
2. achieve the result of the function using the recursive call

L5: IF the goal is to code a recursive call to a function
and a value that is one step closer
to the terminating case than the current function input is known
THEN write the name of the function followed by that value

L6: IF the goalis to achieve a value that is one step closer
to the terminating case than the current function input
and the function input is a number
THEN set a goal to write code that will subtract 1 from the input

Production L3 specifies that the action of a conditional clause that is supposed to place all
elements of a certain type in an output list can be solved by coding the recursive relation.
Production L4 lays out a plan for inducing a recursive relation to satisfy the constraints of the
program. Production L5 codes a recursive call. Production L6 specifies that the argument to a
recursive call in a function that has a numeric input should be one less than the input. The key
point to be made in this simulation of subject AD is that having an abstract representation of the
underlying structure and functionality of a recursion example that encoded how recursive
functions are written facilitated the learning of productions that are similar to those of the ideal
model implemented in GRAPES. The generality of the productions acquired by X in simulating
subject AD accounts for the ease with which AD coded her subsequent recursion problems.

Summary

The X model of analogical problem solving and skill acquisition was developed as an
extension of ACT* (Anderson, 1983) to deal with the pervasive phenomena of analogical
problem solving. A major difficulty with ACT* has been with its ability to deal with the
structuring of problem solving performance when encountering a novel domain (e.g., Anderson,
1983, ch. 6). The analogical problem solving mechanisms in X (and PUPS, Anderson &
Thompson, 1986) comprise a weak problem solving method that appears to serve this function
in @ number of domains such as programming, geometry (Anderson, Greeno, Kline, & Neeves,
1981), and algebra (Reed et al.,, 1985; Sweller & Cooper, 1985). The interaction of analogy
and knowledge compilation yields generalized productions from a single problem solving episode.
This appears to more accurately fit the phenomena of early skill acquisition (e.g., Kieras &
Bovair, 1986) better than the ACT* mechanism of production generalization which requires
two similar production applications.

The major gap in X is that it does not address the process of comprehending example
solutions to form the representation that serves as the basis for later analogical problem
solving. Current work is focused on filling this gap. It is assumed that understanding an
example is driven by a process of attempting to explain (by instantiating declarative schematic
knowledge about plans and goals) how an example solution achieves various goals (cf. DeJong &
Mooney, 1986). The goal of this effort is to work towards a model that addresses some aspects
of how variations in prior knoweledge about plans and goals interact with variations in
instruction using examples.
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