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A B S T R A C T

This work examines the effectiveness of a newly-developed optimization framework for river basin management.
The proposed framework relies on the newly developed WOAPSO algorithm, which is a hybrid metaheuristic
algorithm combining two conventional metaheuristic algorithms, namely the weed optimization algorithm
(WOA) and the particle swarm optimization algorithm (PSO). Two case studies are presented in this study to
evaluate the performance of the WOAPSO algorithm. The first case study consists of a ten-reservoir river basin
example which compares the performance and reliability of the hybrid WOAPSO algorithm with that of linear
programing (LP), non-linear programing (NLP), WOA, and the PSO algorithm. Results indicate the hybrid
WOAPSO finds solutions meeting downstream water demands with 99.94% of reliability (with respect to the
global optimum, as derived by LP) in the ten-reservoir system. It outperforms the WOA and PSO, which feature
lower reliabilities than that achieved by WOAPSO. The second case study demonstrates failure of the conven-
tional NLP optimization scheme in solving a real-world three-reservoir hydropower optimization problem which
maximizes the efficiency index of hydropower production. The newly-introduced WOAPSO algorithm minimizes
the objective function with superior efficiency compared with those of the WOA and PSO, in terms of the
convergence rate and the achieved best values of the objective function. Furthermore, the WOAPSO is proven
more reliable for solving complex multi-reservoir systems within the context of integrated river basin man-
agement than classic and evolutionary optimization algorithms.

1. Introduction

The optimization of multi-reservoir systems operation within the
framework of integrated management for water supply and other
functions, such as generating hydropower, improves the performance of
water resources systems in arid in semi-arid regions with scarce natural
sources of water. Classic optimization methods have found numerous
applications in reservoir operation optimization. Barros et al. (2001,
2003), for example, applied nonlinear programming (NLP) to optimize
hydropower production in reservoir systems in Brazil. Labadie (2004)
presented a comprehensive review of mathematical and metaheuristic
optimization rules for multi-reservoir systems. Mariano et al. (2008)
adopted the NLP method to optimize reservoir operation for max-
imizing the benefit of hydropower production considering environ-
mental requirements downstream of the reservoir. Baliarsingh (2010)
employed stochastic dynamic programming (SDP) to optimize reservoir

operation rules for a single-reservoir system for agricultural water
supply and hydropower production. Bozorg-Haddad et al. (2013) ap-
plied NLP for the optimization of pumped storage in hydropower sys-
tems. Sharif and Swamy (2014) relied on the LINGO software package
for resolving the optimal operation of a discrete four-reservoir system
introduced by Larson (1968). Ji et al. (2015) employed linear pro-
gramming (LP) to maximize hydropower production in the Han river,
South Korea.

Various limitations hinder the application of classic methods such as
LP and NLP to solve nonlinear reservoir operation problems of high
dimensionality. Metaheuristic and evolutionary search algorithms have
become commonly applied methodologies to solve such complex opti-
mization problems. Sharif and Wardlaw (2000) implemented the ge-
netic algorithm (GA) for the optimal operation of multi-reservoir sys-
tems and demonstrated the GA has better convergence capability than
dynamic programming (DP). Ahmed and Sarma (2005) compared the
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GA with SDP in the optimization of multi-objective reservoir operation
and reported that the GA method exhibited better performance than
SDP. Tospornsampan et al. (2005) applied the simulated (SA) algorithm
to the optimal operation of a ten-reservoir system to maximize hydro-
power production and compared their results with those obtained with
the GA. Jothiprakash and Shanthi (2006) optimized operation rules for
a single-reservoir system with the GA. Bozorg-Haddad et al. (2006)
introduced the honey-bee mating optimization (HBMO) algorithm, in-
spired by the mating of bees, as a metaheuristic algorithm and applied
it to several reservoir operation problems. Geem (2007) adopted the
harmonic search (HS) algorithm for optimal operation scheduling of a
multi-reservoir system for maximizing hydropower production and ir-
rigation water supply. Bozorg-Haddad et al. (2008) reported the ap-
plication of NLP and the HBMO algorithm for the optimal operation and
design of single and multi-reservoir systems. Celeste and Billib (2009)
implemented particle swarm optimization (PSO) to search for optimal
operation policies of a single-reservoir system in Brazil. Wang and Qiu
(2010) optimized reservoir operation in China with the aim of hydro-
power energy production relying on the PSO algorithm with adaptive
random inertia weighting (ARIW). Zhang et al. (2011) applied PSO
algorithm to the optimal operation of a multi-reservoir system with 25
hydroelectric power plants in the Mianjin basin of China. Vaghefi et al.
(2012) implemented the imperialist competitive algorithm (ICA) for the
optimal operation problem of the Sepidrood river reservoir for sediment
extraction. Afshar (2012) developed long-term optimal operation rules
for the Dez reservoir, Iran, for hydropower production with the PSO
algorithm. Dariane and Sarani (2013) applied the intelligent water
drops (IWD) and the Ant Colony Optimization (ACO) algorithms for
long-term optimal operation of the Dez reservoir. Bozorg-Haddad et al.
(2015a) developed optimal operation policies for the Karoon-4 re-
servoir in Iran with the water cycle algorithm (WCA). Bozorg-Haddad
et al. (2015b) implemented the bat algorithm (BA) for the optimal
operation of a four-reservoir system in continuous domain and of the
Karoon-4 reservoir for hydropower production. Garousi-Nejad (2016)
implemented the firefly algorithm (FA) for optimization operation of
two different single-reservoir systems, one with the purpose of irriga-
tion supply and the other one with the aim of hydropower generation.
Solgi et al (2017) used an enhanced HBMO (EHBMO) to optimize a
multi-reservoir system. Bozorgi et al (2017) applied the anarchic so-
ciety optimization (ASO) to optimize the operation of a single-reservoir
hydropower system (Karun-4 reservoir) and a four-reservoir system. Li
et al. (2018) reported an improved shuffled frog leaping algorithm
(SFLA), the chaos catfish effect SFLA (CCESFLA), to maximize the hy-
dropower generation of three reservoirs in China. Jiang et al. (2018a,b)
introduced an optimization model with early warning mechanism for
hydropower stations considering the uncertainty of runoff forecast.
Jiang et al. (2018a,b) implemented the multi-stage progressive optim-
ality algorithm (POA) for optimizing energy storage a series of re-
servoirs. Jiang et al (2019) introduced a method of energy storage
operation chart (ESOC) to analyze the influence of time scale on power
generation of multiple reservoirs.

Mehrabian and Lucas (2006) introduced the weed optimization al-
gorithm (WOA) inspired by the behavior of weeds. Mehrabian and
Yousefi-Koma (2007) implemented the WOA to optimize the location of
piezoelectric actuators on a smart fin. Sahraei-Ardakani et al. (2008)
optimized electricity production with the WOA. Hajimirsadeghi and
Lucas (2009) developed the hybrid WOAPSO algorithm by blending the
weed optimization algorithm with particle optimization algorithm.
Sedighy et al. (2010) applied the WOA to design and optimize a printer
Yagi antenna. Other applications of the WOA in various fields can be
found in Sharma et al. (2011), Jayabarathi et al. (2012), Ghasemi et al.
(2014), Saravanan et al. (2014), Asgari et al. (2015), and Azizipour
et al. (2016). Lenin et al. (2014) determined optimal power reactive
dispatching (ORPD) with WOAPSO. Mohammadi et al. (2014) designed
and optimized the operation of a fuzzy-based gas turbine engine (GTE)
with hybrid WOAPSO algorithm.

A review of the available literature indicates the hybrid WOAPSO
algorithm has not been applied in water resource systems analyses.
Moreover, multi-reservoir systems with integrated river basin man-
agement are complex and their optimized operation is difficult to solve
for with conventional optimization methods. Some optimization algo-
rithms are unable to tackle these reservoir problems, or they converge
to suboptimal solutions. This type of complex reservoir operation pro-
blems necessitate optimization frameworks driven by powerful algo-
rithms. The hybrid WOAPSO algorithm is suitable to tackle complex
water resources problems: it exhibits rapid convergence to near global
optima. Also, the hybrid WOAPSO algorithm is herein demonstrated to
obtain the best near optimal solutions to complex reservoir operation
problems.

This work introduces an optimization model integrating river basin
management focusing on multi-reservoir systems and, specifically, on
hydropower operation that maximizes benefits with the hybrid
WOAPSO algorithm. The performance of the hybrid algorithm is herein
compared with those of NLP, LP, the WOA, and PSO algorithm. The
comparison of these optimization methods is based on the solutions of
two reservoir operation problems, namely, a river basin benchmark
problem with ten-reservoir system and a three-reservoir system for
hydropower generation.

2. Simulation and reservoir operation model

One ten-reservoir system benchmark and a three-reservoir hydro-
power production problems illustrate the implementation of the hybrid
WOAPSO algorithm. The ten-reservoir problem maximizes the benefit
from allocated reservoir releases:

∑ ∑= ×
= =

Max Be b R.
i

n

t

T

i t i t
1 1

, ,
(1)

in which Be=objective function representing the income from water
allocation to meet water demand, i=reservoir number, n=total
number of reservoirs, bi t, = income in period t from reservoir i and
Ri t, =allocated water demand in t period from reservoir i (106 m3).

The objective function for hydropower production is as follows:

∑ ∑= −
= =
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t
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i t
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in which OFhydropower =objective function total efficiency index of hy-
dropower production, i=reservoir index, i=1, 2, …, T, I=total
number of reservoirs, Pi t, = generated power from reservoir i during
operation period t (106 w), and PPCi =power-plant installed capacity
of reservoir i (MW). The objective function [Eq. (2)] minimizes the sum
of square deviations between monthly generated hydropower and in-
stalled power-plant capacity during the period of operation.

The continuity equation expresses the mass-balance constraint in
the reservoir by means of Eq. (3):

= + + − −+ ×S S Q M R L Spi t i t i t n n i t i t i t, 1 , , , , , (3)

in which, +Si t, 1 = storage volume of reservoir i at the beginning of the
operation period t+1 (106 m3), Si t, = storage volume of reservoir i at
the beginning of the operation period t (106 m3), Qi t, = monthly ac-
cumulation volume entering reservoir i during operation period t (106

m3), M = a n× n matrix of water-release connections between re-
servoirs, Li t, = loss volume from reservoir i during operation period t
(106 m3), Spi t, = water volume spilled from reservoir i in operation
period t (106 m3).

Upper and lower bounds of reservoir storage volume are written in
Eq. (4):

⩽ ⩽Smin S Smaxi i t i, (4)

in which Smini =minimum storage capacity of reservoir I (106 m3),
and Smaxi =maximum storage capacity of reservoir i (106 m3).
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Upper and lower bounds for water release are defined by Eq. (5):

⩽ ⩽Rmin R Rmaxi i t i, (5)

in which Rmini =minimum allowable release volume from reservoir i
(106 m3) and Rmaxi =maximum allowable release volume from re-
servoir i (106 m3).

Evaporative volume loss is determined according to Eq. (6):

= ×L A Ei t i t i t, , , (6)

where Ai t, = lake area of reservoir i during operation period t (km2),
and Ei t, =average loss depth in reservoir i during operation period t
(km). Lake area is a function of reservoir storage volume and is cal-
culated using area vs. volume and area vs. water elevation functions
found below.

The water spilled from reservoir i during operation period t (Spi t, ) is
calculated according to Eq. (7):

= ⎧
⎨⎩

− >+Sp S Smax if S Smax
else0i t

i t i i t i
,

, , 1

(7)

In some cases, the initial and final reservoir storages are set constant
according to Eqs. (8) and (9) (these are the so-called carryover con-
straints in reservoir operation studies):

=S Sinitiali i,1 (8)

in which Sinitiali = initial volume of reservoir i at the start of the op-
eration periods (106 m3), and:

=S Si T i, ,1 (9)

The carryover condition expressed by Eq. (9) is commonly imposed
when the reservoir operation time step is short.

The energy generated by reservoir i in each operation period t is as
follows:

=P
γ η H RPH

n
. . Δ .

10 .i t
i i t i t

i
,

, ,
6 (10)

in which γ =water unit weight (N/m3), ηi = hydropower plant effi-
ciency of reservoir i which is considered constant during all periods,

HΔ i t, = mean difference of water surface level between the beginning
and ending of operation period t in reservoir i, RPHi t, =water discharge
entering the hydropower plant at reservoir i during operation period t
(m3/s) and ni=performance coefficient of hydropower plant in re-
servoir i. Eqs. (11)–(12) are employed to calculate HΔ i t, in Eq. (10):

= −H H TwΔ i t i t i t, , , (11)

in which Hi t, =average elevation of water at reservoir i at the begin-
ning and end of operation period t in (m), and Twi t, =downstream
water elevation of reservoir i during operation period t (m), which is a
function of the discharge to the river and is calculated from stage-dis-
charge (rating curve) data.

=
+ +H

H H
2i t

i t i t
,

, , 1
(12)

in which Hi t, =water elevation of reservoir i at the beginning of
operation period t(m), and +Hi t, 1 =water elevation of reservoir i at the
end of operation period t + 1 (m). Hi t, and +Hi t, 1 are calculated with the
area-volume-height curves of the reservoirs expressed by Eq. (13):

=H g S( )i t i t, , (13)

in which g=denotes the water elevation vs. storage function.
The volume of water entering the power plant of reservoir i during

operation period t (Rei t, ) consists of RPHi t, , which is the amount of re-
quired water for electricity production at power plant of reservoir i
during operation period t (106 m3), and SpPHi t, which is the water vo-
lume bypassing the power plant of reservoir i during operation period
of t (which has no role in hydropower production) (both in 106 m3):

=
−

RPH
Re SpPH

CFi t
i t i t

i t
,

, ,

, (14)

where CFi t, =the conversion coefficient of 106 m3 to m3/s for reservoir i
during operation period t which is calculated according to Eq. (15):

= ×
′ ′

CF day24 3600
1 000 000i t t, (15)

where dayt =denotes the number of days of operation periods (month)
t.

Power generation is limited by constraint (16):

⩽ ⩽P PPC0 i t, (16)

A penalty function is added to the objective function to avoid vio-
lations of the carryover constraint violations:

= − ++P K S Sinitial D1 1[ ] 1i i T i, 1
2 (17)

in which P1i =penalty function for violating the carryover constraint,
K1 = penalty coefficient, and D1 =a constant number.

In addition, if reservoir volume is less than minimum reservoir
storage volume in any period then a penalty function is introduced:

= − +P K Smin S D2 2[ ] 2i t i i t, ,
2 (18)

in which P2i t, =penalty function for violation of minimum reservoir
storage volume, K2 = penalty coefficient, and D2 = a constant
number. A penalty constraint is likewise introduced to avoid violating
maximum storage:

= − +P K Smax S D3 3[ ] 3i t i i t, ,
2 (19)

in which P3i t, =penalty function for violation of the maximum re-
servoir storage volume i during operation period t, K3 = penalty
coefficient, and D3 =a constant number.

The sum of penalty functions defined by Eq. (20) is added to (under
minimization) or subtracted from (under maximization) to the objective
function:

∑ ∑ ∑ ∑ ∑= + +
= = = = =

P P P P1 2 3
i

n

i
i

n

t

T

i t
i

n

t

T

i t
1 1 1

,
1 1

,
(20)

where P=sum of penalty functions.
In reservoir operation systems the water releases from the reservoir

are often the decision variables. Thus, upper and lower release con-
straints are defined as feasible intervals for selecting random release in
the implementation of metaheuristic and evolutionary algorithms. In
this manner these algorithms yield release values in the feasible ranges
of release volumes. For this reason, there are no penalty constraints
imposed on release violations.

3. Methods and materials

3.1. Optimization algorithms

3.1.1. The weed optimization algorithm (WOA)
The WOA models each weed as a member of a population or colony

of potential solutions in which the weed positions constitute the deci-
sion variables of an optimization problem. Weeds are allowed to re-
produce based on their quality (i.e., on their objective function values)
in the colony. This means that the better the quality of a weed, the
larger the number of seeds it produces. A seed is an improved solution
arising from an existing weed. When the algorithm starts the weeds are
in an unsuitable environment and attempt to distribute their seeds over
a large space in search of a more suitable environment. This step of the
WOA searches for an optimal space near (and including) the optimal
point or solution. From this time onward the weeds distribute their
seeds within a close range, which brings the newly produced weeds
arbitrarily close to the best location or global optimal solution of the
optimization problem being solved.
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The WOA consists of the following steps:

1. An initial d-dimensional population (Pinitial) of weeds is generated
and distributed randomly in space.

2. Reproduction: in this step the current weeds produce seeds con-
sidering those weeds with the best and worst qualities. NoSmax and
NoSmin denote respectively the number of weeds with best and worst
qualities. NoSmax and NoSminare user selected. Seed production is
governed by Eq. (21):

= −
−

× − +NoS OF OF
OF OF

NoS NoS NoS( )i
i min

max min
max min min (21)

where NoSi =the number of seeds produced by weed i, OFi = value of
the objective function of weed i, OFmin = minimum value of the ob-
jective function in the colony of weeds, OFmax = maximum value of the
objective function in the colony of weeds. Eq. (21) prioritizes seed se-
lection from the fittest weeds, which, in turn, more likely than not will
yield an improved population of weeds, and so on and so forth until
reaching a convergence criterion. This selection procedure of the WOA
mimics the evolutionary principle of survival of the fittest.

3. Seed distribution, adaptation, and randomness: the seeds are dis-
tributed randomly with a zero-mean normal distribution. Their po-
pulation’s standard deviation is reduced from an initial (maximum)
predefined value to a final (minimum) predefined value in each
generation according to Eq. (22):

= − − +σ iter iter
iter

σ σ σ( )
( )

( )iter
n

n initial final final
max

max (22)

where σiter =value of the standard deviation in the current iteration of
the WOA, itermax = maximum number of iterations (i.e., generation of
seeds), iter = iteration number, σinitial = initial standard deviation, σfinal
= final standard deviation and n=a non-linear module (non-linear
modulation index) which is selected by the user.

4. Competitive exclusion: the exclusion of evolutionarily undesirable
weeds starts after a few iterations whenever the number of weeds in
the colony exceeds its maximum possible number (Pmax). The ex-
clusion is effected by steps outlined above to maintain the number of
weeds in the population within limits. This process is iterated until
the end of the algorithm.

3.1.2. The PSO algorithm
The PSO algorithm was developed by Eberhart and Kennedy (1995)

inspired by the social behavior of fish and birds which live in groups.
The PSO algorithm is applied to particles, thence its name particle
search optimization. Each particle’s value contributed to the objective
function is calculated according to its position in the decision space.
Thereafter any particle selects a direction to move along based on a
combination of its current position, the best place it has ever occupied,
and on the position of other particles which currently occupy the best
positions in the population of particles. One step of the PSO algorithm is
completed once all the particles in the current population have moved.
Steps are repeated until the algorithm reaches the maximum iteration

Fig. 1. Flowchart of the hybrid WOAPSO algorithm.
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number.
The PSO algorithm begins with a randomly generated population of

particles. In the first iteration the initial state of each particle is the best
position the particle has ever occupied (and is named Pbest), and the
best particle with the best objective function value is determined (and is
named Gbest). In the following iterations Pbest and Gbest are updated
according to the positions occupied by the particles in the population
judged by the values of their objective functions. A new velocity for

each particle is calculated according to Eq. (23) considering Pbest and
Gbest. The new position of each particle is then calculated according to
Eq. (24) based on the new velocity and current position of the particle:

+ = + − + −V t ω V t C r Pbest t X t C r Gbest t X t( 1) ( ) [ ( ) ( )] [ ( ) ( )]i i i i i1 1 2 2

(23)

+ = + +X t X t V t( 1) ( ) ( 1)i i i (24)

where +V t( 1)i =velocity of particle i in iteration t+1, V t( )i = velo-
city of particle i in iteration t, Pbest t( )i = the best position which
particle i has occupied until iteration t, Gbest t( ) = position of the best
particle until iteration t, +X t( 1)i =position of particle i in iteration
t+1, X t( )i =current position of particle i in iteration t. Also ω =in-
ertia coefficient, which is an index of convergence to local and global
optima. C1 and C2 denote the personal learning and global learning
factors, respectively, and are user defined. The parameters r1 and r2 are
the numbers which are generated randomly in each iteration with a
uniform distribution in the interval [0, 1].

3.1.3. The hybrid WOAPSO algorithm
Hajimirsadeghi and Lucas (2009) developed the hybrid WOAPSO

algorithm by combining the WOA and the PSO algorithm. The WOA
converges to the optimal area of solutions relatively slowly. However,
after finding the optimal area the WOA approaches the global optimum
accurately because of its effective and diverse search capacity. The PSO
algorithm the changes of the particles’ positions within the search space
are based on the social psychological of individuals to emulate the
success of other individuals. The PSO algorithm converges to the

Fig. 2. Schematic of the ten-reservoir system.

Fig. 3. Schematic of the Karoon 4, the Khersan 1, and the Karoon 3 reservoirs
system.
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optimal area of solutions fast with fairly deliberate particle movements
in each iteration. The hybrid WOAPSO exhibits rapid and accurate
convergence to near global optimal solution. The interaction between
the dispersion method of the WOA algorithm and the speed of the PSO
algorithm produces an effective balance between local and global

exploration of the problem space. Furthermore, Hajimirsadeghi and
Lucas (2009) reported the hybrid WOAPSO algorithm results indicating
faster convergence to superior optima than the WOA and PSO algorithm
could achieve individually by testing them with mathematical bench-
mark functions.

The steps of the hybrid WOAPSO algorithm are as follows:
An initial population of weeds is randomly generated and dis-

tributed in a d-dimensional space. The objective function value is cal-
culated for each weed. The number of seeds (i.e., new weeds or po-
tential solutions) generated by each weed is calculated with Eq. (21).
The positions of weeds are assessed in terms of Pbest and Gbest as done
with the PSO algorithm as explained above. New solutions (seeds) are
generated with Eqs. (23) and (24) employed in PSO algorithm. The
objective function values are calculated for each generated weed. Their
positions are changed with the PSO algorithm. This is followed by seed
generation with the WOA. Subsequently, the PSO algorithm updates the
positions Pbest and Gbest. Competitive exclusion is performed by the
WOA. Whenever the number of weeds in a colony reaches the allowed
number the exclusion process is affected and the weeds that have lower
objective function values are removed from the colony.

Fig. 1 illustrates graphically the steps of the hybrid WOAPSO al-
gorithm.

3.2. Case studies

3.2.1. Ten-reservoir problem
The ten-reservoir system problem for integrated river basin man-

agement was introduced by Murray and Yakowitz (1979) solved it with
the constrained differential DP (CDDP) method. Afterwards, Wardlaw
and Sharif (1999) solved this problem with the GA. Recently; Bozorg-
Haddad et al. (2011) applied the HBMO algorithm to solve the same
problem.

The ten-reservoir system and river basin schematic is displayed in
Fig. 2 where it is seen that optimized management of the system of
reservoirs are integrated for river basin management. The reservoirs 1,
2, 3, 5, 6, and 8 have natural inflow whereas the inflow to reservoirs 4,
7, 9, and 10 are from upstream reservoir releases. The ten-reservoir
system operation is performed during a 12-month period and released
water generates hydropower whose revenue is a linear function of re-
lease. Releases from reservoir 10 also deliver agricultural water
(Murray and Yakowitz 1979).

The matrix of releases connectivity for this system is given by Eq.
(25). In this matrix the ten rows and columns account for the presence
of the ten reservoirs. A+1 matrix element means a reservoir receives

Fig. 4. Monthly discharge for the Karoon 4 reservoir, the Khersan 1, and the Kariin 3 in the 10-year operational period.

Table 1
The best parameters of the WOA, PSO algorithm, and hybrid WOAPSO algo-
rithm for the ten-reservoir system operation.

WOA PSO Hybrid WOAPSO algorithm

Pinitial 50 250 30
Pmax 120 – 90
itermax 20,000 27,000 17,000
NoSmin 1 – 1
NoSmax 5 – 3
n 4 – 4
σinitial 5.5 – 1.5
σfinal 0.01 – 0.01
ω – 0.72 0.7
C1 – 1.49 2
C2 – 1.49 0.5

Table 2
Results of 10 runs of the WOA, the PSO algorithm, and the hybrid WOAPSO
algorithm for the ten-reservoir system operation.

WOA PSO algorithm Hybrid
WOAPSO
algorithm

LP

1 1160.38 1150.64 1191.86
2 1142.57 1148.23 1191.77
3 1153.92 1156.33 1190.67
4 1155.52 1142.54 1193.76
5 1144.93 1156.24 1193.51
6 1147.91 1150.58 1189.75
7 1136.63 1153.76 1190.09
8 1145.81 1154.05 1190.89
9 1146.30 1154.66 1191.03
10 1145.38 1150.64 1193.06
Minimum 1136.63 1142.54 1189.75
Average 1147.93 1151.77 1191.64
Maximum 1160.38 1156.33 1193.76 1194.44
Standard Deviation 6.537758 4.000601 1.339579
Coefficient of

Variation
0.005695 0.003473 0.001124

Number of functional
evaluations

6,597,742 6,750,000 6,523,664
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water from upstream, −1 means water is released from a reservoir, and
0 means reservoirs are not connected to each other. For example, re-
servoir number 4 which is represented by row 4 receives releases from
reservoirs 2 and 3. Also, this reservoir is not directly connected to re-
servoirs 1, 5, 6, 7, 8, 9 and 10.

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−
−

−
+ + −

−
−

+ + + + −
−
+ −

+ + −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

M

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1 1 (25)

The penalty coefficients in Eqs. (17)–(19) equal
= = = = = =K K K D D D1 2 3 60 , 1 2 3 0 (Bozorg-Haddad et al.,

2011). This problem features 120 decision variables, and the number of

constraints based on Eqs. (4), (5), and (9) equals 30.

3.2.2. The Karoon-4, Khersan-1, and Karoon-3reservoir system
The Karoon river basin provides essential hydropower in Iran. Its

management poses unique challenges. The Karoon-4, Khersan-1, and
Karoon-3 reservoirs generate hydropower in the Karoon basin. The
three-reservoir system is depicted in Fig. 3. The releases of the Karoon-4
and Khersan-1 reservoirs are inputs to the Karoon-3 reservoir. Natural
inflow enters all three reservoirs. The optimization of this three-re-
servoir system applies 10 years of data (i.e., 1988 through 1998) or 120
monthly periods. The connectivity matrix for this system is given by Eq.
(26), in which Rows and Columns 1, 2, and 3 represent reservoirs
Karoon 4, Khersan 1, and Karoon 3, respectively. Reservoir Khersan 1,
for instance, is represented by Row 2, and is not connected to other
reservoirs and does not receives inputs from them. Reservoir Karoon 3
(Row 3) receives releases from the two other reservoirs. This problem
has 360 decision variables, and the number of constraints based on Eqs.
(4), (5), (9), and (16) equals 12.

= ⎡

⎣
⎢

−
−

+ + −

⎤

⎦
⎥M

1 0 0
0 1 0

1 1 1 (26)

The Karoon-4’s double-arched concrete dam has a maximum ele-
vation of 1025m above sea level. The Karoon-4 reservoir serves flood
control, flow regulation, and hydropower generation functions.
Minimum and maximum storage volumes for this reservoir are 1144.29
and 2019 million cubic meters, respectively, and the maximum release
from this reservoir equal 450 million cubic meters. The power plant
installation equals 1000MW. I Its performance coefficient and hydro-
power plant efficiency equal 20 and 88%, respectively.

The Khersan-1 reservoir is located in the Sofla area of the Khersan
river in Chararmahal-Bakhtiari province 14 km upstream of the Karoon
and Khersan rivers intersection. The Khersan-1’s concrete dam rises to a
maximum elevation from sea level equal to 1013m above sea level.
This reservoir generates hydropower. Minimum and maximum storage
volumes are 262.68 and 332.55 million cubic meters, respectively, and
the maximum release from reservoir equals 400 million cubic meters. In
addition, its power-plant capacity is 584MW, and its performance
coefficient and hydropower plant efficiency are equal to 25 and 93%,
respectively.

The Karoon-3 reservoir is located 28 km east of the city of Izeh and
610 km along the Karoon river in north eastern Khuzestan province.
The Karoon-3 reservoir has a double-arch concrete dam with maximum
elevation above sea level equal to 840m. Its main functions are water
storage, flood control, water regulation municipal and agricultural uses,
and hydropower production. Minimum and maximum storage volumes
are 1110.12 and 2252.58 million cubic meters, respectively, and max-
imum release is 1000 million cubic meters. Furthermore, its power-
plant capacity equals 2000 (106 w), and the performance coefficient
and hydropower plant efficiency are 25 and 92%, respectively.

The monthly reservoir inflows to the three reservoirs are plotted in
Fig. 4. The minimum and maximum river inflows to the Karoon-4 re-
servoir are 112.4 and 1123.3 million cubic meters, respectively.
Minimum and maximum river inflows to Khersan-1 reservoir equal 85.5
and 1694.3 million cubic meters, respectively. Also, the minimum and
maximum river inflows to the Karoon-3 reservoir are 0 and 288.51
million cubic meters, respectively.

4. Results and discussions

4.1. Ten-reservoir problem

Murray and Yakowitz (1979) reported the optimal value of the
objective function equal to 1190.62. Wardlaw and Sharif (1999) solved
this problem with the GA and LP methods and reported global optimal
answers equal to 1194.44 and 1190.25 by LP and GA, respectively.

Fig. 5. Convergence for 10 runs of the ten-reservoir operation problem for the
(a) WOA, (b) PSO algorithm, and (c) hybrid WOAPSO algorithm.
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Fig. 6. Results of release volumes with the (a) WOA, (b) PSO algorithm, and (c) hybrid WOAPSO algorithm against LP for ten-reservoir operation problem.
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Fig. 7. Results of storage volumes with the (a) WOA, (b) PSO algorithm, and (c) hybrid WOAPSO algorithm against LP for ten-reservoir operation problem.

H.-R. Asgari, et al. Journal of Hydro-environment Research 25 (2019) 61–74

69



Recently Bozorg-Haddad et al. (2011) solved this problem with LP and
HBMO whose optimal objective values equaled 1194.44 and 1192.56,
respectively.

A global solution to this problem was calculated with the LP method
in Lingo 14.0. The global optimal value was 1194.44, that was equal to
that reported by Wardlaw and Sharif (1999) and Bozorg-Haddad et al.
(2011). The hybrid WOAPSO algorithm was implemented to this 10-
reservoir problem with the parameters listed in Table 1 calculated with
sensitivity analysis. In addition, sensitivity analysis of the WOA para-
meters and the hybrid WOAPSO algorithm were performed according to
procedures by Mehrabian and Lucas (2006) and Hajimirsadeghi and
Lucas (2009), respectively.

The results of the calculated objective function from ten runs of the
WOA, PSO algorithm, and hybrid WOAPSO algorithm include the va-
lues of maximum, average, minimum, standard deviation, coefficient of
variation, and number of functional evaluations (which is independent
of computer used and form of writing the code of algorithms) listed in
Table 2. It is seen in Table 2 that the best values of the objective
function for the WOA, PSO algorithm, and hybrid WOAPSO algorithm
equal 1160.37, 1156.33, and 1193.76, respectively. Furthermore, the
hybrid WOAPSO algorithm reached 99.94% of the global optimum
obtained with the LP method. The corresponding best values for the
WOA and PSO algorithm were 97.16 and 96.80% of the global op-
timum, respectively. The calculated values of the standard deviation
and coefficient of variation for the hybrid WOAPSO algorithm are much
smaller than those obtained with the WOA and PSO algorithm, which

indicates the superior performance of the hybrid WOAPSO algorithm in
this instance, and reaching more similar solutions in different runs.

Convergence curves of the WOA and hybrid WOAPSO algorithm are
depicted in Fig. 5a, b, and c for the minimum, average, and maximum
values calculated in ten runs, respectively. It is seen in Fig. 5 the hybrid
WOAPSO algorithm converged to the optimal solution much faster than
the WOA and PSO algorithm, and the WOA and PSO algorithm con-
verged after 3,000,000 and 2,500,000 functional evaluations, respec-
tively, whereas the hybrid WOAPSO algorithm achieved convergence
after 1,000,000 functional evaluations. In addition, according to Fig. 5,
the convergence curve for WOAPSO is more convex than the WOA’s and
PSO’s. This indicates the hybrid WOAPSO algorithm converges in fewer
number of functional evaluations to the optimal area of solutions. This
result proves that combining WOA with the PSO algorithm leads to
finding the optimal area faster than the WOA and PSO algorithm. This
is so because the process of generating new solutions and directing
them towards the global optimum is executed effectively. Also, it can be
seen in Fig. 5c that minimum, average, and maximum values calculated

Table 3
The best parameters of the WOA, PSO algorithm, and hybrid WOAPSO algo-
rithm for the Karoon 4, the Khersan 1, and the Karoon 3 reservoir system op-
eration.

WOA PSO algorithm Hybrid WOAPSO algorithm

Pinitial 20 100 10
Pmax 40 – 25
itermax 10,000 12,000 10,000
NoSmin 1 – 1
NoSmax 5 – 4
n 3 – 4
σinitial 20 – 10
σfinal 1 – 1
ω – 1 0.7
C1 – 1.5 1.3
C2 – 2 2

Table 4
Results of 10 runs of the WOA, the PSO algorithm, and the hybrid WOAPSO
algorithm for the Karoon 4, the Khersan 1, and the Karoon 3 reservoir system
operation.

WOA PSO algorithm Hybrid WOAPSO
algorithm

NLP

1 0.093725 0.114149 0.088186
2 0.094844 0.131040 0.091607
3 0.096041 0.115912 0.088194
4 0.094529 0.162364 0.085955
5 0.094069 0.170331 0.087815
6 0.092552 0.134613 0.090218
7 0.094049 0.182686 0.087644
8 0.093002 0.144576 0.087345
9 0.093177 0.173956 0.083341
10 0.091863 0.153752 0.091083
Minimum 0.091863 0.114149 0.083341 –
Average 0.093785 0.148338 0.088139
Maximum 0.096041 0.182686 0.091607
Standard Deviation 0.001145 0.022952 0.002319
Coefficient of Variation 0.012211 0.154726 0.026314
Number of functional

evaluations
1,088,479 1,200,000 1,022,226

Fig. 8. Convergence for 10 runs of the Karoon 4, the Khersan 1, and the Karoon
3 reservoir system operation problem for the (a) WOA, (b) PSO algorithm, and
(c) hybrid WOAPSO algorithm.
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by the hybrid WOAPSO algorithm are close to each other, closer than
those of the WOA and thePSO algorithm, which indicates that the hy-
brid WOAPSO algorithm is more reliable than the WOA and the PSO
algorithm in computing similar objective function values in different
runs (recall evolutionary and metaheuristic algorithms start the opti-
mization search by generating random solutions, one new initial solu-
tion in each of several runs, therefore the final objective function values
obtained in different runs differ from each other).

Graphs of reservoir release for the best run out of ten runs associated
with the WOA, PSO algorithm, and hybrid WOAPSO algorithm against
the results obtained with the LP method are presented in Fig. 6a, b, and
c, respectively, for the ten-reservoir system problem, where it is seen all
releases obtained with three algorithms satisfy the constraint for re-
leases based on equation (5), and the release results obtained by the
hybrid WOAPSO algorithm conform better with the release results
calculated by the LP method than the WOA’s and PSO’s. In addition, as
it can be seen from Fig. 2, the releases from reservoirs 1–6 are the input
for reservoir 7, and releases from reservoirs 1–9 affect the release values
from reservoir 10 since they directly and indirectly have effects on in-
puts to reservoir 10. Consequently, the release results obtained with the
hybrid WOAPSO algorithm and LP for reservoirs 7 and 10 are ex-
emplary of their comparative performances in solving integrated river
basin management problems. Fig. 6c indicates that releases obtained
with the hybrid WOAPSO algorithm, except for periods 3, 9, and 11
match the releases values obtained with LP. The hybrid WOAPSO

algorithm calculated releases values in periods 3 and 9 that are less
than those of LP by 1.034 and 0.943, respectively. In period 11 the
hybrid WOAPSO algorithm obtained release value that exceeds the LP’s
by 2.472, thus increasing the objective function. Moreover, the hybrid
WOAPSO algorithm calculated releases value in period 2 less than the
LP’s by 1.731 less than LP; yet, the hybrid WOAPSO algorithm calcu-
lated release value in period 11 in excess of the LP’s by 2.315. It can be
concluded from comparing release values obtained with the hybrid
WOAPSO algorithm to those of LP that the former algorithm is efficient
and effective in solving complex reservoir problems.

Graphs of reservoir storage for each reservoir of the ten-reservoir
problem corresponding to the best run in 10 runs of the WOA, PSO
algorithm and hybrid WOAPSO algorithm against the results from LP
method are shown in Fig. 7a, b, and c respectively. The results of Fig. 7
indicate that reservoir storage volumes obtained with these three al-
gorithms fall in the feasible range of reservoir storage. However, the
storage volumes calculated with the hybrid WOAPSO algorithm are
closer to those of the LP method than those obtained with the WOA and
PSO algorithm.

4.2. The Karoon-4, Khersan-1 and Karoon-3 reservoir system

The optimization of this system for hydropower production was not
solvable with NLP (using the Lingo 14.0 software package), due to its
complex nonlinear nature. The search algorithm iterated for 36 h about

Fig. 9. Results of release volumes with (a) WOA against hybrid WOAPSO algorithm and (b) PSO algorithm against hybrid WOAPSO algorithm for the Karoon 4, the
Khersan 1, and the Karoon 3 reservoir system operation problem.
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a local optimal point. Hence, there is no known solution to this problem
with NLP. The optimization was tackled with the WOA, PSO algorithm,
and hybrid WOAPSO algorithm, whose best parameters were calculated
after sensitivity analysis and are listed in Table 3.

The calculated objective functions from 10 runs of the WOA, PSO
algorithm, and the hybrid WOAPSO algorithm include the minimum,
average, maximum, standard deviation, coefficient of variation, and the
number of functional evaluations (which is independent of computer
model and of the coding of algorithms) are reported in Table 4. It is
seen in Table 4 the best value of the objective function for the hybrid
WOAPSO algorithm equaled 0.08334, while the WOA’s and PSO algo-
rithm’s values are 0.0916 and 0.14414, respectively, which are 9.02
and 36.90% larger (that is, inferior, under minimization) than the va-
lues calculated by the hybrid WOAPSO algorithm. This demonstrates
the hybrid WOAPSO model and the WOA and PSO can solve this
complex multi-reservoir problem where NLP fails. The hybrid WOAPSO
algorithm reached the lowest f objective function value compared with
the WOA and PSO algorithm. In addition, smaller standard deviation
and coefficient of variation were achieved with the hybrid WOAPSO
algorithm compared to those calculated with the WOA and PSO algo-
rithm. This provides further evidence of the superiority and reliability
of the hybrid WOAPSO algorithm in this instance.

Convergence graphs of the WOA, PSO algorithm, and hybrid
WOAPSO algorithm are graphed in Fig. 8a, b, and c for the minimum,

average, and maximum values calculated in 10 runs respectively. It is
evident in Fig. 8 the hybrid WOAPSO algorithm and the WOA achieved
convergence after 250,000 functional evaluations, whereas the PSO
algorithm converged more slowly than the hybrid WOAPSO algorithm
and the WOA. The hybrid WOAPSO is evidently faster converging to a
near global optimum than the other two optimization algorithms. Also,
the hybrid WOAPSO algorithm is faster in finding the optimal area of
solutions and converging closer to the global optimum since its con-
vergence curve is more concave than those of WOA and PSO algorithm.

Graphs of reservoir release, reservoir storage, and hydropower
production for best runs of the WOA, PSO algorithm, and hybrid
WOAPSO algorithm are portrayed in Figs. 9, 10, and 11 respectively. It
is evident in Fig. 9 the release values calculated fall within the feasible
range of minimum and maximum release. The releases calculated by
WOA are in better agreement with those calculated by hybrid WOAPSO
algorithm than those from the PSO algorithm. However, for the Karoon-
3 reservoir the releases from the PSO algorithm are more consistent
with those from the hybrid WOAPSO algorithm in many periods.

Reservoir storage calculated in the best run of 10 runs of the WOA
and PSO algorithm are compared with those from hybrid WOAPSO
algorithm in Fig. 10 where it is seen the reservoir storages obtained for
all three reservoirs by the WOA are in better agreement with those
calculated by the hybrid WOAPSO algorithm than with the PSO algo-
rithm’s.

Fig. 10. Results of storage volumes with (a) WOA against hybrid WOAPSO algorithm, (b) PSO algorithm against hybrid WOAPSO algorithm for the Karoon 4, the
Khersan 1, and the Karoon 3 reservoir system operation problem.
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Hydropower production graphs calculated in the best run of 10 runs
of the WOA and PSO algorithm are compared with the hybrid WOAPSO
algorithm’s in Fig. 11, where it is evident the hybrid WOAPSO algo-
rithm achieved the largest hydropower production in reservoir Karoon-
4 in many periods. Reservoirs Khersan-1 and Karoon-3 exhibited large
production deficits in several periods. The WOA shows better agree-
ment in hydropower production with the hybrid WOAPSO algorithm
than does the PSO algorithm for reservoirs Karoon-4 and Khersan-1.
The PSO algorithm exhibited better agreement of results with hybrid
WOAPSO algorithm with respect to the Karoon-3 reservoir than the
WOA.

5. Conclusions

This work developed a new optimization model called the hybrid
WOAPSO algorithm. The performance of the hybrid WOAPSO was
compared with those of the WOA and PSO algorithm based on two
multi-reservoir optimization problems, one dealing with hydropower
generation and the other maximizing the benefit from allocated re-
servoir releases, for integrated river basin management. The hybrid
WOAPSO algorithm exhibited overall superior performance than the
two other algorithms in this comparative study. This paper’s compre-
hensive evaluation of the WOA, PSO algorithm, and hybrid WOAPSO
algorithm established the latter optimization algorithm as a strong and
comparatively efficient solver of complex and high dimension nonlinear

multi-reservoir optimization problems.
Concerning the ten-reservoir benchmark problem our results in-

dicate the optimal solution obtained with the hybrid WOAPSO algo-
rithm (1193.76,) is 99.94% of the LP solution (1194.44), and is larger
than those reported by previous studies published in the literature. This
performance of the developed hybrid WOAPSO algorithm reveals the
hybrid WOAPSO algorithm is effective and reliable in solving multi-
reservoir operation problems nvolving integrated river basin manage-
ment. The efficiency of the developed optimization model was tested
with a real-world three-reservoir hydropower problem that cannot be
solved with NLP, and whose optimal solution is unknown. The solving
capacity of the newly developed optimization model was demonstrated
by achieving the best value of the objective function (i.e., 0.08334) of
this complex nonlinear optimization problem compared with the solu-
tions by the WOA and PSO algorithm (0.0916 and 0.14414, respec-
tively).

The hybrid WOAPSO algorithm could be applied in future studies to
solve other water resources problems involving urban water distribu-
tion networks, or climate change impacts on water resources manage-
ment. The WOA and PSO algorithm have been modified in some studies
to improve their performance and efficiency. Combining these newly
improved WOA and PSO algorithms may lead to more powerful hybrid
algorithms compared with the hybrid WOAPSO proposed in the present
study.

Fig. 11. Results of power produced with (a) WOA against hybrid WOAPSO algorithm and (b) PSO algorithm against hybrid WOAPSO algorithm for the Karoon 4, the
Khersan 1, and the Karoon 3 reservoir system operation problem.
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