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Abstract
Frequency domain properties of heart rate variability (HRV), or the elapsed time between
consecutive heart beats, are utilized by biomedical researchers in a variety of fields. HRV is
measured from the electrocardiograph signal through the interbeat interval series. Popular
approaches for estimating power spectra from these interval data apply common spectral analysis
methods that are designed for the analysis of evenly sampled time series. The application of these
methods to the interbeat interval series, which is indexed over an uneven time grid, requires a bias
inducing transformation. The goal of this article is to explore the use of penalized sum of squares
for nonparametric estimation of the spectrum of HRV directly from the interbeat intervals. A
novel cross-validation procedure is introduced for smoothing parameter selection. Empirical
properties of the proposed estimation procedure are explored and compared to popular methods in
a simulation study. The proposed method is used in an analysis of data from an insomnia study
which seeks to illuminate the association between the power spectrum of HRV during different
periods of sleep with response to behavioral therapy.

Keywords
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1. Introduction
The cyclical patterns of heart rate variability (HRV) have been shown to be associated with
a variety of diseases and clinical events such as myocardial infarction, hypertension,
congestive heart failure, insomnia, depression, psychological stress, and all cause mortality
[1, 2, 3, 4]. By providing an indirect measure of autonomic nervous system modulation, the
spectral analysis of HRV provides a means to elucidate the pathways through which nervous
system activity and stress affect health [1, 5].

This article is motivated by a study that seeks to better understand how behavioral therapies
designed to improve sleep can aid older adults with insomnia. Prior to treatment, study
participants completed clinical assessments of sleep, mental and physical health. These
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assessments included in-home polysomnongraphy (PSG), a comprehensive recording of
electrophysiological activity during sleep, that contained an electrocardiogram (ECG) from
which HRV could be computed. Following baseline assessments, participants underwent
manualized Brief Behavioral Treatment of Insomnia (BBTI) [6]. Measures were repeated
within one month of completing BBTI. Our goal is to use these data to evaluate the extent to
which cardiac autonomic tone, as indexed by the power spectrum of HRV across different
sleep periods, predicts the efficacy of BBTI, as measured by decreased subjective sleep
complaints, a hallmark symptom of insomnia.

The analysis of HRV from a recorded ECG begins with the identification of time points tj
that mark the peak of the R-waves as the locations of the upward deflection of the ECG
associated with each heartbeat. Figure 1 displays a sample epoch of ECG to illustrate these
time points. These points are used to compute interbeat intervals (IBIs), X(tj) = tj−1 − tj, as a
measure of elapsed time between consecutive heart beats. The top panels of Figure 2 display
IBI series from a study participant at three periods of sleep. Theoretical HRV X is modeled
as a continuous process over time that is observed at the discreet times tj through X(tj). The
frequency domain properties of the process X must be estimated from the IBI series.

The spectral analysis of HRV may be divided into two categories: the analysis of
approximately stationary short term epochs under specific physiological conditions and the
time-frequency analysis of long term nonstationary epochs. Our motivating study is
concerned with the spectral analysis of HRV during specific periods of sleep and falls into
the former category. Consequently, this article focuses on the spectral analysis of short term
epochs where HRV X is second order stationary. Traditional approaches to the spectral
analysis of sort term HRV use methods, such as Fourier periodograms, that are well studied
for the spectral analysis of integer indexed time series and for evenly sampled continuous
processes [1]. The application of these methods to the analysis of HRV from an IBI series
{X (t1), …, X (tN)}, which is unevenly indexed as a function of time, requires
transformations which are known to bias estimates of the power spectrum.

Huang et al. [7] developed a method for estimating the power spectrum of a continuous
process from data observed over an uneven grid through the minimization of a penalized
sum of squares. This penalized sum of squares is comprised of a time domain sum of
squares, which provides a measure of fit of a power spectrum to the observed time domain
data, and a penalty, which provides a measure of roughness of the power spectrum. The
primary goal of this article is to explore the use of penalized sum of squares as a tool for the
nonparametric spectral analysis of HRV. Critically, this approach circumvents the biases
incurred by traditional methods. Key to the performance of any penalized method is the
selection of tuning parameters. A novel cross-validation procedure based on the Lomb
periodogram [8] is developed for smoothing parameter selection and to provide an
automated nonparametric estimation procedure.

Estimating power spectra is a first step in the majority of studies that are interested in the
frequency domain properties of HRV. Most studies are concerned with determining how
HRV spectra are associated with other study variables, such as response to treatment. We
explore the use of penalized sum-of-squares spectral estimation in evaluating the association
between HRV and study outcomes in a three stage analysis of the data from our motivating
insomnia study. After power spectra are estimated through penalized sum of squares, the
second stage of this analysis fits a functional linear model [9, Chapter 15] regressing
response to treatment onto the estimated log-spectra. Historically, relationships between
HRV spectra and outcome variables are evaluated via a finite number of preselected spectral
summary measures. However, there exist debate as to which spectral measures should be
considered [10]. The functional regression model, which inherently requires accurate
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estimates of continuous power spectra, allows one to evaluate the relationship between
outcomes and the entire spectra and to identify summary measures that are important to the
problem at hand. In the final step of our analysis, the relationship between response to
treatment and the summary measure illuminated by the functional regression model is
further explored.

The rest of the article is organized as follows. Section 2 describes popular approaches to the
spectral analysis of HRV, Section 3 presents the penalized sum-of-squares method
conditional on smoothing parameter, and Section 4 develops Lomb based cross-validation
for smoothing parameter selection. Results of a simulation study are presented in Section 5
while the data from the insomnia study are analyzed in Section 6. A discussion is presented
in Section 7.

2. Popular Approaches for Estimating HRV Spectra
The most common tool for the spectral analysis of a second order stationary process is the
discrete Fourier transform and its associated periodogram. Properties of the Fourier
periodogram have been well studied for integer indexed time series and for continuous time
processes sampled over even grids [11]. The inherent variability in the elapsed time between
heart beats implies that the locations of the peaks of the R-waves are not evenly spaced and
that IBI series provide observations of the continuous time HRV processes over uneven
grids. Although periodograms could be computed from the IBIs as series indexed by beat
number, known as interval tachograms, the resulting spectral estimates would be in units of
time-squared per cycles/beat while the desired power spectrum of X is in units of time-
squared per Hz. To assure interpretability and avoid distortion and spurious harmonics,
established guidelines recommend that the IBI series be spline interpolated and evenly
sampled before computing Fourier periodograms [1]. Fourier periodograms provide noisy
estimators of the power spectrum at any given frequency. To reduce this noise, Fourier
periodogram based analyses of HRV commonly employ Welch's method to achieve a
consistent estimator by averaging periodograms from overlapping intervals [1, 12].

The spline interpolation of the IBI series is equivalent to applying a low-pass filter that
distorts the ratio of power from low frequencies versus power from high frequencies [13].
The ratio in power between low frequencies from 0.05–0.15 Hz versus high frequencies
from 0.15–0.40 Hz is of clinical importance in many studies that examine the spectral
properties of HRV [1, 3]. The autonomic nervous system is classically divided into two
dynamically balanced branches: the parasympathetic branch and the sympathetic branch.
The parasympathetic branch is responsible for the maintenance of the body at rest while the
sympathetic branch is associated with the flight-or-flight response. The ratio in power from
low frequencies to power from high frequencies is an indirect measure of the relative
modulation of the sympathetic branch as compared to the parasympathetic branch and is
often interpreted as a physiological measure of stress [4, 5]. The bias induced by sampling
the spline interpolation of the IBI series is rather undesirable in studies, such as our
motivating insomnia study, where the ratio of power from low frequencies to power from
high frequencies is of scientific interest.

To circumvent the bias incurred through interpolation, least squares based Lomb
periodograms have been used for the spectral analysis of HRV [13]. The Lomb periodogram
produces an unbiased but noisy estimate of the power spectrum at any given frequency. The
estimation of power collapsed within a given frequency band by combining noisy Lomb
periodograms across frequency is unbiased and consistent. The Lomb periodogram can only
be used for the analysis of integral functions of the power spectrum and cannot be used to
investigate the power spectrum itself.
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In addition to these nonparametric techniques, parametric autoregressive models (AR) are
also popular [1, 14]. Estimation via AR models has been observed to perform better than
Welch's method for estimating the entire power spectrum as a continuous function [1].
However, AR models are subject to parametric linear assumptions that are often difficult to
verify. Additionally, popular approaches to fitting AR models require an evenly sampled
series, much in the same manner as estimation under Fourier periodogram based methods,
and consequently require bias inducing transformations of the IBI series [1, 14].

This article investigates the use of penalized sum of squares for the spectral analysis of HRV
to overcome many of the drawbacks of current popular methods by providing a method that
is nonparametric, obtains estimates directly from the IBI series, and produces smooth
estimates of the entire power spectrum.

3. Penalized Sum-of-Squares Estimation
This section considers estimation of the power spectrum of a second order stationary
continuous HRV process X from the IBI series {X(t1), …, X(tN)} where 0 < tj < tj+1 and tN =
T. The theoretical HRV X is a real valued stochastic process over  with mean μ = E [X(t)],
autocovariance function Γ(s) = E [X(t) − μ] [X(t + s) − μ], and power spectrum

. Although we aspire to estimate f over the entire real line, we are
restricted by the smallest IBI. The average Nyquist frequency is given by ν = N/(2T) [8] and,
since f is an even function, we seek to estimate f(ω) for ω ∈ [0, ν]. The power spectrum of

HRV is smooth and we assume that f is in the space  that consists of all absolutely
continuous real valued functions on [0, ν] with square integrable first derivatives [15].

Consider the product pairs

that provide estimates of Γ(tj − ti). Noting that , an estimator

 of f can be obtained by minimizing some measure of discrepancy between the time

domain quantities yij and . Since there is variation in the

elapsed time between consecutive heart beats, tj − ti are unique for i ≠ j so that an estimate 

can always be found such that  for every i ≠ = j. A
regularized solution to this problem was proposed by Huang et al. [7] by defining the

estimate  of f as the function in  that minimizes the penalized sum of squares

(1)

given a smoothing parameter λ > 0. The smoothing parameter λ controls the smoothness of

the spectral estimate such that  approaches a constant as λ → ∞ while  becomes
excessively rough as λ → 0. A data-driven cross-validation procedure for selecting λ is
given in Section 4.

Minimizing this penalized sum of squares is part of the general smoothing spline problem
discussed in detail by Wahba [15]. As a general smoothing spline problem, the solution to
(1) can be found via Theorem 1.3.1 of Wahba [15]. We present the solution here and direct
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readers to Huang et al. [7] for further details and consistency results. To compute the
solution, let P = N + N(N − 1)/2 be the number of distinct product pairs and define

as the P-vectors of these pairs and their lag times τij = τj − τi. Further, define ξ as the P-
vector valued function over [0,1] with pth element

Q as the P-vector with pth element , and Σ as the P × P matrix with pqth

element . For ω ∈ [0, ν],

(2)

where C = (c1, …, cP)′ and d solve the system

It should be noted that there is no guarantee that  is non-negative for all ω ∈ [0, ν] and
in practice we set the negative values to zero.

4. Smoothing Parameter Selection
A popular method for the automated selection of smoothing parameters in smoothing spline
estimation is the generalized cross validation (GCV) discussed in Chapter 3 of Wahba [15].
The GCV is known to have poor performance if the observations being smoothed are
correlated, such as yij, and this correlation is not accounted for [16, 17, 18]. Huang et al. [7]
modified the GCV to account for correlation among product pairs in penalized sum-of-
squares estimation of power spectra. In the simulation study of realistic epochs of short term
heart rate variability described in Section 5, we found that the modified GCV greatly overfit
the data and produced spectral estimates that were nearly identical to the Lomb
periodogram. We hypothesize that the modified GCV has good asymptotic properties that
require time series of lengths much larger than those observed for short term HRV. Huang et
al. [7] demonstrated that the modified GCV has good empirical performance in a simulation
study with time series epochs of 2000 observations. The IBI series from short term heart rate
variability will usually have much smaller length. For instance, if the heart rate is 60 beats
per minute and we observe an epoch of the maximally suggested length of 5 minutes [1],
then we would expect to have an IBI series with 300 observations.
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K-fold cross-validation is a common procedure for the selection of tuning parameters in a
variety of settings [19]. A complication in using K-fold cross-validation to select λ is that
IBI are observed on the time scale whereas f is in the frequency domain. To overcome this
obstacle, we use the Lomb periodogram, which has been shown to be an approximately
unbiased estimate of f(ω) [13], to allow the observed data within a given fold to be used to
assess the performance of the spectral estimate obtained from the remaining folds.

Given a positive integer K, the proposed procedure divides the time interval [0, T] into the K
intervals

and lets Hk = {X(tj)}tj∈Ik be the IBI data from the kth fold. Compute  through (2) using
smoothing parameter λ and only the data in ⋃j≠kHj. The Lomb periodograms from the kth
fold are computed as

where ,  are the sample mean and variance of Hk and θk is defined as

We use  as a measure of discrepancy between

 and the data in Hk where Nk is the number of observations in the kth fold, [Nk/2] is the
integer part of Nk/2, and ωkℓ = (ℓ − 1)ν/⌊Nk/2⌋. The smoothing parameter λ is selected as the
minimizer of the spectral prediction over all folds as

In simulation studies and in analyzing data from the insomnia study, we found the
performance of the Lomb periodogram K-fold estimator to be insensitive to K, with K = 5,
10, 15, 20 providing similar spectral estimators. This similarity is illustrated by the K = 5
and K = 10 fold cross-validated spectral estimates displayed in the top left panel of Figure 4.
In light of this insensitivity, we suggest following the general recommendation given in
Chapter 7.10.1 of Hastie et al. [19] and use either K = 5 or K = 10.

5. Simulation Study
We illustrate the empirical properties of penalized sum of squares for the spectral analysis of
HRV through an analysis of simulated realistic epochs of ECG under two settings. The
simulation method developed by McSharry et al. [20] was used to generate 500 independent
and identically distributed ECG epochs per setting of length 5 minutes with mean heart rate
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60 bpm and standard deviation 1 bpm. A mixture of Gaussian densities was used to
represent the power spectrum such that f is proportional to 3ϕ [0.02π(ω − 0.02)] + ϕ
[0.02π(ω − 0.095)] + ρϕ [0.02π(ω − 0.275)] where ϕ is the standard Gaussian density and ρ
is a low frequency/high frequency ratio. The first setting has ρ = 0.5 while the second setting
has ρ = 2.0. A simulated epoch from the setting with ρ = 2.0 is displayed in Figure 3.

The performance of the proposed estimation procedure was compared to three popular
spectral estimation procedures discussed in Section 2: the Lomb periodogram, Welch's
periodogram method, and AR estimation. For Welch's periodogram method and AR
estimation, the IBI series were interpolated with a cubic spline then sampled at 4 Hz.
Welch's periodogram method was implemented with a Hamming window and GCV span
selection [11]. AR parameters were estimated via Yule-Walker equations and order was
selected though the AICc [21]. Estimates of the power spectrum from the simulated epoch
displayed in Figure 3 are given in Figure 4.

Performance of the estimation procedures were evaluated through four measures: a measure
of fit of the entire power spectrum and three measures of relative power within frequency
bands that are commonly utilized by clinical researchers [10]. The three measures of relative
power considered are the low to high frequency ratio LF/HF defined as the ratio in power
from frequencies between 0.05–0.15 Hz versus power from frequencies between 0.15–0.40
Hz, normalized low frequency power LFμ defined as the ratio of power at frequencies
between 0.05–0.15 Hz versus power at frequencies between 0.05–0.40 Hz, and normalized
high frequency power HFμ defined as the ratio of power at frequencies between 0.15–0.40
Hz versus power at frequencies between 0.05–0.40 Hz. The accuracy in estimating the entire
power spectrum was evaluated through the across-the-curve square error (ASE) by
averaging square-errors across the grid of 5000 equally spaced frequencies between 0 and
0.4 Hz. Since the Lomb periodogram produces an inconsistent estimate of f(ω) at any given
frequency ω, we do not report its performance for estimating the entire power spectrum. The
mean and standard deviations of the LF/HF, LFμ, and HFμ estimates and of the ASE are
given in Table 1. Results for the penalized sum-of-squares estimator are reported when λ is
selected through K = 5-fold Lomb periodogram cross-validation.

The penalized sum-of-squares method and Lomb periodogram demonstrated similar,
approximately unbiased, performance in the estimation of LF/HF, LFμ, and HFμ. Both
Welch's periodogram method and AR estimation had a positive bias in the estimation of LF/
HF. This result, that Welch's method and AR estimation tend to over estimate LF/HF, and
that the Lomb periodogram produces noisy estimates of the spectrum are illustrated in the
estimates from a simulated epoch in Figure 4. The penalized sum-of-squares estimator had a
smaller mean and standard deviation in the ASE than either Welch's method or AR
estimation. The simulation results indicate that the proposed penalized sum-of-squares
method offers a procedure for the spectral analysis of HRV that possesses the approximately
unbiased properties of the Lomb periodogram for estimating relative power within clinical
frequency bands while providing an accurate estimate of the entire power spectrum.

6. Analysis of Data from the Insomnia Study
6.1. Study Design and Data Collection

Insomnia affects an estimated 15% – 35% of older adults and has been shown to be
associated with reduced quality of life and increased risk for falls and hip fractures [22]. We
consider data collected as part of the study described in Buysse et al. [6] that seeks to assess
the efficacy BBTI on improving sleep in older adults with insomnia. The analysis
considered in this section explores the association between pre-treatment indices of cardiac
autonomic tone and improvement in self-reported sleep quality.
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We consider data from 31 men and women between 60–89 years of age who were clinically
diagnosed with primary insomnia. Prior to treatment, study participants completed a self-
report sleep quality questionnaire and participated in an overnight in-home sleep study using
ambulatory PSG monitors. The questionnaire was used to compute the 18-item Pittsburgh
Sleep Quality Index (PSQI), a widely used measure of self-reported sleep quality complaints
that has been shown to be associated with a variety of medical conditions such as sleep
disorders and depression [23]. The PSQI takes values from 0 to 21 with higher values
reflecting greater subjective sleep quality complaints; scores greater than 5 are indicative of
clinically disturbed sleep [23, 24].

The ambulatory PSG in our study included a modified 2-lead electrode placement for the
continuous collection of ECG throughout the night at 512 Hz. Digitized ECG signals were
stored for off-line processing according to established guidelines [1], the IBI series were
computed, and a Savitzky-Golay filter was applied to the interval tachogram for trend
removal. The PSG signals were used by a trained technician to visually score sleep in 20
second intervals of wakefulness, rapid eye movement sleep (REM), and non-rapid eye
movement sleep (NREM). The IBI series were temporally aligned with the visually scored
sleep to allow for the identification of the first three minutes of HRV from each of the first
three periods of NREM sleep.

Study participants were assessed again approximately four weeks after completing BBTI to
evaluate treatment efficacy. Our outcome of interest is change in subjective sleep quality
complaints as measured by the PSQI, where negative values represent reduced sleep
complaints, indicative of improved sleep quality. Define Dℓ as the change in PSQI after
treatment in the ℓth participant. In our sample, Dℓ ranges from −8 to 2 with a mean of −3.81
and a standard deviation of 2.66. We desire an analysis which illuminates the association
between the pre-treatment spectrum of HRV during the first three period of NREM and the
change in PSQI post-treatment.

6.2. Spectral Estimation
Let fℓm be the HRV power spectrum for participant ℓ = 1, …, 31 at NREM period m = 1, 2,
3. The proposed data driven penalized sum-of-squares estimator was computed for each of
the 93 epochs of HRV with smoothing parameters selected through K = 5 fold Lomb

periodogram cross-validation to obtain the estimates . The bottom panel of Figure 2
displays the estimated power spectra for a participant. Since the variability in the power
spectra from a population are proportional to the mean and since ratios of power are often of
clinical interest, power spectra are often analyzed on the log-scale [25, 26]. Define the
estimated log-spectrum at frequency ω for participant ℓ at NREM period m as

. Figure 5 displays the estimated log-spectra during each NREM
period from the 31 participants.

6.3. Functional Data Analysis of Log-Spectra
To assess the association between the power spectrum at each period of NREM and
treatment response, we regressed the change in PSQI on the estimated log-spectra through
the scalar-on-functional model

Krafty et al. Page 8

Stat Med. Author manuscript; available in PMC 2015 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where ∊ℓ are independent and identically distributed mean zero Gaussian random variables.
We used the penalized spline approach discussed in Chapter 15 of Ramsay and Silverman
[9] to fit the model. Let B be the span of the set of 3rd order B-spline bases over [0, 0.4]
with 20 equally spaces knots. The regression coefficients were estimated as the minimizers
of the penalized sum of squares

where the smoothing parameters θ1, θ2, θ3 > 0 were selected via cross-validation [9, Chapter
15.6].

Figure 6 displays the estimated functional regression coefficients with approximate point-
wise 95% Gaussian confidence intervals [9, Chapter 15.5.2]. Each coefficient represents a
contrast between log-power at different frequencies. The estimated coefficient for the first
period is a contrast between log-power at frequencies less than 0.07 Hz and greater than 0.27
Hz versus log-power at frequencies between 0.07 – 0.27 Hz. The estimated coefficient for
the second period is a contrast between log-power less than than 0.1 Hz versus log-power
greater than 0.1 Hz while the coefficient for the third period is a contrast between log-power
greater than 0.17 Hz versus less than 0.17 Hz. Recall that this analysis is on the log-scale so

that the contrast presented in  is equivalent to a ratio between power at high frequencies
versus power at low frequencies. This ratio is the measure that our simulation study found to
be distorted by evenly sampling a spline interpolation of the IBI series prior to analysis.

6.4. Analysis of Sympathovagal Balance
The fitted functional linear model suggests ratios of power from low and high frequency
bands are associated with response to treatment. To provide an analysis that produces
clinically interpretable information to illuminate the pathway through which BBTI reduces
sleep complaints, we regressed the change in PSQI on the log ratio of power from low
frequencies versus power from high frequencies. Define the log-ratio for participant ℓ = 1,
…, 31 at period m = 1, 2, 3 as

We fit the linear model

where δℓ are independent and identically distributed mean zero Gaussian random variables.
The first column of Table 2 displays the maximum likelihood estimates of the regression
coefficients, their standard errors and two-sided p-values when spectra are estimated through
penalized sum of squares. These estimates show that the ratio of power between low
frequencies and high frequencies during the first two NREM periods are not associated with
change in PSQI when controlling for power at other periods. In contrast, when controlling
for HRV during the first two NREM periods, increases in the low frequency/high frequency
ratio during the third NREM period are associated with larger decreases in PSQI after
treatment.
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Our analysis indicates that BBTI is most efficacious, as measured by improvements in
subjective sleep quality, in individuals with insomnia who demonstrate increased
sympathovagal tone during the latter part of the night prior to treatment. This altered cardiac
autonomic tone profile is not unprecedented. It has been shown to be elevated during NREM
in insomniacs as compared to good sleepers [27] and in response to a pre-sleep experimental
stress manipulation [2]. Future studies are needed to evaluate the extent to which baseline
stress profiles predict response to BBTI and other treatments of insomnia.

In addition, we computed estimated log-ratios through the three other estimation procedures
previously discussed: Lomb periodograms, Welch's method, and AR modeling. The results
of the fitted regression models using these estimates are also displayed in Table 2. Although
similar results are obtained, estimated coefficients are shrunk towards the null when using
Welch's method and AR estimation, which are biased, as opposed to penalized sum of
squares and Lomb periodograms, which were found to be approximately unbiased in
simulations.

7. Discussion
This article considered the use penalized sum of squares for estimating the power spectrum
of short term HRV. A novel cross-validation procedure was developed for the automated
selection of smoothing parameters. Simulation studies demonstrated that, in a manner
similar to Lomb periodograms, the proposed procedure avoids the biases of Welch's
periodogram method and AR modeling for the estimation of clinical frequency bands while,
in contrast to Lomb periodograms, providing good estimates of the entire power spectrum.
The proposed method was used in a study of physiological predictors of BBTI treatment
efficacy in older adults with insomnia. Results suggest treatment efficacy is associated with
pre-treatment sympathovagal tone during the latter part of the night.

Smoothing spline estimates of power spectra based on Fourier periodograms have been
previously developed. Wahba [28] minimized a penalized sum of squares to smooth the log-
periodogram while Pawitan and O'Sullivan [29] and Qin and Wang [30] minimize negative
penalized Whittle likelihoods. Since Fourier periodograms require time series that are
indexed over an equally spaced time grid, these approaches are not applicable to IBI series
without applying a transformation, such as the bias inducing even sampling of a spline
interpolation.

This article only considered the spectral analysis of short term HRV under the assumption of
stationarity. The time-frequency analysis of long term epochs of HRV under changing
conditions are of interest in a variety of applications for risk stratification of clinical
outcomes [1, 3]. The extension of the proposed estimation procedure for the time-frequency
analysis of nonstationary HRV will be the subject of future research. Although initial results
using the stationary penalized sum-of-squares estimator in rolling windows are promising,
both computational feasibility in the face of massive data sets and the simultaneous selection
of the temporal window length and frequency domain smoothing parameter could present
non-trivial obstacles.
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Figure 1.
An ECG epoch with the (j – 1)th and jth R-waves and the jth IBI identified
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Figure 2.
IBI series (top row) and estimated power spectra (bottom row) for the first three periods of
NREM sleep from a participant suffering from insomnia whose PSQI decreased by 2 points
after treatment.
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Figure 3.
A simulated HRV epoch with LF/HF ratio ρ = 2.0.
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Figure 4.
Estimates of the power spectrum from the HRV epoch displayed in Figure 3 using the
proposed sum-of-squares estimator with smoothing parameters selected via K = 5 and K =
20 fold cross-validation, Welch's periodogram methods, AR estimation, and the Lomb
periodogram.
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Figure 5.
Estimated HRV log-spectra during the first three periods of NREM from the 31 participants
in the insomnia study.

Krafty et al. Page 17

Stat Med. Author manuscript; available in PMC 2015 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Estimated functional coefficients and asymptotic point-wise 95% confidence intervals from
the functional linear model regressing change in PSQI onto log-spectra.
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Table 1

Results of the simulation studies.

PSS Lomb FFT AR

Setting 1: LF/HF=0.50, LFμ=0.33, HFμ = 0.67

LF/HF 0.50 (0.17) 0.50 (0.17) 0.59 (0.35) 0.54 (0.29)

LFμ 0.34 (0.07) 0.34 (0.07) 0.35 (0.14) 0.35 (0.10)

HFμ 0.66 (0.07) 0.66 (0.07) 0.65 (0.11) 0.65 (0.10)

ASE 0.18 (0.10) − (−) 0.80 (0.61) 0.22 (0.11)

Setting 2: LF/HF=2.00, LFμ=0.67, HFμ = 0.33

LF/HF 2.02 (0.60) 2.01 (0.60) 2.36 (1.29) 2.31 (0.97)

LFμ 0.67 (0.06) 0.66 (0.06) 0.67 (0.11) 0.67 (0.10)

HFμ 0.34 (0.06) 0.34 (0.06) 0.33 (0.11) 0.34 (0.10)

ASE 0.19 (0.11) − (−) 0.50 (0.29) 0.31 (0.18)

The mean (and standard deviation) of LF/HF, LFμ, and HFμ estimates and of the across-the-curve ASE. Four estimation procedures are

implemented: the proposed penalized sum-of-squares estimator (PSS), Lomb's periodogram (Lomb), Welch's Fourier periodogram method (FFT),
and autoregressive estimation (AR).
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Table 2

Maximum likelihood estimates, standard errors, and two sided p-values for the coefficients of the regression
of change in PSQI onto log low-frequency/high-frequency ratios.

PSS Lomb FFT AR

γ 0 Estimate −3.55 −3.56 −3.03 −3.19

Standard Error 0.63 0.62 0.69 0.61

P-Value <0.01 <0.01 <0.01 <0.01

γ 1 Estimate 0.14 0.09 −0.01 0.01

Standard Error 0.42 0.39 0.41 0.42

P-Value 0.75 0.81 0.98 0.98

γ 2 Estimate 0.20 0.02 −0.01 −0.02

Standard Error 0.42 0.43 0.41 0.39

P-Value 0.63 0.63 0.97 0.96

γ 3 Estimate −1.05 −1.03 −0.99 −1.00

Standard Error 0.40 0.43 0.52 0.50

P-Value 0.01 0.02 0.07 0.05

Four separate models were fit where the low-frequency/high-frequency ratios were computed by the proposed penalized sum-of-squares estimator
(PSS), Lomb's periodogram (Lomb), Welch's Fourier periodogram method (FFT), and autoregressive estimation (AR).
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