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ABSTRACT
A recent reformulation of the theory of electron scatfering by atoms==in
which‘thcse scatterings, real or virtual, that leave the state of the atom
unchanged are separated off from the remainder-~has been éeneralized to include
the effects of the Pauli principle. The case where the Hartree approximation
suffices to describe the atom is considered in detail, including & calculation

of the "scattering potential” to second order.

*
This work was performed under the suspices of the U.S. Atomic Energy Commission.
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THE SCATTERING OF ELECTRONS BY NEUTRAL ATOMS

Bernard A. Lippmann,
Marvin H. Mittleman

Lawrence Radiation Laboratory, Livermore, California
and
Kenneth M. Watson

Physics Department and Lawrence Radiation Laboratory,
Berkeley, California

May 26, 1959

I. INTRODUCTION

Recently, a new method was introduced for handling atomic scattering
problems.l The novel element was a rearrangement of the perturbation series
for the scattering so that a "scattering potential" was obtained for all
interactions not changing the state of the atom. The scattered particle was
assumed not to be an electron, so there was no-need to consider the Pauli
prineiple.

The purpose of this discussion is to extend the method of I to ineclude
the effects of the Pauli principle; that is, we now assume that the scattered
particle is an electron. Previously, methods have been developed for handling
exchange corrections for electron-atom sbattering within the framework of the

Hartree-Fock approximation.g’3

From such studies one concludes that although
exchange corrections are not of paramount importence for scattering by heavy

atoms; they are not really negligible, at least for low-energy scat‘bering.21L
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II. THE SCATTERING OF,A-PAR?IQiEVBI_A-SYSTEM OF SIMIIAR PARTICLES
We consider the séattering.of»an electron by a neutral atom having z
electrons. The essence of the Pauli principle is that gll the electronsLa;e
equivalent 50 we shall adapt our notation to éxPress this symmetr&.

Thus, we label the electrcns O, 1, ..:2: Then, with pz, x, as the

momentum and coordlnate operators for the Bth electron, and Z meaning an
unrestricted summation from O to z , the Hamiltonian 135
H = K + Vg + V , : (2.1)
where ' : o
- 2
K= 2K = 25
i i
s’
V. = 2 v (x,) = T =« moer,
N i 17 EX
and (2_{2)_
‘32 .
V = z vij = 2 N <

- When an arbitrary electron, say the. /#th, moves freely while the
remainingvelectrons are bound to the nucleus, we'shallvwrite_the Hamiltoqian

as

“H, = h, + K, . 7 _ (zﬁj)

Here, K, has been défined above, and we have -

(£) (£) |
h, = =7/ (K, + (x,) } z . 2.4
z K vy (%) + 2 viJ ( » )

where Z(Z) means summation from O to 2z excluding £ .
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The Hamiltonian H, differs from H by the interaction between electron

)/
£ and the rest of the system. Calling this interaction Vz s We have

H = Hﬁ + Vz 3
and (2.5)
v,= v(x,) + 8, -y (x ). + v
2= Ny Y w2y P

i
thereby also defining Vﬂ .
We turn now to the definitions of the basis eigenvectors of the problem.

If we assume that electron O is the incident particle, the atom is described

by the Schrgdinger equation,

where ﬁn(o) = ﬁn(xl...xz) is the (antisymmetric) eigenvector and W the
energy belonging to the atomic state n. To simplify the notation, we shall
assume that the electrop-spin variablgs are included with the cqordinates X5
by writing xi 5 etc.

If electron £ is incident, we operate on Egq. (2.6) with (ng, the
0pera§or that interchanges electrons O and ﬂ ; because we have

hz‘

i

Fog Bo (op
we find

n,8,(8) = W g2 , | (2.7)

]

where gn(z) = @:bz‘ﬁn = ¢n(xl'°’xo(ﬂ)°"xz)f The symbol xO(ﬁ) indicates

that x

0 now occupies the position formerly bélonging to x

ﬂ.,
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The eigenvector that describes electron £, moving freely with energy

2. N
a7 To/2m e dy (), wmere

K. .

Z_%p (§é>-

r (x : L 2.8
Po ‘(x.“,..) o | 29

€
Po -Pg

and

L o sy ipX 3
Oy Dy = @ R ey

For the system comprising an atom plus the - fth electron iheident moving

without_interacpion, we have the“description

By Imomgdy = Elpgmydy - (2.10)

with

and

im0 = ny (xg) By () = A (%)) 9 Cpeeeg)enexg)e
‘ 3 - e ' (2.11)
Wevobserve thath
By = Gop By Gy

so that, as expected,
lpn) = (R, | pn)y
Finally, the‘Schrgdinger,eqpation, including &ll interactionms, is

(B - g)? =0 . I (2.12)

Here, ﬁﬂ is antisymmetric ih'all pairs of electrons.
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A boundary condition must be added to Eq. (2,12), to fix E uniquely.
The physies of the problem dictates the boundary céndition: as X, approaches 0o,

for £ arbitrary, { approaches the asymptotic form

¥ ~ 61 | Py 1, )£ + (electron £ outgoing scattered waves).
(x, = c0) (2.13)

(ﬁ = 0,...5-)

Here? IR labels the incident waye, while @he ?acto; 53, given py

(2.11;_)

insures that the first term of Eq. (2,15) is antisymmetric in all pairs of

electrons. We should, perhaps, write vf’ as %p n? to show which incident wave
) % - : - )
is the source funetion, but we prefer to leave the subscripts understood.

The basis vectors | pn )O are orthonormal,

i ot _
ép n lpn>0 = Gppt Bnnt. ’

and form a complete set for the expansion of any vector, e.g. I.(xo; Xy eee xz),

which is antisymmetric in any pair =x ceeX, but has arbitrary symmetry in Xg ¢

1

X. 5 X.eeaX = 5 n C .

In what follows,'we shall often wish to form antisyrmetric expressions

defined above

from the | p n )o - This can be accomplished by using the &,
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and the ODO£ defined previously. For example, let »Q(xo; xi..,xg)‘ be symmetrie
in any paif xlo_“xZ but of arbitrary symmetry in %54 -Then, if ¢(xi.,;xz) is

antisymmetricuin any pair of variables, it is easily verified that

I

z 82 6702 Q,('xo.; xlg.',xg)fz(xl.-.oxa)

f(xexl,oyxa) ;

<2~l5)

= ? 3 Q(xz; xloe.xo(ﬂ)o,,xg)ﬁ(gloooxg(ﬁ),n.xg)

is antisymmetric in any paierftits g2 + 1 variables.

The use of ﬁ_ to calculate scgttering cross sections has been discussed
by Takeda and Watson,6 who show that since {' is antisymmetrized we need
calcﬁlate the flux of scattered O electrons only. That is, ali particles
enter the problem symmetrically, hence eacﬁ particle has the same flux, and the
total flux is z + 1 times the flux of any one. This holds for both ﬁhe incident
and scattered fluxes; therefore, since,oﬁly the ratio appears in the cross section,
this may be computed by calculating the flux of particle O alone. Or, we may
regard O as a distinguishable‘particle in obtaining the scattering cross
section from ¥ .

The flux of O electrons scattered is calculated from

Mm o Z [pn), pnlP) ;- - | (2.16)

.XO"’(X) __p’ n

where i contains both incident and (outgoing) scattered waves. The contribution

of the latter to Eq. (2.16) is

ik %

e B 0 A

-z X Tn(XO.) gn . , :
n 0O ' : v

»
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vhere n labels the atomic state, kn is the momentum carried by the scattered
particle, and Tn is the scattering amplitude. Let the incident flux'of 0
electrons be po/m ; then the scattering cross section for leaving the atom in

the state n is

& _ g l T (%) 12 (2.17)
aQ P n "0’ ! ’ A7)

where S represents the appropriate sum and average over final and initial spin
states.
It is apparent from Eq. (2.16), that we may obtain the cross section

from

o = (20§ ) . (2.18)

Il

That is, we may use & representation that tfeats particle O as distinguishable
from the other particles. ‘(It will turn out to be a matter of pfactical’v
convenience to use this representation.) |

Because Y is antisymmetric, the function V¥(p n) satisfies a number
of important symmetry relations. Indeed, these represent'sufficient conditions
that a wave function has been obtained that is consistent with the Pauli principle.

First, we have, for £ =0, 1, 2, ...28 ,

O( pn | f y = 5, Z< pn | f') . (2.184)
From this, we find trivially that, for j, £=0, 1, 2 ... g,

j( pn | i) = 8,8, G-E I ¥> . (2.18B)

From (2.18A) we obtain the important relation
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( Pn l p’ n“) Wp'n') = 5, 8, ¥(p n) . (2.18¢)
P n' J . L .B.‘T o : _ A

Whén it is'sufficiénf'td use Hartree wave functions as approximations to

the ¢n » Wwe can considerably simplify our formulae. ILet, then.

,d‘% e ® ggl(xl)oefg\,a(xé) . | (2.19)

Here GD is a general permutation of the x's, and 663’ as usual, is (il)
depending upon whether the number of interchanges is even or odd. The g's
are single-particle Hartree orbital states, and the index n refers tq the set
(9100092). -

An operator that projects onto the Hartree orbital states may bg

introduced:

(e | _%(O) lp) = (i‘pc.l(:xo), [g\)(xo_)g;(fcé)] M%) )

(2.20)
- ey gy ) -
Then, in an obvious hotation, we obtain - -
(0)
z (' 14y  Ip) wpn) = 0, (2.21)

if the Hartree orbital state y’ is contained in the set n . The operator

RO RN ON (2.22)

is a projection operator on the set of orbital states in n . In Eq. (2.21),

(0)

AQ_ and ¥ may be regarded as operators in the space of functions n .

s

*
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In this sense, Eq. (2.21) is equivalent to the operator equation,

_ A(O) ¥ = 0 .« (2.23)

The wave function

(pn ] §) = Y=2+1 8 JenlY)

has recently been used, by Coester and Kh'a'mmel,7 in a context similar to ours.
These authors, however, did not discuss means of actually satisfying the symmetry

conditions (2.18 A, B, ‘and C).

III. DERIVATION OF THE SCATTERING EQUATION
We shall now féllow the argumeni of Takeda and Watson6 to devise a
formally correct integral equation for the scattering problem. This is easily
done-~the major task confrénting us is to show-hpw tﬁis equation may be used.

Let us first introduce several quantities:
a=E% + iq - EH

;=8 +V, = E + din - H . (3.1)

Next, a set of wave functions %ﬂ is defined by

¥, = Ipgmydy = é; v, ¥ ‘ - ()

The wavefunction ?2 represents the scattering of the J4th electron by an
atom containing the remaining electrons. Clearly, in %z the 4th electron
is treated as distinguishable from the others. Thus QE has the symmetry

properties of the [ Q@ ] used in Eg. (2.15). It follows then that the
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correctly antiSymmetrized wave funection %"forrﬁhé problem is

IR - (3.3)

Having once obtained thg ,%2}, thg correct Wavgfunction is eaéily‘c6nstructed.
‘The scattering cross section is then ebﬁaiﬁed by the use ofnthé arguments
associated with Egs. (2.16) aﬁd (2.17).

It is of intereét, howe&er, to ébtain a'single integrai-equgtion for

i itself. To do this, we first write »Eq,'(5,2)_in the form

a §£ = a, | Po B )y | (th)
~We then multiply by 62 and sum over all £ to get:
) = 5 . . | ,"-.‘5
a§ % 5, 8, I_po By )y s | ' . (355)
or
. 0 .
Here we have
1
= 7% a5 % |2 2 7y
(3.7)
in
| 25 16 g 2o lpgmgdy g
) 0
because
a, | 251y Jp = inm | oy 50, -

From this derivation, one sees that Eq. (3.6) is actually independent
of the choice of -0 as the subscript, and that any other choice, ’E_, would

lead to an equation of identical form.
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Equation (3.6) may be rewritten in the representation of Eg. (2.18):

Wpn) = (pn|e) + ;ﬁ-ﬂ ofenl ¥ .

(3.8)
Here we have
2
ao(pn)EE+in~W - B, - (3.9)

n ~2nm
which is, of course, independent of the subscript O .

One may readily verify that the integral equation (306)‘[ or the
equivalent Eq. (3.8)] generates, by iterétion, the proﬁerly antisymmetrized 'i .
Also, the advantage of employing (l/éo) as the prqpagator is apparent, since
thié is diagonal in the representation Eq. (3,8); This advantage was obtained
at a considerable price, howgver, because now neither eo nor (%/ao) ﬁb { is
individually antisymmetrized. (This may be easily seen, for instance, by
observing the foﬁn (_2,180) for thev entisymmetry condition.) Equation (3.6) also
has & singular behavior when the limit 7 - oo is taken.

~An immediate simplificationiof Eg. (3.8) is possible in the approximation

that the atomic nucleus has a mass very large compared to m:
- A7 t ]
ofpnlwlx)¥) = i (p | v | p*) ¥(p* n), (3.10)

where

(p | w | pt) = »(>~p (%) (%) hp,(_xo) ) .

The sum over all values of (p, n) in intermediate states counts each

antisymmetric state (z + 1) times, as is well known. (Alternatively, we may

say that a physical state (p n) may be obtained by putting any one of the

(z + 1) particles in the state p , the remaining being in the atom.) This
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complicates sums over virtual states unless one uses considerable.care.

0

Now, the potential V
any projection operator onto the antisymmetrized sub-space for the (z + 1)

in Eq. (3.8) may be multiplied on the right by

electrons. It will prove convenient to replace VO by

(1-@,)
UG = T —_—l (3.11)

~

where we define G%X) to be the unit operator. Clearly, we have -

1 _
(- éﬁbj)-i; =¥,

S0 Eq?_(5,8)_is unchanged on replacing Vy by U, . ‘We may now drop the factor
of l/b above if we restrict intermediate sﬁate sums so that the states of the
pair (0, j) are not counted twice. With this understanding ve replace Eq. (3.11)

by

U, = '§ wbj(1- G%y . » N (3.12).

We emphaéize that Egs. (3.11) and (3012)_are entirely_eqpiva;enﬁ. Equation (3.12)
is more convenient, however; since weldo not wish to distinguish between the
states of a scattered pair of electrons (O, jjo

Now we may write Eq. (3.8) as

a8

§ o= oe ¢ z LUy + vylxg) 17 . (3.13)

In matrix form this is

¥pn) = ogp n | e + ézn' 8, ; oy Lofen [0, et aty

1 ¥(p* n') .

+ (p l vN'[ Pq) snn'
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The convention for carrying out intermediate-state sums that was introduced in
connection with Eq. (3.12) must be kept in mind.

To proceed, we follow the method of I. Equation (3.13) may be written

as

P =7d, | (3.15)
where

Yo = ¢ + a% Sy, (3.16)

R L R CORI AR L (3.17)
and

dO = a, - ?/(O) .

As was shown iﬁ I, the function (3.15) satisfies Eq. (3.13) for an
arbitrary 7/(0). Again, as in I, wé shall impose on the "potential 2/(0)
the condition that it be diagonal in the states n of the atom. The actual
form chosen  for 7/(0)' will be given presently.

To simplify ifc, we rewrite Eq. (3.16) as

1
Yo - & 8 %o

l . . .
= = I3, azl.pono >,a (3.18)
0 2
=+ 3 54 %(z) '
J
a, 4 4e i

where

a, = @oz a, &,, | (3.19)
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and

) 1
ﬁc ) = E;

om0, & W) o

aﬂ ] PO 1'10, )ﬂ
(3.20)

it

Because 7‘4) is diagonal in the appropriate set of states n s we
conclude that

B Ry (k) By (ryeexy) | (5.21)

where

‘?/O(O)]xpo(xo) = ¢ xpo(xo) . "(5.,22)

Here 24;(0) is the matrix element of iV‘O) associated with the atomic state

ny and Xp is that solution of Eq. (3.22) which has.outgoing scattered
o , , -t
waves: 1l.e.,
x_(x;) = a_(x;) + (outgoing scattered waves) . (3.23)
P Po 0 o v v

Physically therefore, X (x ) descrlbes the scatterlng of partlcle O by the
equivalent 51ng1e~particle potential iy/(o)
Returning to Eq. (3.18), we introduce the quantity

p,=a,-4 = (7, - e/(“)) - (7, - </(0)) . (3.24)

Substituting for d, into Eq. (3.18), we obtain

y/

o =z kY vz g B (5.25)
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With a convenient choice for the potential QVKO), we now have a definite
perturbation prescription for evaluating %;, “We may anticipate that AZ s

which arises only because of the Pauli principle, will often be small.

IV. SIMPLIFICATION WHEN ATOMIC STATES ARE
DESCRIBED BY HARTREE WAVE FUNCTIONS

For many scattering problems,vsuch as we are considering, the properties
of the scattering medium may be specified with much less accuracy than is
réqpired for the wave function of the scattered particle. The reason for this
is that frequently only the state of the scattered particle is observed in
any detail. For example, Hartree states often may be used for the scattering
mz_ediw;, even when such an approximation for the scattered particle would be very
inaccurate. (We note that, in practice, Hartree wave functions are usually the
best available!)

In this section, we shall therefore assume a Hartree model for the atom
in order to simplify the scattering eénations of Section IIT. We may, if
desired, use any model of the atom for the final equations that we shall derive.
This is reasonable, because the Hartree assumption is used only to derive
exclusion~principle corrections to the theory of I.

We shall first note that it is desirable to choose 7/(0) so that

Xp represents the actual elastic scattering of the electron by the atom.

When x

0 is large, we have

. . ip, X

ip.*X% 00

1im _X.(xo) = ™00, ex £a
Xy > @ P 0 '

so the differential cross section for elastic scattering by the atom is
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e = f . I ® ’ (h’o l)
To achieve this we extend the definition of the Xp to include the

bound Hartree orbital states gy Let
N IR A PR CH RN NENTEN o (k2)

determine the g's where B(’Z)  is the Hartree potential. jLet us next impose

on 9 %) the condition that it have the form’

SR O O B ORI R S (1.3)

where A(O) is defined by Eq. (2.22). Equation (4.3) ensures the orthogonality

of the Xp- and the g’/:

(g))v(xo), [KO + (_,l -_AIQ) (0) + A(Q%B(OL- VN(XO))] XP(}'{QD

_ (h.h)
= b)(g), X)) = ’ep(vg}), X))

9

Since we have b) £ O and > 0, the orthogonality follows. &

e,v
- ; | (4)
We shall now define our Hartree approXimation. We suppose the 7 R
as defined by Eq. (k.3) etec. aré the Hartree potentials.. This means that we
must replace :\'7-2 by ?/(z) for all values of £. When this 1s done, the
expression (3.24) evidently vanishes, as does the second term in Eq. (3.25).

Now, we have .

- AN, - ¥, (4.5)



UCRL-87TY4

=18~

since %C is antisymmetric in the Hartree approximstion. Also, we saw in Eq.

_ (2_,25) that
(1 - A(O))x}i = 7
Since A(O) commutes with do » this means that we can replace Eq. (5,17) for
F by
o1+ 200 v ovlx) - A0 (1.6)

0
At this point we can follow the steps of I precisely and write, first,

1 0
F = 1+3 P(1 - A( ))UO F , (%.7)

0

and then
9/ . v (x) + R A(O))UO F|n) .  (k8)

Here P is an instruction operator which forbids repetition of states n
~ of the atom when we expand Eq. (4.7) in powers of U, - (A word of é;ution is
necessary here. We do not distinguish between the states of two particles
which have just scattered. This me#ns that neither of them must go into a

state forbidden by 'Pﬁ)

To continue, we write

F = 1 + X PU.F ,
» do 0

where the (1 -_A(O)) has been momentarily dropped to simplify notation. Now,

the exact % is
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f- g + ¥ 3%5 PU, E 8, (1 ;}5 18, (3.9)

terms. After a little algebra, we obtain

if we keep the A%
P= 2 %Y var-0g w0y, o)
vhere
6?: Z 5 = Ai(‘z)—F-«%—(E )_{(l»P)‘[eZ v.+%o)]
4 by 2 _C % £#0 C O 3#0,2 0 -

+

: (£) (£)
B Vas T /! ]{ o~
s#0,4 : _
’ (4.11)
We see that f vanishes in our "Hartree" approximation. In this

approximation, then, we have
¥ = fc(o) + 2(F - 1){(:(0) o (%.12)

if we calculate the flux of scattered O particles only. Here yC(O) gives

the elastic and

(0)
2(F - 1)%
the inelastic scattering. (The factor of 2 arises because we have dropped
an exchange term for the first scattering. The operator (1 - G%U) makes

this exchange term redundant.)
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V. THE SCATTERING POTENTIAL

We now illustrate the considerations of the last section by calculating

the potential 7/(0) to second order. Aside from the N and B() terms, to
first order we have
o/(0) _ (0) |
1 = (- )(Ol?voj (1- Gop) 10 (5.1)
The nonexchange _pa\rt is
[ v(x -3 ely) &y
where
ply) = = (v) & (v) . (5.2)
Z & (9) &

The exchange part is, approximately,
’ L

[ vx-3) 12 g* () gY(X)]dBy
T

where Z' 1is restricted to spins parallel to that of the incident electron.

Now we use the approximation,

fr;? & (v) g (x) 2~y oly) a(x-y) , (5.3)
where
n(r) = % for r < -gi
£ (5.%)
= 0 for r K %ﬁ-— »
£

and P £ is the Fermi-momentum within the atom.
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Thus wé obtain

7/1(0') ~ [ Py vz-p Li-az-p) - (5.5)

This.form of the potential has beén.oéf;inéd by Siaté;é ﬁsing the Haffree;F§c£ |
method. The significance of the n term is that the charge deﬁsiiy of ﬁhoéé
electrons whose spin is parallgl to that of the scattered electron Shéuld vanish
near the point x .

Thé secondaorder'potential is
_ A(0)
O - a1, G2y oy, e
o .

vhere, to this order of accuracy;‘-dov,x/ &,

differ from O by the substitution of y° for one of the gémmas in 0O .

. Now, the excited states n

Hence, if we consider all such substitutions, the matrix elements of Yo between

the state O and an excited state n have the form,

(¢ 5lU, 12,0 = 2 War |vier) - (ar Ivlrl, (5.7)

where the sum on ¥ runs over the orbital sﬁates of Q ; and tv' 1is the

excited orbital state (y33%= any Y). Also we have

(@ r' | v|]oy) = fxq*_(x) x?,*(y) v(x - 3) % (x) XT(&)dBX Sy, (5.8

etc. Then we obtain
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z = (1 - ﬁm)upvlvlqrﬂ

Yy a>71'
O
- (pr I v I T' Q)] SETTETfFT%

l%(o) | p)

Xlay' [vley) - (av' |v |7vD)]

,(0) A(0) : |
zz (1- ) 3 ( T") = (a1’ T)
a T Loy v iar g (ar | v s
° ( (O) ' . ’
- (P v|v]ar') -;SrajFryl (r*a |v|]p Y); . (5.9)

The first term represents the usual potential induced by the polariz-
ability of the atom. When transformed into coordinate space, and at large

distances from the atom, it has the form®
Y, =73 (5.10)
2 dir : ¢

where P is a constant. The exchange term‘falls off exponentially with distance

from the atom, so it is important only at points within the electronic orbits.
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F. Coester and H. Kummel, Nuclear ?hyéicsAgj 225 (;958)°

Such a form has been suggested by'Frgntz} Mil;s, Néwfon, and Sessler, Phys.
Rev. Lett. 1, 340 (1958).

The states Xp do not in general form & .complete set, since 7/k0) ‘may not
be Hermitean. 1In a strict sense, therefore; one cannqt use these as the
Basis for expanding F . Instead, some éomple%e orthonormal set including

the gT should be 1ntr0duced° In most practical appllcatlons it seems
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