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ABSTRACT: Selective optimization of side activities is a valuable source of novel lead structures in drug discovery. In this
study, a computer-aided approach was used to deorphanize the pleiotropic cholesterol-lowering effects of the beta-blocker
talinolol, which result from the inhibition of the enzyme soluble epoxide hydrolase (sEH). X-ray structure analysis of the sEH in
complex with talinolol enables a straightforward optimization of inhibitory potency. The resulting lead structure exhibited in
vivo activity in a rat model of diabetic neuropatic pain.

KEYWORDS: Selective optimization of side activities, soluble epoxide hydrolase, polypharmacology, computer-aided drug design,
structure-based drug design

Selective optimization of side activities, also known as the
SOSA approach, has been proposed to be a very effective

method of lead identification and optimization.1 Following
SOSA, a side activity of a drug, which is observed in clinics, is
enhanced by subsequent introduction of structural changes.
SOSA is an extremely promising strategy to identify novel lead
structures exhibiting good bioavailability and low toxicity due
to the fact that the starting point has been already approved in
humans. However, in most cases the side activity of a drug is
an adverse effect or quite weak and is only reported from
clinical trials or clinical practice.
Talinolol (1) is an unselective antagonist of the beta

adrenergic receptors (βAR), also referred to as a beta-blocker,
and is used as an antihypertensive agent. Interestingly, in
several small clinical trials talinolol was described to have
beneficial effects on triglycerides and cholesterol levels

compared to propranolol.2−5 These results were investigated
in the TALIP study, and it could be shown that talinolol
treatment resulted in reduced LDL cholesterol levels in
comparison to atenolol.6 The reduction of the cholesterol
levels could not be explained by the inhibition of the beta
adrenergic receptors; thus, an off-target activity might be
responsible for this pleiotropic effect. These observations make
talinolol a valuable starting point for the SOSA approach.
However, the optimization of the phenotypic effect is not
always rational due to the multifactorial response to a drug.
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Thus, deorphanization of the target responsible for the side
activity makes the optimization procedure straightforward.
Computer-aided target deorphanization, also referred to as

polypharmacology detection or target identification, has
become popular in the past few years.7,8 In this study we
used three different popular web-based target deorphanization
tools to propose alternative targets of talinolol: HitPickV2,9

SuperPred,10 and SwissTargetPrediction11 (see Supporting
Information). All three tools independently predicted soluble
epoxide hydrolase (sEH) as the most probable novel target of
talinolol. Inhibition of sEH is related to cholesterol and lipid
lowering effects.12,13 For propranolol, sEH was absent in the
list of the predicted targets produced by all three tools.
Based on the in silico target prediction, we investigated the

inhibitory activity of talinolol toward sEH in vitro using the
fluorogenic substrate PHOME.14 Talinolol inhibited sEH with
an IC50 of 2.8 μM, while propranolol remained inactive (Table
1). In human patients, talinolol reaches a Cmax of 191 ng/mL

(0.53 μM) after 12 weeks application of 100 mg per day.6

Other studies2−5 which describe the cholesterol and lipid
lowering effects of talinolol were performed with even higher
daily dosages of talinolol (200 mg −300 mg) suggesting that
these effects could indeed be caused by inhibition of sEH.16−18

However, although significant results were obtained in this
study, the inhibitory potency of talinolol toward sEH is not
sufficient for direct repurposing. Furthermore, the blood
pressure lowering effects and adverse effects of beta-adrenergic
antagonism activity ((Ki (βAR1) = 0.24 ± 0.05 μM; Ki (βAR2)
= 0.9 ± 0.1 μM) determined by radioligand binding assay of
the Psychoactive Drug Screening Program (PDSP)15) also
make the usage of high-dosed talinolol impossible. However, it
makes talinolol an ideal candidate for the SOSA approach,
which should ideally aim at enhancing the sEH inhibitory
activity and simultaneous reduction of the βAR antagonism.
In order to rationalize our SOSA approach, we cocrystallized

talinolol with the C-terminal domain of sEH. The binding
mode was used for structure-based optimization. We observed
two possible orientations of talinolol in the active site of sEH
(Figure 1A) with a number of different conformations. The
presence of the inhibitor was verified by a polder map shown in
green (Figure 1A). The urea moiety substituted by two
lipophilic residues was identified as the key pharmacophore
responsible for sEH binding, which correlates well with
previous studies.19 The ethanolamine moiety, which is a
crucial part of the beta adrenergic receptor pharmacophore,
does not form crucial directed interactions with the binding
site residues, and the electron density for this moiety is not
well-resolved. Thus, we decided to remove the hydrogen

Table 1. Activity and in Vitro Pharmacological Data of
Propranolol, Talinolol, and Morpholino-Talinolol

Property Propranolol Talinolol (1)
Morpholino-
talinolol (2)

In vitro inhibition
of soluble
epoxide
hydrolase
(sEH)

inactive IC50 =
2.8 ± 0.2 μM

IC50 =
0.077 ± 0.004 μM

Metabolic
stability in
RLM after 1 h

37 ± 2% 86 ± 6% 71 ± 1%

Permeability
(logPe)

−1.99 ± 0.04 −5.2 ± 0.7 −2.31 ± 0.004

Figure 1. Design of morpholino-talinolol. A shows the X-ray
crystallographic structure of the C-terminal domain of sEH in
complex with talinolol (PDB record 6HGV). Two of the possible
conformations of talinolol were modeled in the density of the polder
map covering both orientations in the binding pocket. C shows the
structure of the C-terminal domain in complex with morpholino-
talinolol (PDB record 6HGX). In both structures, the mFo-DFc
polder map around the ligand is shown in green (countered at 3σ),
while the 2mFo-DFC map of the ligands is shown in blue (countred
at 1σ). B shows the structure of talinolol (left) and morpholino-
talinolol (right).

Scheme 1. Synthesis of Morpholino-Talinolol. (a) EtOH,
μW, 150 °C, 15 bar, 30 min, 20%; (b) 1. NaH, 2. p-TsCl,
THF, 0 °C − rt, 72 h, 61%; (c) Pd/C, H2, EtOH, rt, 6 h,
97%, (d) DIPEA, abs. DCM, rt, 20 h, 33%.
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bonding functionalities of the ethanolamine moiety by ring
closure (Figure 1B). The synthesis of the designed
morpholino-talinolol (2) was accomplished through coupling
of the secondary amine precursor 4 to the epoxide moiety of 3.
Subsequently, ring closure of the morpholine was mediated by
p-tosyl chloride. The aromatic nitro group of 6 was reduced
using palladium on charcoal and coupled to cyclohexyl
isocyanate 8 to yield the desired product 2 (see Scheme 1).
Morpholino-talinolol was tested in vitro, and significant

increase in potency toward sEH could be measured (IC50 =
0.077 μM). The design hypothesis could be confirmed using
X-ray crystallography. The co-crystal structure of morpholino-
talinolol and the C-terminal domain of sEH revealed that the
urea moiety interacts with the catalytic triad acting as an
epoxide mimetic. The cyclohexyl moiety occupies the smaller
hydrophobic pocket while the substituted phenyl part reaches
into the larger hydrophobic tunnel (see Figure 1C).

Morpholino-talinolol displays one dominant orientation in
the binding site of sEH.
Differential scanning fluorimetry (DSF) assay was used to

confirm the direct binding of morpholino-talinolol to sEH
(Figure 2A). Talinolol caused a pronounced shift of the
melting point of sEH (62.5 ± 0.5 °C vs 57.0 ± 0.0 °C DMSO
control) while propranolol did not affect the temperature-
dependent denaturation of sEH significantly (56.3 ± 0.5 °C).
Morpholino-talinolol caused a more pronounced thermal shift
of 65.1 ± 0.3 °C which correlates nicely with the lower IC50
value in vitro. We could also confirm the sEH inhibitory
activity of talinolol and morpholino-talinolol in HEP-G2 cells
by monitoring the conversion of 14,15-EET-d11. In this
setting, both compounds reduced the conversion of the
externally added EET like the most advanced sEH inhibitor
TPPU, while propranolol did not show an effect (Figure 2B).
As expected from the bridging of the ethanolamine moiety, the
binding affinity of morpholino-talinolol toward βARs was
significantly reduced in comparison to talinolol (Figure 2C).
Preliminary evaluation of the in vitro metabolic stability and

penetrability (Table 1) suggested that morpholino-talinolol
should be orally available, which supports the intention of the
SOSA approach to deliver lead structures with good initial
pharmacokinetics. In order to accomplish the successful SOSA
approach, we examined the in vivo activity of morpholino-
talinolol in comparison to talinolol and propranolol in rats.
sEH inhibitors exhibit a pronounced blood pressure lowering
effect comparable to beta blockers.20,21 Furthermore, sEH
substrate EETs have pronounced antinociceptive effects, which
are strongly enhanced by the application of sEH inhibitors.22

Therefore, pain was modeled using diabetic neuropathy
induced by streptozocin, which targets and kills the pancreatic
beta islet cells rendering the rats with type I diabetes and
neuropathic pain, in which different sEH inhibitors were found
to be active.23 Propranolol, a beta blocker without sEH
inhibitory activity, which was confirmed in three orthogonal
assays, was used as negative control in order to exclude the
possibility that the antinociceptive effects originate from the
βAR antagonism activity. After 5 days the allodynia of diabetic
rats was confirmed, and a von Frey assay was performed.24

Morpholino-talinolol blocked allodynia, and this antinocicep-
tion was sustained up to 2 h before declining (Figure 3).

Figure 2. (A) Differential scanning fluorimetry assay demonstrates
that talinolol and morpholino-talinolol, but not propranolol, stabilize
sEH. The graph displays the normalized first derivation of a
representative measurement. (B) sEH inhibition in HEP-G2 lysates.
(±)14(15)-EET-d11 was used as sEH substrate and the EET/DHET
ratios were measured via LC-MS/MS. Results are given as mean +
SEM out of three independent experiments. (C) Radioligand
displacement of talinolol and morpholino-talinolol from βAR1 and
βAR2. The t test for B and C for two independent means was
performed using a web server (https://www.socscistatistics.com/
tests/studentttest/default2.aspx, 6th May 2019); *: p < 0.05; **: p <
0.01; ***: p < 0.001.

Figure 3. Effects of talinolol and derivatives on diabetic neuropathic
pain. Pain (allodynia) was assessed in diabetic neuropathic rats (n =
6/group) after single administration of 10 mg/kg each compound in
PEG 300. Morpholino-talinolol was significant compared to the
effects of propranolol but not talinolol (p = 0.032). Two way analysis
of variance, Holm-Sidak method post hoc. Naiv̈e baseline averaged
84.6 gr versus diabetic baselines 41.0 gr (normalized above) for all
groups.
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This study demonstrates the unique opportunities of in silico
polypharmacology prediction to deorphanize the side activities
of a drug observed in clinical studies. Furthermore, once the
target of interest has been discovered, the rational application
of the SOSA approach is straightforward. The use of an
approved drug warrantees an acceptable pharmacokinetic
profile while potency optimization can be achieved with a
low number of optimization steps.
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