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Maximum Entropy Function Learning
Simon Segert (ssegert@princeton.edu)

Princeton Neuroscience Institute
Princeton,NJ

Jonathan Cohen (jdc@princeton.edu)
Princeton Neuroscience Institute

Princeton,NJ

Abstract

Understanding how people generalize and extrapolate from
limited amounts of data remains an outstanding challenge. We
study this question in the domain of scalar function learning,
and propose a simple model based on the Principle of Maxi-
mum Entropy (Jaynes, 1957). Through computational model-
ing, we demonstrate that the theory makes two specific predic-
tions about peoples’ extrapolation judgments, that we validate
through experiments. Moreover, we show that existing Gaus-
sian Process models of function learning cannot account for
these effects.
Keywords: Learning; Pattern recognition; Computational
Modeling

Introduction
One of the most impressive aspects of human intelligence is
the ability to detect and extrapolate a variety of abstract pat-
terns that commonly occur in the world. Here, for tractabil-
ity, we focus on patterns that can be expressed using one-
dimensional functions, the class of which is still sufficiently
rich to encompass many real-world tasks, such as deciding
whether to invest in a certain stock, or predicting how hard to
hit a golf ball so that it will travel a certain distance. Work
on function learning (McDaniel & Busemeyer, 2005; Delosh,
Busemeyer, & McDaniel, 1997; Bott & Heit, 2004) has cat-
alogued the form of several inductive biases that people em-
ploy in this setting, including a preference for positive linear
forms (Kwantes & Neal, 2006) or compositional construc-
tion from a small number of simple forms (“atoms;” Schulz,
Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017).
It is an outstanding open question whether this collection of
biases is sufficient to fully characterize peoples’ extrapolation
judgements of scalar functions.

Most current models of function extrapolation cast it as
a Bayesian inference problem (Lucas, Grrifiths, Williams,
& Kalish, 2015; Schulz et al., 2017; Wilson, Dann, Lucas,
& Xing, 2015), the solution to which can be expressed us-
ing the mathematical formalism of Gaussian Processes (GPs)
(Rasmussen & Williams, 2006). In contrast, we propose a
novel, basic inductive bias in the context of function extrap-
olation, the form of which is based on the Principle of Max-
imum Entropy (“MaxEnt;” Jaynes, 1957). Put simply, we
posit that peoples’ extrapolations arise as samples from the
“maximally indeterminate” distribution that is consistent with
certain observed structural features of the function. This pro-
posal is supported by the key role that the MaxEnt principle
has played in other contexts within cognitive science. For

example, an early such application was the work of Myung
(Myung, 1994; Myung & Shepard, 1996), showing that cer-
tain classical categorization models could be seen as spe-
cial cases of the MaxEnt principle. The principle has also
been used to derive the functional form of psychoeconomic
weighting functions (Bhui & Gershman, 2018), and to pro-
vide a normative account of many perceptual capacity limita-
tions (Frankland, Webb, & Cohen, 2021).

Here, we leverage a classic theorem of Burg (1967) to show
that MaxEnt functional extrapolation takes a relatively sim-
ple and psychologically plausible form. To test this hypoth-
esis, we derive two specific behavioral predictions from it,
that we term roughness calibration and typicality preference.
In a pair of experiments, we test whether people show these
effects when making extrapolation judgements, and contrast
these with predictions of GP-based models in our experimen-
tal setting. We find that the data are consistent with predic-
tions of the MaxEnt model and not existing GP-based mod-
els. In light of these results, we discuss how the MaxEnt
model and GP model may potentially complement each other
in a Resource Rational analysis of function learning (Lieder
& Griffiths, 2020).

Maximum Entropy extrapolation
In typical function extrapolation experiments (McDaniel &
Busemeyer, 2005; Delosh et al., 1997; Schulz et al., 2017),
the experimenter chooses some function f : R→ R, and the
participant is shown the values of f in a bounded region of
the domain. The participant is then tasked with inferring
the values of the function at points that lie outside of the re-
gion. For simplicity, we make the additional assumption that
the points are equally spaced along the x axis; this permits
rescaling the domain, if necessary, so that the points lie on
the positive integers. Thus, the participant is shown the val-
ues f (1), f (2), . . . , f (N), and then is tasked with inferring the
values f (N +1), . . . , f (N +M).

This may be naturally cast as a problem of probabalistic
inference, in which the target of the inference is the distribu-
tion of future values of f , conditional on the observed ones.
In general, MaxEnt posits that the preferred solution to such
an inference problem takes the form that requires the least
amount of additional information to satisfy the constraints
imposed by the data, among all those that are consistent with
those constraints (Jaynes, 1957); this can be thought of as
making the smallest representational commitment needed to
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accommodate the data, so that new information can be ac-
commodated with a minimum of disruption to existing rep-
resentations. More formally, the inference may be cast as a
constrained maximization problem, with the entropy of the
distribution being the objective, and the observed values of
certain statistics (e.g. means or covariances) being the con-
straints. For the case in which the data correspond to values
of a scalar function, Burg’s theorem implies that the solution
to the optimization takes a remarkably simple form, as shown
below:

Theorem 1 (Burg, 1967) Let (Ŷ1, . . . ,Ŷk) be an observation
of a time series1, and let let α j = ∑i ŶiŶi+ j,1≤ j ≤ L be the
empirical lagged covariances, for some fixed L. The maximal
entropy distribution of (Y1, . . . ,Yk), subject to the constraints
∑i YiYi+ j = α j is given by

Yi =
L

∑
j=1

w jYi− j + εi

for some choice of coefficients wi. Here εi are iid Gaussian
variables with mean 0 and variance σ2.

(For a proof, see Cover & Thomas, 1991, Section 12.6.)
Burg’s Theorem thus suggests a natural way to estimate the
values of f on points outside the domain of definition, in
both generative and evaluative paradigms. In the generative
case, the value at N + 1 is estimated by applying the au-
toregressive weights to the last L observations, f̂ (N + 1) :=
∑

L
j=1 w j f (N− j+1) (optionally with normal additive random

noise). We may then append this value to the vector of ob-
served values and repeat the process iteratively, obtaining es-
timates of f̂ (N + k) for arbitrarily large k. In the evaluative
case (e.g., multiple choice), the participant must judge the
quality of a proposed completion ( f̂ (N+1), . . . f̂ (N+M)) of
f . This may be done in a in a manner that uses the same
machinery as the generative case; we describe this process in
greater detail further below.

Gaussian Process models of function learning
The MaxEnt model differs from approaches to modeling
function learning that use Gaussian Processes (Schulz et al.,
2017; Lucas et al., 2015; Wilson et al., 2015). In this section,
we briefly outline the key assumptions of the GP framework.

Formally, a Gaussian process (GP) defines a probabil-
ity distribution on the space of all possible one-dimensional
functions f : R → R (Rasmussen & Williams, 2006). This
assumes that, for any finite set of observations of values of
the function (x1, f (x1)), . . . ,(xn, f (xn)), that elements of the
vector ( f (x1), . . . , f (xn)) are distributed according to a zero-
mean multivariate Gaussian, with the covariance structure
satisfying K(x1,x2) = Cov( f (x1), f (x2)), where K is a re-
ferred to as a kernel function.

1Note that a time series is merely a notational variant of the or-
dered vector of values ( f (1), f (2), . . . , f (N)) of a function as formu-
lated above.

Following the previous convention, we assume that the xi
values are always given on the set of positive integers, xi = i.
In this case, a GP with kernel function K is equivalent to a
mean-zero multivariate normal distribution with covariance
CK

i j = K(i, j). Thus, given the first N values of the func-
tion f (1), . . . , f (N), and a kernel function K, the posterior
over later values ( f (N + 1), . . . , f (N +M)) is given by con-
ditionalizing the distribution N(0,CK) on the values of the
first N components. The posterior is also Gaussian, the mean
and variance of which can be explicitly expressed in terms of
CK and the vector ( f (1), . . . , f (N)) (Lucas et al., 2015; Ras-
mussen & Williams, 2006).

In the context of function learning, kernel functions are
used to encode an agent’s prior beliefs about likely kinds of
functions. Given such priors, the problem of inferring the
values of a function at a new set of points can be recast as a
form of rational probabilistic inference (Lucas et al., 2015).
In order to complete the specification of such a model, it
is necessary to posit a specific kernel or collection thereof.
A common choice is the Radial Basis Function (RBF) ker-
nel, defined by the formula Krb f

σ (x,y) = e−(x−y)2/σ (Lucas et
al., 2015; Schulz et al., 2017). Samples from this distribu-
tion do not generally satisfy any global parametric form, but
rather obey a form of local statistical regularity: the curves
are smooth, but tend to “meander” randomly due to the lack
of long-range correlations. This kernel has thus been used
as a model for a basic smoothness prior. Other kinds of ker-
nels, that encode more specific forms of structure, such as
linearity or periodicity, are also possible (Schulz et al., 2017).
A final type of kernel, which is common in machine learn-
ing applications but less common in studies of human func-
tion learning, is the Matern kernel (Rasmussen & Williams,
2006). This kernel is a generalization of the RBF, which can
generate curves that are locally “rough”. The kernel contains
an additional hyperparameter ν that controls this degree of
roughness (see Figure 1). We use this kernel to generate stim-
uli for Experiment 1. This kernel has been previously used in
human function learning experiments by Schulz, Tenenbaum,
Reshef, Speekenbrink, and Gershman (2015). In our experi-
ments, all stimuli were generated by sampling from Gaussian
kernels, either RBF or Matern.

Modeling of multiple choice extrapolations
Following (Schulz et al., 2017), the experiments we re-
port below used a multiple-choice (evaluative) extrapola-
tion paradigm. In this paradigm, participants are shown a
static graphical representation of a prompt curve yprompt =
( f (1), . . . , f (N)) as well as of several candidate completions,
and tasked with selecting the most plausible completion. We
denote the ith candidate completion by yi, which is repre-
sented as a vector of potential values of f at the unseen points
N +1, . . . ,N +M. In all experiments, we take N = M = 100.

GP model
Following previous accounts of GP inference (Schulz et al.,
2017; Duvenaud, Lloyd, Grosse, Tenenbaum, & Ghahramani,
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2013), we assume that the GP agent makes a multiple choice
decision using the following two-step process:

1. Given yprompt , estimate the kernel most likely to have
generated it: K̂ = argmaxKPK(yprompt)

2. Evaluate the posterior likelihood of each completion
PK̂(yi|yprompt), using the kernel inferred in step 1.

Here, PK denotes the probability distribution defined by the
kernel K. We then assume that the choice probabilities are
determined by the conditional likelihood of each candidate.
Thus, given prompt yprompt and candidate completions yi, we
assume that the GP agent selects choice i with probability

pGP
i ∝ PK̂(yi|yprompt)

γ

where γ > 0 is an inverse temperature parameter. We treat
γ as a participant-specific hyperparameter, and fit it to each
participant using maximum likelihood. Finally, for simplicity
and conceptual clarity, we will assume that the inference in
step 1 is perfectly accurate. That is, if yprompt was generated
from some kernel K, then the GP agent can exactly recover
K after seeing yprompt . Thus the GP agent acts as an Ideal
Observer.

MaxEnt model
For this model, rather than relying on specific prior distribu-
tions, the choice probabilities are based on the simple iterative
extrapolation process implied by Burg’s theorem. When pre-
sented with a prompt and set of candidate completions, we
assume that the MaxEnt agent first fits the parameters w,σ
of an autoregressive linear model on yprompt . The agent then
uses these parameters to evaluate the plausibility of a given
completion. The form of the MaxEnt solution gives a natu-
ral way to make such judgments. Let {ri j} j denote the set
of residuals (i.e., prediction errors) along the candidate com-
pletion yi with respect to the fitted regression model. That is,
ri j = yi[ j]−∑

L
k=1 wkyi[ j−k] (where yi[ j] denotes the jth entry

of the vector yi). Burg’s theorem implies that if the comple-
tion was generated by the same process as the prompt, then
the residuals are independent samples from N(0,σ). Con-
versely, systematic departure of the distribution of residu-
als from N(0,σ) indicates that the completion is unlikely to
have been generated by the same process as generated the
prompt. Accordingly, a simple way to assess the fit is to com-
pute the empirical mean µ̂i = E jri j and standard deviation
σ̂i =

√
E j(ri j − µ̂i)2 of the residuals, and compare them to

the expected values 0 and σ. The further these values deviate
from 0 and σ, respectively, the less likely it is that the comple-
tion yi was generated from the same process as yprompt . Based
on this, we assume that the MaxEnt agent makes its decision
using the following three-step process:

1. Compute the regression parameters w,σ on the prompt
curve

2. For each candidate completion yi, compute the regres-
sion residuals {ri j} j along yi, as well as the mean µ̂i and stan-
dard deviation σ̂i of these residuals.

3. Select the choice i with probability

pMaxEnt
i ∝ KL(N(µ̂i, σ̂i)||N(0,σ))−γ

where KL denotes the Kullback-Liebler divergence 2 be-
tween the two Gaussian distributions, and γ > 0 is an in-
verse temperature parameter . The exponent is negative
because high values of KL correspond to poor fits, and
thus to low choice probabilities. This model thus contains
two participant-specific hyperparameters: γ and the window
length L. We fit these two parameters independently for each
participant using maximum likelihood. Accordingly, we re-
port model comparison results via BIC in which the MaxEnt
model is considered to have two parameters, and the GP to
have one. 3

Experiment 1: Roughness calibration
The previous function learning literature has focused primar-
ily on smooth curves (McDaniel & Busemeyer, 2005; Delosh
et al., 1997), or ones with piecewise discontinuities (Wilson
et al., 2015). Here we test the hypothesis that people also have
consistent preference patterns for rough curves, and that the
pattern of responses to both smooth and rough curves can be
explained by the MaxEnt model. More specifically, it predicts
that people will be sensitive to the degree of local roughness
along a curve, and will tend to prefer completions that are
calibrated (i.e., matched) to the prompt in this regard.

We used the Matern kernel to generate multiple choice ex-
trapolation problems, in which the roughness of the prompt
curve, as well as the roughness of the individual comple-
tions, were independently varied. More specifically, to gen-
erate a prompt curve, we first sampled ν0 ∈ {.25,1,4}, and
then sampled from the corresponding Matern kernel yprompt ∼
Kmatern

ν0
. We then generated three candidate choice curves

yi, defined as samples from the three posterior distributions
yi ∼ PKmatern

νi
(·|yprompt), where ν1 = .25,ν2 = 1 and ν3 = 4.

An example is shown in Figure 1. We generated a total of
15 stimuli for each prompt roughness level, for a total of 45
stimuli. Participants were instructed to choose the comple-
tion they judged to be the best completion of the prompt. The
order of prompt curves was randomized for each participant,
and the order in which the three candidate completions were
displayed was randomized within each trial.

52 participants were recruited from Prolific
(www.prolific.co). After exclusion of participants
who failed attention check trials, N = 43 participants re-
mained (15 female, mean age=27.0 ± 10.3). Participants
were paid $1.59 for their participation. On average, the
experiment took 4.5 minutes to complete.

2Using KL divergence is not essential, and other metrics could
also be used without changing the model’s qualitative behavior.

3Strictly speaking, this is an accommodation that disadvantages
the MaxEnt. Since one of the parameters of the MaxEnt model is
discrete, the parameter space of this model is geometrically a finite
set of disjoint one-dimensional intervals. Thus, arguably, the Max-
Ent model should be considered as having only one free parame-
ter, since finitely many small intervals can be concatenated into one
large interval.
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Figure 1: Example stimulus in Experiment 1. The prompt
curve (blue) was in this case sampled from a Matern kernel
with ν = 1. The plot labels indicate the ν corresponding to
each respective completion. In this case, the MaxEnt model
would prefer the middle completion (assuming a small L),
while the GP would prefer the right one.

Behavioral results
On average, participants selected the completion that was
matched to the prompt in terms of roughness in 79 percent of
trials, suggesting a strong preference for roughness-calibrated
completions. This preference was strongest when the prompt
curves were maximally smooth (i.e. ν0 = 4).

0.25 1 4
chosen 

0.
25

1
4

tru
e 

0.77 0.12 0.11

0.04 0.70 0.26

0.01 0.07 0.91

all subjects

0.25 1 4
chosen 

0.94 0.05 0.01

0.04 0.82 0.15

0.01 0.06 0.93

calibrated

0.25 1 4
chosen 

0.11 0.41 0.48

0.05 0.26 0.69

0.04 0.11 0.85

oversmoothing

Figure 2: Empirical confusion matrices. The left matrix is
the average response over all participants, while the other two
are averages only over participants classified as calibrated or
oversmoothing, respectively (see text for explanation)

We next examined individual differences in response pat-
terns by performing K-means clustering on the confusion ma-
trix of each participant. The best fit (according to a silhouette
score (Rousseeuw, 1987)) was obtained for K = 2, with the
two groups corresponding to qualitatively different response
patterns. The first group, that we refer to as calibrated partic-
ipants, chose the completion with the noise level matched to
the prompt on nearly all trials. This group comprised 34/43
subjects. In contrast, the second group, that we refer to as
oversmoothing participants, consistently chose completions
that were smoother than the prompt (or matched it, in the case
of maximally smooth prompts). This group comprised the re-
maining 9/43 participants. In Figure 2 we show the empirical
confusion matrices averaged across all participants and for
each of the two groups individually.
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1
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MaxEnt, L=5
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MaxEnt, L=40
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0.00 0.80 0.20

0.00 0.00 1.00

0.00 0.00 1.00

GP

Figure 3: Model response patterns. For simplicity, in all mod-
els γ = ∞ (corresponding to a deterministic argmax decision
rule). In MaxEnt models, L is window length (see text).

Model results
Before presenting formal model fits, we first consider the
qualitative behavior of the models. In Figure 3 we plot the
confusion matrices for the MaxEnt model for both large and
small L values; the figure also shows the confusion matrix for
the GP model, which has no free parameters after fixing the
value of γ. The results show that the MaxEnt model can ex-
hibit both calibrated response patterns (for low values of L) as
well as oversmoothing response patterns (for higher values of
L), thus offering a potential account of individual variability.
In contrast, the GP model is constrained to consistently over-
smooth relative to the prompt (i.e. chooses curves with larger
values of ν), and thus can account only for the less common
of the two observed behavioral patterns.

Figure 4 shows the fits of the MaxEnt model in greater
detail. As expected, calibrated participants exhibit smaller
L values, whereas oversmoothing participants exhibit larger
values. Thus the L parameter can account for this difference
in response patterns.
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Figure 4: Fitted window length parameters, and calibration
probabilities (i.e. average diagonal entry of the confusion
matrix) for each participant. Large L values correspond to
low calibration probabilities, with the majority of participants
having high calibration. The colors indicate the cluster as-
signment of each participant.

These observations are supported by formal model fits.
When fitted to each individual participant,the MaxEnt model
attains a log-likelihood (llh) value of −0.502± 0.259 (mean
± std), whereas the GP model attains a fit of −0.729±0.147.
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A random guessing model attains log1/3 = −1.099. Addi-
tionally, the MaxEnt model provides a better MLE fit to 41
of 43 participants than the GP model, and attains a lower BIC
value on 35 of 43 participants.

These results may seem surprising: Why couldn’t the GP
model “pick out the right” completion, given that it has ac-
cess to the ground truth generative distribution of each prompt
curve? This is because, regardless of the value of ν, the pos-
terior mean closely approximates a horizontal line, with the
likelihood of a given completion being inversely related to
the deviations from this mean. Since, in general, smooth can-
didate curves will tend to deviate less from a line than will
rough candidate curves, it is likely that a given smooth curve
may have a higher posterior probability than a given rough
curve, despite the fact that the set of all rough curves may
have far higher posterior probability than the set of all smooth
curves.

The MaxEnt also exhibits a tendency to oversmooth, but
only for larger values of L, and for a different reason. When
L is very large, the autoregressive model will overfit to the
prompt curve, and the estimated σ value will be too small, rel-
ative to the intrinsic volatilty along the curve. Since the deci-
sions are made by comparing the residual variance along each
candidate to the fitted residual variance σ along the prompt,
this model will thus have a bias towards smoother comple-
tions when L is large. Psychologically, a large L may corre-
spond to an increased reliance on the “global character” of the
function at the expense of local features such as roughness.

Experiment 2: Typicality preference
Previous work on function learning has focused on curves
generated from an RBF kernel (e.g., Lucas et al., 2015;
Schulz et al., 2017). The MaxEnt model predicts that, in this
more restricted case, completions that look “representatitve”
of the posterior distribution will be seen as more plausible
completions than will the mode of that distribution. This con-
trasts with the GP model which predicts the opposite, since
the mode has (by definition) a higher posterior likelihood
value than any other possible completion.

To generate stimuli, we sampled prompt curves from an
RBF, and generated two choices for each curve: the first was
the posterior mode (with respect to the underlying RBF ker-
nel), and the second was an unbiased sample from the pos-
terior distribution. We refer to these as “modal” and “typi-
cal” completions, respectively. 64 participants were recruited
from Prolific using the same criteria and payments as Exper-
iment 1. After excluions, N=52 participants remained (24
female, mean age=32.3± 10.6). On average the experiment
took 5.2 minutes to complete .

Behavioral results
Overall, the typical completion was chosen on 74.9 percent
of all trials. 43/53 participants chose typical completions on
the majority of trials they performed; and for 47/50 stimuli,
the typical completion was chosen by the majority of partic-
ipants. Furthermore, as in Experiment 1, there was consider-

Figure 5: Example stimulus from Experiment 2. A typical
completion is on the left, and the modal completion is on the
right. Note the regression to the mean in the latter.

able individual variability in response patterns, with the pro-
portion of trials for which the typical completion was selected
ranging from .38 to 1.0 across participants.

Model results
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Figure 6: Individual response patterns in Experiment 2. Fitted
L value of each participant tracks the proportion of trials on
which participants chose the typical completion.

The MaxEnt model exhibits a strong bias for selecting the
typical completions, similar to what is observed in the empiri-
cal data. In contrast, the GP model provides a poor qualitative
fit. This is because it cannot assign > 50 percent probability
to the typical completion for any stimulus, regardless of the
value of the inverse temperature parameter γ. Thus, the GP
agent assigns a higher choice probability to the modal com-
pletion on all trials. This contrasts with the empirical obser-
vation that the typical completion was preferred for the vast
majority (94 percent) of stimuli.

In formal model fits, the MaxEnt model attains a llh
of −0.450 ± .222 on an average participant, compared to
−.692± .006 for the GP model which is not appreciably dif-
ferent than a random guessing model (log1/2 =−.693). The
MaxEnt model also provides a higher MLE for every par-
ticipant individually, and exhibits a lower BIC for 41 out of
52 participants. Finally, Figure 6 also shows that the fitted L
value for each participant closely tracks the participant’s pref-
erence for typical completions, with smaller L values corre-
sponding to greater preference for typical completions.

Related work
Classic studies of function learning (McDaniel & Busemeyer,
2005; Delosh et al., 1997; Bott & Heit, 2004) have focused
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on peoples’ ability to learn curves generated by simple para-
metric families, such as linear, quadratic or sinusoidal. Little
and Shiffrin (2016) considered a more complex set of func-
tions by using polynomials of varying degrees, and found that
peoples’ preferred completions were biased towards lower di-
mensional polynomials. In (Lucas et al., 2015), it was shown
that many phenomena could be explained using the Gaussian
Process framework. This work relied on a prespecified set of
kernel functions, raising the general question of what class of
kernels should be considered. Wilson et al. (2015) explored
the question of discovering an appropriate kernel function us-
ing unsupersived methods. Schulz et al. (2017) argued that
the class of kernels is constrained by a principle of compo-
sitionality, in which more complex kernels are constructed
through combinations of simpler atomic ones.

Although, to our knowledge, no previous studies have
specifically tested the MaxEnt model (or a version thereof),
several recent studies have generated data relevant to its as-
sumptions, and the design of the experiments used here. For
example, Gelpi, Saxena, Lifchits, Buchsbaum, and Lucas
(2021) used an active function learning paradigm, in which
only parts of the entire function were shown, and partici-
pants had to choose locations at which to query the value
of the function. They found that people tended to prefer an
even spacing of such points along the x-axis, consistent with
our assumption of evenly-spaced observations. Furthermore,
León-Villagrá, Preda, and Lucas (2018) incorporated explicit
memory constraints into the GP modeling framework. Their
strategy for this was very similar to the autoregressive form
of the MaxEnt model implemented here, in that they consid-
ered only the rightmost previously encountered k points at
any given location along the x axis. The autoregressive model
also bears a notable similarity to the nearest-neighbor heuris-
tics used in the context of graph structured spaces by Wu,
Schulz, and Gershman (2021). Additionally, in a machine
learning context, Segert and Cohen (2021) showed how to use
the MaxEnt principle for unsupervised learning of “intuitive
functions” (that is, smooth functions with simple underlying
statistical structure, similar to those considered in our experi-
ments). But, they considered only synthetic data and did not
model peoples’ extrapolation judgements directly.

Discussion
We have presented a model of function extrapolation that is
based on the Principle of Maximum Entropy. The model is
based on a general inductive bias that is not specific to func-
tion learning, and provides a simple algorithmic process (viz.,
linear autoregression) by which extrapolation judgments are
made. We derived two behavioral predictions from the model:
roughness calibration and typicality preference, and showed
that both of these effects are robustly present in human judg-
ments. Furthermore, we showed that the L hyperparame-
ter in the MaxEnt model (that determines the autoregressive
window length) can explain participant-level variation in re-
sponse patterns, with larger values of L corresponding to a

preference for smoother completions.
The MaxEnt model contrasts with existing models of func-

tion learning, based on Bayesian inference in the space of
curves with a Gaussian Process prior. The latter has proven to
be a useful and conceptually clarifying framework, providing
one possible normative benchmark against which to evaluate
performance. However, its use has focused on computational-
level accounts of the problem. Furthermore, the resulting pos-
terior computation, despite having a closed-form mathemat-
ical solution, is computationally intensive, generally requir-
ing the inversion of a large matrix (Rasmussen & Williams,
2006). It is unclear how people might perform this compu-
tation, or what approximation they might use; though it is
possible that identifying such an approximation might also
account for the experimental results we report here.

The MaxEnt approach is also grounded in a potentially nor-
mative account of function learning, in which the MaxEnt
principle can be thought of as a form of regularization that
protects against overfitting the data (and thereby maximiz-
ing the potential for generalization and/or future flexibility in
learning). Thus, in line with recent work on Resource Ra-
tionality (Lieder & Griffiths, 2020; Dasgupta, Schulz, Tenen-
baum, & Gershman, 2020), the MaxEnt model may comple-
ment the GP perspective by providing a simple and psycho-
logicaly plausible algorithm for performing inference over
the space of functions.

It is possible that a GP model could account for the exper-
imental data, by using some kernel besides the veridical one
(a “human kernel”). But since the true kernel already over-
smooths, such a model could only account for calibrated re-
sponse patterns if the putative kernel placed most of its prob-
ability mass on rougher curves-and would thus be very dif-
ferent from previously proposed “human kernel” candidates
(Schulz et al., 2017; Wilson et al., 2015).

At the same time, the MaxEnt model has several limita-
tions, that suggest directions for future work. First, it is pri-
marily a model of extrapolation, and it is not immediately
clear how it can be applied to interpolation tasks. Second,
our implementation assumed observation points to be equally
spaced, which is not always borne out in real functions. Fi-
nally, one desirable property of GP models, which we have
not utilized here, is their ability to quantify uncertainty in a
natural way-it remains to be further explored how to best ac-
complish this within the MaxEnt framework.

In summary, the MaxEnt perspective on function learning,
in addition to its success in fitting empirical data, provides
several theoretical advantages: leveraging Burg’s theorem, it
provides a solution to inference problems using a tractable
algorithm that is simple and parsimonious, relying only on a
domain-general inductive bias. The algorithm provides the
basis for a mechanistic, process-level understanding of hu-
man function learning, while the generic nature of the induc-
tive bias suggests that the insights obtained in this domain
may apply more broadly to other domains requiring general-
ization and/or extrapolation.
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