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We review and further develop the recently intro-

duced numerical approach [Phys. Rev. Lett. 86, 5031,

(2001)] for scattering calculations based on a so called

pseudo-time Schrödinger equation, which is in turn a modi-

fication of the damped Chebyshev polynomial expansion

scheme [J. Chem. Phys. 103, 2903, (1995)]. The method

utilizes a special energy-dependent form for the absorb-

ing potential in the time-independent Schrödinger equa-

tion, in which the complex energy spectrum is mapped

inside the unit disk Ek → uk, where uk are the eigen-

values of some explicitly known sparse matrix U . Most

importantly for the numerical implementation, all the

physical eigenvalues uk are the extreme eigenvalues of

U (i.e., uk ≈ 1 for resonances and uk = 1 for the bound

states), which allows one to extract these eigenvalues

very efficiently by harmonic inversion of a pseudo-time au-

tocorrelation function y(t) = φTU tφ using the filter diago-

nalization method. The computation of y(t) up to time t =

2T requires only T sparse real matrix-vector multiplica-

tions. We describe and compare different schemes, effec-

tively corresponding to different choices of the energy-

dependent absorbing potential, and test them numer-

ically by calculating resonances of the HCO molecule.

Our numerical tests suggest an optimal scheme that pro-

vide accurate estimates for most resonance states using

a single autocorrelation function.

Key Words: quantum scattering, absorbing potential,

resonances, pseudo-time Schrödinger equation, Cheby-

shev polynomial expansion, iterative diagonalization,

harmonic inversion, filter diagonalization method.

Introduction. In this paper we present a detailed de-
scription and further generalization of the methodology de-

veloped in the preceding works [1, 2, 3, 4, 5] for the efficient
numerical solution of the quantum scattering problem as-
sociated with the time-independent Schrödinger equation

(Hψ)(r) = Eψ(r). (1)

Eq. 1 may possess bound states with real energies E
and wavefunctions ψ(r) exponentially localized in space,
and resonance states (Siegert states [6]) having complex
energies with Im E ≤ 0. The latter behave like bound
states in some compact subset Ω of the configuration space,
but eventually grow exponentially outside of Ω, due to the
outgoing asymptotic boundary conditions.
The corresponding bound state problem is conceptually

simple and very well understood. The numerical solu-
tion of (1) at dissociation energies is much more difficult
as it requires the solution of a boundary value problem.
One can avoid the latter by the use of a so-called optical
(or absorbing) potential W (r) with Im W (r) ≤ 0 (in the
sense that i(W −W ∗) is positive semidefinite, where ∗ de-
notes conjugate transposition), that vanishes for r ∈ Ω and
smoothly grows outside Ω. Numerically, this has negligible
effect on the scattering solutions ψ(r) of

(Hψ)(r) = (E −W (r))ψ(r) (2)

inside Ω, i.e., the physically relevant region, and damps
them outside Ω [7]. In other words, the complex absorb-
ing potential forces the resonance solutions to behave like
bound states everywhere without significantly affecting the
energies E. In this framework the physically relevant part
of the system is, therefore, dissipative and satisfies (1) only
for r ∈ Ω. Moreover, a general multichannel scattering
problem can be considered with a numerically convenient
form of W (r), independent of the choice of coordinate sys-
tem. The price for these benefits is that the originally
hermitian problem becomes non-hermitian; but it is gen-
erally still complex symmetric.
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2 MANDELSHTAM AND NEUMAIER

Although to satisfy Im E ≤ 0 one only needs ImW ≤ 0,
traditionally one simply uses a negative imaginary poten-
tial W = −iΓ and gets the nonhermitian eigenvalue prob-
lem (H − iΓ)ψ = Eψ. The latter is generally much easier
to handle numerically than the boundary value problem
(1). As we already saw in [1, 5], energy-dependent choices
W =WE(r) are particularly useful.
The introduction of the absorbing potential leads to the

damped Green’s function [8, 9, 10]

GW (E) := (H − E +WE)
−1. (3)

We assume that under suitable conditions on WE(r), sim-
ilarly to the traditional case W = −iΓ [10], GW (E) con-
verges for any real E (and also for Im E ≥ 0) weakly to
the ordinary Green’s function

G(E) = lim
ε↓0

(H − E − iε)−1.

Practically, one usually needs to evaluate only certain ma-
trix elements φTG(E)ψ, the basic numerical objects of
quantum physics, from which most other quantities of in-
terest (scattering amplitudes, reaction rates, etc.) can
be computed (see, e.g., refs. [8, 9, 11, 12]). If both φ
and ψ have support in Ω, they are well approximated by
φTGW (E)ψ.
Unfortunately, for very large systems with high den-

sity of states one may encounter numerical difficulties
when trying to diagonalize a large nonhermitian matrix
H ′ = H+W or solve the linear system (E−H ′)φ(E) = ψ
at many values of E using general iterative techniques for
nonhermitian matrices. For instance, the Krylov subspace
algorithms, such as the Lanczos diagonalization procedure,
usually converge well for the extreme eigenvalues of H ′,
while numerical problems may occur for interior complex
eigenvalues of H ′ in the dense spectral regions, requir-
ing more sophisticated schemes. As such a new technique
called PIST was recently introduced by Poirier and Car-
rington [13]. The PIST method is based on a very efficient
preconditioning within a QMR-Lanczos framework for it-
erative diagonalization of large and sparse DVR Hamilto-
nians with complex absorbing potentials. It is also appro-
priate to mention the time-dependent approach based on
solution of the time-dependent Schrödinger equation,

φ(t) = e−itH
′

φ(0), (4)

which is widely used because of its simplicity, and can
also be viewed as a Krylov subspace method with Krylov
vectors

φ(t) = U tφ(0) (5)

generated by the powers of the evolution operator U =
e−iH

′

. The bound state eigenvalues λk = e−iEk of U ap-
pear at the unit circle; the resonance eigenvalues near the
unit circle, |λk| ∼ 1 , and satisfy |λk| ≤ 1. That is, for a
general initial state φ(0) all the physically important states

ψk significantly contribute to φ(t), because they all corre-
spond to the extreme eigenvalues of U (for which the rel-
ative weights defined by |λk|t are significant). This makes
φ(t) a convenient basis for performing the spectral analysis
of H ′. For example, one can generate a time-correlation
function

C(t) := ψTφ(t). (6)

Because the time signal C(t) satisfies the form

C(t) :=

K
∑

k=1

dkλ
t
k (7)

with the weights dk = ψTψkψ
T
k φ, one can use Fourier

spectral analysis to extract the desired eigenvalues Ek.
Furthermore, the recently developed Filter Diagonaliza-
tion Method (FDM) [14, 2] (see also refs. [15, 16] on
other related superresolution methods of spectral analy-
sis) to solve the harmonic inversion problem (7) with the
unknowns {dk, λk} generally leads to an enormous resolu-
tion enhancement, thus significantly reducing the required
propagation time, as well as the overall numerical work.
At first glance the time-dependent framework seems nearly
optimal as the time correlation functions can be generated
at low cost by various iterative techniques, e.g., the split-
operator method [17]. The difficulty, however, arises when
both the density and the number of states are very high,
in which case the time domain data C(t) must be very ac-
curate at very long times in order to provide the adequate
conditions for, e.g., FDM. Unfortunately, this requirement
is very hard to satisfy, as it is difficult to accurately eval-
uate the matrix exponential e−itH

′

for a non-hermitian
operator H ′ at very large values of t.
Apparently, for a quantum system with Hamiltonian op-

erator that is not explicitly time-dependent, there is noth-
ing special about the time-dependent Schrödinger equa-
tion, except that it provides a convenient framework for
both thinking and devising various numerical techniques
to solve the time-independent problem, for example, those
based on processing the time correlation functions. As
such we can consider alternative dynamical schemes hav-
ing the convenient structure of Eqs. 5-7, albeit with a
pseudo-evolution operator U , somehow related to the un-
derlying Hamiltonian H , but whose action on a vector can
be evaluated easily. To this end the analogy between the
standard time evolution and the Chebyshev recursion ,

φ(t) = 2Hφ(t− 1)− φ(t − 2) (8)

with initial conditions φ(0) = φ, φ(1) = Hφ, or, more
generally, damped Chebyshev recursion [1],

φ(t) = 2DHφ(t− 1)−D2φ(t− 2) (9)

with initial conditions φ(0) = φ, φ(1) = DHφ and damp-
ing operatorD (D(r) = 1 inside Ω and D(r) ≤ 1, outside),
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was noticed and explored previously [18, 19, 2, 20]. In ref.
[5] it was shown explicitly that a variant of Eq. 9,

φ(t) = 2DHφ(t− 1)−Dφ(t− 2) (10)

with initial conditions φ(0) = φ, φ(1) = 0, can be writ-
ten in the familiar form (5) with some effective evolution
operator U . The corresponding pseudo-time Schrödinger
equation allows one to reap all the benefits of the time-
dependent methods without having to deal with the stan-
dard time-dependent Schrödinger equation (4) involving
nonhermitian Hamiltonian; it only requires the evalua-
tion of a single H-matrix-vector product per time step
and avoids the use of complex arithmetic, even when the
absorbing potential is implemented.
As is well known, a (physical time) autocorrelation func-

tion at time 2t can be computed by solving the time-
dependent Schrödinger equation up to time t, since one
can use

C(t) := φTU2tφ = (U tφ)T(U tφ),

assuming only the complex symmetry of the evolution op-
erator U , which is always easy to achieve, both with ab-
sorbing potential or without. For the Chebyshev autocor-
relation function

y(t) := φTφ(t), (11)

where the vectors φ(t) are generated by Eq. 8, a factor of
two saving is also well known (see, e.g., the discussion in
ref. [2]):

y(2t+ p) = 2φ(t)Tφ(t+ p)− y(p)

with p = 0, 1. When the damped scheme (9) is imple-
mented, this recipe does not provide the correct autocor-
relation function as defined by Eq. 11. Nevertheless, it was
tried by Li and Guo [4]. The resulting doubled sequence,
when processed by FDM, gave approximately correct reso-
nance energies and widths. In ref. [5] starting with the re-
cursion formula (10) we derived an exact doubling scheme
for the corresponding autocorrelation function (11):

y(2t+ p) = φ(t)Tφ(t+ p)− φ(t + 1)TD−1φ(t+ 1 + p)

with p = 0, 1.
We note that the damping operator D in Eq. 9, as well

as in Eq. 10, effectively leads to an energy-dependent com-
plex absorbing potential WE(r), which may have a small
or large real part relative to its imaginary part, depend-
ing on the particular recursion formula and the energy
E. Usually, having too large Re WE(r) is not desirable.
Unfortunately, within the two frameworks one has little
control over this circumstance. In the present paper, we
re-derive and extend the above results by using a more flex-
ible form for the absorbing potential, which can be adapted
easily. The resulting pseudo-time Schrödinger equation is
shown to be very convenient for calculating various dy-
namical properties, such as resonance parameters or ma-
trix elements of the Green’s function. The latter is carried

out by generating the pseudo-time cross-correlation func-
tions followed by their inversion. A numerical example
demonstrates the validity of the theory and compares dif-
ferent damping schemes, suggesting an optimal scheme,
that leads to accurate results with minimal computational
effort.

QUADRATIC EIGENVALUE PROBLEM
FROM NONLINEAR SPECTRAL MAPPING

From now on, we assume that the Hilbert space is dis-
cretized so that the states are vectors ψ ∈ C

K and H , W
are real symmetric K ×K matrices, W diagonal, as, e.g.,
in the case of a discrete variable representation [27].
Let 〈A〉ψ := ψ∗Aψ/ψ∗ψ define the expectation value

of the operator A. The original Hamiltonian matrix has
its spectrum between H̄ −∆H and H̄ + ∆H . The quan-
tity ∆H is called the spectral range and is defined by the
particular basis set used to represent the Hamiltonian.
However, to simplify the following equations we assume
without loss of generality that the Hamiltonian matrix is
already shifted and scaled so that

|〈H −D0〉ψ| ≤ 1 (12)

for any state ψ, where the diagonal real symmetric oper-
ator D0 will be specified later. (In places where the scale
factor ∆H is relevant, it will be inserted explicitly.)
Such a scaling is implemented routinely in the frame-

work of the Chebyshev polynomial expansion. We note
that this typically moves the ground state energy to the
lower edge of the spectrum, E = −1, while the energies
of interest, including the dissociation energies, appear at
the bottom of the spectrum, E ∼ −1, as the total spec-
tral range is usually an order of magnitude larger than the
physically relevant spectral range.
We consider the choice

E −W = D0 +
1

2
uD1 +

1

2
u−1D2, (13)

for some complex parameter u and real matrices D0, D1

and D2, diagonal in the coordinate representation and sat-
isfying

D0(r) = 0, D1(r) = 1, D2(r) = 1 for r ∈ Ω. (14)

This is a generalization of the previous results where the
special cases using D0 = 0, D2 = D−1

1 (as in ref. [1]) and
D0 = 0, D2 = 1 (as in ref. [5]) were encountered.
To match the original problem in Ω, where the absorbing

potential W (r) vanishes, u = uE and E = E(u) must be
related by

uE = E + i
√

1− E2, or E(u) =
1

2
u+

1

2
u−1 (15)



4 MANDELSHTAM AND NEUMAIER

as shown in Fig. 1. The absorbing potential then becomes
a function of energy E (or, equivalently, of u = uE):

WE =
1

2
u(1−D1) +

1

2
u−1(1−D2)−D0 (16)

Insertion of (13) into (2) gives a nonlinear eigenvalue prob-
lem for u,

Hψ =
(

D0 +
1

2
uD1 +

1

2
u−1D2

)

ψ. (17)

We may think of this equation as an eigenvalue problem

Hψ = E(u)ψ (18)

involving an operator-valued u-dependent energy

E(u) = D0 +
1

2
uD1 +

1

2
u−1D2 (19)

that, by (14), reduces in Ω to the constant E = 1
2
u+ 1

2
u−1.

RECASTING TO AN ORDINARY
EIGENVALUE PROBLEM

Apparently, Eq. 17 is equivalent to a linear eigenvalue
problem in a space of doubled dimension:

Û ψ̂ = uψ̂ (20)

with 2K dimensional state vectors ψ̂ =
(

ψ
ψ′

)

and square
2K × 2K matrix

Û :=

(

0 I

−D−1
1 D2 2D−1

1 (H −D0)

)

, (21)

where I denotes the K ×K unit matrix. This can be seen
since (20) yields

ψ′ = uψ,D−1
1 D2ψ − 2uD−1

1 (H −D0)ψ + u2ψ = 0.

Now multiplying by D1/2u, we find (17).
We have rewritten the original nonhermitian eigenvalue

problem (2) as another nonhermitian eigenvalue problem
(20), but with the matrix Û of doubled dimension. This
would not necessarily be an advantage, if the eigenvalues
of Û did not possess the very important property that the
spectral domain of Û is the unit disk.
To see this, we consider an eigenpair (u, ψ) of (17) with

ψ∗ψ 6= 0. Multiplying (17) by 2uψ∗ gives the quadratic
equation

u2〈D1〉ψ − 2u〈H −D0〉ψ + 〈D2〉ψ = 0.

with solutions

u =
〈H −D0〉ψ ± i

√

〈D1〉ψ〈D2〉ψ − 〈H −D0〉2ψ
〈D1〉ψ

. (22)

To guarantee correct behavior in the following results
we need to apply the componentwise restrictions on the
diagonal damping operators:

0 ≤ D−1
1 ≤ D2 ≤ D1 ≥ 1, (23)

E
3

E
1 E

2

u
3u

2

u
1

-1 1

i

FIG. 1. The spectral mapping Eq. 15 maps a bound state E1,
which is real, to the upper half of the unit circle, and the resonance
states, E2 and E3, with Im Ek < 0, inside the upper half of the unit
disk. u2 ≈ 1 as it corresponds to a narrow resonance. (In practice
the physically relevant states appear in a small subset of the whole
spectral domain.)

which together with the condition (12) imply that the
square root is real. Thus, the solutions of (17) come in
complex conjugate pairs, (u, ψ) and (ū, ψ̄). The physically
relevant eigenenergies with Im E ≤ 0 come from u with
Im u ≥ 0. (22) implies that

|u|2 =
〈H −D0〉2ψ + 〈D1〉ψ〈D2〉ψ − 〈H −D0〉2ψ

〈D1〉2ψ
=

〈D2〉ψ
〈D1〉ψ

≤ 1 (24)

by (23). Thus, u is a complex number lying in the upper
half of the unit disk (see Fig. 1). Moreover, |u| = 1 if and
only if 〈W 〉ψ = 0, i.e., if and only if ψ has support in Ω,
which is the case for the bound states. The states with
|u| ∼ 1 correspond to the narrow resonances.

The eigenpairs (uk, ψk) of (17) can be used to evaluate
the physically interesting quantities (e.g., the complex res-
onance energies Ek, scattering amplitudes, etc.). However,
because of the nonlinearity they have somewhat different
properties from those of the regular nonhermitian eigen-
value problem, which we now proceed to derive.

COMPLETENESS

As was already established, the eigenpairs (uk, ψ̂k) of Û
satisfy

ψ̂k =

(

ψk
ukψk

)

, (25)
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where (uk, ψk) is an eigenpair of (17). Since conversely,
any such eigenpair determines an eigenpair of Û , the
nonlinear eigenvalue problem (17) has at most 2K dis-
tinct eigenvalues. If there are 2K distinct eigenvalues
u1, . . . , u2K , the matrix Û is diagonalizable, and there is a
basis ψ̂1, . . . , ψ̂2K of eigenvectors of the form (25). There-
fore, we can obtain the completeness relations, i.e., for any
vector φ̂ we may write

φ̂ :=

(

φ0
φ1

)

=

2K
∑

k=1

θkψ̂k =

( ∑

θkψk
∑

θkukψk

)

(26)

with uniquely determined coefficients θk.

ORTHOGONALITY

Using (17), the symmetry of D0, D1, D2 and H , and the
fact that D1 commutes with D2, we may compute ψT

j Hψk
in two different ways:

ψT
j Hψk = ψT

j

(

D0 +
1

2
ukD1 +

1

2
u−1
k D2

)

ψk

= (Hψj)
T ψk = ψT

j

(

D0 +
1

2
ujD1 +

1

2
u−1
j D2

)

ψk.

For j 6= k, assuming that the eigenvalues are not degen-
erate, we may take the difference, multiply by the factor
2ujuk/(uk − uj), and find that the eigenfunctions satisfy
the orthogonality relations

ψT
j (D2 − ujukD1)ψk = 0. (27)

Provided that the left hand side of (27) does not vanish
for j = k, we may normalize the eigenvectors so that

ψT
j (D2 − ujukD1)ψk = δjk. (28)

Due to (25), the orthogonality relations can be rewritten
in the double-dimension form:

ψ̂T
j D̂ψ̂k = δjk with D̂ :=

(

D2 0

0 −D1

)

. (29)

Using (29) and (26) we find:

θk =
∑

j
θjδjk =

∑

j
θjψ̂

T
j D̂ψ̂k = φ̂TD̂ψ̂k (30)

RESOLUTION OF IDENTITY

The orthogonality relations (29) and completeness imply
the resolution of identity,

Î =

2K
∑

k=1

ψ̂kψ̂
T
k D̂ = D̂

2K
∑

k=1

ψ̂kψ̂
T
k , (31)

which in the explicit form reads

2K
∑

k=1

ψkψ
T
k = D−1

2 , (32)

2K
∑

k=1

ukψkψ
T
k = 0,

2K
∑

k=1

u2kψkψ
T
k = −D−1

1 .

THE GREEN’S FUNCTION

For uE = E + i
√
1− E2 and an eigenpair (uk, ψk) of

(17) we can write

(H − E +WE)ψk =
uE − uk
2ukuE

(D2 − ukuED1)ψk.

Now multiplying from the right by 2ukuE

uE−uk

ψT
k , summing

over k and using the relations (32) we obtain

(E −H −WE)

2K
∑

k=1

2ukuE
uE − uk

ψkψ
T
k

=

2K
∑

k=1

(D2 − ukuED1)ψkψ
T
k = I.

This leads to a spectral representation of the damped
Green’s function GW (E) := (E −H −WE)

−1

GW (E) =

2K
∑

k=1

2ukuE
uE − uk

ψkψ
T
k . (33)

This expression uses the eigenvectors, which may be diffi-
cult to generate in large-scale computations. However, we
shall see that (33) leads to iterative schemes for computing
matrix elements of GW (E). To derive these, we introduce
the double-dimension Green’s function

ĜW (E) :=

2K
∑

k=1

2ukuE
uE − uk

ψ̂kψ̂
T
k =

(

GW (E) ∗
∗ ∗

)

(34)

whose top left corner suffices to represent the matrix el-
ement of the Green’s function. Indeed, for suitable initial
states φβ and final states φα, we have

φTαGW (E)φβ = φ̂TαĜW (E)φ̂β (35)

with

φ̂β :=

(

φβ
0

)

, φ̂α :=

(

φα
0

)

. (36)

ĜW (E) is representable in terms of Û as

ĜW (E) = (1 − Û/uE)
−1ÛD̂−1, (37)

which can be verified by applying (34) and (37) to D̂ψ̂k.
(Note that the term D̂−1 in (37) is unnecessary as one
usually considers initial states with support in Ω, where
D̂−1 = 1, but we still prefer to keep it for completeness.)
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THE PSEUDO-TIME SCHRÖDINGER
EQUATION

By replacing (1 − Û/uE)
−1 in (37) with the geometric

series we can express ĜW (E) as a power series in Û :

ĜW (E) =
∞
∑

t=1

ut−1
E Û tD̂−1. (38)

This form using a discrete Fourier transform of the pseudo-
evolution operator Û t is reminiscent of the integral Fourier
transform of the true evolution operator

G(E) = i

∫ ∞

0

e−iHteiEtdt.

However, for a given absorbing potential and basis set,
e−iHt can only be represented approximately, while Eq.
38 is exact as there is no approximation involved in eval-
uating Û t. Because Û is bounded inside the unit disk (cf.
Eq. 24), the expansion (38) also leads to a numerically
stable procedure to compute the Green’s function matrix
elements

φTαGW (E)φβ =

∞
∑

t=1

ut−1
E yαβ(t), (39)

where we have introduced the pseudo-time correlation
function

yαβ(t) := φTαφβ(t) = φ̂Tα φ̂β(t) (40)

= φ̂Tα Û
tD̂−1φ̂β (t = 0, 1, . . .).

Eqs. 39 and 40 constitute an important result as they
provide a convenient and efficient numerical framework
based on solving the pseudo-time Schrödinger equation

φ̂β(t) = Û tD̂−1φ̂β (t = 0, 1 . . .). (41)

That is, the quantum dynamics problem is finally reduced
to the Fourier spectral analysis of pseudo-time correlation
functions.
By noticing that the state vectors φ̂β(t) have the form

φ̂β(t) :=

(

φβ(t)

φβ(t+ 1)

)

with φ̂β(0) = D̂−1

(

φβ
0

)

,

(41) can be rewritten as a variant of a damped Chebyshev
recursion formula

φβ(t) = D−1
1 [2(H −D0)φβ(t− 1)−D2φβ(t− 2)] , (42)

t = 2, 3, . . .

with initial conditions φβ(0) = D−1
2 φβ and φβ(1) = 0.

The numerical cost of implementing a single step in (42)
is essentially equal to that of multiplication of a real sym-
metric K × K matrix H by a real vector, as the other
matrices are diagonal.

TIME DOUBLING

We note that D̂Û t is a complex symmetric matrix,

(D̂Û t)T = (Û t)TD̂ = D̂Û t,

which follows from the spectral representation

Û t =

2K
∑

k=1

utkψ̂kψ̂
T
k D̂ (43)

or can be verified directly by the matrix multiplication.
Thus, for any t and s we can write

yαβ(t+ s) = φ̂Tα Û
t+sD̂−1φ̂β = φ̂TαD̂

−1D̂ÛsÛ tD̂−1φ̂β

=
[

ÛsD̂−1φ̂α

]T

D̂Û tD̂−1φ̂β = φ̂Tα(s)D̂φ̂β(t),

(44)

where φ̂α(s) and φ̂β(t) are the solutions of Eq. 41 with
initial conditions φ̂α(0) = D̂−1φ̂α and φ̂β(0) = D̂−1φ̂β .
This means that yαβ(t) can be computed up to time 2T
using

yαβ(2t+ p) = φ̂α(t)
TD̂φ̂β(t+ p), p = 0, 1, (45)

concurrently with the computation of φ̂α(t) and φ̂β(t) for
t = 0, . . . , T . In particular, the calculation of an auto-
correlation function yαα(t) up to time 2T requires ∼ T
multiplications of the real and sparse K ×K H-matrix on
a vector with just a few vectors stored at a time.

RESONANCE CALCULATION BY
HARMONIC INVERSION OF PSEUDO-TIME

CORRELATION FUNCTIONS

The spectral mapping Ek → uk (15) moves all the phys-
ically relevant eigenvalues to the vicinity of the unit circle,
i.e., they all become extreme (or nearly extreme for the
resonances) eigenvalues of Û . This, in turn, creates very
favorable conditions for computing these eigenvalues iter-
atively using any suitable Krylov subspace method with
the Krylov vectors generated by the powers of Û , because
the extreme eigenstates contribute most to the latter. In
the present framework, such a strategy of computing the
bound and resonance state energies, in its most simple and
convenient form, boils down to the harmonic inversion of
pseudo-time correlation functions (40), which due to (43)
satisfy

yαβ(t) =

2K
∑

k=1

dαβku
t
k (46)

with

dαβk = bαkbβk =
(

φ̂Tα ψ̂k

)(

ψ̂T
k φ̂β

)

.

(Note, that the resolution of identity (31) implies φ̂α =
D̂

∑

k ψ̂kψ̂
T
k φ̂α = D̂

∑

k bαkψ̂k.)
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Thus the nonlinear eigenvalue problem (17) is reduced
to the signal processing problem of finding the spectral
parameters (uk, dαβk) (k = 1, . . . , 2K) satisfying (46)
for the sequence(s) yαβ(t) computed by (42) and (40).
The simplest procedure then corresponds to considering
a single doubled autocorrelation function yαα(t) with t =
0, . . . , 2T . In exact arithmetic the harmonic inversion of
such a sequence will give the exact results if T > 2K,
thus, using only T ∼ 2K of real matrix-vector products.
However, this is impractical as it would formally require
to solve a T × T eigenvalue problem. To reduce the com-
putational burden and to maintain numerical stability the
eigenvalues are extracted very efficiently in a small Fourier
subspace by the FDM [14, 2]. If we introduce the unscaled
energy ε = E∆H + H̄ , the required length 2T of the dou-
bled sequence needed to converge an eigenenergy Ek (cf.
Eq. 15) by the FDM will be defined by the locally aver-
aged density of states ρ(ε) for Ek ∼ E and the spectral
range ∆H of the Hamiltonian matrix according to the ap-
proximate relationship [2, 31]

T ≥ 2π∆Hρ(ε)
√

1− E2, (47)

where the factor
√
1− E2 arises from the u→ E mapping

(15).
Because the eigenpairs come in complex conjugate pairs

(uk, ψk) and (ūk, ψ̄k), once the initial vectors φ̂α and φ̂β
are real (46) becomes

yαβ(t) = Re

K
∑

k=1

dαβku
t
k, (48)

where only the physical eigenvalues with Im uk > 0 are
included in the sum. Note also that for the pure bound
state problem, when |uk| = 1 and the eigenfunctions ψk
(and, therefore, the coefficients dαβk) are real, the se-
quence yαβ(t) has the time reversal symmetry

yαβ(−t) = ȳαβ(t) (49)

which further doubles the total time by extending the sig-
nal to the negative times.

INVERSION OF THE TIME
CROSS-CORRELATION FUNCTIONS

As was previously shown in ref. [3] one can, in prin-
ciple, compute matrix elements φTαGW (E)φβ for any φα,
φβ by (i) propagating a single initial state φ0 using (42),
(ii) computing the cross-correlation functions y00(t), y0α(t)
and y0β(t) using (40) and (iii) solving the corresponding
harmonic inversion problems (46) for the unknown param-
eters {uk, bαk, bβk} to evaluate

φTαGW (E)φβ =
2K
∑

k=1

2ukuE
uE − uk

bαkbβk. (50)

Moreover, a more stable evaluation of the matrix element
φTαGW (E)φβ may be achieved using the Regularized Re-
solvent Transform (RRT) which was described in detail in
ref. [15]. The advantage of RRT is that the calculation of
spectral parameters {uk, bαk, bβk} is avoided, the spectra
are computed directly by matrix inversion or by solving
linear systems.
This results in an enormous numerical saving as, tradi-

tionally, the time-dependent approaches require multiple
initial state propagations in order to compute, for example,
the full S-matrix or cumulative reaction probability. How-
ever, the described approach, although formally exact (in
exact arithmetic), is applicable only when the dynamics is
governed solely by narrow resonances: the parameters of
very broad resonances (or poles of the Green’s function)
are generally grossly inaccurate, leading to very unstable
spectral estimation by Eq. 50. A significant numerical
saving in cases with broad resonances is, however, achiev-
able if one adapts another strategy in which one (i) prop-
agates a set of initial states {φβ}, (β = 1, . . . , L) using
Eq. 42, (ii) computes the cross-correlation matrix using
the doubling formula (45) and (iii) solves the harmonic
inversion problem (46) for the L × L × 2T data matrix
(see refs. [14, 3, 15]). As argued in ref. [3], this approach
has a potential of reducing the total propagation time T
required for the accurate harmonic inversion by a factor
of L, i.e., preserving the total number of matrix-vector
multiplications, Ntotal = L× T . Unfortunately, to use the
doubling trick (45) in this case, the storage requirement to
generate the cross-correlation matrix is increased because
of the need to simultaneously propagate L states rather
than one.

PRACTICAL CONSIDERATIONS: CHOOSING
THE ABSORBING POTENTIAL

The physical observables can generally be computed
from the Green’s function matrix elements at real ener-
gies. For this reason and for the sake of simplicity in the
following analysis we will assume the energy E to be real.
However, essentially the same conclusions hold for com-
plex energies near the real axis, i.e., including the narrow
resonances.
Since u−1

E = E − i
√
1− E2, our construction (16) leads

to the complex valued absorbing potential

WE = E

(

1− D1 +D2

2

)

−D0 − i
√

1− E2
D1 −D2

2

.(51)

The restrictions (23) on the choice of D1 and D2, im-
ply that Im WE ≤ 0. This is essential since it leads to
the correct limit for the Green’s function GW (E) on the
real line. The real part Re WE is generally nonzero; al-
though its role is not crucial in scattering calculations,
significant values of Re WE may or may not be desirable.
In particular, a positive Re WE reduces the total density
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of states ρ(E), while affecting only slightly the resonance
states, and thus, it may accelerate the convergence (cf. Eq.
47). At the same time Re WE may get excessively large
compared to Im WE , for example, near the spectral edge,
E ∼ −1, if D0 = 0. It is not absolutely clear without nu-
merical tests how this artifact will affect the results, while
it can be controlled if the matrix D0, which is in principle
unrestricted, is used. Namely, relatively to the total spec-
tral range ∆H (which becomes unity after scaling of H),
the physical energy range is generally only a small part of
the unit disk. Therefore, within this range we can often
assume WE ≈WE0

for some reference energy E0. Now by
setting

D0 = E0

(

1− D1 +D2

2

)

, (52)

we can significantly reduce (or increase) the real compo-
nent if needed,

Re WE = (E0 − E)

(

D1 +D2

2
− 1

)

, (53)

without affecting Im WE . In order to avoid negative
Re WE in the physically relevant energy region, it suffices
to take E0 higher than the maximum energy of interest.
Clearly, the behavior of the absorbing potential WE

where it starts to turn on has the main effect for the scat-
tering calculations. In fact, as follows from our numerical
tests, the best performance is achieved when both D1 ≈ 1
and D2 ≈ 1 over almost the entire grid used to represent
the state vectors. Therefore, it is convenient to use the
real operators γ1 and γ2 defined by

D1 = eγ1 , D2 = e−γ2 , (54)

which vanish in Ω and slowly turn on in the absorbing
region, and assume that both γ1 and γ2 are small. By
expanding into the Taylor series up to the second order,
we can rewrite (51) as

WE ≈ (E0 − E)

(

γ1 − γ2
2

+
γ21 + γ22

4

)

(55)

− i
√

1− E2

(

γ1 + γ2
2

+
γ21 − γ22

4

)

.

We expect the results to be generally insensitive to a
particular form of WE as long as γ1 and γ2 are sufficiently
smooth and have sufficiently large spatial extension. So
here we only consider the two special choices [1, 5]

M&T scheme: γ1 ≡ γ2 ≡ γ as in ref [1] with γ(R) > 0:

WE = (E0 − E)(cosh(γ)− 1)− i
√

1− E2 sinh(γ).(56)

As follows from the expansion (55), ReWE is already small
as its leading term becomes quadratic in γ, while Im WE

is linear:

WE ≈ 1

2
(E0 − E)γ2 − i

√

1− E2γ. (57)

Note again that in the computations involving molecu-
lar vibrational spectra the energies of interest are usually
close to the bottom of the spectral range of the scaled
Hamiltonian matrix, E ∼ −1. Defining the shifted energy
ε := E + 1 with zero at the bottom of the spectrum and
assuming ε≪ 1, we can approximately determine how the
absorbing potential depends on energy:

WE ≈ 1

2
(ε0 − ε)γ2 − i

√
2εγ. (58)

A convenient choice for γ in Eq. 56 corresponds to γ(R)
being a function of the reaction coordinate R, vanishing
in the interaction region, R < RΩ, and smoothly growing
in the absorbing region, RΩ < R < Rmax, where Rmax

defines the fartherst grid point:

γ(R) =
λ√
∆H

(

R−RΩ

Rmax −RΩ

)2

. (59)

Here λ is an adjusting parameter. As follows from Eq.
58, the factor

√
∆H in Eq. 59 minimizes the sensitivity of

ImWE to the actual spectral range ∆H of the Hamiltonian
matrix. Note that with this construction Re WE will be
sensitive to ∆H , but generally small.

N&M scheme: γ2 ≡ 0 and γ1 ≡ 2γ, as in ref [5]:

WE =
E0 − E − i

√
1− E2

2

(

e2γ − 1
)

(60)

≈ (E0 − E − i
√

1− E2)γ, (61)

where we retained only the leading linear term. Further
assuming ε to be small, we obtain

WE ≈ (ε0 − ε)γ − i
√
2εγ. (62)

Thus the difference between M&T and N&M schemes is
the different behavior of Re WE . This difference may be
eliminated almost completely by manipulating withD0. In
the next section, we examine the effect of this difference
on the quality of the resonance calculations.

In order to obtain the best resonance energy estimates
for given basis set, the common practice is to search for
stationary eigenvalues Ek under variations of the absorb-
ing potential [7, 10, 23]. This is usually done by varying
its amplitude, which here corresponds to the free parame-
ter λ. (One could possibly change instead E0, or treat E0

as a function of λ.) The eigenvalue trajectories Ek(λ) are
then analyzed for stationary points, such as the point of
maximum curvature, which in an ideal case may be a cusp
(see Fig. 2). One way to practically find such a point is
to minimize the derivative dEk/dλ. The generation of the
eigenvalue trajectories usually significantly increases the
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computational time, while a reasonable accuracy for most
states can be achieved from a single or a few runs using
an a priori established optimal value of λ. Therefore, such
a search is justified only if a very high accuracy for all
resonances is needed. The cases where eigenvalue trajec-
tory analysis may be necessary include extremely narrow
(shape) resonances.

NUMERICAL EXAMPLE: RESONANCES OF
THE HCO MOLECULE.

In this section we apply the present approach for an ac-
curate computation of the nonrotating HCO resonances.
This system has been used in the past by various groups
as a benchmark problem to test new approaches (see the
comprehensive review [13] and references therein). In par-
ticular, the first resonance calculation using FDM was ap-
plied to HCO [24]. We use the potential energy surface
of Keller et al [25], where a resonance calculation was also
performed and the resonances were assigned. Recently,
Poirier & Carrington [13] applied the above mentioned
PIST method to reproduce these results but with a sig-
nificantly higher accuracy and numerical efficiency. We
use the latter results as a reference. Although, PIST is a
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 E - E
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E
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-0.05 0 0.05

32.6

32.7

32.8

Γ

optimized resonance position

N&M scheme,   E
0
=9000 cm

-1

N&M scheme 
M&T scheme
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 ,     Γ = 32.8 cm
-1

FIG. 2. Typical eigenvalue trajectories for two resonance states
obtained using three different damping schemes (see text).

very efficient alternative to the present technique, in our
study we do not make an adequate comparison of the two
methods as it would require the use of, at least, the same
basis set.

The present choice of the basis is the most primitive
direct-product Jacoby coordinate DVR grid, similar to
that used in ref. [24]. Several basis sets with various grid
sizes and cutoff parameters were tested. The results re-
ported below correspond to a particular single set of pa-
rameters, which, as was verified empirically, provided ex-
tremely accurate results for the resonances in the energy
region below 9000 cm−1. In order to avoid an extensive
search for optimal basis set parameters, our strategy is
to use a larger and denser grid than may be necessary to
garantee high accuracy. This strategy is justified by a very
favorable numerical scaling of the present technique with
the basis size.

For RH−CO (the dissociation coordinate) we used 160
sinc-DVR [21] points in the interval [2, 8] a0, contracted
to NR = 40 points by means of the HEG [22] method
using the eigenfunctions of the 1D Hamiltonian defined
by V (R) = minr,θV (Re, r, θ), where V (Re, r, θ) is the 3D
potential of HCO in the Jacoby coocrdinates. For the
rCO coordinate we used 64 sinc-DVR points in the interval
[1.8, 3.5] a0, contracted to Nr = 16 points. For the angu-
lar variable we used Nθ = 46 Gauss-Legendre-quadrature
DVR points. In order to reduce the Hamiltonian spectral
range ∆H we replaced the high values of the potential
by the cutoff value Vcut = 25000 cm−1. This resulted in
∆H = 44654 cm−1. We note, that for the present ap-
proach the quality of the grid basis is measured by ∆H ,
which directly affects the convergence (cf. Eq. 47). Since
our basis is very primitive the spectral range is relatively
high. One may argue though that a primitive basis has
the advantage of minimizing the number of adjusting pa-
rameters and leads to a fast matrix-vector multiplication
for given grid size.

Here we report results corresponding to the three dif-
ferent schemes: (I) N&M scheme with D0 defined by
E0 = 9000 cm−1 (the maximum energy of interest), (II)
N&M scheme with D0 = 0, and (III) M&T scheme with
D0 = 0. (We note that the use of nonzero D0 in the M&T
scheme has almost no effect as ReWE is already very small
in this case.)

For each scheme the damping potential has been taken
in the form (59) with RΩ = 5 a0. For this study we varied
the strength parameter λ in the range [0.0002, 0.6] with a
logarithmic distribution of 22 λ values.

For each λ an autocorrelation function y(t) (t =
0, ..., 2T = 20000) with a random initial vector was gener-
ated using T = 10000 matrix-vector multiplications. Cal-
culation of a single autocorrelation function takes 239 sec
on an Athlon 1.8 GHz pc using the gnu g77 Fortran com-
piler. Because the latter is very inefficient, the reported
timing only gives a rough estimate of the algorithm effi-
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ciency. The autocorrelation functions were then inverted
by our quadruple-precision FDM code [26]. For a large
enough value of λ, the FDM results converge for most res-
onance states using T ≈ 7000, however, to maintain an
extremely high accuracy, especially for the lowest sharp
resonance |013) with width Γ = 3 · 10−8 cm−1 and for
small λ values, we needed T ≈ 10000. (The effective den-
sity of states, that includes both the true resonance states
and states representing the continuum, becomes high for
small λ.) Of course, a smaller grid and lower Vcut would
result in a smaller ∆H reducing the needed number of it-
erations accordingly. Also note that because only small
generalized eigenvalue problems are encountered in FDM,
the cpu-time increase due to the use of the quadruple pre-
cision is not essential, while it improves the accuracy and
accelerates the convergence of the extracted eigenvalues
significantly, compared to the double precision code. For
the present “toy problem” the harmonic inversion part is
as time-consuming (with quadruple precision) as the cor-
relation function generation, however, the former becomes
relatively negligible for bigger systems.

Let Eres := Re Ek define the positions and Γk :=
−2 Im Ek, the widths of the resonances. The eigenvalue
trajectories Ek(λ) with Γk < 120 cm−1 are plotted in the
complex plane and the most stationary point (see above)
is assumed as the best resonance energy estimate. In Fig.
2 we show the eigenvalue trajectories generated using the
three different damping schemes decribed above for two
states (a) with Eres = 3999.2, Γ = 32.8 cm−1 and (b)
Eres = 1251.148, Γ = 1.8 · 10−6 cm−1. Schemes I and III
result in quite different trajectories for most λ values but
have easily identified stationary points (cusps) for about
the same value λ. These stationary points are very close to
each other. At the same time, scheme II gives more com-
plex trajectories that circle around the resonance position,
but have no well identified stationary point. Similar pat-
terns are observed for most other states. Note also, that for
some resonances the cusps may not exist, however having
the two types of trajectories helps one to better locate the
complex resonance energy by taking the point where the
trajectories of different types approach each other. Fur-
thermore, scheme III generally results in sharpest cusps,
but because it corresponds to a smaller Re WE , it also
requires larger values of T for an accurate harmonic inver-
sion, as smaller Re WE corresponds to higher density of
states. For the same reason scheme II needs the smallest
T .

Surprisingly, for most resonances, the stationary point
in the eigenvalue trajectories are approached for the same
value λopt = 0.08, while only for a few extremely sharp
resonances near the dissociation threshold Edis = 1086
cm−1, the values Ek(λ = 0.08) give poor estimates of the
true complex resonance energies. For these states the op-
timal λ is a monotonically growing function of Eres−Edis;
the optimal λ for the sharpest state, |013), is λopt ≈ 0.0016

and for the next state, |005), it is λopt ≈ 0.0064. By set-
ting λ = 0.08 with the present choice of γ(R), one can use
a single autocorrelation function to obtain good resonance
estimates for most states, but a few.

There is no simple way to determine the error bounds
other than by comparing the results using different pa-
rameters. The accuracy in the positions of the resonances
varies depending mostly on Γk. It also depends in a less
systematic way on the quantum numbers. For narrow res-
onances (Γk ∼ 1 cm−1 or less) the accuracy in the position
is of the order of 0.01 cm−1 or better, while for the other
states with Γk < 100 cm−1 it is generally of the order of
0.1 cm−1. We believe, that generally the error in the re-
ported widths is less than 1%, although this may not be
true for some states.

Fig. 3 and Table I summarize our results obtained
with scheme I and compare them with the calculation of
Poirier & Carrington [13]. The assignments of the reso-
nance states have been made by Keller et al [25]. The
latter results for the resonance parameters are not dis-
played here as they are less accurate. Our results generally
agree very well with the results of Poirier & Carrington,
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FIG. 3. The widths Γ versus resonance positions Eres shown for
two different scales. The present results (circles) are obtained using
scheme I (see text). The crosses are the results of Poirier & Carring-
ton [13].
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although some states are missing in the latter, such as
the broad resonance shown in Fig. 2: missing eigenvalues
are a common drawback of Lanczos based diagonalization
approaches. Note also that for the first two sharp reso-
nances, Poirier & Carrington did not report reliable width
estimates.
Even though under the present circumstances a fair

comparison between the present approach and PIST [13]
is not possible (e.g., very different basis sets were used in
the two cases), the following remarks seem appropriate.
At least for the HCO case, PIST appeared very efficient
(required relatively few matrix-vector multiplications to
accurately compute the resonances) and relatively small
cpu-time, although the fact that it has more adjusting pa-
rameters than the present technique may be viewed as its
disadvantage. To conclude, the present approach, at least,
for the resonance calculations, appears very reliable, accu-
rate and efficient. It requires a minimal number of adjust-
ing parameters and scales favorably with the size of the
system. The method is quite flexible in the choice of the
damping scheme, but according to our tests an optimal
choice corresponds to scheme I (see above) with λ ≈ 0.08.
We make the corresponding Fortran codes available

upon request (e-mail: mandelsh@uci.edu).
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TABLE 1

Resonance energies Eres and widths Γ (cm−1) for the nonro-

tating HCO molecule. The quantum numbers describe, respec-

tively, the CH stretch, the CO stretch, and the bend. (The

last digit in the “present results” gives a rough estimate of

the computational error, although an accurate error estimate

is generally unknown.)

Keller et al [25] Poirier and Carrington [13] Present results Ref. [25] Poirier and Carrington [13] Present results

State Eres Γ Eres Γ State Eres Γ Eres Γ

|013) 1098.7934 ≤1e-6 1098.7963 3e-8 |042) 5492.86 6.08 5492.91 6.00
|005) 1251.148 ≤2e-6 1251.1525 1.8e-6 |034) 5717.85 5.245 5717.82 5.23
|111) 1386.880 1.05e-3 1386.8770 1.05e-3 5756 20.85 5752.56 21.13
|103) 1512.993 0.0128 1512.986 0.0126 |140) 5823.12 9.22 5823.02 9.29
|030) 1595.972 4e-6 1595.9708 3.2e-6 |026) 5846.5 62.6 5845.4 62.0
|201) 1633.526 0.0558 1633.518 0.0572 5872 49.8 5872.7 48.5
|022) 1897.242 7.5e-4 1897.247 7.60e-4 |230) 5976.83 45.9 5976.3 46.7
|300) 2069.6 29.5 2069.2 30.3 |132) 6049.7 36.2 6049.3 35.6
|014) 2105.537 0.741 2105.536 0.737 6201.9 42.1 6201.8 41.8
|006) 2208.16 0.0412 2208.198 0.0411 |051) 6209.04 2.079 6209.07 2.12
|120) 2223.85 3.265 2223.83 3.274 6299.7 104.2
|202) 2352.47 5.75 2352.38 5.77 |320) 6343.3 31.4 6343.9 31.2
|112) 2460.12 2.28 2460.11 2.32 |222) 6402.7 82.01 6402.3 81.7
|210) 2550.78 10.54 2550.71 10.63 |043) 6507.64 3.09 6507.59 3.10
|104) 2604.30 15.7 2604.40 15.93 |019) 6650.3 26.32 6652.99 26.96
|031) 2660.63 0.09753 2660.640 0.0981 |035) 6680 38.6 6679.8 37.9
|023) 2923.556 0.1881 2923.554 0.1888 6717.6 106.8
|015) 3077.5 5.04 3077.53 5.03 |027) 6759.11 35 6759.6 34.8
|007) 3132.82 0.8077 3132.991 0.814 |141) 6867.6 34 6867.6 33.5
|121) 3232.32 7.3 3232.327 7.31 |060) 6899.15 0.6 6899.107 0.594
|203) 3251.1 68.6 3251.3 67.5 |223) 6987 85.8 6986.8 85.7
|040) 3388.21 0.0786 3388.200 0.0782 |125) 7124.2 71.7 7124.2 71.7
|113) 3409.6 17.17 3409.66 17.18 |052) 7233.1 18.2 7233.23 18.26
|211) 3512.31 22.43 3512.29 22.39 7281 74 7281.1 74.1
|105) 3566.1 57.8 3565.61 57.9 |044) 7493.83 8.73 7493.84 8.68
|032) 3704.872 0.238 3704.866 0.240 7568 50.3 7563.4 52.2
|024) 3921.77 4.677 3921.77 4.687 7585.8 74.8 7587.2 68.6
|130) 3999.9 18.9 3999.84 19.80 |150) 7602.67 7.31 7602.63 7.29

3999.2 32.8 |036) 7656.7 29.56 7656.64 29.68
|016) 4036.49 10.03 4036.63 9.94 |142) 7813.3 47 7813.1 48.1
|220) 4084.6 19.5 4084.71 20.25 |240) 7884.9 66.6 7884.9 66.2
|122) 4214.7 23.4 4214.49 23.12 |061) 7952.3 5.53 7952.29 5.52
|114) 4345.8 23.68 4345.79 23.80 8030.7 74.3

4392.1 113.4 |224) 8171.1 105 8170.6 105.1
|041) 4436.7 9.9 4436.61 10.03 |151) 8232 30.3 8233.06 29.48

4463.8 12.45 4463.70 12.44 |053) 8237.3 94 8236.6 96.1
|212) 4514.2 47.65 4514.1 47.8 8287.1 68.2 8287.2 66.9
|033) 4726.773 0.728 4725.768 0.727 |045) 8445.08 37.92 8444.9 37.9
|017) 4885.6 10.4 4885.78 9.98 8488 41 8486.7 37.5

4887.8 65.6 8556.2 53 8557.5 52.6
4938.4 112.9 |151) 8558 38 8557.7 39.0

|131) 5057.9 17 5057.81 17.12 |070) 8616.5 0.728 8616.421 0.717
|213) 5143.5 73.2 5143.6 73.5 |241) 8684 77 8687.8 76.3
|050) 5156.2 0.054 5155.939 0.0544 |143) 8802.3 90 8801.8 88.6
|123) 5275.7 32.1 5275.8 32.3 8921.4 90.9 8921.4 90.9
|221) 5400.2 46.8 5400.5 46.6 |062) 8973.7 7.7 8973.27 8.28

5460.9 114.4




