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ABSTRACT OF THE DISSERTATION 

 

Link, transport, integrate: a Bayesian latent class mixture modeling framework for scalable 

algorithmic dementia classification in population-representative studies 

 

by 

 

Crystal Ruth Michelle Shaw 

Doctor of Philosophy in Biostatistics 

University of California, Los Angeles, 2023 

Professor Thomas R. Belin, Co-Chair 

Professor Elizabeth Rose Mayeda, Co-Chair 

 

Gold-standard clinical dementia adjudication is resource intensive and infeasible in large, 

population-representative studies which are critical for public health research. Algorithmic 

dementia classification uses models to predict cognitive impairment and was developed to 

circumvent challenges of the gold-standard adjudication process. Several algorithms have been 

developed to classify dementia in the Health and Retirement Study (HRS) and rely on 

information in the Aging, Demographics, and Memory Study (ADAMS), a substudy of HRS 

initiated in 2001. Existing algorithms cannot incorporate neuropsychological measures as they 

are unavailable in HRS, and models cannot be adapted to include more comprehensive measures 

available in newer studies. 



  iii 

I propose a novel Bayesian latent class mixture modeling framework for algorithmic 

dementia classification that incorporates information from neuropsychological measures and can 

be adapted to include more comprehensive measures available in updated studies. The model 

uses latent class mixture models to create synthetic versions of datasets, incorporating 

information on relationships between sociodemographic, health, and cognitive measures and 

cognitive impairment classes through prior distributions based on studies with gold-standard 

adjudicated cases. This work involves three studies on aging: The Health and Retirement Study 

(HRS), The Harmonized Cognitive Assessment Protocol (HCAP, HRS substudy), and the Aging 

and Demographics Study (ADAMS, HRS substudy). Simulation studies were conducted to 

evaluate the role of study sample size and priors specified based on different data sources and 

sampling frames and their impact on algorithmic dementia classification results and inferences 

on racial/ethnic differences in dementia. 

Analyses using priors from ADAMS accurately captured cognitive impairment classes 

preserved racial/ethnic differences in dementia for Black vs. White participants. Priors better 

calibrated to the analytic sample however improved estimates for Black and Hispanic 

participants and preserved racial/ethnic differences in dementia for Black vs. White and Hispanic 

vs. White participants. Applying the model to HCAP 2016 yielded reasonable estimates of 

cognitive impairment classes with proportions of impaired participants in line with findings 

published by HCAP investigators.  

This dissertation lays important groundwork for strengthening algorithmic dementia 

classification in population-representative studies. Outcomes from this work are directly 

applicable to existing studies on AD/ADRD that are harmonizable with HRS/HCAP. 
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Chapter 1 Introduction 

Over 6.5 million individuals —about 1 in 9— in the United States (US) aged 65 years or older 

are living with Alzheimer’s disease (AD) and Alzheimer’s disease-related dementias (ADRD), 

and this number is projected exceed 12.5 million by the year 2050 (Rajan et al. 2021). 

Nationally-representative cohorts are crucial for monitoring population trends in AD/ADRD 

incidence, prevalence, and disparities, as well as for understanding determinants of AD/ADRD 

(Mayeda et al. 2016; Chin, Negash, and Hamilton 2011; Ferretti et al. 2020). Dementia, which is 

characterized by cognitive impairment severe enough to impact functional ability, is difficult to 

diagnose due to elusive onset and heterogenous clinical presentation (Alzheimer’s Association 

2022). Thus, gold-standard dementia adjudication requires consensus diagnosis by an expert 

panel that triangulates evidence from detailed neuropsychological testing, clinical examination, 

an informant interview, and medical history (Mayeux et al. 2011; McKhann et al. 2011; Langa et 

al. 2005). This time- and resource-intensive protocol is infeasible in large population-based 

surveys, which are of considerable public health interest to develop dementia prevention 

strategies and treatment and reduce disparities in incidence across subgroups. Algorithmic 

dementia classification methods have been developed to predict individuals’ probability of 

dementia in large studies (Kasper, Freedman, and Spillman 2013; Gross et al. 2017; Prina et al. 

2019), but the lack of available data on neuropsychological testing in population-based surveys 

has been a persistent limitation of existing dementia classification strategies (Gianattasio et al. 

2019). 

The Health and Retirement Study (HRS) is a large, ongoing (1992-present) US 

population-representative study in which a variety of algorithmic dementia classification 
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methods have been used to predict participants’ probability of dementia (Crimmins et al. 2011; 

Hurd et al. 2013; Langa, Kabeto, and Weir 2009; Wu et al. 2013; Herzog and Wallace 1997). 

The primary purpose of HRS was to provide a national resource for data on the changing health 

and economic circumstances associated with aging and thus, the HRS survey gathers extensive 

information on sociodemographic characteristics, lifestyle and health variables, and general 

cognitive assessments in an aging population (Sonnega et al. 2014). Though HRS does not have 

detailed neuropsychological assessments available for all participants, substudies were initiated 

to collect these important measures. Specifically, the Aging, Demographics, and Memory Study 

(ADAMS [2001-2009]) (Langa et al. 2005) and the Harmonized Cognitive Assessment Protocol 

(HCAP [2016-present]) (Weir, Langa, and Ryan 2016) collected neuropsychological test data for 

a subset of HRS participants. The ADAMS study performed gold-standard dementia adjudication 

for all participants and was the first study of its kind to do so in a national cohort (Langa et al. 

2005; Heeringa et al. 2009). Though HCAP was designed to be a larger, contemporary follow up 

to the ADAMS study (HCAP n=3496; ADAMS n=856), the scale of the HCAP study precludes 

gold-standard dementia adjudication for all HCAP study participants (Langa et al. 2020). Thus, 

ADAMS remains an engine for algorithm development to classify dementia in the larger HRS 

sample. 

An important limitation identified in several algorithmic dementia classification methods 

is differential misclassification by race/ethnicity. Recognizing that this impacts validity of 

algorithmic dementia classification methods for use in racial/ethnic disparities research, the most 

recent dementia classification algorithms developed in ADAMS utilized race-specific score 

cutoffs— a somewhat controversial method (Gasquoine 2009; Manly 2005; Manly and 

Echemendia 2007). The algorithms are more sensitive than other existing algorithms and 
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produce accurate classification across racial/ethnic groups (Gianattasio, Ciarleglio, and Power 

2020; Gianattasio et al. 2019). The same data limitation persists in all algorithmic dementia 

classification methods that rely on ADAMS clinical dementia diagnosis for training underlying 

models, however— existing models cannot include detailed neuropsychological tests, which are 

critical in gold-standard dementia diagnoses and available in ADAMS but not available in the 

full HRS sample. The limited size of the ADAMS study (n=856), however, and the lack of 

refresher samples to supplement the original cohort recruited 20 years ago contribute to a need 

for algorithmic dementia classification methods that incorporate information from newer data 

sources. Because existing algorithmic dementia classification methods can only include 

predictors available for all participants in the population they aim to classify, they cannot be 

adapted to include newer and more comprehensive cognitive data such as the data available in 

the 2016 HCAP study (Langa et al. 2020). 

This dissertation is motivated by (1) the need for dementia classification algorithms that 

can propagate available information from existing data sources into population-representative 

cohorts that do not contain a gold-standard sub-study, (2) the importance of developing 

algorithms that can support inferences about health disparities without relying on differential 

standards across racial-ethnic groups, and (3) the appeal of developing a model flexible enough 

to incorporate newer and more comprehensive cognitive test data. Using innovative applications 

of Bayesian statistical methods and latent class mixture modeling, the aim of this work is to build 

an algorithmic dementia classification framework that incorporates additional predictors 

important in gold-standard dementia diagnosis (e.g., detailed neuropsychological measures that 

are available in a substudy of a population-based survey) thereby strengthening algorithmic 

dementia classification in population-representative samples.   
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Results from this work will support studies of AD/ADRD incidence, prevalence, and 

disparities as well as studies evaluating determinants of AD/ADRD in nationally-representative 

samples that to date have not been used for these purposes. The methodological development in 

this dissertation uses existing data efficiently, adds insight to available studies, and lays the 

groundwork for further development of cutting-edge research in algorithmic dementia 

classification. 

This dissertation is organized as follows: Chapter 2 provides descriptions of relevant 

datasets, summarizes current dementia adjudication methods in cohort studies and developments 

in algorithmic dementia classification, and concludes with a brief overview of the core statistical 

topics on which the methods developed in this dissertation are built; Chapter 3 describes the 

novel statistical framework for algorithmic dementia classification and provides a detailed 

illustrative example of the methods using ADAMS; Chapter 4 gives an overview of the 

simulation study framework used in this dissertation and provides details on a simulation study 

that evaluated statistical properties of the Bayesian latent class mixture model and the role of 

HRS/HCAP study sample size when information from ADAMS is used to formulate the priors; 

Chapter 5 discusses expanded simulation studies that evaluated the use of information from 

subsets of HCAP to formulate priors that are better calibrated to observed data and presents 

strategies for combining results from these analyses with results from analyses that used 

ADAMS to specify priors; Chapter 6 presents results for algorithmic dementia classification in 

HCAP using the proposed Bayesian latent class mixture model and compares results to recently 

published estimates from HCAP investigators (Manly et al. 2022); the dissertation concludes 

with a discussion of future directions for research in Chapter 7.  
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This dissertation used computational and storage services associated with the Hoffman2 

Shared Cluster provided by UCLA Institute for Digital Research and Education’s Research 

Technology Group. All analyses and visualizations were done using R version 4.1.0 (R Core 

Team 2020), and all code is available on GitHub: https://github.com/cshawsome/link-transport-

integrate. 
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Chapter 2 Background & Literature Review 

The methods developed for this dissertation were motivated by challenges in algorithmic 

dementia classification in population-representative studies. This chapter provides background 

information on the motivating context and statistical methods in the dissertation. This chapter 

begins with a description of the three cohort studies used in this dissertation followed by a 

discussion of methods for dementia adjudication implemented in those and similar studies. The 

second half of the chapter provides an overview of statistical concepts necessary for 

understanding the methods development described in Chapter 3. 

 

2.1: Dataset descriptions 

Cohort studies are important for monitoring and understanding disease burden in a population. 

Several US-based and international cohort studies on aging and dementia exist (Manly et al. 

2005; Lee and Dey 2020; Steptoe et al. 2013; Mejia-Arango et al. 2020; Zhao et al. 2014; 

Gómez-Olivé et al. 2018; Bienias et al. 2003; Lopez et al. 2003; Knopman et al. 2016; Kukull et 

al. 2002; Langa et al. 2005). These studies have enabled measurement of dementia incidence and 

prevalence (Mehta and Yeo 2017; Tang et al. 2001; Plassman et al. 2007; Hebert, Scherr, 

Bienias, Bennett 2003; Kuller et al. 2016), aided in risk factor studies (Kuller et al. 2016; Walter 

et al. 2016; Fishman 2017; Tschanz et al. 2013; Alpérovitch et al. 2003), and highlighted disease 

disparities (Chin, Negash, and Hamilton 2011; Cunningham et al. 2017; Babulal et al. 2019; 

Vable et al. 2018; Buckley et al. 2018; Mayeda et al. 2016). The methods developed in this 

dissertation use three existing US-based studies: (1) The Health and Retirement Study (HRS); (2) 

the Aging, Demographics, and Memory Study (ADAMS); and (3) the Harmonized Cognitive 

Assessment Protocol. A brief description of each study follows. Figure 2.1 depicts study 
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timelines, sample sizes, availability of different measures, and the relationships between HRS 

and ADAMS and HCAP, which are both substudies of HRS. 

  
Figure 2.1: Timelines, sample sizes, and relationships among HRS, ADAMS, and HCAP studies.  

 
2.1.1: The Health and Retirement Study 

HRS is an ongoing, longitudinal, nationally-representative cohort study of Americans aged 50+ 

and their spouses (Sonnega et al. 2014). HRS was initiated in 1992 by the University of 

Michigan with follow-up every two years, alternating between phone and in-person interviews 

for about half of the sample— 50% of the sample is assigned to in-person interviews in one cycle 

while the other 50% of the sample completes a telephone interview, then each half is assigned to 

the other mode of interview at the next HRS follow-up wave. Over 37,000 individuals were 

initially enrolled; refresher cohorts are added every 6 years to maintain a stable sample size of 

about 20,000 participants. HRS data is publicly available; the study aims to be a resource for US 

trends in changing economic and health patterns associated with aging at both the individual and 

population level. As such, HRS collects data in four broad domains: income and wealth; health, 

cognition, and the use of healthcare services; work and retirement; and family connections. Most 

interviews are self-response, but proxy interviews are conducted if necessary to help maintain 
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coverage of the cognitively impaired. Beginning in 2006, in-person interviews included physical 

measures (e.g., height, weight, blood pressure, grip strength, walking speed). Thus, physical 

measures are available for HRS participants every four years. A complete description of the 

sample and available measures can be found in (Sonnega et al. 2014). Cognitive measures 

available in HRS are listed in Appendix Table A.1. Sample characteristics for the 2016 wave of 

HRS participants aged 70+ (the sample relevant to this work) are provided in Table 4.1. 

In addition to the primary HRS survey, the University of Michigan conducts 

supplemental surveys in subsamples of HRS with more specific aims. For example, ADAMS and 

HCAP were designed to collect more detailed neuropsychological assessments on a subset of 

HRS participants. Gold-standard clinical dementia adjudication was conducted for ADAMS 

participants only.  

 

2.1.2: The Aging, Demographics, and Memory Study 

The Aging, Demographics, and Memory Study (ADAMS) was a substudy of HRS participants 

aged 70+ that performed gold-standard dementia adjudication for all participants (Heeringa et al. 

2009; details provided in Section 2.2.1:). There are four waves of ADAMS data (A-D; 2001-

2009); the goal of ADAMS was to follow a group of at least 850 individuals for dementia onset. 

To capture a wide range of cognition, ADAMS participants were sampled within 5 strata based 

on HRS cognitive assessment performance (range: low functioning-high normal) with 

oversampling of participants in the low-functioning category. The cognitively normal group was 

further stratified by age (70-79, 80+) and sex. ADAMS wave A comprised n=856 participants, 

and the sample was depleted as participants were either diagnosed with dementia or died. 

Neuropsychological assessments available in ADAMS are listed in Appendix Table A.1. 
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Sample characteristics for ADAMS wave A (baseline wave) are provided in Table 4.1. 

 

2.1.3: The Harmonized Cognitive Assessment Protocol 

HCAP is an ongoing substudy of HRS participants initiated in 2016 (Weir, Langa, and Ryan 

2016). One wave of HCAP data is currently available, and the second wave of data collection is 

underway with delays due to the COVID-19 pandemic. The main goals of HCAP are (1) to 

provide a new HRS data resource to better assess determinants, prevalence, and the current and 

future costs and consequences of MCI and dementia in the US and (2) to facilitate harmonization 

of cognitive measurement with existing ongoing international studies on aging to study 

determinants, prevalence, and the impact of MCI and dementia worldwide (Langa et al. 2020). 

HCAP participants were randomly sampled from 2016 HRS participants who completed their 

interview prior to HCAP initiation. Participants were sampled based on their age eligibility (65+) 

and 2016 HRS marital status— half of age-eligible, uncoupled HRS participants and half of age-

eligible, coupled participants were selected. Of those selected for HCAP, n=3496 participated. 

HCAP interviews were conducted in pairs when possible: (1) 1-hour target-respondent interview 

that included a detailed neuropsychological assessment and (2) 20-minute informant interview 

completed by an individual nominated by the target responder.  

HCAP was modeled after the ADAMS study, but the HCAP research team used insights 

from fielding ADAMS to improve HCAP data collection. One limitation of ADAMS was the 

high cost of in-home assessments administered to participants, which required 3-4 hours and 

trained specialized personnel (see Section 2.2.1:). The ADAMS research team also performed 

gold-standard dementia adjudication for all participants, which added to the burden of 

conducting the study. HCAP, however, used a computer-assisted neuropsychological assessment 
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that only required 1 hour to complete and did not perform dementia adjudication for participants. 

Thus, the HCAP team was able to significantly reduce the cost per assessment and include a 

sample nearly 4 times larger than ADAMS. Models have recently been developed by HCAP 

investigators, however, to predict probability of impairment for participants (Manly et al. 2022). 

Sample characteristics for HCAP 2016 participants aged 70+ (the sample relevant to this work) 

are provided in Table 4.1. 

 

2.2: Dementia adjudication methods 

2.2.1: Gold-standard dementia adjudication and adaptations 

Diagnosing dementia in large studies like HRS is a major challenge. The accepted gold-standard 

dementia adjudication method involving consensus diagnosis by an expert panel that evaluates 

results from detailed neuropsychological testing, clinical examination, an informant interview, 

and medical history, is incredibly time and resource intensive. For example, in ADAMS, the 

dementia adjudication protocol involved a 3-4 hour structured in-home assessment that required 

a nurse and specially trained neuropsychology technician. The assessment included (1) a battery 

of neuropsychological measures, (2) a self-reported depression measure, (3) a standardized 

neurological examination, (4) measured blood pressure, (5) collection of buccal DNA samples 

for APOE genotyping (AD risk factor), and (6) a 7-minute videotaped segment for portions of 

the cognitive status and neurological exams. An informant interview was also conducted; a 

knowledgeable informant was asked to provide information on (1) chronological history of 

cognitive symptoms, (2) medical history, (3) current medications, (4) current neuropsychiatric 

symptoms, (5) measures of severity of cognitive and functional impairment, (6) family history of 

memory problems, and (7) a caregiving questionnaire detailing the time and strain associated 
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with providing care. All testing was scored by the original technician, a second technician, and 

the supervising neuropsychologist. A preliminary diagnosis was assigned by a team including a 

geropsychiarist, neurologist, and cognitive neuroscientist after reviewing all in-home assessment 

and informant interview materials. The geropsychiatrist reviewed available medical records and 

revised preliminary analyses when warranted. Participants were placed into one of the following 

categories: normal/non-case, mild cognitive impairment, dementia of undetermined etiology, 

frontal lobe dementia, alcoholic dementia, ALS with dementia, probable AD, possible AD, 

probable vascular dementia, possible vascular dementia, probable Lewy Body dementia, 

Parkinson’s disease, Huntington’s disease, progressive supranuclear palsy, normal pressure 

hydrocephalus, Pick’s disease, severe head trauma (with residual), mild ambiguous, depression, 

psychiatric disorder, mental retardation, alcohol abuse (past/current), stroke, other neurological 

conditions, other medical conditions, cognitive impairment no dementia (non-specified). Cases 

that were ambiguous were assigned to return in the next wave of data collection for re-evaluation 

(Langa et al. 2005). 

The resource-intensive dementia adjudication protocol was a major limitation to the 

ADAMS study as it precluded recruiting a large sample (Langa et al. 2020). To circumvent the 

intensity of gold-standard dementia adjudication for all participants in a study, dementia 

researchers have implemented hybrid/augmented, or adaptive designs as an alternative. 

Hybrid/augmented designs use clinical dementia adjudication in a subset of participants to 

predict impairment in the rest of the sample (Bennett et al. 2002; Knopman et al. 2016; Bennett 

et al. 2012). Adaptive designs use stages of evaluation that increase in intensity as participants 

are flagged at each stage as either unimpaired or requiring further evaluation. Adaptive designs 

typically begin with a low-burden screening test in stage one and conclude with clinical dementia 
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adjudication in final stages (Tang et al. 2001; Lopez et al. 2003; Trittschuh et al. 2011; 

Demirovic et al. 2003; Fillenbaum et al. 1998). A 2021 study in the Kaiser Healthy Aging and 

Diverse Life Experiences (KHANDLE) cohort used an innovative hybrid adaptive design to 

adjudicate impairment status for all 1700 of its study participants. In KHANDLE, participants 

were either randomly assigned to undergo full clinical dementia evaluation or were evaluated for 

impairment using an adaptive design (Mungas et al. 2021).  

 

2.2.2: Algorithmic dementia classification 

In large, population-representative surveys like HRS, hybrid or adaptive designs are still too 

time- and resource- intensive to implement for all participants at each wave of data collection. 

Fully algorithmic dementia classification methods have been developed as an alternative. Much 

like hybrid/augmented designs, existing algorithmic dementia classification methods fit models 

(e.g., logistic models, probit models, ordered probit models) in studies with gold-standard 

adjudicated dementia cases and use estimated effects of covariates to predict probabilities of 

impairment for participants in larger studies. ADAMS has been an engine for the development of 

algorithms to predict impairment for participants in HRS (Crimmins et al. 2011; Wu et al. 2013; 

Hurd et al. 2013; Herzog and Wallace 1997). These algorithms were limited to including 

covariates that existed in HRS, however, and could not include detailed neuropsychological 

assessments available in ADAMS, which are critical measures in gold-standard dementia 

adjudication. Further, the sensitivity and specificity of early models differed by race/ethnicity, 

which merits careful consideration of whether their use is valid in disparities research 

(Gianattasio et al. 2019). 
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Recent dementia classification algorithms developed specifically for racial/ethnic 

disparities AD/ADRD research achieved non-differential sensitivity and specificity across 

racial/ethnic subgroups (Gianattasio, Ciarleglio, and Power 2020). Improvements were 

accomplished by considering main effects and two-way interactions between sociodemographic 

and health characteristics on an individual’s dementia status and by using race-specific score 

cutoffs for dementia classification. Using racial/ethnic-specific score cutoffs is a topic of debate, 

however, because their use ignores effects of cultural or educational factors for which race is a 

proxy and can lead to denial of necessary services to these groups (Gasquoine 2009; Manly 

2005; Manly and Echemendia 2007). Further, this method does not address the primary 

limitation of existing algorithmic dementia classification methods— they cannot be adapted to 

include comprehensive neuropsychological data from studies like ADAMS or newer and more 

comprehensive data from studies like HCAP. 

The goal of this dissertation is to develop an algorithmic dementia classification 

framework flexible enough to incorporate neuropsychological data in the prediction model, 

thereby strengthening algorithmic dementia classification in population-representative studies. 

 

2.3: Statistical topic review 

The methods developed in this work and detailed in Chapter 3 build on concepts in the 

statistical areas of finite mixture modeling and general location models. Models will be 

embedded in a Bayesian analysis framework to accommodate prior information (e.g., 

information from the ADAMS study) in analyses. Additional statistical tools are used throughout 

this work— bootstrapping is used to overcome challenges related to small sample sizes in 

Section 3.4: analyses and to create a superpopulation for the simulation study in Chapter 4, 
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missing data is addressed using multiple imputation and stratified hotdeck imputation as 

alternatives to complete-case analyses to preserve sample size in analyses, and standardization is 

used for dementia prevalence comparisons among racial/ethnic groups in analyses. What follows 

is a relatively brief but sufficient overview of necessary material from the statistical areas that 

form the core of methods development in this dissertation: the Bayesian analysis framework, 

finite mixture models, and general location models. Brief explanations of additional statistical 

tools used in analyses will be provided in context as they become relevant. 

 

2.3.1: Bayesian analysis framework 

There are two primary statistical paradigms: frequentist and Bayesian. Frequentist analyses are 

traditionally taught in introductory statistics courses and thus tend to be more familiar to applied 

researchers. Bayesian methods, though conceptually intuitive, can be computationally intense. 

For this reason, Bayesian methods have gained traction in the last 50 years due to increased data 

storage capacity and computational power. Frequentist and Bayesian methods diverge in their 

treatment of data being analyzed and parameters underlying the data-generating process. In the 

frequentist paradigm, data are considered random while parameters underlying the data 

generating process are considered fixed. Frequentist inference relies on large sample theory (e.g., 

the sample mean, 𝑥̅, approaches the population mean, 𝜇, as the sample size, 𝑛, increases).  

In contrast, the Bayesian framework views data as fixed and parameters underlying the 

data generating process as random (i.e., coming from a probability distribution). Thus, Bayesian 

inferences are conditional on the data being analyzed. The primary reference for Bayesian 

methods in this dissertation is Bayesian Data Analysis by Gelman et al. (2014). 
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 Bayesian analyses rely on expressing the joint distribution of model parameters and 

observed data as the product of a prior distribution and the sampling distribution (likelihood), 

then applying Bayes rule to arrive at an expression for the posterior distribution of the 

parameters 𝜃 given the data 𝑦: 

	
𝑝(𝜃|𝑦) = 	

𝑝(𝜃, 𝑦)
𝑝(𝑦) =

𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦) . (2.1) 

Since (2.1) is conditional on the data 𝑦, 𝑝(𝑦) is a constant and we write 

	 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃), (2.2) 

where 𝑝(𝑦|𝜃) is the likelihood and 𝑝(𝜃) is the prior. In words, (2.2) reads, “the posterior is 

proportional to the likelihood times the prior.” The goal of Bayesian analyses is to develop a 

model for the joint distribution 𝑝(𝜃, 𝑦) and perform the computations necessary to summarize 

the posterior distribution 𝑝(𝜃|𝑦). 

 Appealing features of the Bayesian framework include the intuitive nature of the model 

being a tug-of-war between the prior and the likelihood (i.e., strong priors require more evidence 

in the data to overcome prior assumptions; analyses using uninformative priors are driven by the 

data and yield inferences similar to frequentist analyses), natural interpretations of the Bayesian 

credible interval (the probability of the model parameter lying in the interval), and the flexibility 

of this framework for analyzing complex statistical problems.  

Sampling from the posterior distribution can be computationally challenging in complex 

models. When posterior distributions are more complex than the standard named distributions 

(normal, gamma, binomial, etc.), special techniques can be used to explore the sample space. 

Markov Chain Monte Carlo (MCMC) is an iterative sampling technique based on drawing 

parameter values 𝜃 from an approximate distribution and correcting the draws at the next 
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iteration to better approximate the target posterior distribution. When the prior and posterior 

distributions belong to the same distributional family, they are said to be conjugate. If the model 

can be specified using conjugate prior distributions, sampling from the posterior distributions is 

straightforward because conjugate distributions yield a closed-form expression for the posterior 

that can be sampled from directly. An MCMC technique that can leverage conjugate 

distributions nicely is the Gibbs sampler. Gibbs sampling, also known as alternating conditional 

sampling, draws components of the parameter vector 𝜃 conditional on other values of the 

parameter vector. Gibbs sampling is the technique used in this dissertation because components 

of the parameter vector in this work can be specified using conjugate distributions and posterior 

parameters can be sampled from named distributions. Several conjugate distributions exist; the 

relevant distributions for this work are listed in Table 2.1.  

 
Prior Likelihood Posterior 

 

Dirichlet 
 

Multinomial 
 

Dirichlet-Multinomial 
   

Inverse Wishart Normal Normal-Inverse-Wishart 
   
Table 2.1: Conjugate distributions appearing in dissertation methods. 

 
Gabry et al. (2019) emphasize the role of data visualization at every stage of Bayesian modeling 

and outline the workflow for (1) prior predictive checks, (2) model diagnostics, and (3) posterior 

predictive checks using a real data example. Gabry et al. (2019) envision each stage of the 

Bayesian analysis workflow as part of an iterative process of specifying models, fitting models, 

evaluating model fit, and updating model specifications. The following sections provide general 

descriptions of each stage of the workflow; each stage as it relates to this project is illustrated in 

analyses in subsequent chapters. 
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2.3.1.1: Prior predictive checks 

Understanding how assumptions encoded in the prior interact with the likelihood to affect 

posterior inferences is an important part of Bayesian modeling. Prior predictive checks are 

visualizations of synthetic datasets generated from prior distributions only (i.e., sampled from the 

prior predictive distribution). These checks are meant to assess compatibility between the prior 

and the data and whether assumptions encoded in the prior lead to realizations of the data that 

capture the full range of possible values? Ideal prior predictive checks would yield prior 

predictive distributions that are wider than but roughly centered around the observed data, 

demonstrating compatibility and that the full range of plausible values was captured by the prior. 

Priors may need to be tuned by hyperparameters (parameters of the prior distribution) to achieve 

this. Examples of prior predictive checks for this work are displayed in Figure 3.4 and Figure 

3.5. 

 

2.3.1.2: Model convergence diagnostics 

Once models are tuned so that prior predictive checks are satisfactory, several draws from the 

posterior predictive distribution should be sampled and model parameter convergence assessed 

across draws. Trace plots of model parameters are used to assess convergence. All model 

parameters should be monitored for convergence, but in cases where models contain many 

parameters, a subset of important parameters may be chosen instead. Ideal trace plots look like 

“fuzzy caterpillars” that stabilize around some value. If there is any type of pattern in the trace 

plot (e.g., increasing mean value across iterations), this indicates a lack of model convergence. 

Additional model tuning by adjusting hyperparameters or additional iterations may be required to 
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achieve proper convergence. Examples of convergence plots for this work are displayed in 

Figure 3.6.  

Bayesian inferences are based on several independent draws from the posterior 

distribution. Iterative sampling can create challenges for drawing independent data as values may 

be correlated with those at previous iterations. In general, though, once trace plots show 

convergence, each subsequent draw is from the posterior distribution. However, this does not 

guarantee that the posterior distribution is insensitive to starting values in the parameter space.  

Model stability related to starting values is assessed by monitoring convergence of multiple 

chains initiated at different locations in the parameter space. Ideal diagnostic plots for multiple 

chain convergence would look like overlapping “fuzzy caterpillars” which would demonstrate 

that model convergence is robust to the starting point in the parameter space (Gelman et al. 

2014). An example of multiple chain convergence plots is displayed in Figure 3.7. 

 

2.3.1.3: Posterior predictive checks 

Once proper model convergence is achieved, posterior predictive checks assess whether salient 

features of the data were captured by the model. “Salient features” are measured by statistics of 

interest to the researcher. In this work, I followed the example in Gabry et al. (2019) and 

assessed medians and skew for continuous variables. I also monitored counts for cross-classified 

categorical variables. Analogous to prior predictive checks, ideal posterior predictive 

distributions would be centered around the observed value of the statistic of interest. Examples 

of posterior predictive checks for this work are displayed in Figure 3.8 - Figure 3.9. 
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2.3.1.4: Summarizing the posterior distribution 

Measures of centrality and spread are used to summarize posterior predictive distributions and 

perform Bayesian inference. Means or medians could be used for centers of posterior 

distributions and credible intervals are used to measure uncertainty. Analogous to frequentist 

confidence intervals, Bayesian 𝛼-level credible intervals are constructed by taking the lower 

!
"
× 100% and upper >1 − !

"
@ × 100% tails of the posterior predictive distribution for a 

parameter of interest. The interpretation of a Bayesian credible is more intuitive than the 

interpretation of frequentist confidence intervals. A Bayesian 95% credible interval for a 

parameter 𝜃, for example, is a set of values for which there is a 95% probability of 𝜃 belonging 

to that set. 

 

2.3.1.5: Should we expect Bayesian and frequentist analyses to always coincide? 

The choice between a Bayesian or a frequentist analysis can sometimes be more philosophical 

than pragmatic. For example, some statistical practitioners may feel hesitant to place prior 

distributions on model parameters since this can feel like a subjective process. Bayesian analyses 

are becoming more widely accepted, however, even in carefully monitored spaces like the FDA-

regulated pharmaceutical industry (Boulanger and Carlin 2021).  

 Bayesian and frequentist analyses usually coincide when uninformative priors are used in 

a Bayesian model. Strictly specifying uninformative priors, however, ignores available existing 

information about the problem and robs the analyst of the greatest strength of the Bayesian 

framework: leveraging prior information to increase accuracy and efficiency of analyses. It 

would be more desirable to conduct a Bayesian analysis using available prior information and 

show that the Bayesian model is “well-calibrated” by frequentist standards. 
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 Well-calibrated Bayesian models are desirable because analysts running these models are 

often not experts in Bayesian statistics or in the content-area application, thus, they will not have 

the skillset necessary to fine tune their model to the specific application context (Rubin 1984). 

Thus, Bayesian statisticians develop models that would ideally be applicable to a broad set of 

problems. Bearing this in mind, summaries of Bayesian analyses in the simulation studies in this 

dissertation include the frequentist metric of “95% interval coverage” to assess model calibration 

to frequentist standards.  

 There is no requirement that a 95% credible interval have nominal coverage across 

simulation runs because a 95% credible interval is simply a summary of the posterior predictive 

distribution. Rubin (1984) and more recently Gelman et al. (2020) discuss that one should expect 

at least nominal coverage from a 95% credible interval when the prior is correct. Knowledge of 

whether the prior is correct is only possible in a simulation study and indeed, Rubin and Gelman 

both discuss assessing the validity of Bayesian modeling procedures by generating synthetic data 

using a specified prior, analyzing the synthetic data using the same prior, and assessing coverage. 

Under these circumstances, interval estimates from a well-calibrated Bayesian model would be 

expected to have nominal coverage. This issue will be further discussed in context as it relates to 

results presented throughout the dissertation.  

 

2.3.2: Finite mixture models 

Finite mixture models provide a flexible, semiparametric modeling strategy in applications 

where a single distribution would not adequately capture important features of the data. The 

underlying assumption in finite mixture models is that the data are composed of a finite number 

of subgroups with meaningfully different characteristics. Finite mixture models are also useful as 
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a strategy for modeling complex distributions as a mixture of more familiar or tractable 

distributions. The probability density function of a finite mixture distribution is 

	
𝑓(𝑦) = 	B𝜆#𝑓#(𝑦),

$

#%&

	
(2.3) 

 
where 𝜆# are the mixing proportions (non-negative and sum to 1) and 𝑓#(𝑦) are the component 

densities. Component densities are usually assumed to be from the same family (e.g., normal 

distributions with different means and variances), but it is possible to have a mixture of different 

distributions. The inference goal in finite mixture models is the correct mixing proportions 𝜆# for 

the component densities. 

Mixture models are foundational in many statistical areas including clustering, 

discrimination, and latent class analyses and have gained traction as a method in a variety of 

fields outside of statistics. An example in the psychological literature is Belin and Rubin’s 

(1995) use of a finite mixture model for the reaction times of patients with schizophrenia. For a 

more comprehensive review of recent methodological developments and applications of finite 

mixture modeling, see Mclachlan, Lee, and Rathnayake (2019). 

One challenge in mixture modeling is choosing the number of groups 𝑔. This can be 

included in the inference process or be driven by prior knowledge of the application context. 

Identifiability is also a concern in some mixture models. A parametric family of distributions is 

said to be identifiable if distinct values of the parameters result in distinct members of the family 

of densities. In the case of finite mixture modeling, nonidentifiability of the model leads to an 

issue called “label switching” where subgroups cannot be distinguished from one another. 

Titterington (1985) argues, however, that most finite mixtures of continuous densities are 

identifiable. 
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2.3.2.1: Bayesian analysis of finite mixture models: priors on group membership 

Prior information is incorporated in the finite mixture models used for this work in two ways: (1) 

the number of mixture distributions is based on clinically meaningful cognitive impairment 

groups based on ADAMS (4 groups: Unimpaired, MCI, Dementia, Other), see Section 2.2.1: 

and Table A.2 and (2) mixing proportions are informed by models fit in ADAMS relating 

important predictors of impairment group membership (sociodemographic characteristics, health 

and health behavior measures, general cognitive assessments, and detailed neuropsychological 

assessments) to clinical cognitive impairment diagnosis. Additional details on specifying priors 

for latent class membership are provided in Section 3.4.1:. 

 

2.3.3: General location model 

The general location model is a framework for modeling a mix of categorical and continuous 

variables (Olkin and Tate 1961; Little and Schluchter 1985; Schafer 1997). Using the general 

location model, an observation’s continuous variables are modeled using normal distributions 

with parameters determined by the observation’s contingency cell membership (i.e., cross-

classification of categorical variables). Following the notation of Schafer (1997), let 𝑊&, …𝑊' be 

a set of categorial variables and 𝑍&, … 𝑍( be a set of continuous variables. Then for a sample 𝑌 

with 𝑛 observations, 𝑌 can be represented by the 𝑛	 × (𝑝 + 𝑞) matrix (𝑊, 𝑍).  

 

2.3.3.1: Unrestricted general location model 

The unrestricted general location model uses main effects and all interaction effects of 

categorical variables 𝑊 to model continuous variables 𝑍. Suppose 𝑊) takes possible values 

1, 2, … , 𝑑). The categorical data can be summarized by a 𝐷-dimensional contingency table with 
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D = ∏ 𝑑)
'
)%&  possible cells. Let 𝐶 = {𝑐*: 𝑑 = 1,… , 𝐷} represent the vector of cell counts. 

Another characterization of 𝑊 comes from defining a 𝑑-vector 𝑢# with a 1 in position 𝑑 if the 

observation falls into contingency cell 𝑑 and 0 otherwise. Then, let 𝑈 be an 𝑛	 × 𝐷 matrix with 

rows 𝑢#+ , 𝑖 = 1,… , 𝑛. 𝑈+𝑈 = diagonal(𝐶). By the independence assumption on sampled units, all 

the information in 𝑊 is also contained in 𝐶. Thus, we can model the data 𝑌 as 

 𝐶	~	𝑀(𝑛, 𝜋) (2.4) 

 𝑍#|𝑢# 	~	𝑁((𝜇* , 𝛴). (2.5) 

For the distribution (2.4), 𝜋 = {𝜋*: 𝑑 = 1, 2, … , 𝐷} is a vector of cell probabilities 

parameterizing the multinomial distribution corresponding to 𝐶. Note that the mean of the 

normal distribution in (2.5) is indexed by 𝑑, denoting that the means vary by contingency cell but 

the covariance structure 𝛴 is assumed to be constant across cells. The model for 𝑍 could also be 

regarded as a multivariate regression 𝑍 = 𝑈𝜇 + 𝜀. The number of free parameters in the 

unrestricted model is thus (𝐷 − 1) + 𝐷𝑞 + 𝑞(𝑞 + 1)/2. 

 

2.3.3.2: Restricted general location model 

The unrestricted general location model is suitable for datasets with many observations relative 

to the total number of cells 𝐷. Even when this is the case, however, challenges can arise if there 

are too many small contingency cell counts. To address this, the number of free parameters in the 

model can be reduced by: (1) placing a loglinear restriction on the cell probabilities or (2): 

defining a linear model for the within-cell means. I used method (2) to restrict the model in 

analyses. 

 Instead of considering the model as a multivariate regression 𝑍 = 𝑈𝜇 + 𝜀, which includes 

all main effects and interaction effects of categorical data on continuous values, a design matrix 
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𝐴 can be defined to specify the desired effects to include in the model. Let 𝜇 = 𝐴𝛽. Taking 𝐴 =

𝐼 will return the unrestricted model, but a different design matrix will lead to a reduced number 

of parameters 𝛽. For example, analyses for this work used the following design matrix which 

specifies an intercept and main effects of 𝑊&,𝑊",𝑊, only: 

	

𝐴 = 	

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

.	
(2.6) 

 
In this setup, estimability depends on the rank of 𝑈𝐴 instead of just 𝑈 and parameters in the 

model may be estimable even with some random zeros in the contingency cells. 

 

2.3.3.3: Restricted General Location Model in a Bayesian Framework 

Prior information is incorporated in the restricted general location model used for this analysis in 

three ways: (1) distributions of contingency cell counts are based on observed counts in ADAMS 

and (2) means and (3) variances for continuous variables are based on parameters estimated in 

ADAMS. Additional details for specifying prior distributions are provided in Section 3.4.1:. 
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Chapter 3 Methods Development: The Bayesian Latent Class 

Mixture Model 

Methods discussed in the statistical topic review presented in Section 2.3: were combined and 

extended to create a novel latent class mixture modeling framework for Bayesian algorithmic 

dementia classification. I used ADAMS, an HRS substudy that included detailed 

neuropsychological assessments and gold-standard dementia adjudication for all participants (see 

Section 2.1.2:), to develop and validate the Bayesian latent class mixture model. Details are 

presented in this chapter which discusses the motivation, formulation, and implementation steps 

for the Bayesian latent class mixture model.  

 

3.1: Dataset preparation 

To simplify matters while formulating the algorithmic dementia classification framework, I 

restricted analyses to a complete-case subset of ADAMS Wave A data for which all relevant 

covariate measures (i.e., sociodemographic characteristics, general cognitive assessments, 

neuropsychological assessments, and health characteristics (see variable selection steps discussed 

in Section 3.2:) were available (n=520). A more general framework that incorporates methods 

for handling missing data is discussed in Chapter 4. 

 

3.1.1: Data cleaning 

I collapsed ADAMS marital status categories “single”, “divorced”, and “separated” into a “not 

married/partnered” category and preserved the ADAMS “married/partnered” and “widowed” 

categories.  
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Self-reported measures of health characteristics are only available in the core HRS survey 

with follow-up waves that do not necessarily align with ADAMS interview waves. ADAMS 

wave A interview dates ranged from 2001-2004. The relevant HRS interview years are 2000, 

2002, and 2004. If ADAMS and HRS interviews were conducted in the same year, ADAMS 

interviews took place after HRS interviews. I used values for health behaviors and characteristics 

(history of stroke, hypertension, diabetes, heart disease, cancer; current smoking status; BMI; 

alcohol consumption) from the HRS wave closest to the ADAMS interview wave (i.e., HRS 

2000 for ADAMS 2001, HRS 2002 for ADAMS 2002 and 2003, and HRS 2004 for ADAMS 

2004). I characterized alcohol use (no drinking, moderate drinking, heavy/high risk drinking) 

according to the 2020 Dietary Guidelines for Americans (U.S. Department of Agriculture and 

U.S. Department of Health and Human Services 2020).  

Measures of functional ability, Instrumental Activities of Daily Living (IADLs) and 

Activities of Daily Living (ADLs), are only available in the HRS core interview. Thus, measures 

from a representative wave of HRS were used for ADAMS wave A as described above for other 

self-reported health measures. I used average scores for portions of the assessment that used 

multiple items to assess the same cognitive or functional domain. These portions of the 

assessment included IADLs, which asked participants to rate their level of difficulty with using 

the telephone, taking medication, and handling money; ADLs, which asked participants to rate 

their level of difficulty with bathing, eating, dressing, walking across a room, and getting in or 

out of bed; and proxy cognition inventories adapted from the Informant Questionnaire on 

Cognitive Decline in the Elderly (IQCODE), which asked informants to rate the participants’ 

ability to perform memory-related tasks compared to 2 years ago (Jorm 2004). 
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Scores on neuropsychological exam and general cognitive assessment tasks are ordinal 

categorical variables but were analyzed on a continuous scale. The Mini-Mental State Exam 

(MMSE), a 20-item test of global cognition (Folstein, Folstein, and McHugh 1975), is usually 

analyzed as a sum score in practice (Arevalo-Rodriguez et al. 2015). I transformed the MMSE 

sum score from its original scale [0, 30] to a normalized scale [0, 100] using a transformation 

developed and validated by Philipps et al. (2014). Normalized MMSE possesses better 

psychometric properties compared to raw MMSE and more closely resembles a normal 

distribution. A brief discussion about the psychometric properties of raw MMSE scores and the 

transformation is available in Appendix Section A.1:. The transformation function is available 

in the NormPsy R Package (Proust-Lima and Philipps 2018). I also used sum scores for the 

Boston naming test, an assessment where participants identify a series of line drawings of 

common items (Morris et al. 1989). I used the highest score for tasks where multiple trials were 

conducted (i.e., the CERAD immediate word list recall task (Morris et al. 1989) and backwards 

counting from 20 and 86 tasks). Prompts and scoring for ADAMS neuropsychological test items 

is available in Appendix Table A.1. 

ADAMS clinically adjudicated cognitive impairment classes were collapsed into four 

categories: (1) Unimpaired (n=211), (2) Mild Cognitive Impairment (MCI, n=65), (3) Dementia 

(n=158), and (4) Other (cognitive impairment due to conditions other than progression to 

dementia [e.g., depression, stroke, or other medical/neurological conditions], n = 86). A 

complete list of ADAMS adjudicated impairment categories and the corresponding collapsed 

category is provided in Appendix Table A.2.  
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3.1.2: Data splitting 

I split the complete-case ADAMS Wave A sample into 70% training (n=364) and 30% hold-out 

(n=156) sets for internal and external validation of the Bayesian latent class mixture model. 

Characteristics for the training and hold-out samples for variables chosen for inclusion during the 

variable selection process (see Section 3.2:) are presented in Table 3.2. Though the data split 

was random, there were slight differences between the training and hold-out samples due to 

small sample sizes. The hold-out sample was composed of a slightly higher proportion of White 

participants and slightly lower proportion of Black participants compared to the training sample. 

The hold-out sample had fewer participants with a history of stroke, slightly fewer unimpaired 

participants, and slightly more participants with dementia. 

 

3.2: Modeling and variable selection of important predictors of impairment 

An important initial step in formulating this algorithmic dementia classification framework was 

understanding important predictors of ADAMS adjudicated cognitive impairment classes. Rather 

than defining one model for the multi-level categorical outcome (Unimpaired vs. Other vs. MCI 

vs. Dementia), I used multi-part models to specify separate logistic regression models at each 

stage of classification. Three models were used to distinguish between impairment classes: (1) 

Unimpaired vs. Impaired, (2) Other vs. MCI or Dementia, and (3) MCI vs. Dementia. Models (2) 

and (3) were conditional on individuals being classified as being impaired or having MCI or 

dementia, respectively, thus models were fit in different subsets of the data. Modeling 

impairment classes this way naturally accommodates non-linear relationships and different 

subsets of predictors (Olsen and Schafer 2001). Based on clinical dementia assessments, 

candidate predictors for models included sociodemographic characteristics, general cognitive 
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assessments, neuropsychological assessments, and health characteristics. A complete list of 

candidate predictors for the multi-part models is provided in Appendix Table A.3.  

Important predictors of ADAMS diagnosed impairment class were chosen by fitting 

multi-part models in the overall ADAMS sample (n=826). Let 𝐺# , 𝑖 = 1,… , 826, denote the 

ADAMS adjudicated cognitive impairment class (group) for individual 𝑖 in the ADAMS training 

sample, 

 

𝐺# =	j

1																														if	participant	𝑖	was	classified	as	Unimpaired
2					if	participant	𝑖	was	classified	as	having	Other	impairment
3																																if	participant	𝑖	was	classified	as	having	MCI
4																					if	participant	𝑖	was	classified	as	having	Dementia

 (3.1) 

Letting 𝑋 denote the vector of candidate predictor variables including an intercept and 𝜸𝟏, 𝜸𝟐, 𝜸𝟑 

be vectors of regression coefficients, the following logistic regression models were fit in the 

ADAMS training sample: 

 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 1|𝑋)) = 𝜸𝟏𝑋 (3.2) 

 𝑙𝑜𝑔𝑖𝑡(𝑃(G = 2|𝑋, 𝐺	 ≠ 1)) = 𝜸𝟐𝑋 (3.3) 

 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 3	|𝑋, 𝐺 ≠ 1, 𝐺 ≠ 2) = 𝜸𝟑𝑋. (3.4) 

Variables were entered sequentially starting with fully observed variables; variables that 

led to more than 25% missing observations in the model were not considered. As an initial 

simplifying assumption to identify important predictors, predictors of cognitive status that were 

significant at the p=0.05 level were retained in the models. Updates to this process are discussed 

in Section 4.2.2.3:. Table 3.1 lists the specific predictors with non-zero regression coefficients 

reflecting that 𝜸𝟏, 𝜸𝟐, 𝜸𝟑 are distinct from one another. Sample characteristics for these selected 

predictors in the ADAMS training and testing sample are provided in Table 3.2. 
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Model 1 
Unimpaired vs. Impaired 

 

Model 2 
Other vs. MCI or Dementia 

 

Model 3 
MCI vs. Dementia 

 
Normalized MMSE Score 
 

Normalized MMSE Score 
 

Normalized MMSE Score 
 

Immediate Word Recall 
 

Immediate Word Recall 
 

Immediate Word Recall 
 

Age 
 

Age 
  

Race/Ethnicity 
   

Serial 7s 
   

Word List Recognition (yes) 
   

Story Recall (Immediate) 
   

Average Proxy Cognition 
(Jorm IQCODE)   

 Delayed Word Recall  

  IADLs 

 

  BMI 
 

  Stroke History (yes/no) 
 

Table 3.1: Variables included in multi-part models (Equations (3.1) - (3.4)) for predicting cognitive 
impairment categories in ADAMS.  

 
Ideally, all important predictors of impairment would be available for participants we aim 

to classify. Crucial measures are often unavailable in the larger sample where we aim to predict 

impairment but are available in a subset of the study. For example, Total MMSE, which was a 

consistently important predictor across the multi-part models (Table 3.1) is only available in 

ADAMS, not HRS where we aim to predict dementia. A reasonable strategy would be to impute 

important predictors for the rest of HRS using methods like multiple imputation (van Buuren 

2019; Rubin 1996) or semi-supervised learning (Zhang, Brown, and Cai 2019). While it is 

possible to include indicators for different classes and even interaction terms by class in these 

imputation methods, these are ultimately single-class modeling techniques. Several 
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neuropsychological measures in ADAMS possess distributions that are skewed and differ 

significantly by impairment class, however, (Figure 3.1) and initial modeling attempts using 

multiple imputation did not recover observed values in the tails of the distributions. 

 

Variable 

Overall 
(Wave A) 
N = 520 

ADAMS Training 
 (Wave A) 

N = 364 

ADAMS Hold Out 
 (Wave A) 

N = 156 
Age, Mean (SD) 82.4 (6.3) 82.6 (6.3) 82.0 (6.5) 
Race/Ethnicity, n (%)    
     White 382 (73.5%) 263 (72.3%) 119 (76.3%) 
     Black 89 (17.1%) 67 (18.4%) 22 (14.1%) 
     Hispanic 49 (9.4%) 34 (9.3%) 15 (9.6%) 
BMI, Mean (SD) 25.6 (5.2) 25.2 (4.8) 26.4 (6.1) 
History of stroke, n (%) 101 (19.4%) 75 (20.6%) 26 (16.7%) 
IADLs, Mean (SD) 0.6 (1.0) 0.5 (1.0) 0.6 (1.0) 
Serial 7s, Mean (SD) 2.4 (2.0) 2.3 (2.0) 2.5 (2.0) 
Immediate word recall, Mean (SD) 5.7 (2.3) 5.7 (2.3) 5.7 (2.4) 
Delayed word recall, Mean (SD) 3.7 (2.7) 3.7 (2.7) 3.7 (2.8) 
Total MMSE (normalized), Mean (SD) 54.2 (24.9) 54.3 (25.0) 54.1 (24.7) 
Word recall (yes), Mean (SD) 8.2 (2.3) 8.2 (2.3) 8.3 (2.3) 
Immediate story recall, Mean (SD) 13.7 (9.0) 13.6 (8.9) 14.0 (9.4) 
Average Jorm IQCODE, Mean (SD) 3.3 (0.7) 3.3 (0.7) 3.3 (0.7) 
Adjudicated impairment, n (%)    
     Unimpaired 211 (40.6%) 151 (41.5%) 60 (38.5%) 
     MCI 65 (12.5%) 45 (12.4%) 20 (12.8%) 
     Dementia 158 (30.4%) 108 (29.7%) 50 (32.1%) 
     Other 86 (16.5%) 60 (16.5%) 26 (16.7%) 
    

Table 3.2: Sample characteristics for complete-case ADAMS overall and stratified by training, and hold-
out samples for participants and variables included in the illustrative example.  

 
3.3: The Bayesian latent class mixture model 

Transitioning from single-distribution modeling strategies to a mixture of distributions was 

motivated by the practice in cohort studies with gold-standard dementia adjudication of 

adjudicating participants into different, clinically meaningful, cognitive impairment groups. One 

of the challenges of modeling data using mixture distributions is choosing the number of 
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distributions to use (see Section 2.3.2:). The 4-class mixture used in this analysis was motivated 

by ADAMS clinically adjudicated cognitive impairment categories and the practice of 

classifying individuals as having no cognitive impairment, MCI, or dementia in cohort studies 

with gold-standard adjudication (Manly et al. 2005; Wilson et al. 2010; Lopez et al. 2012; 

Knopman et al. 2016; Trittschuh et al. 2011; Demirovic et al. 2003; Bennett et al. 2012; 

Plassman et al. 2007). Further, visualizing the distribution of continuous variables in ADAMS 

stratified by cognitive impairment classes revealed that a mixture of distributions might do a 

better job of recovering the observed overall distribution of these variables (Figure 3.1).  

Any dataset could be viewed as a mixture of individuals who have no impairment, MCI, 

dementia, or other impairment. The inference goal of algorithmic dementia classification is 

identifying the correct mix of these individuals in a given study. Latent class mixture models 

simultaneously model data and infer individual impairment class membership (see Section 

2.3.2:). I embedded the three major steps of the proposed latent class mixture modeling approach 

for algorithmic dementia classification in a Bayesian framework to incorporate prior information 

from the ADAMS study into the model (see Section 2.3.1: for a brief overview of the Bayesian 

analysis framework). Broadly, the steps of the Bayesian latent class mixture model are: (1) make 

a synthetic version of a dataset with detailed neuropsychological assessment data but unknown 

cognitive impairment classification; (2) the latent class mixture model assigns impairment status 

(unimpaired, MCI, dementia, other) to observations in the synthetic dataset— since the mixture 

of impairment classes determines the distributions of synthetic data, we have increased 

confidence in the predicted impairment classes when the synthetic data closely resemble the real  
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Figure 3.1: Density plots for continuous variables in Table 3.1 stratified by ADAMS cognitive 
impairment class. 

 
data (3) generate many synthetic datasets to quantify uncertainty in inference. A schematic of 

this process is shown in Figure 3.2. 
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Figure 3.2: Schematic of Bayesian latent class mixture model for generating synthetic datasets. 𝜃	= 
parameters in the model. 𝑃(𝜃	|	ADAMS)	indicates that information from the ADAMS study is used to 

specify priors in the model. 

 
3.3.1: Extending the general location model 

The Bayesian latent class mixture model outlined above is an extension of the general location 

model which provides a framework for modeling a mix of categorical and continuous variables 

(see Section 2.3.3:). Briefly, the general location model uses normal distributions to model 

continuous variables with distributional parameters determined by an observation’s contingency 

cell membership (cross-classification of categorical variables). Density plots of continuous 

variables in Table 3.1, stratified by ADAMS cognitive impairment classes are shown in Figure 

3.1. By inspection, several of the variables could reasonably be modeled as mixtures of normal 

distributions, which motivated the use of the general location model in this framework. The 

formulation of the general location model implemented in this dissertation uses contingency-cell 

specific means but common variances across contingency cells. 
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Following the notation of Schafer (1997), let 𝑊&	and 𝑊" be the categorical variables in 

Table 3.1, race/ethnicity (White, Black, Hispanic) and stroke history (ever/never), and let 

𝑍&, 𝑍", … 𝑍&0 be the continuous variables in Table 3.1. Let 𝑋 = (𝑊, 𝑍) be an 𝑛	 × 	12 matrix of 

observed data. Contingency cell membership was determined by cross classification of two 

categorical variables, race/ethnicity and stroke history, yielding 6 possible cells. Let 𝐶 =

{𝑐*: 𝑑 = 1, 2, … 6} be the vector of observed counts for each contingency cell and let 𝑈 be an 

𝑛	 × 	6 matrix with rows 𝑢#+, where 𝑢# is a 6-vector with a 1 in position 𝑑 if observation 𝑖 falls 

into cell 𝑑 and 0s in all other position. All the information about 𝑊 is contained in 𝐶, thus the 

distribution of 𝑋 within each cognitive impairment group (latent class) 𝐺 can be characterized by 

𝑓(𝑋|𝜃1) = 𝑓(𝑊, 𝑍|𝜃1) = 𝑓(𝐶, 𝑍|𝜃1) = 	𝑓(𝑍	|𝐶, 𝜃1)𝑓(𝐶|𝜃1), where  

 𝐶|𝜃1 	~	𝑀(𝑛1 , 𝜋1) (3.5) 

 𝑍#|𝑢# 	~	𝑁&0(𝜇*! , 𝛴1) (3.6) 

and 𝜃1  is a vector of cognitive impairment group-specific parameters for the model. For the 

distribution in (3.5), 𝜋1 = {𝜋*!: 𝑑1 = 1, 2, … , 6} is a vector of cell probabilities parameterizing 

the multinomial distribution corresponding to 𝐶 in impairment group 𝐺. Note that the mean of 

the normal distribution in (3.6) is indexed by 𝑑1 , denoting that the means vary by contingency 

cell and across cognitive impairment groups but with an assumed constant covariance structure 

𝛴1  across cells within an impairment group. Due to small cell counts, the unrestricted form of the 

general location model (see Section 2.3.3.1:) which would estimate all race/ethnicity by stroke 

interactions effects on continuous variables 𝑍 could not be used. Thus, the restricted formulation 

was used instead (see Section 2.3.3.2:) to include only main effects of race/ethnicity and stroke 

on continuous variables 𝑍. In this model, the 6	 × 10 matrix 𝜇1  is restricted to the form 
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 𝜇1 = 𝐴Β, (3.7) 

where 𝜇1+ = [𝜇&	|	𝜇"	|… |𝜇2] and 𝐴 is a 6	 × 4 ANOVA-like design matrix that specifies an 

intercept and main effects for race/ethnicity and stroke on 𝑍 only,  

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

. (3.8) 

 
3.3.2: Generating synthetic datasets 

I embedded the restricted general location model described above in a Bayesian latent 

class mixture model to generate synthetic versions of ADAMS Wave A data. I used Gibbs 

sampling (see Section 2.3.1.2:) to sample model parameters from their posterior distributions. A 

diagram of the data generating model at iteration 𝑏 of the MCMC chain is provided in  

Figure 3.3, including the specific posterior distributions from which variables were 

sampled. I derived posterior distributions using similar techniques to those outlined in Schafer 

(1997) and Gelman et al. (2014). Complete derivations are provided in Appendix C. 

At iteration 𝑏 of an MCMC chain, let 𝑝(𝐺#3) be the predicted probability of cognitive 

impairment group membership for the 𝑖th participant based on the multi-part models defined by 

(3.1) - (3.4). Individuals were classified into distinct cognitive impairment classes by drawing 

from a Bernoulli distribution with probability of success equal to predicted probabilities from the 

models. Because the multi-part models were conditionally specified, Bernoulli draws were made 

sequentially using 𝑝(𝐺#3 = Unimpaired), 𝑝(𝐺#3 = Other | 𝐺#3¹ Unimpaired), 𝑝(𝐺#3 = MCI | 𝐺#3¹ 

Unimpaired, 𝐺#3¹ Other), 𝑝(𝐺#3 = Dementia | 𝐺#3¹ Unimpaired, 𝐺#3¹ Other, 𝐺#3¹ MCI). Once a 

participant was assigned to a cognitive impairment group, no other predicted probabilities were 
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used since membership in a more severely impaired group was conditional on non-membership 

in the less impaired groups.  

Let 𝐺#3 be a participant’s cognitive impairment group membership at iteration 𝑏. The 

restricted general location model was used to model data within each subset of participants 

belonging to the same impairment group 𝐺3. The impairment group-specific Bayesian 

formulation of the restricted general location model at iteration 𝑏 was 

	 𝑍#|𝑢# 	~	𝑁&0(𝜇*1 , 𝛴1) 
(3.9) 

	 𝐶1 	~	𝑀(𝑛1 , 𝜋1) (3.10) 

	 Β1|𝛴1 	~	𝑀𝑁4×&0(Β0! , 𝑉0! , Σ6/𝜅0) 
(3.11) 

	 𝛴1 	~	𝑊7"
8&�𝛬0!

8&� (3.12) 

	 𝜋1 	~	𝐷(𝛼1) (3.13) 

with hyperparameters 𝜅0, 𝜈0, and where 𝑢# indicates the contingency cell membership of an 

observation and 𝜇1 = 𝐴Β1 .  

Sampling in this framework was fast and convenient by properties of conjugate 

distributions (see Section 2.3.1:), thus computational time was not a challenge in this model. 

Small contingency cell counts in the ADAMS training sample, however, led to difficulty 

specifying priors. See Section 3.4.1: for a detailed discussion on techniques for overcoming this  
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Figure 3.3: Data-generating model for iteration 𝑏 of an MCMC chain for parameters in the Bayesian 
latent class mixture model. 𝑀 = Multinomial distribution; 𝐷 = Dirichlet distribution; 𝑁 = Normal 

distribution; 𝑀𝑁 = Matrix normal distribution; 𝑊!" = Inverse Wishart distribution. 
 

 
challenge. To simplify monitoring convergence of continuous variable variances, all continuous 

variables were standardized prior to the creation of synthetic datasets. Thus, prior distributions 

were specified using standardized versions of continuous variables. 

 

3.4: Illustrative example: algorithmic dementia classification in the Aging, 

Demographics, and Memory Study 

I trained the Bayesian latent class mixture model in the ADAMS training sample (n=364) and 

used it to create 1000 synthetic versions of the ADAMS training sample (n=364; internal 
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validation) and the ADAMS hold-out sample (n=156; external validation). Details on specifying 

prior distributions, model diagnostic plots, and algorithmic dementia classification results are 

presented below for both training and hold-out samples. 

 

3.4.1: Specifying prior distributions 

The ADAMS hold-out sample was reserved purely for external model validation; thus, prior 

distributions were specified using the ADAMS training sample only. There were 14 contingency 

cells out of a total 24 in the ADAMS training sample with fewer than 10 participants. These 

small cell counts created difficulties in estimating parameters for continuous variables 

conditional on their contingency cell membership. For example, there were no Hispanic 

participants with stroke history in the Unimpaired, MCI, or Other groups; and there was only one 

White participant with stroke history and one Black participant with stroke history in the MCI 

group.  

I made an initial attempt with non-informative priors, but those created model 

convergence issues. Attempts to increase prior cell counts by using observed cell counts in the 

larger HRS sample improved convergence but led to poor model fit due to differences in sample 

characteristics between HRS and ADAMS (e.g., ADAMS was oversample for impaired 

participants, so race/ethnicity by stroke distributions differed between HRS and ADAMS). 

Specifying prior distributions by bootstrap sampling (resampling with replacement (Efron and 

Tibshirani 1994)), proved to be a valuable technique to overcome these challenges.   

Since the goal of this analysis was to create realistic synthetic versions of ADAMS, 

bootstrapping seemed like a promising way to reproduce the empirical distribution of the data 

while avoiding the need to make oversimplifying distributional assumptions. Prior distributions 
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were obtained through a three-step process: (1) resample ADAMS data with replacement, 

drawing a sample of equal size to the original sample (non-parametric bootstrap). (2) calculate 

and store parameter estimates characterizing effects of covariates on cognitive impairment class 

membership, contingency cell counts, and effects of contingency cell membership on continuous 

covariates. (3) repeat the process 10,000 times to represent both sampling variability and 

estimation uncertainty in model parameters. This process was motivated by Bayesian non-

parametric methodology (Rubin 1981) and empirical Bayes concepts (Casella 1985).  

Priors on latent classes were specified using the multi-part models described by 

Equations (3.1)-(3.4). The models were fit in each of the 10,000 bootstrapped ADAMS datasets. 

Vectors of effect estimates (𝛾&, 𝛾", 𝛾,) for covariates in each model (see Table 3.1) were saved 

from each bootstrap sample, yielding a distribution of 10,000 values for each parameter. A 

random vector of effects was sampled for each model at each iteration 𝑏 of the MCMC chain for 

synthetic data generation. 

Priors on categorical variables were specified by cross-classifying observations in each 

ADAMS bootstrap sample into race/ethnicity x stroke contingency cells. Cognitive impairment-

group specific race/ethnicity x stroke contingency cell counts (𝛼1) were saved from each 

ADAMS bootstrap sample, yielding a distribution of 10,000 values for each vector of 

contingency cell counts for each cognitive impairment group. A random vector of counts was 

sampled as the prior count at each iteration 𝑏 of the MCMC chain for synthetic data generation. 

Priors on continuous variables were specified using group- and contingency cell-specific 

estimates of means (𝜇*1) and group-specific estimates of covariances matrices (Σ1) from each 

ADAMS bootstrap sample, yielding a distribution of 10,000 values for each parameter. A 
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random mean-covariance matrix pair was sampled and used as the prior at each iteration 𝑏 of the 

MCMC chain for synthetic data generation. 

 

3.4.2: Results 

3.4.2.1: Prior Predictive Checks 

Prior predictive checks were performed for distributions of contingency cell counts and 

continuous variables stratified by ADAMS cognitive impairment classes in both the training and 

hold-out samples. For both samples, 1000 synthetic ADAMS datasets were generated by drawing 

from prior distributions only. Prior predictive checks for contingency cell counts and normalized 

MMSE are presented in Figure 3.4 and Figure 3.5, respectively, for the ADAMS training 

sample. Prior predictive checks of other continuous variables included in analyses (Table 3.1) 

were similarly satisfactory and code for creating those figures is provided in the associated 

GitHub repository. 

Prior predictive distributions for the 1000 synthetic contingency cell counts were 

centered around true count as desired and expected since priors were based on bootstrap 

sampling of the ADAMS training sample. By nature of resampling the data, any observed 0 

count cell remained 0 in prior predictive distributions (Hispanic + Stroke group in Unimpaired, 

MCI, and Other impairment groups (Figure 3.4(a), Figure 3.4(b), Figure 3.4(d)).  

Prior predictive distributions of normalized MMSE were slightly wider (more variable) 

than observed distributions, ensuring that the full range of values was captured by features 

encoded in the priors. Figure 3.5 shows prior predictive distributions of normalized MMSE 

overlayed on observed normalized MMSE in ADAMS training data for one synthetic dataset;  
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(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 

 
  
Figure 3.4: Prior predictive distributions of contingency cell counts based on 1000 synthetic ADAMS 

training datasets by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Colored 
vertical lines in each panel represent observed cognitive impairment group-specific contingency cell 

counts in the ADAMS training sample. 
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Figure 3.5: Prior predictive distributions of normalized MMSE (colored densities) based on 1000 

synthetic ADAMS training datasets by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) 
Other. Gray densities are observed impairment group-specific distributions of MMSE in the ADAMS 

training sample. 
 

an animated gif cycling through all 1000 synthetic datasets was used to determine whether there 

was enough variability across the 1000 synthetic datasets. Prior predictive checks for the 

ADAMS hold-out sample were similar. Code to produce .gif files is available on the associated 

GitHub repository. 

 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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3.4.2.2: Assessing model convergence 

MCMC chains were produced for each parameter in this analysis, but the primary chains 

monitored for convergence across runs were impairment class proportions and impairment 

group-specific variances for continuous variables. All chains converged in both training and 

holdout samples. MCMC chains for the ADAMS training sample are shown in Figure 3.6, and 

code for the MCMC chains for the ADAMS hold-out sample are provided in the associated 

GitHub repository.  

To assess model stability, MCMC chains were initiated in different parts of the parameter 

space of proportions of cognitive impairment class membership. Five chains were monitored: (1) 

a “warm start” chain with cognitive impairment class proportions close to observed ADAMS 

proportions (40% Unimpaired, 10% MCI, 30% Dementia, 20% Other), (2) a “random” chain 

with equal proportions for all impairment classes (25% Unimpaired, 25% MCI, 25% Dementia, 

25% Other), (3) “mostly dementia” chain where proportion of dementia dominated other 

impairment classes (10% Unimpaired, 30% MCI, 40% Dementia, 20% Other), (4) “mostly MCI” 

chain where proportion of MCI dominated other impairment classes (10% Unimpaired, 40% 

MCI, 20% Dementia, 30% Other), and (5) “mostly impaired” chain where only 5% of 

participants were initiated in the unimpaired class (5% Unimpaired, 25% MCI, 55% Dementia, 

15% Other). Analyses of multiple chains of impairment class proportions showed good 

convergence and mixing, demonstrating that the model was stable regardless of the starting point 

(Figure 3.7).  
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(a) 

 
(b)

 
Figure 3.6: MCMC chains of (a) proportions of cognitive impairment class membership and (b) 

impairment group-specific variances of continuous variables based on 1000 synthetic ADAMS training 
datasets. Black vertical lines mark the end of the burn-in period (500 runs). 
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Figure 3.7: Five MCMC chains of proportions of cognitive impairment class membership. Each chain 
was initiated at different points in the parameter space. Chain 1 (warm start): 40% Unimpaired, 10% 

MCI, 30% Dementia, 20% Other; Chain 2 (random chain): 25% Unimpaired, 25% MCI, 25% Dementia, 
25% Other; Chain 3 (mostly dementia): 10% Unimpaired, 30% MCI, 40% Dementia, 20% Other; Chain 4 
(mostly MCI): 10% Unimpaired, 40% MCI, 20% Dementia, 30% Other; Chain 5 (mostly impaired): 5% 

Unimpaired, 25% MCI, 55% Dementia, 15% Other. 

 
3.4.2.3: Posterior predictive checks 

Posterior distributions of contingency cell counts and median and skew for continuous variables 

were assessed for both ADAMS training and hold-out samples. All posterior statistics were 

stratified by predicted cognitive impairment class. Posterior predictive distributions for cell 

counts and median and skew of normalized MMSE in the ADAMS training sample are presented 

in Figure 3.8 - Figure 3.10. Posterior predictive distributions for the remaining continuous 

variables were similar and code for producing them is provided in the associated GitHub 

repository.  
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(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 

 
Figure 3.8: Posterior predictive distributions of contingency cell counts based on 1000 synthetic ADAMS 

training datasets by cognitive impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. 
Colored vertical lines in each panel represent observed impairment group-specific contingency cell count 

in the ADAMS training sample. 
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Figure 3.9: Posterior predictive distributions of median MMSE based on 1000 synthetic ADAMS training 
datasets by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Colored vertical lines 

denote observed impairment group-specific medians of MMSE in the ADAMS training sample. 
 

Posterior cell counts for Black and Hispanic participants were satisfactory across impairment 

groups while those for White participants were less so since posterior distributions for White 

participants only included observed counts in the tails of the distributions.  

Posterior distributions of continuous variable medians were roughly centered around 

observed medians in the ADAMS data. Posterior distributions of skewness of synthetic 

continuous variables were centered around 0, demonstrating that synthetic variables were more 

symmetric than observed continuous variables which for the most part had non-zero skewness.  

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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Figure 3.10: Posterior predictive distributions of MMSE skew based on 1000 synthetic ADAMS training 
datasets by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Colored vertical lines 
denote observed impairment group-specific normalized MMSE skew in the ADAMS training sample. 

 
This is expected since synthetic variables are mixtures of normal distributions which can, 

but are not guaranteed, to produce skewed distributions. Posterior predictive distributions for the 

ADAMS hold-out sample were similar, and code for constructing them is provided in the 

associated GitHub repository. 

	
3.4.2.4: Algorithmic dementia classification 

Figure 3.11 shows 95% credible intervals of participant counts in each cognitive impairment 

class across 1000 synthetic ADAMS training and hold-out datasets. In the ADAMS training data, 

every credible interval captured the observed ADAMS cognitive impairment class count; the 

largest discrepancy in mean count was in the dementia group where the model overestimated the 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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count by just 25 people on average. In the ADAMS hold-out set, again, every credible interval 

captured the observed ADAMS impairment class count, and in the hold-out sample, the largest 

discrepancy was in the MCI group where the model underestimated the count by just 5 people on 

average. 

 
(a) ADAMS Training Sample

 

(b) ADAMS Hold-out Sample 

 
Figure 3.11: Algorithmic dementia classification in the (a) ADAMS training sample and (b) ADAMS 

hold-out sample. Colored intervals are 95% interval estimates of participant counts within each cognitive 
impairment group across 1000 synthetic datasets. Black diamonds are group-specific observed counts in 

each dataset. 

 
3.5: Discussion 

Using the Bayesian latent class mixture model, I was able to create synthetic versions of the 

ADAMS data that preserved important features of the real ADAMS study and resulted in 

accurate predicted cognitive impairment classes in both the training and hold-out samples. I 

observed some lack of fit for categorical variables, specifically distributions of White 

participants in stroke history x cognitive impairment class were not well replicated. This is 

somewhat counterintuitive since White participants are well-represent in ADAMS, so we would 

expect estimates to be more accurate for them. The better fit of predicted categorical variable 

distributions for groups of smaller sample sizes, however, is a feature of multinomial 
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distributions, which are used to draw categorical data in this model. Groups of smaller sizes 

make up a smaller proportion of the sample and will thus have less variability in their estimates.  

A notable desirable property of this model is that cell counts that were 0 in the prior (i.e., 

Hispanic participants with stroke history in all cognitive impairment groups other than dementia) 

did not remain zero in the posterior. Since the 0 cell counts in the prior were random, not 

structural, realistic replicates of the dataset would be expected to have small, non-zero cell 

counts. 

Overall, the results presented in the illustrative example demonstrate promising 

performance for the Bayesian latent class mixture modeling framework for algorithmic dementia 

classification. The lack of fit for some categorical variables and the lack of skew in synthetic 

continuous variables did not impact the prediction accuracy for cognitive impairment classes in 

the illustrative example but does call for more careful consideration of potential impacts of using 

these synthetic datasets in subsequent analyses. I conducted several simulation studies to better 

understand the statistical properties of this model in datasets of different sizes and using prior 

data obtained through different sampling frames, the performance of this algorithmic dementia 

classification procedure for participants of different race/ethnicities, and the use of synthetic 

datasets generated from the Bayesian latent class mixture model in downstream analyses. These 

studies are described in full detail in Chapter 4 and Chapter 5. 
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Chapter 4 Simulation Study: Bayesian Latent Class Mixture Model 

using Prior Information from the Aging, Demographics, and 

Memory Study 

 

Chapter 3 presented details for a Bayesian latent class mixture modeling framework for 

algorithmic dementia classification that incorporates information commonly used in algorithmic 

dementia classification algorithms (i.e., sociodemographic characteristics, health characteristics, 

general cognitive assessments) and detailed neuropsychological assessments which are crucial in 

clinical dementia assessments; but due to a lack of availability in large studies, are currently not 

used in dementia classification algorithms. Understanding relationships between detailed 

neuropsychological measures and participants’ cognitive impairment status was an important 

first step to incorporating these key measures in dementia classification algorithms. By 

successfully creating synthetic versions of the ADAMS study using a Bayesian latent class 

mixture model (see Section 3.4:), I demonstrated how translating key measures like detailed 

neuropsychological assessments to population-based surveys can strengthen algorithmic 

dementia classification in these samples.  

The ultimate goal of this project is to use the Bayesian latent class mixture modeling 

framework to algorithmically classify cognitive impairment status in the 2016 HCAP study 

which does not currently have a clinically adjudicated subset of participants (see Section 2.1.3:) 

and generalize those results to the 2016 HRS study, the population-representative study from 

which HCAP was sampled (see Section 2.1.1:). Before applying the Bayesian latent class 

mixture model to 2016 HCAP, I conducted a simulation study to assess the statistical properties 
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of the proposed algorithmic dementia classification framework and the impact of using the 

generated synthetic datasets in downstream analyses. I used a synthetic superpopulation in the 

simulation study that was based on 2016 HRS and 2016 HCAP data with cognitive impairment 

classification based on information from the ADAMS study. I was interested in model 

performance at two levels: (1) “Can the model accurately classify cognitive impairment for 

participants in an HCAP-type study with available detailed neuropsychological assessments?” 

and (2) “Do algorithmic classifications in the HCAP-type study yield valid inferences after they 

are generalized to a population-representative HRS-type study?” I anchored the simulation study 

in a question dementia researchers may be interested in answering using HRS: estimating 

standardized race-specific dementia prevalences and racial/ethnic differences in prevalent 

dementia in the 2016 HRS study.  

The illustrative example in Chapter 3 using ADAMS data revealed some issues with 

model fit and included simplification steps that are adjusted in this chapter. This chapter is 

organized as follows: I start by outlining broad simulation study steps that provide a high-level 

overview of the study; then, I move into details about ADAMS, HCAP, and HRS dataset 

preparation including how I addressed missing data in each study and performed variable 

selection for important predictors in the Bayesian latent class mixture model; next, I provide 

details on creating the superpopulation for the simulation study. The last half of the chapter 

shows model fit diagnostics for the Bayesian latent class mixture model and simulation study 

results.  
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4.1: Simulation study outline 

Simulation studies are a valuable tool for assessing properties of an analytic method under 

different controlled conditions (e.g., different sample sizes or different data distributions). In 

simulation studies, we use a dataset with known truth against which we compare estimated 

values from our model. By varying conditions in these studies, we can quantify performance of 

the analytic method as it relates to properties of the data. There are several methods for creating a 

dataset with known truth for simulation studies. Some simulation studies use synthetic datasets 

with researcher-specified data-generating processes and thus researcher-specified truth (Shaw et 

al. 2021; Huque et al. 2018; Drechsler 2015; Grund, Lüdtke, and Robitzsch 2017; Lüdtke, 

Robitzsch, and Grund 2017; Hayes-Larson et al. 2022; Hron, Templ, and Filzmoser 2010). 

Parameters in these studies are usually based on or calibrated to real-world data so that synthetic 

datasets are more realistic. Other simulation studies have opted to use datasets derived from 

extant studies and consider estimates in those derived datasets as the truth (Dahal et al. 2019; L. 

Tang et al. 2005; Cao et al. 2022; Shaw et al. 2022). Synthetic datasets constructed using 

researcher-specified parameters represent simplified versions of real-world phenomenon; it is up 

to the discretion of the researcher whether the simplified data provides a useful assessment of 

their model. Studies that opt for datasets derived from extant studies typically do so to preserve 

complicated joint distributions that would be difficult to model in completely simulated data. 

This is especially useful in studies of analytic methods that require many variables. 

Since I am modeling many variables in Bayesian latent class mixture model whose joint 

distributions would be difficult to replicate but are an important facet of the model assessment, I 

chose to preserve these relationships by bootstrapping an extant dataset to create a 



  55 

superpopulation of n=1,000,000 observations. Thus, estimated values of interest in the 

superpopulation were considered the truth in this simulation.  

This simulation study evaluates the role of sample size for population-representative 

studies (HRS) and subsamples with detailed neuropsychological measures (HCAP) when using 

information from ADAMS to specify priors in the Bayesian latent class mixture model. An 

outline of the simulation study is presented in Figure 4.1.  

 

 

Figure 4.1: Simulation study flow diagram. Black boxes indicate analysis steps and blue boxes indicate 
calculation steps. The red box denotes the sequence of steps that are repeated 1000 times in the simulation 

study.  

 
First, I generated a superpopulation of 𝑛9:';<'='=1,000,000 observations with detailed 

neuropsychological assessments and known impairment class. Specific methods for creating the 

superpopulation are discussed in Section 4.3:. Prevalence of cognitive impairment overall and by 

race/ethnicity and racial/ethnic differences in prevalent dementia in the superpopulation were 

considered the truth in the simulation study. 
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I evaluated simulation scenarios with HRS and HCAP sample sizes that enveloped sizes 

of the HRS 2016 70+ sample (n=6,313) and the HCAP 2016 70+ sample (n=2,235), which are 

the relevant samples for this analysis (see below for a discussion of sample selection). For each 

simulation run, I sampled HRS studies as a simple random sample (SRS) from the 

superpopulation using three different sample sizes 𝑛>?@ = 2000, 4000, 8000. Then, I sampled 

HCAP studies using the sampling frame implemented in the real HRS/HCAP study—stratified 

random sampling by married/partnered status (Langa et al. 2020). I sampled HCAP studies at 

25% and 50% rates from each HRS study resulting in 6 simulation scenarios with the following 

sample sizes: 𝑛>ABC"D = 500, 1000, 2000 and 𝑛>ABCD0 = 1000, 2000, 4000.  

For each HCAP sample in each simulation run, I algorithmically classified cognitive 

impairment status and quantified estimation uncertainty by using the Bayesian latent class 

mixture model to create 1000 synthetic HCAP datasets and taking the mean and 95% credible 

interval of posterior predicted distributions of cognitive impairment class counts. Then, I age and 

sex-standardized race/ethnic specific estimates of dementia prevalence to HRS studies from 

which the HCAP study was sampled. To assess model performance related to cognitive 

impairment class prediction, I assessed interval estimate coverage, bias, and RMSE of predicted 

cognitive impairment class proportions overall and by race/ethnicity across 1000 simulation runs. 

To assess model performance related to inferences at the population-representative level, I 

assessed interval coverage, bias, and RMSE of standardized race/ethnic specific estimates of 

dementia prevalence in HRS; dementia prevalence ratios and differences for Black vs. White and 

Hispanic vs. White participants in HRS; and interval coverage, bias, and RMSE of dementia 

prevalence ratios and differences for Black vs. White and Hispanic vs. White participants in HRS 

across 1000 simulation runs. 
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4.2: Dataset preparation 

I used extant data to create a realistic superpopulation and to specify prior distributions in the 

Bayesian latent class mixture model. Specifically, I used data from participants aged 70+ in the 

HRS 2016 wave, the ADAMS 2000 (wave A, baseline) wave, and participants aged 70+ in the 

HCAP 2016 (baseline) wave. Brief descriptions of each dataset are provided in Sections 2.1.1:- 

2.1.3:. Dataset-specific preparation steps for the simulation study are discussed below.  

 

4.2.1: Health and Retirement Study 

I collapsed HRS employment categories to align with ADAMS study employment categories. 

“Working” and “retired” categories were preserved while “unemployed and looking for work”, 

“temporarily laid off”, “disabled”, “homemaker”, “other”, and “on leave” were collapsed into the 

“not working” category. I characterized alcohol use (no drinking, moderate drinking, heavy/high 

risk drinking) according to the 2020 Dietary Guidelines for Americans (U.S. Department of 

Agriculture and U.S. Department of Health and Human Services 2020).  

General cognitive assessment scores on the backwards count from 20 and CERAD immediate 

word recall tasks were cleaned in the same way as described for the ADAMS study in the 

illustrative example in Chapter 3 (see Section 3.1.1:).  

 

4.2.1.1: Sample selection 

The HRS sample selection flow diagram is shown in Figure 4.2. I restricted the sample to 

participants aged 70+ and who were not missing race/ethnicity and who self-identified as White, 

Black, or Hispanic (n=13,745) to match sociodemographic characteristics of the ADAMS study. 

I dropped n=4 participants missing years of education, n=24 participants missing employment 
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status, n=45 participants missing alcohol consumption, and n=207 participants missing any 

information on self-reported chronic conditions (history of stroke, hypertension, diabetes, heart 

disease, cancer). I also dropped n=573 participants missing any HRS cognitive assessment. The 

final 2016 HRS analytic sample comprised n=6,313 participants. Relevant sample characteristics 

are displayed in Table 4.1. 

 

 

Figure 4.2: Sample selection flow diagram for the 2016 wave of HRS. Red boxes show exclusion criteria.  

 
4.2.2: Aging, Demographics, and Memory Study 

ADAMS data cleaning steps and descriptions of cognitive impairment categories were presented 

previously (see Section 3.1:).  

 

4.2.2.1: Sample selection 

The ADAMS sample selection flow diagram for the simulation study is shown in Figure 4.3. 

Data from ADAMS is used to specify priors in this simulation study. Unlike the illustrative 

example in Chapter 3, I did not require complete data on all measures for all ADAMS 
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participants and instead used multiple imputation (MI) to address missing data in the sample 

(details below). Participants missing all HRS general cognitive assessments and all ADAMS 

neuropsychological assessments were dropped from the sample (n=30). These participants were 

likely severely cognitively impaired, implying the data were not missing at random, which is a 

violation of MI assumptions and could negatively impact the quality of imputed data (see 

Appendix Section B.1:). Thus, I required ADAMS participants to complete at least one 

cognitive assessment so that some information on participants’ cognitive function would be 

available for MI models. Relevant sample characteristics are displayed in Table 4.1. 

 

 

Figure 4.3: Sample selection flow diagram for the 2000 wave (wave A) of ADAMS. The red box shows 
exclusion criteria.  

 
4.2.2.2: Imputing missing data using multiple imputation 

There was minimal missing data in ADAMS on sociodemographic and health variables (range: 

0.1% - 0.2%) and a fair amount of missing data on cognitive measures (range: 2.2% - 21.8%) 

(Table 4.1). The ADAMS sample is small, so it was important to preserve sample size by 

imputing missing data using multiple imputation (MI) for participants with at least one cognitive 

measure available. I implemented MI using fully conditional specification with predictive mean 

matching (PMM) through a custom implementation of the PMM option in the miceFast R 
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package (Nasinski 2021). See Appendix Section B.1: for a more detailed discussion of MI, fully 

conditional specification, and PMM. 

I used sociodemographic variables as predictors in imputation models for all variables. In 

imputation models for variables collected in HRS only (marital status, health characteristics, 

general cognition measures), I included other HRS-only variables as predictors. In imputation 

models for variables collected in ADAMS that were also collected in HRS (general cognitive 

assessments and self-rated memory), predictors included corresponding measures collected in 

HRS and other measures collected in ADAMS including clinically adjudicated cognitive 

impairment group. In imputation models for ADAMS-only measures (detailed 

neuropsychological assessments), I only included other measures collected in ADAMS and 

clinically adjudicated impairment group as predictors. 

Since the maximum proportion of missing data for a variable in ADAMS was 21.8%, I 

followed recommendations in Bodner (2008) and White, Royston, and Wood (2011) to set the 

number of imputations to exceed the amount of missing data and used 25 imputations. I 

monitored traceplots of imputed values and their standard deviations for each imputed variable 

and chose 15 iterations per imputation.  

An updated table of sample characteristics with ADAMS imputed values is displayed in 

Appendix Table E.1. Comparing Appendix Table E.1 to Table 4.1, we see those who were 

missing data in ADAMS were likely in slightly poorer health and would have performed slightly 

worse on cognitive assessments compared to ADAMS participants without missing data. Missing 

participants were imputed as more likely to be retired, less likely to be married/partnered, more 

likely to have heart disease or hypertension and more likely to consume alcohol. Average 

imputed scores for general cognitive assessments and detailed neuropsychological assessments 
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measured on a continuous scale (i.e., items other than correct yes/no items) were slightly lower 

than observed scores.  

 

4.2.2.3: Variable selection 

As discussed in Chapter 3, an important first step in building the Bayesian latent class mixture 

model was determining which variables were important for predicting cognitive impairment 

class membership. After imputing ADAMS data using MI, the pool of potential variables was 

much larger than in the illustrative example in Chapter 3. I had previously hand-selected 

variables to include using forwards selection and a p-value cutoff, but I needed a more time-

efficient, systematic, and objective way of selecting variables for inclusion from this larger pool 

of variables.  

Least Absolute Shrinkage and Selection Operator (LASSO) regression is commonly used 

for variable selection in problems with many covariates and is available in several software 

packages. LASSO shrinks coefficients towards zero using a penalty term that can be user 

specified or algorithmically chosen via cross-validation. See Tibshirani (1996) for an 

introduction to LASSO regression for variable selection.  

I implemented LASSO regression using the R package glmnet (Friedman, Hastie, and 

Tibshirani 2010). I included all sociodemographic variables, health characteristics, HRS general 

cognitive assessments, and ADAMS detailed neuropsychological assessments in the pool of 

variables (38 potential variables). The importance of variables and their magnitude of association 

likely differ by cognitive impairment class. Instead of fitting one multinomial outcome model, I 

fit a different model for each impairment class (Unimpaired, MCI, Dementia, Other) to 

accommodate different subsets of predictors for each model. Let 𝐺# , 𝑖 = 1,… , 826, denote the 
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ADAMS adjudicated cognitive impairment class (group) for individual 𝑖 in the ADAMS training 

sample, 

 

𝐺# =	j

1																														if	participant	𝑖	was	classified	as	Unimpaired
2					if	participant	𝑖	was	classified	as	having	Other	impairment
3																																if	participant	𝑖	was	classified	as	having	MCI
4																					if	participant	𝑖	was	classified	as	having	Dementia

 (4.1) 

Letting 𝑋 denote the vector of candidate predictor variables including an intercept and 

𝜸𝟏, 𝜸𝟐, 𝜸𝟑, 𝜸𝟒 be vectors of regression coefficients, the following logistic regression models were 

fit in the ADAMS sample using LASSO: 

 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 1|𝑋)) = 𝜸𝟏𝑋 (4.2) 

 𝑙𝑜𝑔𝑖𝑡(𝑃(G = 2|𝑋)) = 𝜸𝟐𝑋 (4.3) 

 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 3	|𝑋)) = 𝜸𝟑𝑋 (4.4) 

 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 4	|𝑋)) = 𝜸𝟒𝑋 (4.5) 

 I multiply-imputed ADAMS prior to the variable selection step, thus I had 25 versions of 

the ADAMS sample. I followed recommendations in Du et al., (2022) and stacked imputed 

datasets, weighting observations by the inverse of the number of imputed datasets when 

specifying the LASSO model. I used default settings in the glmnet function and used the cross-

validation option to select the best shrinkage parameter. To ensure stability of the LASSO 

results, I ran the cross-validation function 1000 times and used the median lambda from those 

runs as my shrinkage parameter. There was minimal shrinkage from the LASSO model, so I 

rounded model coefficients to two decimal places and dropped any variables that were rounded 

to zero as a result. There was still minimal shrinkage after this additional rounding step; the most 

shrinkage was in the model for the Other cognitive impairment class which had four predictors 

removed. Appendix Table E.2 shows variables selected for each impairment class model. 
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Sample characteristics presented in Table 4.1 include variables selected for at least one of the 

models. 

 

4.2.3: Harmonized Cognitive Assessment Protocol 

HCAP employment categories and alcohol use were cleaned and derived in the same way as 

described in Section 4.2.1: for the HRS sample. Scores on neuropsychological and general 

cognitive assessments were cleaned in the same way described for the ADAMS sample in the 

illustrative example in Chapter 3 (see Section 3.1.1:).  

 

4.2.3.1: Sample selection 

The HCAP sample selection flow diagram is shown in Figure 4.4. I restricted the sample to 

participants aged 70+ and who self-identified as White, Black, or Hispanic to match 

sociodemographic characteristics of the ADAMS sample; this eliminated 945 participants. I also 

dropped participants missing information on key sociodemographic and health variables: n=1 

participant missing years of education, n=1 participant missing employment status, n=15 

participants missing alcohol consumption, and n=73 participants missing any information on 

self-reported chronic conditions (history of stroke, hypertension, diabetes, heart disease, cancer). 

Because HRS total cognition was an important variable used to impute missing 

neuropsychological measures in HCAP (details below), I removed participants missing HRS 

total cognition scores from the sample (n=163) resulting in a final 2016 HCAP analytic sample 

with n=2,298 participants. Sample characteristics are displayed in Table 4.1. 
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Figure 4.4: Sample selection flow diagram for the 2016 wave of HCAP. Red boxes show exclusion 
criteria.  

 
4.2.3.2: Imputing missing neuropsychological data using hotdeck imputation 

All neuropsychological measures are missing for HCAP respondents who completed their 

interviews via proxy (n=129 for HCAP 70+) and subsets of the neuropsychological exam are 

missing for participants who were likely very impaired and could not complete all the items. 

Participants with proxy-only interviews are likely more cognitively impaired than those who 

completed the interview as self-responders, thus dropping proxy-only participants would lead to 

a complete-case sample over-selected for less impaired participants.  

Though MI is generally preferred over single imputation, I used a single-imputation 

method for the HCAP neuropsychological measures to simplify simulation studies (see Chapter 

6 for an illustration of how to incorporate multiple imputation to the Bayesian latent class 

mixture model). I used single hotdeck imputation with donor pools defined by stratified 

matching. Briefly, hotdeck imputation uses a pool of donors with observed values in the dataset 

from which to randomly draw values for variables that need to be imputed. Thus, hotdecking 



  65 

always produces imputations within the range of observed values. See Appendix Section B.2: 

for a more comprehensive discussion of hotdeck imputation.  

The quality of imputed datasets depends on the quality of the donor pool. There are 

several strategies for creating a pool of donors. I created pools tailored to the variable being 

imputed by categorizing continuous variables and matching observations in HCAP using 

combinations of the most relevant sociodemographic characteristics, HRS general cognition 

items, and neuropsychological assessments. Since I was imputing all cognitive assessments for 

proxy participants, it was important to have a measure of total cognition on which to anchor 

those matches. Thus, I dropped participants missing the HRS total cognition measure.  

I considered the cognitive domain a neuropsychological test was designed to measure 

when selecting variables to match. Some neuropsychological tests are designed to capture 

performance in a specific cognitive domain while others provide a measure of general cognition 

(Harvey 2019; Reger et al. 2004). When possible, participants were matched on a measure of 

total cognition and other cognitive assessments designed to measure the same or relevant 

domain. Since I imputed missing neuropsychological measures using one hotdeck draw, 

imputation order was important. Variables that I wanted to include in matching for other 

neuropsychological measures were imputed first. For example, I imputed MMSE scores before 

other neuropsychological assessments because they were important for subsequent imputations; I 

matched HCAP participants on race/ethnicity, sex/gender, age, educational attainment, and HRS 

total cognition score. For downstream word recall (yes) imputation (memory domain), I used 

hotdeck-imputed MMSE (a measure of total cognition), and hotdeck-imputed immediate word 

recall and delayed word recall scores (memory domain).  
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A challenge with hotdeck imputation is balancing quality matches with donor pool size. It 

is undesirable to require matches so precise that donor pools are small because identical values 

would be imputed for multiple participants. It is also possible to refine matches to the point that 

there are no donors available (i.e., the observation missing was the only observation in the 

dataset with that combination of characteristics). The desire to create donor pools of at least 15 

observations led to coarsening continuous variable categories and reducing the number of 

variables used for matching for some neuropsychological measures. Continuous variable 

categorization is described in Appendix Table E.3, and the complete list of hotdeck-imputed 

variables and variables used for matching can be found in Appendix Table E.4.  

An updated table of HCAP sample characteristics incorporating hotdeck-imputed values 

is displayed in Appendix Table E.1. Comparing Appendix Table E.1 to Table 4.1, we see that 

contrary to my original assumption, HCAP participants missing neuropsychological test 

measures were imputed as performing similarly to those with observed data as distributions are 

nearly identical between observed HCAP and imputed HCAP data. 

 

4.3: Creating the superpopulation 

I bootstrapped HRS 2016 70+ to create a superpopulation of 𝑛9:';<'=' =1,000,000 participants 

(Efron and Tibshirani 1994). Since HRS is a population-representative study, it made the most 

sense to base sociodemographic and health characteristics of the superpopulation on this sample. 

By bootstrapping HRS, I was able to preserve complex joint distributions in the data that would 

have been difficult to model. When I bootstrapped HRS, I included all variables from the 

variable selection procedure (see Section 4.2.2.3:) that were available in HRS 2016. I created 

neuropsychological measures in the superpopulation by hotdeck imputing all measures using 
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observed neuropsychological measures from HCAP 2016 as donors and the same matching 

strategy described above for hotdeck imputing the 2016 HCAP sample. Continuous variables 

were categorized the same was as for the HCAP 2016 sample imputation except for HRS total 

cognition which needed to be coarsened for the superpopulation (Table E.3). The complete list 

of superpopulation hotdeck-imputed variables and variables used for matching is presented in 

Appendix Table E.5. 

 Observations in the superpopulation were assigned to the Unimpaired, MCI, Dementia, or 

Other cognitive impairment group by predicting probabilities of class membership using 

coefficients from the variable selection procedure with models (4.1)-(4.5) and assigning the 

observation to Unimpaired if that was the highest predicted probability for an observation. If an 

observation was not assigned to the Unimpaired group, it was assigned to MCI, Dementia, or 

Other using a draw from a categorical distribution (generalization of a Bernoulli distribution) 

with probabilities of success equal to rescaled predicted probabilities from the cognitive 

impairment class models. 

 It was important to create a realistic superpopulation to have the best chance of this 

simulation study informing real data applications. I conducted quality checks of the 

superpopulation to assess whether established associations between sociodemographic 

characteristics, health characteristics, and dementia were also replicated in the superpopulation. 

Proportions of observations in each cognitive impairment classes in the superpopulation were 

reasonable but proportions in the Dementia group were slightly higher and proportions in the 

MCI group slightly lower compared to estimates from population-based studies: 37.3% 

Unimpaired, 16.4% MCI, 26.0% Dementia, and 20.4% Other (Rajan et al. 2021; Jennifer J 

Manly et al. 2022). There was slightly more dementia among women in the superpopulation 
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(women: 26.9%, men: 24.5%). There was more dementia among racial/ethnic minorities after 

standardizing by sex and age: White: 24.1%, Black: 33.1%, Hispanic: 30.2%. In line with 

literature, the prevalence of dementia increased with each additional year of age (PR=1.03), 

history of stroke history vs. no history of stroke (PR=1.72), history of diabetes vs. no history of 

diabetes (PR=1.03) and decreased with each additional year of educational attainment (PR=0.95) 

(Alzheimer’s Association 2022). Sample characteristics for relevant waves of each dataset and 

for the superpopulation are provided in Table 4.1. 

Since the superpopulation was generated by bootstrapping the HRS sample, distributions 

of sociodemographic characteristics, health characteristics, and general cognitive assessments are 

identical between HRS and the superpopulation. The HCAP study was designed as a stratified 

SRS from HRS based on marital status (Langa et al. 2020). Since marital status is unlikely highly 

correlated with other sample characteristics, we would expect distributions of sociodemographic 

characteristics and cognitive performance in HCAP to be nearly population-representative. 

Consistent with this, we observe very little difference between HCAP and HRS sample 

characteristics.  

 The ADAMS study is used as a prior in this analysis for inferences in the 

superpopulation. Large differences between ADAMS and the superpopulation may indicate 

incompatibility between the prior and observed data and negatively impact the quality of 

inferences. ADAMS is 3 years older than the superpopulation on average, is slightly more 

balanced on sex/gender due to the ADAMS design (Langa et al. 2005), has slightly more Black 

participants, fewer married/partnered participants, less educational attainment on average, and 

more retired participants compared to the superpopulation. ADAMS participants have more 

stroke history compared to the superpopulation and slightly more difficulty with ADLs and 
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IADLs but are healthier than the superpopulation when comparing other health characteristics. 

ADAMS participants were oversampled for impairment, thus, ADAMS had lower scores on 

average for HRS total cognition (5 points on average) and normalized MMSE (about 20 points 

on average) compared to the superpopulation. 

 

Variable 

ADAMS 
Baseline 
(2002) 

 N = 826 

HCAP 70+ 
Baseline 
(2016) 

N = 2,298 

HRS 70+ 
(2016) 

N = 6,313 
Superpopulation  

N = 1,000,000 
Age, Mean (SD) 81.3 (7.0) 78.8 (5.9) 78.8 (6.0) 78.8 (6.0) 
Female, n (%) 476 (57.6%) 1,379 (60.0%) 3,765 (59.6%) 596,718 (59.7%) 
Race/Ethnicity, n (%)     
White 590 (71.4%) 1,767 (76.9%) 4,837 (76.6%) 765,663 (76.6%) 
Black 153 (18.5%) 325 (14.1%) 895 (14.2%) 142,182 (14.2%) 
Hispanic 83 (10.0%) 206 (9.0%) 581 (9.2%) 92,155 (9.2%) 
Years of Education, Mean (SD) 10.0 (4.4) 12.6 (3.1) 12.6 (3.2) 12.6 (3.2) 
Employment status, n (%)     
Working 58 (7.0%) 190 (8.3%) 548 (8.7%) 86,592 (8.7%) 
Not working 61 (7.4%) 305 (13.3%) 809 (12.8%) 128,287 (12.8%) 
Retired 706 (85.5%) 1,803 (78.5%) 4,956 (78.5%) 785,121 (78.5%) 
Missing 1 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Married/Partnered, n (%) 327 (39.6%) 1,236 (53.8%) 3,356 (53.2%) 531,414 (53.1%) 
Missing 2 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
BMI, Mean (SD) 25.9 (5.4) 27.8 (5.6) 27.7 (5.6) 27.7 (5.6) 
Missing, n (%) 9.0 (1.1%) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 
History of stroke, n (%) 151 (18.3%) 307 (13.4%) 796 (12.6%) 125,963 (12.6%) 
Missing 1 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
History of diabetes, n (%) 158 (19.1%) 681 (29.6%) 1,858 (29.4%) 294,720 (29.5%) 
Missing 1 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
History of heart disease, n (%) 266 (32.2%) 849 (36.9%) 2,306 (36.5%) 365,608 (36.6%) 
Missing 1 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
History of hypertension, n (%) 445 (53.9%) 1,676 (72.9%) 4,579 (72.5%) 726,009 (72.6%) 
Missing 2 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Current smoker, n (%) 60 (7.3%) 143 (6.2%) 407 (6.4%) 64,479 (6.4%) 
Alcohol consumption, n (%)     
No drinking 681 (82.4%) 1,543 (67.1%) 4,247 (67.3%) 673,197 (67.3%) 
Moderate drinking 107 (13.0%) 567 (24.7%) 1,579 (25.0%) 249,798 (25.0%) 
Heavy drinking 36 (4.4%) 188 (8.2%) 487 (7.7%) 77,005 (7.7%) 
Missing 2 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
ADLs, Mean (SD) 0.9 (1.4) 0.4 (1.0) 0.4 (1.0) 0.4 (1.0) 
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IADLs, Mean (SD) 0.6 (1.0) 0.2 (0.5) 0.2 (0.5) 0.2 (0.5) 
Immediate word recall, Mean (SD) 5.6 (2.4) 7.0 (1.8) 4.8 (1.7) 4.8 (1.7) 
Missing, n (%) 35.0 (4.2%) 19.0 (0.8%) 0.0 (0.0%) 0.0 (0.0%) 
Delayed word recall, Mean (SD) 3.7 (2.7) 4.9 (2.6) 3.8 (2.0) 3.8 (2.0) 
Missing, n (%) 43.0 (5.2%) 28.0 (1.2%) 0.0 (0.0%) 0.0 (0.0%) 
Serial 7s, Mean (SD) 2.2 (2.0) 3.3 (1.7) 3.3 (1.7) 3.3 (1.7) 
Missing, n (%) 18.0 (2.2%) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 
Item naming (cactus): correct, n (%) 548 (66.3%) 2,105 (91.6%) 5,781 (91.6%) 915,717 (91.6%) 
Missing 180 (21.8%) 18 (0.8%) 0 (0.0%) 0 (0.0%) 
Item naming (scissor): correct, n (%) 751 (90.9%) 2,254 (98.1%) 6,213 (98.4%) 984,307 (98.4%) 
Missing 43 (5.2%) 18 (0.8%) 0 (0.0%) 0 (0.0%) 
President naming: correct, n (%) 598 (72.4%) 2,165 (94.2%) 6,047 (95.8%) 957,739 (95.8%) 
Missing 160 (19.4%) 19 (0.8%) 0 (0.0%) 0 (0.0%) 
Backwards count (20): correct, n (%) 591 (71.5%) 2,099 (91.3%) 5,779 (91.5%) 915,086 (91.5%) 
Missing 55 (6.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
HRS total cognition, Mean (SD) 16.4 (6.4) 20.8 (5.3) 20.8 (5.3) 20.8 (5.3) 
Missing, n (%) 169.0 (20.5%) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 
Subjective cognitive status, n (%)     
Same as 2 years ago 475 (57.5%) 1,584 (68.9%) 4,423 (70.1%) 701,102 (70.1%) 
Better than 2 years ago 59 (7.1%) 46 (2.0%) 129 (2.0%) 20,412 (2.0%) 
Worse than 2 years ago 249 (30.1%) 668 (29.1%) 1,761 (27.9%) 278,486 (27.8%) 
Missing 43 (5.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Total MMSE (normalized), Mean (SD) 51.3 (25.1) 70.6 (19.1)  70.4 (19.2) 
Missing, n (%) 12.0 (1.5%) 18.0 (0.8%)  0.0 (0.0%) 
Animal naming, Mean (SD) 11.7 (5.6) 15.5 (6.3)  15.5 (6.2) 
Missing, n (%) 36.0 (4.4%) 19.0 (0.8%)  0.0 (0.0%) 
Word recall (yes), Mean (SD) 8.2 (2.3) 8.9 (1.8)  8.6 (1.8) 
Missing, n (%) 52.0 (6.3%) 26.0 (1.1%)  0.0 (0.0%) 
Word recall (no), Mean (SD) 9.1 (2.1) 9.6 (1.2)  9.5 (1.2) 
Missing, n (%) 52.0 (6.3%) 26.0 (1.1%)  0.0 (0.0%) 
Immediate story recall, Mean (SD) 13.9 (9.1) 16.5 (6.4)  14.2 (6.3) 
Missing, n (%) 78.0 (9.4%) 40.0 (1.7%)  0.0 (0.0%) 
Delayed story recall, Mean (SD) 9.8 (8.8) 11.8 (7.4)  10.0 (6.7) 
Missing, n (%) 98.0 (11.9%) 73.0 (3.2%)  0.0 (0.0%) 
Immediate constructional praxis, Mean (SD) 8.6 (2.1) 8.1 (2.3)  8.1 (2.3) 
Missing, n (%) 89.0 (10.8%) 39.0 (1.7%)  0.0 (0.0%) 
Delayed constructional praxis, Mean (SD) 2.9 (1.1) 5.6 (3.2)  5.5 (3.2) 
Missing, n (%) 101.0 (12.2%) 42.0 (1.8%)  0.0 (0.0%) 
Trails A, Mean (SD) 83.1 (67.4) 57.5 (34.2)  57.6 (33.3) 
Missing, n (%) 138.0 (16.7%) 105.0 (4.6%)  0.0 (0.0%) 
Impairment group, n (%)     
Unimpaired 307 (37.2%)   373,112 (37.3%) 
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MCI 98 (11.9%)   163,587 (16.4%) 
Dementia 273 (33.1%)   259,032 (25.9%) 
Other 148 (17.9%)   204,269 (20.4%) 

 
Table 4.1: Sample characteristics for relevant waves of ADAMS, HCAP, and HRS and the 

superpopulation generated for the simulation study. Cells that are grayed out indicated measures that are 
not available for the dataset.  

 
4.4: Specifying prior distributions 

The general strategy for specifying prior distributions in this simulation study is identical to the 

strategies described in Chapter 3 (see Section 3.4.1:) However, since the ADAMS data was 

multiply-imputed for this simulation study, the distributions of parameters were not obtained by 

bootstrapping ADAMS but were instead obtained by multiply-imputing the ADAMS study 

10,000 times. Further, parameters stored for latent cognitive impairment class prediction were 

based on models (4.1)-(4.5) instead of the multi-part models specified in Chapter 3. The updated 

overview of parameter storage steps for the priors in this simulation study is (1) impute ADAMS 

data using FCS with PMM and models described in Section 4.2.2.2: (2) store parameter 

estimates characterizing effects of covariates on cognitive impairment class membership, 

contingency cell counts, and effects of contingency cell membership on continuous covariates. 

(3) repeat the process 10,000 times to represent both sampling variability and estimation 

uncertainty in model parameters. Details for specifying prior distributions for each component of 

the model are described in Section 3.4.1:.  

 

4.5: Pre-simulation study tuning of the Bayesian latent class mixture model 

As discussed in Section 2.3.1: a proper Bayesian workflow involves model checking and 

parameter tuning via prior predictive checks, convergence diagnostic plots, and posterior 
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predictive checks. These steps would be infeasible to perform for each of the 1000 iterations of 

each simulation study scenario. Instead, I performed all Bayesian workflow steps for one 

iteration of each simulation scenario and set tuning parameters in the simulation study based on 

results from those runs. For example, to tune parameters in the simulation scenario with 𝑛>?@ = 

8000 and 50% HCAP sampling proportion, I sampled one HRS study of size 8000 from the 

superpopulation and sampled one HCAP study of size 4000 from the HRS study. Then, I 

performed prior predictive checks, model diagnostic checks, and posterior predictive checks of 

synthetic HCAP studies of size 4000 generated from the Bayesian latent class mixture model. 

Tuning parameters that resulted in satisfactory model checks were used in the simulation study. 

Selected results for Bayesian workflow steps are presented below. 

 

4.5.1: Prior predictive checks 

I performed prior predictive checks for distributions of contingency cell counts and continuous 

variables stratified by cognitive impairment classes. For each simulation scenario, I generated 

1000 synthetic HCAP datasets by drawing from prior distributions only. Prior predictive 

distributions of contingency cell counts and normalized MMSE for the scenario with 𝑛>?@ = 

8000 and 50% HCAP sampling proportion are presented in Figure 4.5 and Figure 4.6, 

respectively.  

Prior predictive distributions for the 1000 synthetic contingency cell counts were 

centered around true counts, as desired. Prior predictive distributions of normalized MMSE  
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(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 

 
  

Figure 4.5: Prior predictive distributions of contingency cell counts for the simulation scenario with 
𝑛#$% = 8000 and 50% HCAP sampling proportion stratified by cognitive impairment group: (a) 

Unimpaired, (b) MCI, (c) Dementia, (d) Other. Distributions are based on 1000 synthetic HCAP datasets 
of size  𝑛#&'()* = 4000. Colored vertical lines in each panel represent true cognitive impairment group-

specific contingency cell counts. 
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Figure 4.6: Prior predictive distributions of normalized MMSE (colored densities) for the simulation 
scenario with 𝑛#$% = 8000 and 50% HCAP sampling proportion stratified by impairment group: (a) 

Unimpaired, (b) MCI, (c) Dementia, (d) Other. Distributions are based on 1000 synthetic HCAP datasets 
of size  𝑛#&'()* = 4000. Gray densities are true impairment group-specific distributions of MMSE. 

 
were slightly wider (more variable) than true distributions, ensuring that the full range of values 

was captured by features encoded in the priors. 

Figure 4.6 shows prior predictive distributions for Normalized MMSE overlayed on true 

distributions for one synthetic dataset; an animated gif cycling through all 1000 synthetic 

datasets was used to determine whether there was enough variability across the 1000 synthetic 

datasets. Prior predictive distributions for the remaining continuous variables and all other 

simulation scenarios were similarly more variable than true distributions. Code for producing  

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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(a) 

 
(b) 

 
 

Figure 4.7: MCMC chains of proportions of (a) impairment class membership and (b) impairment group-
specific variances of continuous variables for the simulation scenario with 𝑛#$% = 8000 and 50% HCAP 

sampling proportion based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. Black vertical 
lines mark the end of the burn-in period (100 runs). 
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prior predictive checks including .gif files for all simulation scenarios can be found in the 

associated GitHub repository. 

 

4.5.2: Assessing model convergence 

I produced MCMC chains for each parameter in this analysis and for each simulation scenario, 

but I primarily monitored cognitive impairment class proportion chains and impairment group-

specific variances for continuous variables. All chains converged in all simulation scenarios. 

MCMC chains for the simulation scenario with 𝑛>?@ = 8000 and 50% HCAP sampling 

proportion are presented in  

Figure 4.7. Code for producing MCMC chains for the other simulation scenarios can be found in 

the associated GitHub repository. Stability of the Bayesian latent class mixture model was 

established in the illustrative example in Section 3.4.2.2: by initiating chains in different parts of 

the parameter space and arriving at similar results for cognitive impairment class membership. 

Thus, in this simulation study, all chains were initiated in the “random” state with equal 

proportions of group membership for all cognitive impairment classes (25% Unimpaired, 25% 

MCI, 25% Dementia, 25% Other). 

 

4.5.3: Posterior predictive checks 

I assessed posterior distributions of contingency cell counts and median and skew for continuous 

variables for all simulation scenarios. All posterior statistics were stratified by predicted 

cognitive impairment class. Posterior predictive distributions for cell counts and median and 

skew of normalized MMSE in the simulation scenario with 𝑛>?@ = 8000 and 50% HCAP 
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sampling proportion are presented in Figure 4.8-Figure 4.10. Posterior cell counts for 

Unimpaired and Other cognitive impairment groups were mostly satisfactory while those in MCI  

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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Figure 4.8: Posterior predictive distributions of contingency cell counts for the simulation scenario with 
𝑛#$% = 8000 and 50% HCAP sampling proportion stratified by impairment group: (a) Unimpaired, (b) 

MCI, (c) Dementia, (d) Other. Distributions are based on 1000 synthetic HCAP datasets of size  
𝑛#&'()* = 4000. Colored vertical lines in each panel represent true impairment group-specific 

contingency cell counts. 

 

Figure 4.9: Posterior predictive distributions of median normalized MMSE for the simulation scenario 
with 𝑛#$% = 8000 and 50% HCAP sampling proportion stratified by cognitive impairment group: (a) 

Unimpaired, (b) MCI, (c) Dementia, (d) Other. Distributions are based on 1000 synthetic HCAP datasets 
of size  𝑛#&'()* = 4000. Colored vertical lines in each panel represent true cognitive impairment group-

specific medians of normalized MMSE. 
 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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and Dementia groups were less so. Posterior distributions in the MCI group included too many 

Black and Hispanic participants without stroke history and too few White participants with 

stroke history. 

 
 

Figure 4.10: Posterior predictive distributions of MMSE skew for the simulation scenario with 𝑛#$% = 
8000 and 50% HCAP sampling proportion stratified by impairment group: (a) Unimpaired, (b) MCI, (c) 
Dementia, (d) Other. Distributions are based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. 
Colored vertical lines in each panel represent true impairment group-specific skew of normalized MMSE. 
 
In the Dementia group, there were too few White participants without stroke history and too 

many with stroke history (Figure 4.8). Posterior distributions of median normalized MMSE were 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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roughly centered around observed medians for MCI and Dementia groups but were only off by 

about 2 points (on a scale of 0-100) for Unimpaired and Other groups (Figure 4.9). Posterior 

distributions of normalized MMSE skew were roughly centered at true measures of skew, 

demonstrating that synthetic variables were able to reproduce skewness in these measures 

(Figure 4.10). Posterior predictive distributions of medians and skewness for the remaining 

continuous variables for this simulation scenario are displayed in Appendix Figure D.1 and 

Appendix Figure D.2, respectively. Posterior predictive distributions for other simulation 

scenarios were similar and code for producing figures is available on the associated GitHub 

Repository. 

 

4.5.4: Algorithmic dementia classification 

Figure 4.11 shows 95% credible intervals of participant (a) counts and (b) proportions in each 

cognitive impairment class across 1000 synthetic HCAP samples for the simulation scenario with 

𝑛>?@ = 8000 and 50% HCAP sampling proportion.  

 
(a)  

 

(b)  

 
Figure 4.11: 95% interval estimates of participant counts (a) and proportions (b) within each 

impairment group across 1000 synthetic HCAP datasets for the simulation scenario with 𝑛#$% = 
8000 and 50% HCAP sampling proportion. Black diamonds are group-specific true 

counts/proportions. 
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Every credible interval captured the true cognitive impairment class count/proportion, and point 

estimates were nearly identical to true counts/proportions. The largest discrepancy in mean count 

was in the Unimpaired group where the model underestimated the count by about 60 people on 

average (about a 1.5% error).  

Results for model tuning were satisfactory, so I proceeded with the simulation study to 

assess performance of the Bayesian latent class mixture model across repeated runs in the 

various simulation scenarios. 

 

4.6: Simulation study results 

4.6.1: Algorithmic dementia classification 

Mean and 95% interval estimates for cognitive impairment class proportions summarized across 

1000 simulation runs are presented in Figure 4.12 by HRS sample size and HCAP sampling 

proportion. Mean cognitive impairment class proportions were obtained by averaging means of 

posterior predictive distributions of participant counts in each cognitive impairment class across 

simulation runs and dividing by HCAP sample size. Upper and lower limits of cognitive 

impairment class proportions were obtained by averaging 97.5% and 2.5% percentiles of 

posterior predictive distributions of participant counts, respectively, across simulation runs and 

dividing by HCAP sample size. Point estimates appear identical across HRS sample sizes and 

HCAP sampling proportions and are close to superpopulation proportions. The average interval 

estimates included the truth in all scenarios. As expected, sample size only impacts estimation 

precision in this simulation due to the nature of SRS sampling.  
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Figure 4.13 shows that 95% interval estimates of cognitive impairment class proportions 

achieve at least nominal coverage across all simulation scenarios except in the Unimpaired class 

which achieved about 94% coverage in scenarios with smaller sample sizes. Bias and RMSE 

provide additional context for this result. Bias and percent bias in cognitive impairment class 

proportions across 1000 simulation runs are presented in Figure 4.14(a) and Figure 4.14(b).  

 

Figure 4.12: Mean and 95% interval estimates for cognitive impairment class proportions by HRS sample 
size and HCAP sampling proportions averaged across 1000 simulation runs. Colored vertical lines denote 

true impairment class proportions in the superpopulation.  
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Figure 4.13: 95% interval coverage of true impairment class proportion by cognitive impairment class, 
HRS sample size, and HCAP sampling proportion across 1000 simulation runs. Horizontal dashed line 

denotes nominal coverage of 95%.  

 

 

(a) 

 
(b) 
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Figure 4.14: Bias (a) and percent bias (b) in cognitive impairment class proportions by HRS sample size 

and HCAP sampling proportion across 1000 simulation runs. Dashed horizontal line denotes no bias. 

 
Bias was calculated by averaging mean posterior impairment class proportions across runs and 

subtracting the cognitive impairment class proportion in the superpopulation (e.g., for the 

Unimpaired group, biasFG#H'I#<;* = 𝜙��FG#H'I#<;* − 𝜙FG#H'I#<;*, where 𝜙� is the mean of the 

posterior predictive distribution of proportion of Unimpaired participants). Percent bias is bias 

divided by the true cognitive impairment class proportion in the superpopulation. We see that 

bias and percent bias were minimal and stable across HRS samples sizes and HCAP sampling 

proportions. The model consistently underestimated the proportion of Unimpaired participants 

and overestimated participants in all other cognitive impairment classes. 

 Root mean square error (RMSE = √𝑏𝑖𝑎𝑠" + 	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) gives us insight to bias and 

variance of estimators simultaneously. Lower values of RMSE are desirable as they indicate less 

bias/variance. Figure 4.15 shows RMSE for cognitive impairment class proportions across 

simulation runs. RMSE for the Unimpaired group is stable across HRS sample size and HCAP 

sampling proportion but decreases for all other cognitive impairment groups as sample size 
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increases. Since we observed that bias is stable across simulation scenarios, this indicates 

increased precision of estimates for proportion of participants in MCI, Dementia, and Other 

impairment groups but not in the Unimpaired group. 

 Looking at race-stratified bias plots, we see that the model on average underestimates 

proportions of White participants and overestimates proportions of Black and Hispanic 

 

Figure 4.15: Root mean square error (RMSE) for estimated cognitive impairment class proportions by 
HRS sample size and HCAP sampling proportion across 1000 simulation runs. 

(a) 
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(b) 

 
Figure 4.16: Race/ethnicity-specific bias (a) and percent bias (b) in cognitive impairment class 

proportions by HRS sample size and HCAP sampling proportion across 1000 simulation runs. Dashed 
horizontal line denotes no bias. 

 

participants in cognitive impairment groups. There was no bias in estimates of proportions of 

White participants in the Dementia group, though. On an absolute scale, there appears to be 
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minimal bias in estimates of cognitive impairment class proportions for all race/ethnicities with 

the maximum bias (-1.5%) in the White Unimpaired group (Figure 4.16a). On a relative scale, 

however, we see the disproportionate amount of bias in Black and Hispanic participants 

(upwards of 30%) due to smaller sample sizes in those groups (Figure 4.16b). Bias decreases 

slightly across HRS sample sizes and HCAP sampling proportions on a relative scale in all 

cognitive impairment groups, but the model differentially misclassifies participants by race since 

it tended to overestimate cognitive impairment group membership in Black and Hispanic 

participants and underestimate membership in White participants. 

Race-stratified RMSE plots are decreasing across HRS sample sizes and HCAP sampling 

proportions for all cognitive impairment groups for all race/ethnicities (Figure 4.17).  

 

 

Figure 4.17: Race/ethnicity-specific RMSE for estimated cognitive impairment class proportions by HRS 
sample size and HCAP sampling proportion across 1000 simulation runs. 
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The lowest RMSEs are found in the Hispanic group which is likely due to the property of 

variance of multinomial distributions in small samples discussed at the end of Chapter 3 (see 

Section 3.5:). 

 

4.6.2: Inference in a population-representative study 

Algorithmic dementia classification results presented above showed good coverage and minimal 

bias overall across cognitive impairment groups but demonstrated that the model differentially 

misclassified participants by race/ethnicity. This simulation study was anchored in an analytic 

question about racial/ethnic differences in prevalent dementia in the 2016 HRS study. This next 

set of results assesses the quality of inferences at the population-representative level resulting 

from algorithmic dementia classification using the Bayesian latent class mixture model.  

 Figure 4.18 shows mean and 95% interval estimates for age- and sex-standardized 

race/ethnicity-specific dementia prevalence by HRS sample size and HCAP sampling proportion 

across 1000 simulation runs. After standardizing race/ethnicity-specific prevalence estimates in 

all simulation runs, point estimates and upper and lower confidence limits were calculated using 

the same steps described above for cognitive impairment class proportions presented in Figure 

4.12. In this case, estimation accuracy and precision improve with increasing sample size even 

though all sampling is SRS. It seems reasonable that sampling a larger proportion of the 

population we aim to generalize to improves the accuracy of the generalization. The increased 

accuracy is more pronounced in Black and Hispanic participants as they comprise a smaller 

proportion of the sample. Point estimates are closest to the truth in the largest sample sizes, but 

all interval estimates capture true prevalence of dementia on average. Point estimates for  
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Figure 4.18: Mean and 95% interval estimate for race/ethnicity-specific age- and sex-standardized 
dementia prevalence by HRS sample size and HCAP sampling proportion across 1000 simulation runs. 
Prevalence was standardized to synthetic HRS samples at each simulation run. Vertical lines denote true 

race/ethnicity-specific dementia prevalence in the superpopulation. 

 

 

Figure 4.19: 95% interval coverage of true prevalence of dementia by race/ethnicity, HRS sample size, 
and HCAP sampling proportion across 1000 simulation runs. Dashed horizontal line denotes nominal 

coverage of 95%. 
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Hispanic participants are still notably less compared to the truth even in the largest samples, 

however. On average, the prevalence of dementia among Hispanics was estimated as 25.0% 

when the truth in the superpopulation was 30.2%. In fact, Figure 4.19 shows above nominal 

coverage for all race/ethnicity-specific dementia prevalence interval estimates across HRS 

sample sizes and HCAP sampling proportions expect for Hispanic participants in the simulation 

scenario with the largest sample size 𝑛>?@ = 8000 with 50% HCAP sampling proportion. 

 

 

Figure 4.20: Bias in race-specific age and sex-standardized dementia prevalence by HRS sample size and 
HCAP sampling proportion across 1000 simulation runs. Dashed horizontal line denotes no bias. 

 
Bias and RMSE for race/ethnicity-specific dementia prevalence estimates decreased with 

increasing sample size (Figure 4.20 and Figure 4.21). It is likely that coverage gets worse as 

sample size increases for Hispanic participants because variance decreased at a faster rate than 

bias in this subsample. 
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Figure 4.21: RMSE for race-specific age and sex-standardized dementia prevalence by HRS sample size 
and HCAP sampling proportion across 1000 simulation runs. Dashed horizontal line denotes no bias. 

 
Figure 4.22 shows mean and 95% interval estimates of prevalence ratios (PR= rate in 

specified population/rate in White population) and differences (PD= rate in specified population 

- rate in White population) for Black vs. White and Hispanic vs. White participants. In the case 

of PRs, sample size affected estimation precision only. Point estimates were close to the 

superpopulation truth across HRS sample sizes and HCAP sampling proportions for PR for 

Black vs. White participants. However, the only average estimate precise enough to exclude the 

null was PR for Black vs. White participants in the scenario with 𝑛>?@ = 8000 with 50% HCAP 

sampling proportion. Increased prevalence for Hispanic vs. White participants were notably 

underestimated even in the scenario with the largest sample sizes (𝑛>?@ = 8000 with 50% 

HCAP sampling proportion). Hispanic participants were estimated to have a 5% increased 

prevalence of dementia when the truth in the superpopulation was 25% (Figure 4.22a). There 

were marginal improvements with increasing sample size on the difference scale (Figure 4.22b). 
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(a) 

 
(b) 

 
 

Figure 4.22: Mean and 95% interval estimate for (a) prevalence ratio (PR) and (b) difference (PD) in 
dementia for Black vs. White and Hispanic vs. White participants by HRS sample size and HCAP 

sampling proportion across 1000 simulation runs. Red vertical lines denote true PR/PD of dementia in the 
superpopulation. Black dashed vertical line denotes no racial ethnic differences (PR=1; PD=0). 
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(a) 

 
(b) 

  

 
Figure 4.23: 95% interval coverage of (a) true prevalence ratio (PR) and (b) true prevalence difference in 

dementia for Black vs. White and Hispanic vs. White participants by HRS sample size and HCAP 
sampling proportion across 1000 simulation runs. Dashed horizontal line denotes nominal coverage of 

95%. 
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(a) 

 
(b) 

  

 
Figure 4.24: Bias in estimated (a) prevalence ratio (PR) and (b) prevalence difference of dementia for 

Black vs. White and Hispanic vs. White participants by HRS sample size and HCAP sampling proportion 
across 1000 simulation runs. Dashed horizontal line denotes no bias. 

 
Figure 4.23a shows 100% coverage for all dementia PR 95% interval estimates across HRS 

sample sizes and HCAP sampling proportions except for PR Hispanic vs. White participants in 

the scenario with 𝑛>?@ = 8000 with 50% HCAP sampling proportion. On the difference scale, 

there is nominal coverage for PD Black vs. White but not for PD Hispanic vs. White (Figure 
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4.23b). Bias for PR and PD estimates were relatively stable (Figure 4.24) and RMSE decreased 

slightly (Figure 4.25) as sample sizes increased. 

 
 
(a) 

 
(b) 

  

 
Figure 4.25: RMSE for estimated (a) prevalence ratio (PR) and (b) prevalence difference (PD) in 
dementia for Black vs. White and Hispanic vs. White participants by HRS sample size and HCAP 

sampling proportion across 1000 simulation runs. Dashed horizontal line denotes no bias. 
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4.7: Discussion 

Results from this simulation study demonstrate good results overall for algorithmic dementia 

classification using the Bayesian latent class mixture model with priors specified based on the 

ADAMS sample. Race/ethnicity-specific analyses demonstrate that downstream analyses in 

population-representative samples would likely be more accurate for White and Black 

participants as true standardized dementia prevalence estimates and prevalence ratios were 

recovered for these groups in population-representative samples. This is likely due to the very 

small subset of Hispanic participants in the ADAMS sample (n=83) on which prior distributions 

for this group are based. Accurate algorithmic dementia classification for Hispanic participants 

in HRS is a persistent challenge because algorithms tend to provide unstable estimates for this 

subgroup due to small sample sizes. As a result, algorithms are occasionally developed in 

samples without Hispanic participants and are not recommended for use within this subgroup 

(Gianattasio, Ciarleglio, and Power 2020; Wu et al. 2013). 

Compatibility between the prior (ADAMS) and the data (HCAP) is particularly important 

in this work because ADAMS is the only source of information for classifying participants into 

cognitive impairment classes since HCAP does not currently perform gold-standard dementia 

adjudication. Since ADAMS and HCAP participants were sampled from HRS using different 

sampling frames and inclusion criteria and because these participants were recruited nearly 20 

years apart, there are differences in sample characteristics between the studies.  

The overall results of algorithmic dementia classification and subsequent population-

level inferences were satisfactory for Black and White participants, but pre-simulation posterior 

predictive checks showed some evidence for lack of model fit in the synthetic HCAP datasets, 

especially in race by stroke distributions which only captured true counts in the tails of some of 
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the distributions (Figure 5.5). Medians for continuous variables in synthetic datasets were 

mostly centered around true medians or were off by a small amount (Appendix Figure D.1), but 

the degree of skewness in observed data for the most part was not well-captured in synthetic 

datasets (Appendix Figure D.2). Whether or not the quality of synthetic datasets is satisfactory 

depends on the intended downstream use. The simulation study showed that the resulting 

algorithmic dementia classification and subsequent analysis of racial/ethnic differences in 

prevalent dementia for Black vs. White participants were consistent with the truth in the 

superpopulation, despite some lack of fit. 

An important issue raised by recent work in algorithmic dementia classification is that 

existing algorithms differentially misclassify participants by race, which makes them unsuitable 

for use in racial/ethnic disparities research (Gianattasio et al. 2019). Revised algorithms with 

similar sensitivity and specificity by race have been developed, but they require specifying 

different neuropsychological exam score cutoffs by race/ethnicity (Gianattasio, Ciarleglio, and 

Power 2020). The race/ethnicity-specific results for algorithmic dementia classification presented 

in this chapter demonstrated differential misclassification since impairment tended to be 

underestimated in White participants and overestimated in Black and Hispanic participants on 

average. 

Differences between ADAMS and HCAP sample characteristics, the potential for cohort 

effects from (i.e., ADAMS being 20 years older than HCAP) to impact associations between 

cognitive tests and other measures and cognitive impairment classification, results related to 

differential misclassification by race, and the lack of fit demonstrated for some variables in the 

synthetic HCAP datasets motivated a follow-up simulation study. In the next chapter, I describe 
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a simulation study assessing the impact of adjudicating subsets of the HCAP study and using 

information from those subsets as priors in the Bayesian latent class mixture model instead. 
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Chapter 5 Simulation Study: Refining Priors in the Bayesian Latent 

Class Mixture Model using Calibration Samples 

 

The simulation studies in Chapter 4 showed promising results for algorithmic dementia 

classification using the Bayesian latent class mixture model. Algorithmic dementia classification 

results closely replicated the truth in simulated datasets, and I was able to recover population-

level inferences for dementia prevalence and prevalence ratios for White and Black participants. 

The model was not able to recover inferences for Hispanic participants, however, and there was 

some evidence for lack of fit for categorical and continuous variables overall.  

I hypothesized that the lack of fit may be due to incompatibility between priors based on 

the ADAMS study and the observed HCAP data since the datasets were sampled differently and 

the studies were conducted nearly 20 years apart. Currently, there are no updated clinically 

adjudicated subsets of HRS to update prior distributions in the Bayesian latent class mixture 

model. Thus, I designed a simulation study to assess the impact of adjudicating subsets of HCAP 

to specify priors that would be better calibrated to the observed data. Gold-standard clinical 

adjudication is an expensive process, so I was interested in how much of the HCAP sample 

would need to be adjudicated to improve upon the results from Chapter 4 and whether different 

sampling strategies made an impact on results. 

 

5.1: Simulation study outline 

This simulation scenarios in this chapter are extensions to the simulation study design presented 

in Chapter 4. The updated simulation study flow diagram is presented in Figure 5.1. 
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Figure 5.1: Simulation study flow diagram. Black boxes indicate analysis steps and blue boxes indicate 
calculation steps. The red box denotes the sequence of steps that are repeated 1000 times in the simulation 

study.  

 
I used the same superpopulation that was constructed for the simulation studies in Chapter 4. 

Details for creating the superpopulation are presented in Section 4.3:. Prevalence of cognitive 

impairment overall and by race/ethnicity and racial/ethnic differences in prevalent dementia in 

the superpopulation were considered the truth in this simulation study as well. 

The difference between the simulation study in this chapter and the one presented in 

Chapter 4 is that priors in this simulation will be specified based on information from clinically 

adjudicated subsets of HCAP instead of the ADAMS study. For each simulation run, I again 

sampled HRS studies as a simple random sample (SRS) from the superpopulation using three 

different sample sizes 𝑛>?@ = 2000, 4000, 8000. Then, I sampled HCAP studies using the 

sampling frame implemented in the real HRS/HCAP study—stratified random sampling by 

married/partnered status (Langa et al. 2020). I sampled HCAP studies at 25% and 50% rates 
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from each HRS study. After sampling HCAP, I flagged a subset of the HCAP sample as a 

clinically adjudicated subsample of participants for which cognitive impairment classes were 

known (referred to as the “HCAP calibration sample”). I flagged participants for the calibration 

sample at a rate of 20%, 35%, and 50% using SRS and race-stratified SRS for a total of 36 

simulation scenarios (3 HRS sample sizes x 2 HCAP sampling proportions x 3 calibration 

sample proportions x 2 calibration sampling strategies). In SRS calibration samples, subsets of 

HCAP were flagged at the calibration sample rate regardless of the observations’ race/ethnicity. 

In race-stratified SRS calibration samples, 60% of Black and Hispanic participants in HCAP 

were selected for the calibration sample and White participants were sampled to attain desired 

calibration sample sizes. 

Then I proceeded with the same steps as the simulation study in Chapter 4: for each 

HCAP sample in each simulation run, I algorithmically classified cognitive impairment status 

and quantified estimation uncertainty by using the Bayesian latent class mixture model to create 

1000 synthetic HCAP datasets and taking the mean and 95% credible interval of posterior 

predicted distributions of cognitive impairment class counts. Then, I age and sex-standardized 

race/ethnic specific estimates of dementia prevalence to HRS studies from which the HCAP 

study was sampled.  

I assessed model performance in the same way as Chapter 4 simulation studies: I assessed 

interval estimate coverage, bias, and RMSE of predicted cognitive impairment class proportions 

overall and by race/ethnicity across 1000 simulation runs At a population-representative level, I 

assessed interval coverage, bias, and RMSE of standardized race/ethnic specific estimates of 

dementia prevalence in HRS; dementia prevalence ratios and differences for Black vs. White and 

Hispanic vs. White participants in HRS; and interval coverage, bias, and RMSE of dementia 
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prevalence ratios and differences for Black vs. White and Hispanic vs. White participants in HRS 

across 1000 simulation runs. 

 
5.2: Dataset preparation 

I used the same HCAP and HRS datasets prepared for the simulation study in Chapter 4. 

Detailed data preparation steps are described in Sections 4.2.1: and 4.2.3:, respectively. 

 

5.3: Specifying prior distributions 

Like the simulation study in Chapter 4, the general strategy for specifying prior distributions in 

this simulation study is identical to the strategies described in Chapter 3 (see Section 3.4.1:) 

However, parameters for prior distributions in this simulation were estimated in HCAP 

calibration samples instead of in ADAMS. Further, parameters stored for latent cognitive 

impairment class prediction were based on fitting models (4.1)-(4.5) in the HCAP calibration 

subsample. The updated overview of parameter storage steps for the priors in this simulation 

study is (1) sample a calibration subset from the HCAP sample (2) bootstrap the HCAP 

calibration sample, (3) store parameter estimates characterizing effects of covariates on cognitive 

impairment class membership, contingency cell counts, and effects of contingency cell 

membership on continuous covariates, and (4) repeat the process 1,000 times (once for each 

synthetic dataset created in the Bayesian latent class mixture model) to represent both sampling 

variability and estimation uncertainty in model parameters. Details for specifying prior 

distributions for each component of the model are described in Section 3.4.1:.  
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5.4: Pre-simulation study tuning of the Bayesian latent class mixture model 

As discussed in Chapter 4, all Bayesian workflow steps (prior predictive checks, convergence 

diagnostics, prior predictive checks) would be infeasible to perform for each of the 1000 

iterations of each simulation study scenario. I again performed all Bayesian workflow steps for 

one iteration of each simulation scenario and set tuning parameters in the simulation study based 

on results from those runs. Selected results for Bayesian workflow steps are presented below. 

 

5.4.1: Prior predictive checks 

I performed prior predictive checks for distributions of contingency cell counts and continuous 

variables stratified by cognitive impairment classes. For each simulation scenario, I generated 

1000 synthetic HCAP datasets by drawing from prior distributions only. Prior predictive 

distributions of contingency cell counts and normalized MMSE for the scenario with 𝑛>?@ = 

8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample 

(𝑛JIK#3<IL#=G = 2000) are presented in Figure 5.2 and Figure 5.3, respectively.  

Prior predictive distributions for the 1000 synthetic contingency cell counts were mostly centered 

around true counts, with some lack of fit for Black participants without stroke history in the 

Unimpaired, MCI, and Other cognitive impairment groups and for White participants without 

stroke history in the Unimpaired and MCI groups. Prior predictive distributions of normalized 

MMSE were slightly wider (more variable) than true distributions, ensuring that the full range of 

values was captured by features encoded in the priors. Note that different from prior predictive 

checks in the previous chapter, these continuous variable densities are not smooth because half 

of the prior predictive distribution is based on draws from normal distributions and the other half 

was considered adjudicated, so we know the true values. Prior predictive distributions for the  
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(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 

 
  

Figure 5.2: Prior predictive distributions of contingency cell counts for the simulation scenario with 
𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample used for 
the prior stratified by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Distributions 
are based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. Colored vertical lines in each panel 

represent true impairment group-specific contingency cell counts. 
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Figure 5.3: Prior predictive distributions of normalized MMSE (colored densities) for the simulation 
scenario with 𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration 
sample used for the prior stratified by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) 

Other. Distributions are based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. Gray densities 
are true impairment group-specific distributions of MMSE. 

 
remaining continuous variables and all other simulation scenarios were similarly more variable 

than true distributions. Code for producing prior predictive checks including .gif files for all 

simulation scenarios can be found in the associated GitHub repository. 

 

5.4.2: Assessing model convergence 

I produced MCMC chains for each parameter in this analysis and for each simulation scenario, 

but I primarily monitored cognitive impairment class proportion chains and impairment group-

specific variances for continuous variables. All chains converged in all simulation scenarios.  

 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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(a) 

 
(b) 

 
Figure 5.4: MCMC chains of proportions of (a) impairment class membership and (b) impairment group-

specific variances of continuous variables for the simulation scenario with 𝑛#$% = 8000, 50% HCAP 
sampling proportion, and 50% race-stratified SRS calibration sample used for the prior based on 1000 

synthetic HCAP datasets of size  𝑛#&'()* = 4000. Black vertical lines mark the end of the burn-in period 
(100 runs). 
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MCMC chains for the simulation scenario with 𝑛>?@ = 8000, 50% HCAP sampling proportion, 

and 50% race-stratified SRS calibration sample are presented in Figure 5.4. Code for producing 

MCMC chains for the other simulation scenarios can be found in the associated GitHub 

repository.  

In this simulation study, all chains were initiated in the “random” state with equal 

proportions of group membership for all cognitive impairment classes (25% Unimpaired, 25% 

MCI, 25% Dementia, 25% Other) since model stability was established in the illustrative 

example in Section 3.4.2.2:. 

 

5.4.3: Posterior predictive checks 

I assessed posterior distributions of contingency cell counts and median and skew for continuous 

variables for all simulation scenarios. All posterior statistics were stratified by predicted 

cognitive impairment class. Posterior predictive distributions for cell counts and median and 

skew of normalized MMSE in the simulation scenario with 𝑛>?@ = 8000, 50% HCAP sampling 

proportion, and 50% race-stratified SRS calibration sample are presented in Figure 5.5-Figure 

5.7. Posterior predictive distributions of contingency cell counts were centered around true 

counts for every cell in every cognitive impairment class except White participants without 

stroke history which only capture the true count in the tail of the distribution (Figure 5.5).  

Posterior distributions of median normalized MMSE were centered around observed 

medians except in the Unimpaired group which was only off by about 2 points (on a scale of 0-

100) for Unimpaired and Other groups (Figure 5.6). Posterior distributions of normalized 

MMSE skew were roughly centered at true measures of skew except in the Unimpaired group,  
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(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 

 
Figure 5.5: Posterior predictive distributions of contingency cell counts for the simulation scenario with 
𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample used for 
the prior stratified by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Distributions 
are based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. Colored vertical lines in each panel 

represent true impairment group-specific contingency cell counts. 
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Figure 5.6: Posterior predictive distributions of median normalized MMSE for the simulation scenario 
with 𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample 
used for the prior stratified by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. 

Distributions are based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. Colored vertical lines 
in each panel represent true impairment group-specific medians of normalized MMSE. 

 
demonstrating that synthetic variables were able to reproduce skewness in these measures 

(Figure 5.7). Posterior predictive distributions of medians and skewness for the remaining 

continuous variables for this simulation scenario are displayed in Appendix Figure D.3 and 

Appendix Figure D.4, respectively. Posterior predictive distributions for other simulation 

scenarios were similar and code for producing figures is available on the associated GitHub 

Repository. 

 

 

 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 
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Figure 5.7: Posterior predictive distributions of normalized MMSE skew for the simulation scenario with 
𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample used for 
the prior stratified by impairment group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Distributions 
are based on 1000 synthetic HCAP datasets of size  𝑛#&'()* = 4000. Colored vertical lines in each panel 

represent true impairment group-specific skew of normalized MMSE. 
 

5.4.4: Algorithmic dementia classification 

Figure 5.8 shows 95% credible intervals of participant (a) counts and (b) proportions in each 

cognitive impairment class across 1000 synthetic HCAP samples for the simulation scenario with 

𝑛>?@ = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample. 

Estimates are very tight, likely due to the large sample used for the prior (𝑛JIK#3<IL#=G = 2000). 

Credible intervals for Dementia and Other groups captured the true cognitive impairment class 

count/proportion, and point estimates were identical to true counts/proportions.  

 

(a) Unimpaired 

 

(b) MCI 

 
(c) Dementia 

 

(d) Other 

 



  111 

(a)  

 

(b)  

 
Figure 5.8: 95% interval estimates of participant counts (a) and proportions (b) within each 

impairment group across 1000 synthetic HCAP datasets for the simulation scenario with 𝑛#$% = 
8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration sample used for the 

prior. Black diamonds are group-specific true counts/proportions. 

 
Intervals for Unimpaired and MCI groups did not capture true counts/proportions, however, the 

largest discrepancy in mean count was in the Unimpaired group where the model underestimated 

the count by only 60 people on average (about a 1.5% error). 

Results for model tuning were satisfactory, so I proceeded with the simulation study to assess 

performance of the Bayesian latent class mixture model in these simulation scenarios across 

repeated runs in the various simulation scenarios. 

 

5.5: Simulation study results 

To conveniently compared results from using different prior distributions, all result plots for this 

simulation study include results from Chapter 4 simulations where ADAMS was used as a prior. 

 

5.5.1: Algorithmic dementia classification 

Mean and 95% interval estimates for cognitive impairment class proportions summarized across 

1000 simulation runs are presented in Figure 5.9 by HRS sample size, HCAP sampling 
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proportion, and sample used for the prior. Like Chapter 4 summaries, mean cognitive impairment 

class proportions were obtained by averaging means of posterior predictive distributions of 

participant counts in each cognitive impairment class across simulation runs and dividing by 

HCAP sample size. Upper and lower limits of cognitive impairment class proportions were 

obtained by averaging 97.5% and 2.5% percentiles of posterior predictive distributions of 

participant counts, respectively, across simulation runs and dividing by HCAP sample size. Since 

this simulation study assesses the impact of adjudicating subsets of HCAP to better calibrate 

prior distributions, results for adjudicating 100% of the HCAP sample are presented for 

comparison. 

Adjudicating 100% of HCAP replicated true impairment class proportions in the 

superpopulation, as expected due to properties of SRS sampling. In contrast to results using 

ADAMS priors which increased in precision with increasing sample size, increased sample sizes 

improved point estimates and precision when priors were specified based on HCAP calibration 

subsets. This is expected because the size HCAP calibration subset was a proportion of the 

HCAP sample. Thus, smaller HCAP samples had smaller prior samples that produced imprecise 

estimates. Point estimates were furthest away from true impairment class proportions in the 

Dementia and Other impairment groups for the scenario with the smallest sample sizes, 25% 

HCAP sampling proportion with 𝑛>?@ = 2000 (𝑛>ABC = 500). Otherwise, point estimates are 

close to true impairment class proportions in all impairment groups and improved the most when 

increasing from 𝑛>?@ = 2000 to 𝑛>?@ = 4000 but were similar between 𝑛>?@ = 4000 and 

𝑛>?@ = 8000. 

Average interval estimates included the truth in all scenarios except in the Unimpaired 

group with the largest sample sizes where estimates were very tight. Estimated precision for the 
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Unimpaired group increased drastically with sample size which is expected because the 

Unimpaired group is the largest subgroup. Interval estimates shrunk to such a degree for the 

Unimpaired group, though, that in the scenario with the largest samples sizes, 50% HCAP 

sampling proportion with 𝑛>?@ = 8000	(𝑛>ABC = 4000), average interval estimates no longer 

included the true proportion. In the larger samples, point estimates were similar to results using 

ADAMS as the prior. 

 

 

Figure 5.9: Mean and 95% interval estimate for cognitive impairment class proportions by HRS sample 
size, HCAP sampling proportions, and sample used for the prior averaged across 1000 simulation runs. 
Black vertical lines denote true impairment class proportions in the superpopulation. Yellow squares 

denote impairment class proportions obtained from adjudicating 100% of the HCAP sample. 

 
Figure 5.10 shows 95% interval coverage by HRS sample size, HCAP sampling proportion, and 

sample used for the prior. In most simulation scenarios and cognitive impairment groups, 

interval estimates achieved at least 75% coverage, and coverage was less than simulations using 

the ADAMS prior in all scenarios. The lack of coverage was most pronounced in the Unimpaired  
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Figure 5.10: 95% interval coverage of true cognitive impairment class proportion by cognitive 
impairment class, HRS sample size, HCAP sampling proportion, and sample used for the prior across 

1000 simulation runs. Dashed horizontal line denotes nominal coverage of 95%. 

 
group in scenarios with the largest HCAP calibration samples. This lack of nominal coverage is a 

result of the increased precision in the prior sample at larger sample sizes. Bias and RMSE 

provide additional context for this result.  

Bias and percent bias in cognitive impairment class proportions across 1000 simulation 

runs are presented in  

Figure 5.11(a) and  

Figure 5.11(b). Like Chapter 4 summaries, bias was calculated by averaging mean 

posterior cognitive impairment class proportions across runs and subtracting the cognitive 

impairment class proportion in the superpopulation (e.g., for the Unimpaired group, 

biasFG#H'I#<;* = 𝜙��FG#H'I#<;* − 𝜙FG#H'I#<;*, where 𝜙� is the mean of the posterior predictive 

distribution of proportion of Unimpaired participants). Percent bias is bias divided by the true 

cognitive impairment class proportion in the superpopulation. We see that 

bias improved with increasing HRS samples sizes and HCAP sampling proportions and was 

minimal in simulation scenarios with the largest sample sizes. In scenarios with the largest 
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sample sizes, bias in simulations that used HCAP calibration priors was less than in simulations 

with ADAMS priors. Models with HCAP calibration priors consistently underestimated the  

(a) 

 
(b) 

 
 

Figure 5.11: Bias (a) and percent bias (b) in cognitive impairment class proportions by HRS sample size, 
HCAP sampling proportion, and sample used for the prior across 1000 simulation runs. Dashed horizontal 

line denotes no bias. 

 
proportion of participants in the Unimpaired and Other groups and overestimated proportions of 

participants in the MCI and Dementia groups. 

Figure 5.12 shows RMSE for cognitive impairment class proportions across simulation 

runs. RMSE decreased for all cognitive impairment groups across simulation scenarios but was 

larger than for scenarios that used ADAMS as a prior. Since we observed that bias was less for 
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these scenarios compared to simulations with ADAMS priors, this indicates that estimates using 

HCAP calibration samples as the prior are more variable. RMSE for scenarios with 50% HCAP  

 

Figure 5.12: Root mean square error (RMSE) for estimated cognitive impairment class proportions by 
HRS sample size, HCAP sampling proportion, and sample used for the prior across 1000 simulation runs. 

 
calibration samples were similar to scenarios with ADAMS priors.  

Race-stratified bias ( 

Figure 5.13a) and percent bias ( 

Figure 5.13b) plots show less bias for Black and Hispanic participants compared to 

White participants when HCAP calibration samples are used to specify priors. Bias was 

relatively stable with increasing sample size for Black and Hispanic participants but improved 

more noticeably for White participants. Compared to simulations using ADAMS priors, there 

was less bias for White participants in the Unimpaired group and Black and Hispanic participants 

in MCI, Dementia, and Other groups when using HCAP calibration samples to specify priors. 

There is virtually no bias across race/ethnicities and cognitive impairment classes in the 

scenarios using 50% SRS or race-stratified SRS HCAP calibration samples for the prior.  
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RMSE was also lower for Black and Hispanic participants compared to White 

participants in this simulation study. Race/ethnicity specific RMSE was lowest for Black and 

Hispanic participants across cognitive impairment groups in the scenarios using 50% SRS or 

race-stratified SRS HCAP calibration samples for the prior ( 

Figure 5.14). 

(a) 
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(b) 
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Figure 5.13: Race/ethnicity-specific bias (a) and percent bias (b) in cognitive impairment class 
proportions by HRS sample size, HCAP sampling proportion, and sample used for the prior across 1000 

simulation runs. Dashed horizontal line denotes no bias. 

 

 

 

 
 

Figure 5.14: Race/ethnicity-specific RMSE for estimated cognitive impairment class proportions by HRS 
sample size, HCAP sampling proportion, and sample used for the prior across 1000 simulation runs. 
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5.5.2: Inference in a population-representative study 

Algorithmic dementia classification results showed reduced bias compared to analyses using 

ADAMS priors for Black and Hispanic participants. The most noticeable improvements, 

however, were in population-level inferences for Hispanic participants. 

 

Figure 5.15: Mean and 95% interval estimate for race-specific age and sex-standardized dementia 
prevalence by HRS sample size, HCAP sampling proportion, and sample used for the prior across 

1000 simulation runs. Prevalence was standardized to synthetic HRS samples at each simulation run. 
Vertical lines denote true race-specific dementia prevalence in the superpopulation. 

 
Figure 5.15 shows mean and 95% interval estimates for age- and sex-standardized 

race/ethnicity-specific dementia prevalence by HRS sample size, HCAP sampling proportion, 

and sample used for the prior across 1000 simulation runs. Point estimates are closer to the truth 

with increased sample sizes for all race/ethnicities. Results for White and Black participants are 

similar to simulations that used ADAMS as a prior. For Hispanic participants, however, results 

were noticeably more accurate when HCAP calibration samples were used for the prior instead. 

In the scenario with the largest sample sizes where the prevalence of dementia among Hispanics 
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using the model with ADAMS priors was estimated as 25.0% when the truth in the 

superpopulation was 30.2%, the model using a prior based on a 50% race-stratified SRS 

calibration sample estimated 29.0% prevalence of dementia. 

 

Figure 5.16: 95% interval coverage of true prevalence of dementia by race/ethnicity, HRS sample size, 
HCAP sampling proportion, and sample used for the prior across 1000 simulation runs. Dashed horizontal 

line denotes nominal coverage of 95%. 

 

 

Figure 5.17: Bias in race-specific age and sex-standardized dementia prevalence by HRS sample size, 
HCAP sampling proportion, and sample used for the prior across 1000 simulation runs. Dashed horizontal 

line denotes no bias. 

 
Figure 5.16 shows less than nominal coverage for race/ethnicity-specific 95% interval estimates 

of dementia prevalence. Coverage was at least 60% across simulation scenarios with the least 
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coverage for estimates of dementia prevalence for White participants. Bias and RMSE improve 

with sample size for all simulation scenarios. In scenarios with 50% HCAP calibration samples,  

 

 

Figure 5.18: RMSE for race-specific age and sex-standardized dementia prevalence by HRS sample size, 
HCAP sampling proportion, and sample used for the prior across 1000 simulation runs. Dashed horizontal 

line denotes no bias and no variance. 

 
bias (Figure 5.17) and RMSE (Figure 5.18) are uniformly better for Hispanic and Black 

participants but worse for White participants. Taken together with coverage results, these 

indicate that estimates for dementia prevalence from models using HCAP calibration samples as 

the prior are more variable across simulation runs than estimates that use ADAMS as the prior.  
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(a) 

 
(b) 

 
 
Figure 5.19: Mean and 95% interval estimate for (a) prevalence ratio (PR) and (b) prevalence difference 
(PD) in dementia for Black vs. White and Hispanic vs. White participants by HRS sample size, HCAP 

sampling proportion, and sample used for the prior across 1000 simulation runs. Black solid vertical lines 
denote true PR/PD of dementia in the superpopulation. Black dashed vertical line denotes no racial ethnic 

differences (PR=1; PD=0). 

 
Nevertheless, racial/ethnic difference in prevalent dementia were better replicated and estimates 

more precise when using models with HCAP calibration priors as shown in Figure 5.19. Point 

estimates were close to the superpopulation truth across HRS sample sizes, HCAP sampling 

proportions, and priors used for the sample. Where the models using ADAMS priors 

underestimated increased prevalence in Hispanic participants to be 5% in the scenario with 

𝑛>?@ = 8000 with 50% HCAP sampling proportion, the estimate using a 50% race-stratified 
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SRS HCAP calibration sample was much closer to the truth in the superpopulation (25% 

increased prevalence) with an estimate of 28% (Figure 5.19a). 

 
(a) 

 
(b) 

 

Figure 5.20: 95% interval coverage of true (a) prevalence ratio and (b) prevalence difference in dementia 
for Black vs. White and Hispanic vs. White participants by HRS sample size, HCAP sampling proportion, 

and sample used for the prior across 1000 simulation runs. Dashed horizontal line denotes nominal 
coverage of 95%. 

 
There was at least 80% coverage across simulation scenarios for 95% interval estimates of PRs 

and PDs for Black vs. White and Hispanic vs. White participants (Figure 5.20). Bias improved 

with increased sample sizes and was nearly zero for scenarios with 50% HCAP calibration 

samples (Figure 5.21). 
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(a) 

 
(b) 

 
 

Figure 5.21: Bias in estimated (a) prevalence ratio and (b) prevalence difference in dementia for Black vs. 
White and Hispanic vs. White participants by HRS sample size, HCAP sampling proportion, and sample 

used for the prior across 1000 simulation runs. Dashed horizontal line denotes no bias. 
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(a) 

 
(b) 

 
 

Figure 5.22: RMSE for estimated (a) prevalence ratio and (b) prevalence difference in dementia for Black 
vs. White and Hispanic vs. White participants by HRS sample size, HCAP sampling proportion, and 

sample used for the prior across 1000 simulation runs. Dashed horizontal line denotes no bias. 

 
RMSE decreased with increasing sample sizes across simulation scenarios but was still greater in 

most scenarios compared to simulations that used ADAMS to specify priors, demonstrating that 

estimates from these models were more variable compared to models that used ADAMS priors ( 

Figure 5.22). 

 



  127 

5.6: Combining results across analyses that use different priors 

Results from the simulation study discussed above showed improved results in algorithmic 

dementia classification and subsequent population-level inferences for Black and White 

participants in HCAP when priors were specified based on adjudicated subsamples of the HCAP 

study. With the ADAMS study being conducted over 20 years ago, it seems reasonable to update 

priors using newly adjudicated samples of participants. Information from the ADAMS study is 

still useful, however, and overall results for algorithmic dementia classification based on 

ADAMS priors were acceptable. 

 In this section I present combined results from analyses using the ADAMS prior and 

priors specified based on each of the HCAP calibration samples used in the simulation study 

above. There are several ways to combine results across different analyses; I chose to combine 

results using Rubin’s Rules, which are typically used for combining multiple imputations (see 

Appendix Section B.1:. Thus, variance estimates for combined results account for variance 

within the analysis and variance between analyses.  

 Plots for combined results follow. Average point estimates for cognitive impairment class 

proportions aligned with the truth in the superpopulation for all classes, but variance was larger 

(Figure 5.23). As a result, all interval estimates for combined analyses had above nominal 

coverage (Figure 5.24). There was virtually no bias in Unimpaired and MCI groups across 

sample sizes (Figure 5.25) and RMSE decreased with increasing sample size (Figure 5.26). 

Race/ethnicity-specific results for bias and RMSE more closely resembled results using ADAMS 

priors with proportions in cognitive impairment groups overestimated for Black and Hispanic 

participants (Figure 5.27-Figure 5.28). Population-level inference for dementia prevalence from 

combined estimates were not as accurate for Hispanic participants because they were being 
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pulled towards results from ADAMS priors (Figure 5.29). There was much more variance in 

estimates, however, so coverage resembles simulations using ADAMS priors with above-

nominal coverage except for Hispanic participants in scenarios with the largest sample size 

(Figure 5.30).  

 

 

Figure 5.23: Mean and 95% interval of combined estimates (results using ADAMS priors + results using 
specified prior) for cognitive impairment class proportions by HRS sample size, HCAP sampling 

proportions, and priors used for the sample. Black vertical lines denote true impairment class proportions 
in the superpopulation. 

 

 

Figure 5.24: 95% interval coverage of true impairment class proportion for combined estimates (results 
using ADAMS priors + results using specified prior) by cognitive impairment class, HRS sample size, 

HCAP sampling proportion, and sample used for the prior. Dashed horizontal line denotes nominal 
coverage of 95%. 
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(a) 

 
(b) 

 
 

Figure 5.25: Bias (a) and percent bias (b) in combined estimates of cognitive impairment class 
proportions (results using ADAMS priors + results using specified prior) by HRS sample size, HCAP 

sampling proportion, and sample used for the prior. Dashed horizontal line denotes no bias. 

 

 

Figure 5.26: Root mean square error (RMSE) for combined estimated cognitive impairment class 
proportions (results using ADAMS priors + results using specified prior) by HRS sample size, HCAP 

sampling proportion, and sample used for the prior. 
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(a) 
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(b) 

 
 

 
 

 
 

Figure 5.27: Race/ethnicity-specific bias (a) and percent bias (b) in combined estimated cognitive 
impairment class proportions (results using ADAMS priors + results using specified prior) by HRS 

sample size, HCAP sampling proportion, and sample used for the prior. Dashed horizontal line denotes no 
bias. 
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Figure 5.28: Race/ethnicity-specific RMSE for combined estimated cognitive impairment class 
proportions (results using ADAMS priors + results using specified prior) by HRS sample size, HCAP 

sampling proportion, and sample used for the prior. 
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Figure 5.29: Mean and 95% interval estimate for combined estimated race-specific age and sex-
standardized dementia prevalence (results using ADAMS priors + results using specified prior) by 
HRS sample size, HCAP sampling proportion, and sample used for the prior. Vertical lines denote 

true race-specific dementia prevalence in the superpopulation. 

 

 

Figure 5.30: 95% interval coverage of combined estimated prevalence of dementia (results using ADAMS 
priors + results using specified prior) by race/ethnicity, HRS sample size, HCAP sampling proportion, 

and sample used for the prior across 1000 simulation runs. Dashed horizontal line denotes nominal 
coverage of 95%. 
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Figure 5.31: Bias in combined estimated race-specific age and sex-standardized dementia prevalence 
(results using ADAMS priors + results using specified prior) by HRS sample size, HCAP sampling 

proportion, and sample used for the prior. Dashed horizontal line denotes no bias. 

 

 

Figure 5.32: RMSE for combined estimated race-specific age and sex-standardized dementia prevalence 
(results using ADAMS priors + results using specified prior) by HRS sample size, HCAP sampling 

proportion, and sample used for the prior.  

 
Bias and RMSE for combined estimates of standardized dementia prevalence improved 

with sample size (Figure 5.31-Figure 5.32).  

Combined point estimates for racial ethnic differences in dementia were closer to the 

truth for Black vs. White but not for Hispanic vs. White estimates compared to the simulation 

results that specified priors based off HCAP calibration samples (Figure 5.33). Estimates were 

very imprecise which meant that all 95% interval estimates had above nominal coverage (Figure 
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5.34). Bias and RMSE of estimates improved with increased sample size (Figure 5.35-Figure 

5.36). 

 

 

Figure 5.33: Mean and 95% interval for combined estimated prevalence ratio of dementia for Black vs. 
White and Hispanic vs. White participants (results using ADAMS priors + results using specified prior) 

by HRS sample size, HCAP sampling proportion, and sample used for the prior. Black solid vertical lines 
denote true PR of dementia in the superpopulation. Black dashed vertical line denotes no racial ethnic 

differences (PR = 1). 

 

 

Figure 5.34: 95% interval coverage of combined estimated prevalence ratio of dementia for Black vs. 
White and Hispanic vs. White participants (results using ADAMS priors + results using specified prior) 
by HRS sample size, HCAP sampling proportion, and sample used for the prior. Dashed horizontal line 

denotes nominal coverage of 95%. 
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Figure 5.35: Bias in combined estimated prevalence ratio of dementia for Black vs. White and Hispanic 
vs. White participants (results using ADAMS priors + results using specified prior) by HRS sample size, 

HCAP sampling proportion, and sample used for the prior. Dashed horizontal line denotes no bias. 

 

 

Figure 5.36: RMSE for combined estimated prevalence ratio of dementia for Black vs. White and 
Hispanic vs. White participants (results using ADAMS priors + results using specified prior) by HRS 

sample size, HCAP sampling proportion, and sample used for the prior.  

 

5.7: Discussion 

Results from the simulation study presented in this chapter demonstrate that specifying priors in 

the Bayesian latent class mixture model based off of adjudicated subsets of the HCAP sample 

improve estimates for Black and Hispanic participants and yielded correct inferences for 

racial/ethnic differences in the population. This was especially noticeable for Hispanic 
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participant for whom inferences were not correct when priors were specified using the ADAMS 

sample. 

I assessed adjudicating subsets at the rate of 20%, 35%, and 50% and using SRS vs. race-

stratified SRS sampling. Race-stratified sampling improved results the most in simulation 

scenarios with smaller sample sizes. Results for 35% vs. 50% calibration sample rates were 

similar. In the largest sample sizes, even 20% sampling was sufficient for recovering correct 

inferences. Taken together, these results imply that a calibration subset with sufficient 

representation among racial/ethnic groups and across the distribution of cognitive performance 

would greatly improve algorithmic dementia classification using the Bayesian latent class 

mixture model and subsequent analyses. For larger studies, smaller proportions of the study 

could be adjudicated for these calibration subsets which could amount to large cost savings for 

study investigators. 

 The quality of individual synthetic datasets produced by the Bayesian latent class mixture 

model becomes increasingly important as the intended use for the datasets is more general. This 

simulation study demonstrated that the Bayesian latent class mixture model with priors specified 

using adjudicated subsets of HCAP produced accurate dementia classification and was able to 

reproduce racial/ethnic differences in the superpopulation. Assessments of categorical variable 

distributions and medians and skew for continuous variables showed that synthetic data are more 

like observed data when priors are specified in this way compared to priors specified using 

ADAMS data. This provides increased confidence that additional analyses using these datasets 

would be valid. 

 Recognizing that whether the prior is “correct” cannot be verified in practice and that 

prior distributions placed on cognitive impairment class membership are particularly important 
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in this model because there is no information in the data with which to update the prior, I 

presented combined results from analyses with priors specified based on ADAMS and priors 

specified based on the HCAP calibration samples assessed in this simulation. Using Rubin’s 

Rules to combine analyses is equivalent to an unweighted random-effects meta-analysis 

(Borenstein et al. 2010) and with only two studies to combine, variance estimates were very 

large. Thus, combined estimates had better coverage properties but with a large amount of lost 

precision. Additionally, results for Hispanic participants were pulled toward results from 

analyses that used ADAMS priors, so combined results were worse for that group. 

 Results from this simulation show promising ways forward for algorithmic dementia 

classification using the Bayesian latent class model, especially for racial/ethnic disparities 

research. The improved estimation of cognitive impairment for Hispanic participants is 

especially exciting as estimates for this group have to date been a persistent challenge. 
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Chapter 6 Real Data Application: Algorithmic Dementia 

Classification in the Harmonized Cognitive Assessment Protocol 

The simulation studies in Chapters 4-5 provided insight to the statistical properties of the 

Bayesian latent class mixture model for algorithmic dementia classification and whether we can 

expect to recover correct inference when generalizing results to population-representative 

studies. Because results from the simulation study were promising, I used the Bayesian latent 

class mixture model to algorithmically classify cognitive impairment in the HCAP 2016 study. 

The HCAP study does not include clinical dementia adjudication for its participants, however, 

HCAP investigators have published results for algorithmic dementia classification in HCAP 

using an algorithm developed in-house that used a series of decision rules and normative score 

cut-offs to classify cognitive impairment for participants (Manly et al. 2022). 

Implementation details and results for the Bayesian latent class mixture model applied to 

the HCAP 2016 study are presented in this chapter. Results will be compared to published results 

for algorithmic dementia classification in HCAP 2016. 

 

6.1: Data preparation 

The HCAP 2016 data was prepared and cleaned in the same way described in Chapter 4 (see 

Section 4.2.3:). Thus, this analysis only included HCAP 2016 participants aged 70+. I hotdeck 

imputed the HCAP data using the steps described in Section 4.2.3.2:; however, for this analysis, 

I imputed the HCAP data 10 ten times to account for uncertainty in imputed values. I chose 10 

imputations to exceed that maximum amount of missing data in any HCAP 2016 variable (4.6% 

for Trails A task; Table 4.1) 
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6.2: Specifying prior distributions 

I specified priors in this analysis using information from the ADAMS study because there are no 

gold-standard clinically adjudicated subsets of HCAP. Priors on all model parameters were 

specified in the same way as described in Chapter 4 (see Section 4.4:). 

 

6.3: Results 

I used the same Bayesian modeling diagnostics described in previous chapters to assess model 

fit— prior predictive checks, model convergence diagnostics, and posterior predictive checks. It 

would be infeasible to perform these checks for each of the 10 imputed HCAP 2016 datasets, 

thus, checks were only performed for one of the imputed datasets. The same tuning parameters 

were then specified for all imputed HCAP datasets based on model diagnostics.  

A key difference between performing these checks in the real HCAP 2016 studied 

compared to simulation studies is that I did not have clinically adjudicated cognitive impairment 

statuses to stratify prior predictive and posterior predictive checks by to compare subsample 

characteristics. Thus, prior and posterior predictive checks were visualized for the full HCAP 

sample to check whether salient features of the overall sample were captured by the synthetic 

datasets. 

 

6.3.1: Prior predictive checks 

Prior predictive checks for overall contingency cell counts and normalized MMSE are presented 

in Figure 6.1. Prior predictive distributions of contingency cell counts are all centered at 

observed counts in the HCAP 2016 sample (Figure 6.1a) and the prior predictive distribution for 

normalized MMSE is wider than the observed distribution, as desired. Prior predictive checks for 



  141 

remaining continuous variables were similarly satisfactory and code for producing the checks is 

provided on the associated GitHub repository. 

 
(a) 

 

(b) 
 
 
 
 

 

 
Figure 6.1: Prior predictive distributions of (a) contingency cell counts and (b) normalized MMSE for the 
HCAP sample overall. Distributions are based on 1000 synthetic HCAP datasets. Colored vertical lines in 
panel (a) denote observed counts in HCAP and gray density in panel (b) represents observed distribution 

of normalized MMSE in HCAP. 
 

6.3.2: Assessing model convergence 

I produced MCMC chains for each parameter in this analysis, but I primarily monitored 

cognitive impairment class proportion chains and impairment group-specific variances for 

continuous variables (Figure 6.2). All parameter chains demonstrated convergence, and code for 

producing MCMC chains for the other model parameters can be found in the associated GitHub 

repository. 
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(a) 

 
(b) 

 
Figure 6.2: MCMC chains of proportions of (a) impairment class membership and (b) impairment group-
specific variances of continuous variables based on 1000 synthetic HCAP datasets. Black vertical lines 

mark the end of the burn-in period (100 runs). 
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6.3.3: Posterior predictive checks 

I assessed posterior distributions of contingency cell counts and median and skew for continuous 

variables overall. Posterior distributions of contingency cell counts were mostly satisfactory with 

some lack of fit for White participants without stroke history. The model underestimated the 

count in that category by about 80 participants (Figure 6.3a). The posterior distribution of 

median normalized MMSE was not centered at the observed median, however, the model tended 

to underestimate normalized MMSE by only 3.5 points (on a scale of 0-100). Overall skewness 

for normalized MMSE was reproduced by the model. Posterior distributions of median and skew 

for the remaining continuous variables are presented in Appendix Figure D.5-Appendix Figure 

D.6. 

(a) 

 

(b) 

 
(c) 

 
Figure 6.3: Posterior predictive distributions of (a) contingency cell counts (b) median normalized 

MMSE, and (c) normalized MMSE skew. Distributions are based on 1000 synthetic HCAP datasets. 
Colored vertical lines in each panel represent observed values in the HCAP data. 
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6.3.4: Algorithmic dementia classification 

Algorithmic dementia classification results for each imputed HCAP 2016 dataset were combined 

using Rubin’s rules and are presented in Figure 6.4 along with estimates reported by HCAP 

investigators. Estimates from the Bayesian latent class mixture model were precise for all 

cognitive impairment groups. The model estimated that in HCAP 70+, Unimpaired participants 

comprised the largest group (43.1% [41.8%, 44.4%]) and participants with MCI the smallest 

(12.3% [11.0%, 13.6%]). The model estimated that participants with Dementia comprised 25.1% 

of the sample (95% CI: [23.7%, 26.5%]).  

 

 
Figure 6.4: Algorithmic dementia classification results in HCAP 2016 70+ using the Bayesian latent class 

mixture model compared with results reported by HCAP investigators. 
 
HCAP investigators estimated that in HCAP participants aged 70+ (n=2675), participants with 

Dementia comprised 13.8% (95% CI: [10.3%, 17.3%]) and participants with MCI 23.1% (95% 

CI: [18.5%, 26.4%]) of the sample. Both methods estimated any cognitive impairment (Dementia 

+ MCI) in the 70+ HCAP 2016 sample to be about 36%. 
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6.3.5: Risk factor associations with dementia and MCI 

HCAP investigators reported results for associations between several risk factors of dementia 

and MCI based on their classification algorithm. Recall that HCAP analyses were not conducted 

in the same sample as analyses for the Bayesian latent class mixture model because I restricted 

analyses in HCAP to participants aged 70+ and removed participants missing data on variables 

other than neuropsychological assessments. In contrast, HCAP investigators algorithmically 

classified cognitive impairment for the complete HCAP sample. Thus, HCAP results include 

younger participants compared to the sample I used in the Bayesian latent class mixture model. 

The results comparison serves as a sanity check of the plausibility of synthetic HCAP datasets 

generated from the Bayesian latent class mixture model and is not intended as a comparison 

between equivalent samples.  

 That said, I attempted to make estimates as comparable as possible between the two 

analyses. Since HCAP investigators reported odds ratios (ORs), I fit logistic regression models to 

estimate ORs of dementia and MCI for each risk factor in each of the 1000 synthetic datasets 

created by the Bayesian latent class mixture model for each imputed HCAP dataset. Mean 

log(OR) and standard errors (SE) for each imputed dataset were obtained by averaging point 

estimates and standard errors across the 1000 synthetic datasets created for each imputed dataset. 

Point estimates and standard errors were then combined across imputed datasets using Rubin’s 

rules and exponentiated to obtain ORs and 95% interval estimates. Results are presented in 

Table 6.1. 

 Overall, risk factor associations based on algorithmic dementia classifications from the 

Bayesian latent class mixture models were within range of estimates based on the HCAP 

algorithm. In line with HCAP estimates, I estimated no sex/gender differences in dementia in the 
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HCAP 70+ sample. In contrast to HCAP estimates, I estimated protective associations between 

identifying as female and MCI. In line with HCAP estimates, I estimated higher risk of dementia 

and MCI for Black and Hispanic participants. Protective associations between educational 

attainment and dementia and MCI were replicated nearly identically in both studies. 

 
 Bayesian Latent Class Mixture Model1 HCAP Algorithm2 

 MCI 
OR (95% CI) 

Dementia 
OR (95% CI) 

MCI 
OR (95% CI) 

Dementia 
OR (95% CI) 

     

Age (5 years) 1.32 (1.21, 1.45) 1.60 (1.48, 1.72) 1.17 (1.09, 1.26) 1.95 (1.77, 2.14) 
Sex/gender     
     Female 0.65 (0.51, 0.83) 0.97 (0.80, 1.16) 0.9 (0.80, 1.20) 1.1 (0.80, 1.40) 
     Male Ref Ref Ref Ref 
Race/Ethnicity     
     Black 1.49 (1.10, 2.02) 1.4 (1.11, 1.77) 1.0 (0.80, 1.40) 1.81 (1.20, 2.75) 
     Hispanic 1.71 (1.19, 2.45) 1.09 (0.80, 1.48) 1.42 (1.03, 1.96) 1.10 (0.70, 1.70) 
     White Ref Ref Ref Ref 
Education (1 year) 0.96 (0.93, 0.99) 0.92 (0.90, 0.95) 0.94 (0.91, 0.97) 0.93 (0.89, 0.97) 
 

1Obtained by fitting crude logistic regression models in the HCAP 70+ sample 
2Obtained by fitting crude weighted logistic regression models in the complete HCAP sample  

 

Table 6.1: Odds ratios (OR) and 95% interval estimates for the association between dementia and MCI 
risk factors resulting from algorithmic dementia classification using the Bayesian latent class mixture 

model compared to the HCAP algorithm. 

 

6.4: Discussion 

Estimates of dementia prevalence in the 70+ HCAP 2016 sample using the Bayesian latent class 

mixture model were higher and estimates for MCI lower compared to the algorithm developed 

by HCAP investigators. Estimates for impaired (MCI + Dementia) vs. unimpaired were 

consistent between both models, however. 

Dementia is a progressive condition, and it is difficult to make sharp distinctions between 

MCI and dementia in study participants. Thus, the cutoff between classifying a participant as 

having MCI versus having dementia can be fuzzy and is often up to clinician’s judgement. The 
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gold-standard clinical dementia adjudication procedure used in cohort studies is an attempt at 

triangulating evidence and arriving at a consensus diagnosis based on the assessment from 

several medical professionals (e.g., geropsychiarists, neurologists, and cognitive neuroscientists). 

The switch observed between estimated proportions of dementia and MCI using the Bayesian 

latent class mixture model vs. the HCAP algorithm may reflect the 2011 updated criteria for 

dementia diagnosis which incorporated updated scientific evidence for earlier stages of the 

disease and recognized that cognitive impairment in domains other than memory may signal 

onset of the condition (Jack et al. 2011; Albert et al. 2011; McKhann et al. 2011). Differences 

between results from the Bayesian latent class mixture model and the HCAP algorithm could 

also represent changing trends in clinician’s perspectives on the condition and how they choose 

to adjudicate cases over time. For example, if the HCAP team adjudicated ADAMS participants, 

they may have classified participants differently given updated findings and a deeper 

understanding of progression to dementia.  

Prior distributions in the Bayesian latent class mixture model were specified using 

information from the ADAMS study which was conducted nearly 20 years prior to HCAP (and 

prior to the updated criteria) but is currently the best resource for gold-standard clinical dementia 

adjudication because. Any characteristics of the diagnostic process used in the study from which 

priors are specified would be carried through to synthetic datasets created by the Bayesian latent 

class mixture model.  

I have increased confidence in the fidelity of synthetic datasets generated by the Bayesian 

latent class mixture model since risk factor associations with dementia and MCI mostly reflected 

patterns reported by HCAP investigators. However, the results presented regarding some 

evidence of lack of fit in posterior predictive distributions for continuous and categorical 
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variables together with the results in Chapter 5 that showed increased dementia classification 

accuracy for Black and Hispanic participants when subset of HCAP were adjudicated and used 

as priors make a compelling case for adjudicating subsets of HCAP in the near future. Based on 

Chapter 5 results, adjudicating around 35% of the HCAP study should be sufficient to create 

synthetic datasets that reflect true cognitive impairment class proportions and lead to valid 

population-level inferences. 
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Chapter 7 Future Directions 

The area of algorithmic dementia classification has abundant opportunities for conducting 

immediately relevant and highly impactful research. Methods developed for this dissertation 

project are directly applicable to existing studies on AD/ADRD. Specifically, the HRS HCAP 

study was designed to be harmonizable with studies including the Rush Memory and Aging 

Project (Bennett et al. 2012), the 10/66 studies focused on dementia epidemiology in low- and 

middle-income countries (Prina et al. 2019), and the HRS ADAMS Study (Langa et al. 2005). 

Versions of HCAP are also being conducted in Mexico (Mex-Cog, (Mejia-Arango et al. 2020)), 

India (LASI-DAD, (Lee and Dey 2020)), England (ELSA, (Steptoe et al. 2013)), China 

(CHARLS, (Zhao et al. 2014)), and South Africa (HAALSI, (Gómez-Olivé et al. 2018)), thus, 

methods for strengthening algorithmic dementia classification in US studies like HRS have the 

potential to positively impact methods used in international studies of AD/ADRD. 

 The ADAMS study is currently the best source of gold-standard clinical dementia 

adjudication from which to specify prior distributions in the Bayesian latent class mixture model 

because it is the first study of its kind to perform gold-standard dementia adjudication in 

population-representative subsample of a study with participants from different regions of the US 

and using standardized protocol (Langa et al. 2005). Since ADAMS was conducted 20 years ago, 

however, it is reasonable to assume that there may be potential cohort effects (shifting 

distributions in key characteristics over time or changes in diagnostic practices) that would 

impact the validity of using the ADAMS prior in analyses of more updated studies. Further, 

ADAMS was sampled using a different sampling frame than the HCAP study and there was 

some evidence of lack of fit for categorical and continuous variables in the application of the 

Bayesian latent class mixture model to the HCAP study (Chapter 6).  
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Though the results for algorithmic dementia classification in HCAP using the Bayesian latent 

class mixture model seemed reasonable, the simulation results in Chapter 5 related to 

adjudicating subsets of HCAP for use as better-calibrated prior distributions makes a compelling 

case for adjudicating subsets of the HCAP study in the near future to improve the quality of 

inferences, especially for Black and Hispanic participants.  

 An important area of research in algorithmic dementia classification is the development 

of algorithms that do not differentially misclassify participants by race/ethnicity and are thus 

appropriate for use in disparities research (Gianattasio et al. 2019; Gianattasio, Ciarleglio, and 

Power 2020). An especially difficult challenge in algorithmic dementia classification is the 

estimation of dementia prevalence for Hispanic participants who typically comprise a very small 

subset of cohort studies. Simulation studies that specified prior distributions using the ADAMS 

study showed increased bias in estimates for Black and Hispanic participants compared to White 

participants and inferences on racial/ethnic differences in dementia were only correct for Black 

vs. White participants (Chapter 5). Adjudicating subsets of HCAP, however, significantly 

reduced bias in estimations of dementia prevalence and racial/ethnic differences in dementia for 

Black and Hispanic participants. In those simulation studies, inferences on racial/ethnic 

differences for Black vs. White and Hispanic vs. White participants were correct, which shows a 

promising way forward for improving this framework for use in disparities research (Chapter 6). 

 The strategy for algorithmic dementia classification outlined in this dissertation apply to 

cross-sectional analyses, but longitudinal trends in functional ability and cognition are essential 

for diagnosing dementia with increased confidence (Langa et al. 2005). A valuable next step for 

this research would be incorporating longitudinal data in the Bayesian latent class mixture 

modeling framework. As discussed in Section 2.3.1:, the appeal of embedding the algorithmic 
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dementia classification model in a Bayesian analysis framework is the ability of Bayesian 

frameworks to handle complicated modeling tasks. Adding a longitudinal aspect to the model 

will inevitably increase computational challenges, but there is a wealth of research on methods 

for handling situations where sampling from posterior distributions is less straight-forward than 

the sampling implemented in this proposal (Gelman et al. 2014). 

Implications of findings from this dissertation project extend beyond algorithmic 

dementia classification in HRS. First, the methods in this project could be extended to perform 

algorithmic dementia classification in non-HRS studies like the National Health and Aging 

Trends Study (NHATS) which does not contain a substudy of clinically adjudicated dementia 

cases (Freedman and Kasper 2019). Implementing these methods in an external HRS dataset may 

require additional model flexibility to capture features of the new dataset. Strategies may include 

relaxing covariance assumptions such that covariances of continuous variables are allowed to 

vary not only latent by classes but also by contingency cell membership (Liu and Rubin 1998). 

Using prior distributions for latent class membership based solely on the ADAMS may not be 

desirable when moving to external datasets, depending on the characteristics of the target dataset 

compared to ADAMS. Alternatively, prior distributions could be specified based on existing 

studies or the combination of multiple studies through data fusion (Saporta 2002), integrative 

analysis (Bazeley 2011), or meta-analysis methods (Hedges 1992). Second, the creation of fully 

synthetic datasets with detailed neuropsychological measures and assigned impairment classes 

expands the potential uses for products from the Bayesian latent class mixture model. For 

example, investigators conducting studies with data unavailable for public use due to privacy 

concerns could use this framework to create fully synthetic versions of their studies. Further, 
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rich, high quality synthetic dataset enable researchers to explore a broader set of questions 

related to sociodemographic characteristics, cognition, and impairment.  

In conclusion, methods developed in this project lay important groundwork for improving 

methods for algorithmic dementia classification, which are important for overcoming the barriers 

that gold-standard methods have created for understanding trends in AD/ADRD risk factors, 

incidence, and prevalence in population-representative studies. Outcomes from this work create 

exciting opportunities for using existing data sources that to date have not been primarily used to 

conduct AD/ADRD research and strengthen inferences based on algorithmic dementia 

classification in studies that currently rely on models for classifying cognitive impairment in 

participants.  
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Appendix A Details on Neuropsychological Assessments and ADAMS 

Cognitive Impairment Categories 

Measure Dataset Range Prompt; Scoring  

Backwards count 20 
(Brandt, Spencer, and 
Folstein 1988) 

HRS [0, 2] 

Count backwards as quickly as possible for 10 
continuous numbers starting at 20 (2 trials; 2 
pts=correct on first try; 1pt=correct on second 
try) 

Serial 7s  
(Brandt, Spencer, and 
Folstein 1988) 

HRS [0, 5] Subtract 7 from 100 and continue for 5 trials; 1 
pt for each correct subtraction 

Item naming (scissors) 
(Brandt, Spencer, and 
Folstein 1988) 

HRS [0, 1] “What do you usually use to cut paper?”; 1pt 
for correct 

Item naming (cactus) 
(Brandt, Spencer, and 
Folstein 1988) 

HRS [0, 1] “What do you call the kind of prickly plant 
that grows in the desert?”; 1pt for correct 

President naming 
(Brandt, Spencer, and 
Folstein 1988) 

HRS [0, 1] “Name the current president of the US”; 1 pt 
for correct 

Vice President naming 
(Brandt, Spencer, and 
Folstein 1988) 

HRS [0, 1] “Name the current vice president of the US”; 1 
pt for correct 

Word list recall (Immediate) HRS [0, 10] 

Adapted from CERAD word list (Morris et al. 
1989); Participant is visually shown 10 high-
imagery words for 2 seconds each; 1pt for 
each correctly recalled word 

Word list recall (Delayed) HRS [0, 10] 
Participant was asked to recall list of 10 words 
from recall task after answering other survey 
questions; 1pt for each correctly recalled word 

Backwards count 86 
(Brandt, Spencer, and 
Folstein 1988) 

ADAMS [0, 2] 

Count backwards as quickly as possible for 10 
consecutive numbers starting at 86 (2 trials; 2 
pts=correct on first try; 1pt=correct on second 
try) 

Mini-mental State Exam 
(Folstein, Folstein, and 
McHugh 1975) 

ADAMS 
HCAP [0, 30] 

20-item test of global cognition in five 
domains: memory, calculation, space and time 
orientation, language, and word recognition 

Normalized Mini-mental 
State Exam (Philipps et al. 
2014) 

ADAMS 
HCAP [0, 100] Normalized Mini-Mental State Exam scores 

Animal naming  
(Morris et al. 1989) 

ADAMS 
HCAP [0, 33] “Name as many animals as you can in 1 

minute”; 1pt for each animal named 

Boston naming test 
(Morris et al. 1989) ADAMS [0, 15] 

Participant was shown line drawings of 
common man-made and naturally occurring 
objects; 1pt for each correctly named item 
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Word list recognition (yes) ADAMS 
HCAP [0, 10] 1pt for each correctly identified word that was 

included in the word list from the recall task 

Word list recognition (no) ADAMS 
HCAP [0, 10] 

1pt for each correctly identified word that was 
not included in the word list from the recall 
task 

Story recall (Immediate) 
(Elwood 1991) 

ADAMS 
HCAP* 

[0, 37] 
[0, 35] 

Participants were read two brief stories and 
asked to recall as much of the story as 
possible; 1pt for each correctly recalled detail 

Story recall (Delayed) ADAMS 
HCAP* 

[0, 37] 
[0, 35] 

Participant was asked to recall story details 
after answering other survey questions; 1pt for 
each correctly recalled detail 

Constructional praxis 
(Immediate) 

ADAMS 
HCAP [0, 11] 

Adapted from Rosen et al. (1984); Participant 
is asked to draw four geometric forms of 
varying difficulty (circle=2pts; overlapping 
rectangles=3pts; diamond=2pts; cube=4 pts); 1 
pt for each correctly drawn feature  

Constructional praxis 
(Delayed) 

ADAMS 
HCAP [0, 11] 

After answering other survey questions, 
participant is asked to draw four geometric 
forms of varying difficulty from the previous 
task from memory (circle=2pts; overlapping 
rectangles=3pts; diamond=2pts; cube=4 pts); 1 
pt for each correctly drawn feature  

Symbol/Digit substitution 
(Smith 1968) 

ADAMS 
HCAP [0, 63] 

Participants are asked to substitute geometric 
figures with digits 1-9; a key is provided with 
each digit symbol pairing; 1 pt for each correct 
substitution 

Trails A 
(Reitan and Wolfson 1992) 

ADAMS 
HCAP [0, 373] 

Participants are asked to draw a line 
connecting consecutively numbered circles on 
a sheet; score is number of seconds for task 
completion 

Trails B 
(Reitan and Wolfson 1992) 

ADAMS 
HCAP [0, 727] 

Participants are asked to draw a line 
connecting consecutively numbered and 
lettered circles, alternating between letters and 
numbers; score is number of seconds for task 
completion 

*One of the brief stories used in HCAP differs from ADAMS, so the total possible score is 35 in HCAP 
instead of 37. 

Table A.1: Descriptions of detailed neuropsychological and general cognitive assessment items available 
in the HRS, ADAMS, and HCAP studies. HRS items area available for HCAP and ADAMS participants 

as well. 
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Collapsed Category 
Wave A 

n 
ADAMS Adjudicated Cognitive Impairment Category  
(% of category) 

Unimpaired 211 normal/non-case (100%) 
 

MCI 65 mild cognitive impairment (100%) 
 

Dementia 158 

possible AD (41.1%), probable AD (36.1%), probable vascular dementia 
(8.9%), possible vascular dementia (8.2%), dementia of undetermined 
etiology (5.1%), alcoholic dementia (0.6%),  
 

Other 86 

other medical conditions (38.4%), stroke (24.4%), impairment secondary 
to vascular disease (15.1%), other neurological conditions (7.0%), 
depression (5.8%), alcohol abuse (past) (3.5%), alcohol abuse (current) 
(1.2%), mental retardation (2.3%), Parkinson’s (1.2%), normal pressure 
hydrocephalus (1.2%) 

Table A.2: Mapping from ADAMS adjudicated cognitive impairment category to collapsed cognitive 
impairment categories (Unimpaired, MCI, Dementia, Other). 

 

Sociodemographic 
Characteristics 

Neuropsychological Exam and  
Cognition 

Health and  
Health Behaviors 

Age Total MMSE Score Stroke History (yes/no) 
Sex/Gender Backwards Count (20, 86) Hypertension (yes/no) 
Race/Ethnicity Serial 7s Diabetes (yes/no) 
Education Item Naming (scissors, cactus) Heart disease (yes/no) 
Marital Status President/VP Naming BMI 
Retirement Status Animal Naming IADLs 

 Boston Naming Test ADLs 

 Word Recall  
(Immediate, Delayed) 

Depression 

 Word list recall (Yes, No) Smoking 
 Story Recall  

(Immediate, Delayed) 
Alcohol Use 

 Constructional Praxis 
(Immediate, Delayed) 

 

 Symbol/Digit Substitution  
 Trails (A, B)  
 Subjective Change in Cognition  
 Average Proxy Cognition  

Table A.3: Candidate variables for inclusion in multi-part models of predicted ADAMS cognitive 
impairment classes (Unimpaired, Other, MCI, Dementia). 
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A.1: Normalized Mini Mental State Exam scores 

MMSE is notorious for having ceiling and floor effects (Philipps et al. 2014), and the ceiling 

effect can be seen in ADAMS Wave A— 17 % of the sample who took the assessment obtained 

either a perfect score of 30 or a near perfect score of 29 on the MMSE. Additionally, raw MMSE 

scores have the undesirable metrological property of inconsistent sensitivity to changes at 

different points on the scale. MMSE is often included in analyses with underlying normality 

assumptions despite these clear distributional violations. The normalizing transformation 

developed by Philipps et al. (2014) transforms the raw MMSE scale ([0, 30]) to [0, 100]. The 

transformation was achieved by fitting a latent process mixed model where the outcome of 

interest was latent cognitive level; the model was validated in external samples. The 

transformation is available in the R package NormPsy (Proust-Lima and Philipps 2018).  
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Appendix B Handling Missing Data 

Missing data is a common challenge in longitudinal studies and if ignored can lead to bias and 

loss of precision in analyses. Missing data are categorized by the mechanisms assumed to have 

caused them. Data that are missing independently of all observed and unobserved variables are 

said to be missing completely at random (MCAR); data that are missing due to observed 

variables only are said to be missing at random (MAR); and data that are missing due to 

unobserved variables are said to be missing not at random (MNAR) (Rubin 1987).  

 For all missing data mechanisms, ignoring missing data by performing a complete-case 

analysis will lead to precision loss. When data are MCAR, complete-case analyses will be 

imprecise but unbiased. When data are MAR, the amount of bias in a complete-case analysis 

depends on several factors including how strongly the missing data mechanism is related to the 

outcome of interest; when data are MNAR, however, results will be generally be biased (Shaw et 

al. 2022). The challenge in practice is that we cannot test our assumption of the missing data 

mechanism, and it is likely the case that the missing data arise from a combination of 

mechanisms. Thus, it is generally regarded best practice to address the missing data in some way.  

 In this dissertation, I was concerned with missing data leading to selected subsamples of 

HRS, HCAP, and ADAMS studies that would bias results, especially when missing data 

occurred in cognitive variables which are highly correlated with cognitive impairment status. In 

the ADAMS study, assuming cognitive variables are missing due to cognitive impairment status 

amounts to an MAR missing data assumption since impairment status is observed for each 

participant. In HCAP and HRS, this would be an MNAR assumption since we do not have 

clinical impairment status adjudication for each participant.  
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Imputing missing data is a strategy for creating a dataset that could be analyzed as if the 

data were completely observed. There are several data imputation strategies available, and I 

chose different strategies for each dataset based on the Bayesian latent class mixture modeling 

framework and the information available in observed data. Details on the specific imputation 

methods used in this dissertation follow. 

 

B.1: Multiple imputation using fully conditional specification with predictive 

mean matching 

I used multiple imputation with chained equations (MICE) to impute missing data in the 

ADAMS study. Contrasted with single imputation, which imputes one value for missing data and 

usually leads to artificially precise estimates (Okpara et al. 2022), MI creates many imputed 

datasets in which data are analyzed. The “chained equations” portion refers to the definition of 

separate conditional for each variable to be imputed. This method is also referred to in the 

literature as “fully conditional specification.” The MICE algorithm cycles through all variables 

to be imputed several times to produce imputations. MI results are combined accounting for 

within-imputation and between-imputation variance using “Rubin’s Rules” (Rubin 1987). Let 

𝜃H, 𝑚 = 1,… ,𝑀 be an estimate of a quantity of interest from one of 𝑀 imputed datasets. Then, 

the following formulas are used to calculate components of a pooled estimate across 𝑀 imputed 

datasets: 

Pooled mean: 𝜃̅ = &
M
(∑ 𝜃HM

H%& ) 

Within-imputation variance: 𝑉N = &
M
∑ 𝑆𝐸#"M
H%&  

Between-imputation variance: 𝑉O =
∑ QR#8RST

$%
&'(

M8&
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Pooled SE: 𝑆𝐸'==K;* =	£𝑉N + 𝑉O +
&
M
𝑉O 

Pooled 95% interval estimates are constructed by taking 𝜃̅ ± 1.96¦𝑆𝐸'==K;* 

Since MI methods are widely available across software and have been made increasingly 

accessible in recent years, MI is generally preferred over single imputation methods. The mice 

package in R provides several MI options that vary predominantly in statistical models used to 

estimate relationships between variables and are often classified by data type (numeric, binary, 

ordered, unordered, or any) and structure (e.g., longitudinal) (van Buuren 2019). I chose 

predictive mean matching (PMM), which is a semi-parametric method that is robust to model 

misspecification and produces imputations within range of the observed data (L. Tang et al. 

2005; Marshall, Altman, and Holder 2010; Kleinke 2017; Shaw et al. 2022). PMM calculates a 

predicted value of the variable to be imputed for observed and missing participants using linear 

regression. Missing values are imputed by randomly choosing an observed value from a pool of 

“nearest neighbor” donors based on proximity between predicted values for observed 

participants and predicted value of the missing data point and user-specified pool size. For 

dissertation analyses, I used the mice package default of 10 donors. 

 

B.2: Single imputation with stratified hotdeck 

I used single imputation methods for imputing neuropsychological data in HCAP and the 

superpopulation to simplify analyses in the simulation study. As an attempt to impute values 

based on observations from as similar a unit as possible, I implemented a stratified hotdeck 

procedure with strata defined by variables that seemed highly correlated with the variable to be 

imputed.  
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 Hotdeck imputation is a more general case of PMM discussed above. Where PMM uses 

predicted values from linear regression to define pools of similar donors, general hotdeck 

procedures can use other metrics to define “nearest neighbors.” The stratified hotdeck procedure 

I implemented in the study matched participants based on cross-classification of important 

characteristics for the imputation. Continuous variables were binned for the matching procedure. 

There is no consensus on the best way to implement hotdeck, so I used general principles from 

MI and PMM. The quality of hotdeck imputations increases with matching precision; however, 

overly refined matches can result in identical imputed values for several missing observations 

which undermines the imputation process. It is also possible to refine categories to such an extent 

that donor pools are empty because the observation missing values what the only one with a 

specific combination of characteristics. Thus, in this analysis, I required donor pools of at least 

15 observations.  

See Andridge and Little (2010) for a broad review of hotdeck imputation techniques and 

implementations.  
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Appendix C Sampling Distribution Derivations 

What follows is a detailed derivation of the synthetic data-generating model described in Section 

3.3.2:. Let 𝐺# , 𝑖 = 1,… , 364 denote the ADAMS adjudicated impairment class (group) for each 

participant in the ADAMS training sample, 

 

𝐺# =	j

1																				if	participant	𝑖	is	Unimpaired
2					if	participant	𝑖	has	Other	impairment
3																																if	participant	𝑖	has	MCI
4																					if	participant	𝑖	has	Dementia

 (C.1) 

The mixture distribution we wish to sample from is  

 
𝑓(𝑋|𝜃&, …	𝜃4) = B𝜆1𝑓1(𝑋)

4

1%&

, (C.2) 

where 𝑋 represents both categorical and continuous covariates to be modeled (Table 3.1), 𝜃1 	is 

the set of parameters for the model in each latent class, and 𝜆1  are the mixture probabilities for 

the densities 𝑓1 . Following the notation of (Schafer 1997), let 𝑊&	and 𝑊" be the categorical 

variables race/ethnicity (White, Black, Hispanic) and stroke history (ever/never), and let 

𝑍&, 𝑍", … 𝑍&0 be the continuous variables. Then 𝑋 = (𝑊, 𝑍) is an 𝑛	 × 	12 matrix of observed 

data. Let 𝐶 = {𝑐*: 𝑑 = 1, 2, … 6} be the vector of observed counts for each contingency cell 

determined by cross classification of the two categorical variables race/ethnicity and stroke 

history within each impairment group 𝐺 and let 𝑈 be an 𝑛	 × 	6 matrix with rows 𝑢#+, where 𝑢# is 

a 6-vector with a 1 in position 𝑑 if observation 𝑖 falls into cell 𝑑 and 0s in all other position. All 

the information about 𝑊 is contained in 𝐶, 𝑈, or 𝑈+𝑈 = diag(𝐶), and thus we can rewrite the 

mixture distribution in Equation (C.2) as  

𝑓(𝑋|𝜃&, …	𝜃4) = B𝜆1𝑓1(𝑊, 𝑍|𝜃1)
4

1%&

= B𝜆1𝑓1(𝐶, 𝑍|𝜃1)
4

1%&

 



  162 

 
= B𝜆1𝑓1(𝑍|𝐶, 𝜃1)𝑓1(𝐶|𝜃1)

4

1%&

, (C.3) 

where 𝑓1(𝑍|𝐶, 𝜃1) is matrix normally distributed, 𝑓1(𝑍|𝐶, 𝜃1) ∼ 𝑀𝑁(𝐴Β6, 𝑉1 , Σ6), and 

𝑓1(𝐶|𝜃1) is multinomially distributed, 𝑓1(𝐶|𝜃1) ∼ 𝑀(𝑛1 , 𝜋1). Following the guidance of 

(Schafer 1997) for embedding the multi-part model in a Bayesian analysis, conjugate priors for 

𝑓1(𝑍	|𝐶, 𝜃1)𝑓1(𝐶|𝜃1) were chosen to be independent of each other so that the posteriors would 

remain independent as well. Matrix normal and inverse Wishart priors were used for Β6|Σ6	and 

Σ6, respectively (Β6|Σ6 ∼ 	𝑀𝑁(Β0, 𝑉0! , Σ6/κ0) and Σ1 ∼ 𝑊7"
8&(Λ0!

8&)). A Dirichlet prior 

(𝐷(𝛼1)) was used for 𝑓1(𝐶|𝜃). Simulated values of the parameters 𝛼1 , 𝑉0!, Σ1 , and Λ0)
8& were 

based on bootstrapped samples of the ADAMS data as if the posteriors were equal to the prior, 

and 𝜅0, 𝜈0 were hyperparameters in the model. 

The full posterior distribution of the model parameters is  

𝑓(𝜃&, …	𝜃4|	𝑋) ∝ likelihood × prior 

																													= 𝑓(𝑋	|𝜆&, …	𝜆4, π&, …	π4, Β&, …	Β4, Σ&, … Σ4) 	× 

																																						𝑓(𝜆&, …	𝜆4, π&, …	π4, Β&, …	Β4, Σ&, … Σ4) 

																													= 𝑓(𝑋	|𝜆&, …	𝜆4, π&, …	π4, Β&, …	Β4, Σ&, … Σ4) 	×

																																					𝑓(Β&, …	Β4|Σ&, … Σ4, π&, …	π4, 𝜆&, …	𝜆4)𝑓(Σ&, … Σ4|π&, …	π4, 𝜆&, …	𝜆4) 	×

																																				𝑓(π&, …	π4|𝜆&, …	𝜆4)𝑓(𝜆&, …	𝜆4),  

Given the predicted mixture probabilities, 𝜆&, …	𝜆4, modeling takes place independently within 

each subgroup which implies the following posterior distribution: 

𝑓(𝜃&, …	𝜃4	|	𝑋) ∝«[𝑓1(𝑋	|𝜆1 , 𝜋1 , Β6, Σ6) 	× 𝑓1(Β1|Σ6, 𝜋1 , 𝜆1)𝑓1(Σ6|𝜋1 , 𝜆1)𝑓1(𝜋1|𝜆1)]	
4

1%&

×	 

																																											𝑓(𝜆&, …	𝜆4) 
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After accounting for additional independence assumptions in the data-generating model ( 

Figure 3.3) and taking advantage of representing 𝑓1(𝑋) as 𝑓1(𝑍	|𝐶)𝑓1(𝐶), the posterior 

distribution can be simplified into the following pieces within each latent group: 

𝑓(𝜃&, …	𝜃4|	𝑋) ∝«[𝑓1(𝑍	|𝐶, 𝜆1 , 𝜋1 , Β6, Σ6)𝑓1(𝐶|𝜆1 , 𝜋1 , Β6, Σ6)	
4

1%&

 

																																														× 𝑓1(Β1|Σ6, 𝜋1 , 𝜆1)𝑓1(Σ6|𝜋1 , 𝜆1)𝑓1(𝜋1|𝜆1)]𝑓(𝜆&, …	𝜆4) 

																													=«[
4

1%&

 

 𝑓(𝑍	|𝐶, Β6, Σ6) × 𝑓(Β1|Σ1)𝑓(Σ1|𝜆1) × (C.4) 

 𝑓(𝐶|𝜋1 , 𝜆1)𝑓(𝜋1|𝜆1)] × (C.5) 

 𝑓(𝜆&, … , 𝜆4) (C.6) 

Posterior sampling distributions will be derived for each of the equations above. Derivations for 

(C.4) and (C.5) will be conditional on belonging to impairment group 𝐺, which is determined by 

𝜆1 . For notational convenience, the index 𝐺 and parameter 𝜆1  will be removed in their 

derivations. 

For (C.6), the distribution of mixture probabilities is approximated by the multi-part 

model defined by Equations (3.2)-(3.4).  

For (C.5), 𝑓(𝐶|𝜋) ∼ 𝑀(𝑛, 𝜋), where 𝑛 (the size of the impairment group) is determined 

by the predicted mixture probability 𝜆1 . The conjugate Dirichlet prior was used, 𝑓(𝜋) ∼ 𝐷(𝛼) 

thus, the posterior distribution is 

𝑓(𝜋|𝐶, 𝛼) ∼ 𝐷(𝛼 + 𝐶). 

It takes a little more work to derive the exact sampling distribution for (C.4). The following 

conjugate priors were used:  



  164 

𝑓(Β|Σ) ∼ 𝑀𝑁<×((Β0, 𝑉0, Σ/κ0) 

𝑓(Σ) ∼ 𝑊7"
8&(Λ08&), 

where 𝑟 = 4 is the number of effects included in the ANOVA design matrix 𝐴 for the restricted 

general location model (see Section 2.3.3.2:) and 𝑞 = 10 is the number of continuous covariates 

in the model. With a matrix normal likelihood, we expect a matrix normal inverse Wishart 

posterior. What follows are key steps for deriving the posterior distribution: 

Writing out posterior distribution, 

𝑓(Β, Σ|𝑍) ∝ |Σ|8
G
" exp ­−

1
2 trΣ

8&(𝑍 − 𝑈𝐴Β)+(𝑍 − 𝑈𝐴Β)® × 

																											|Σ|8
7"U(U&

" exp ­−
1
2 𝑡𝑟

(𝛬0𝛴8&)® × 

																											|Σ|8
<
"exp	{−

𝜅0
2 tr[Σ

8&(Β − Β0)VV08&(Β − Β0)]} 

grouping the parameters, 

																				= |Σ|8
G
"|Σ|8

7"U(U&
" |Σ|8

<
" exp ­−

1
2 tr

(Λ0Σ8&)® × 

																												exp ­−
1
2 𝑡𝑟

[𝛴8&(𝑍 − 𝑈𝐴Β)+(𝑍 − 𝑈𝐴Β)]® × 

																												exp	{−
𝜅0
2 tr[Σ

8&(Β − Β0)VV08&(Β − Β0)]} 

expanding all parenthesis with Β terms, 

																				= |Σ|8
G
"|Σ|8

7"U(U&
" |Σ|8

<
" exp ­−

1
2 tr

(Λ0Σ8&)® × 

																												exp ­−
1
2 𝑡𝑟

[𝛴8&(𝑍+𝑍 − 2Β+𝐴+𝑈+𝑍 + Β+𝐴+𝑈+𝑈𝐴Β)]® × 

																												exp	{−
𝜅0
2 tr[Σ

8&(ΒVV08&Β − 2ΒVV08&Β0 + Β0VV08&Β0)]} 

Separating the Β terms from the Β0 terms and factoring out operators, 
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																						= |Σ|8
G
"|Σ|8

7"U(U&
" |Σ|8

<
"exp	{−

1
2 tr[

(Λ0 + 𝑍+𝑍 + 𝜅0Β0+𝑉08&Β0)Σ8&]]} × 

 												exp	{−
1
2 tr[Σ

8&{ΒV(AVUVUA +	κ0V08&)Β − 2ΒV(𝐴+𝑈+𝑍 − 𝜅0V08&Β0)}]} (C.7) 

We need to complete the square for the matrix normal distribution.  

Let 𝑀 = (𝐴+𝑈+𝑈𝐴 +	𝜅0𝑉08&)8& and 𝑚 = (𝐴+𝑈+𝑍 − 𝜅0𝑉08&Β0), then the term needed for 

completing the square is 𝑐 = −𝑚+𝑀𝑚. Plugging this in to (C.7),  

𝑓(Β, Σ|𝑍) ∝ |Σ|8
G
"|Σ|8

7"U(U&
" |Σ|8

<
" exp ­

1
2 tr

[(Λ0 + 𝑍+𝑍 + 𝜅0Β0𝑉08&Β0)Σ8&]® × 

																													exp	{−
1
2 tr[Σ

8&{(Β − 𝑀𝑚)+𝑀8&(Β − 𝑀𝑚) −𝑚+𝑀𝑚}]} 

grouping the added term with the first exponential, 

𝑓(Β, Σ|𝑍) ∝ |Σ|8
(7"U(UGU&)

" exp ­
1
2 tr

[(Λ0 + 𝑍+𝑍 + 𝜅0Β0𝑉08&Β0 −𝑚+𝑀𝑚)Σ8&]® × 

																													|Σ|8
<
"exp	{−

1
2 tr[Σ

8&{(Β − 𝑀𝑚)+𝑀8&(Β − 𝑀𝑚)}]} 

∼ 𝑊7"UG
8& ((Λ0 + 𝑍+𝑍 +	𝜅0Β0+𝑉08&Β0 −𝑚+𝑀𝑚)8&) × 𝑀𝑁<×((𝑀𝑚,𝑀, Σ) 
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Appendix D Supplementary Figures 

D.1: Chapter 4 supplementary figures 

(a) Unimpaired 
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(b) MCI 
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(c) Dementia 

 
 
 
 
 
 



  169 

(d) Other 

 
Figure D.1: Posterior predictive distributions of all continuous variable medians for the simulation 

scenario with 𝑛#$% = 8000 and 50% HCAP sampling proportion presented in Chapter 4. Distributions are 
based on 1000 synthetic HCAP datasets by cognitive impairment group: (a) Unimpaired, (b) MCI, (c) 

Dementia, (d) Other. Colored vertical lines in each panel denote true medians.  
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(a) Unimpaired 
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(b) MCI 
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(c) Dementia 
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(d) Other 

 
Figure D.2: Posterior predictive distributions of skew for all continuous variables for the simulation 

scenario with 𝑛#$% = 8000 and 50% HCAP sampling proportion presented in Chapter 4. Distributions are 
based on 1000 synthetic HCAP datasets by cognitive impairment group: (a) Unimpaired, (b) MCI, (c) 

Dementia, (d) Other. Colored vertical lines in each panel denote true skew.  
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D.2: Chapter 5 supplementary figures 

(a) Unimpaired 
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(b) MCI 
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(c) Dementia 
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(d) Other 

 
 

 
Figure D.3: Posterior predictive distributions of all continuous variable medians for the simulation 

scenario with 𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration 
presented in Chapter 5. Distributions are based on 1000 synthetic HCAP datasets by cognitive impairment 
group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Colored vertical lines in each panel denote true 

medians.  
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(a) Unimpaired 
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(b) MCI 
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(c) Dementia 
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(d) Other 

 
Figure D.4: Posterior predictive distributions of skew for all continuous variables for the simulation 

scenario with 𝑛#$% = 8000, 50% HCAP sampling proportion, and 50% race-stratified SRS calibration 
presented in Chapter 5. Distributions are based on 1000 synthetic HCAP datasets by cognitive impairment 
group: (a) Unimpaired, (b) MCI, (c) Dementia, (d) Other. Colored vertical lines in each panel denote true 

skew.  
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D.3: Chapter 6 supplementary figures 

 
Figure D.5: Posterior predictive distributions of medians for all continuous variables for HCAP 2016 

analysis presented in Chapter 6. Distributions are based on 1000 synthetic HCAP 2016 datasets. Colored 
vertical lines in each panel denote observed medians in the HCAP 2016 data.  
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Figure D.6: Posterior predictive distributions of skewness for all continuous variables for HCAP 2016 

analysis presented in Chapter 6. Distributions are based on 1000 synthetic HCAP 2016 datasets. Colored 
vertical lines in each panel denote observed skewness in the HCAP 2016 data.  
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Appendix E Supplementary Tables 

E.1: Chapter 4 supplementary tables 

Variable 

ADAMS 
Baseline (2002) 

N = 826 

HCAP 70+ 
Baseline 
(2016) 

N = 2,298 

HRS 70+ 
(2016) 

N = 6,313 

Super-
population 

 N = 1,000,000 
Age, Mean (SD) 81.3 (7.0) 78.8 (5.9) 78.8 (6.0) 78.8 (6.0) 
Female, n (%) 476 (57.6%) 1,379 (60.0%) 3,765 (59.6%) 596,718 (59.7%) 
Race/Ethnicity, n (%)     
White 590 (71.4%) 1,767 (76.9%) 4,837 (76.6%) 765,663 (76.6%) 
Black 153 (18.5%) 325 (14.1%) 895 (14.2%) 142,182 (14.2%) 
Hispanic 83 (10.0%) 206 (9.0%) 581 (9.2%) 92,155 (9.2%) 
Years of Education, Mean 
(SD) 10.0 (4.4) 12.6 (3.1) 12.6 (3.2) 12.6 (3.2) 
Employment status, n (%)     
Working 58 (7.0%) 190 (8.3%) 548 (8.7%) 86,592 (8.7%) 
Not working 61 (7.4%) 305 (13.3%) 809 (12.8%) 128,287 (12.8%) 
Retired 707 (85.6%) 1,803 (78.5%) 4,956 (78.5%) 785,121 (78.5%) 
Married/Partnered, n (%) 327 (39.6%) 1,236 (53.8%) 3,356 (53.2%) 531,414 (53.1%) 
BMI, Mean (SD) 25.9 (5.4) 27.8 (5.6) 27.7 (5.6) 27.7 (5.6) 
History of stroke, n (%) 151 (18.3%) 307 (13.4%) 796 (12.6%) 125,963 (12.6%) 
History of diabetes, n (%) 158 (19.1%) 681 (29.6%) 1,858 (29.4%) 294,720 (29.5%) 
History of heart disease, n (%) 267 (32.3%) 849 (36.9%) 2,306 (36.5%) 365,608 (36.6%) 
History of hypertension, n (%) 447 (54.1%) 1,676 (72.9%) 4,579 (72.5%) 726,009 (72.6%) 
Current smoker, n (%) 60 (7.3%) 143 (6.2%) 407 (6.4%) 64,479 (6.4%) 
Alcohol consumption, n (%)     
No drinking 681 (82.4%) 1,543 (67.1%) 4,247 (67.3%) 673,197 (67.3%) 
Moderate drinking 108 (13.1%) 567 (24.7%) 1,579 (25.0%) 249,798 (25.0%) 
Heavy drinking 37 (4.5%) 188 (8.2%) 487 (7.7%) 77,005 (7.7%) 
ADLs, Mean (SD) 0.9 (1.4) 0.4 (1.0) 0.4 (1.0) 0.4 (1.0) 
IADLs, Mean (SD) 0.6 (1.0) 0.2 (0.5) 0.2 (0.5) 0.2 (0.5) 
Immediate word recall, Mean 
(SD) 5.5 (2.4) 7.0 (1.8) 4.8 (1.7) 4.8 (1.7) 
Delayed word recall, Mean 
(SD) 3.6 (2.7) 4.9 (2.6) 3.8 (2.0) 3.8 (2.0) 
Serial 7s, Mean (SD) 2.2 (2.0) 3.3 (1.7) 3.3 (1.7) 3.3 (1.7) 
Item naming (cactus): correct, 
n (%) 629 (76.2%) 2,119 (92.2%) 5,781 (91.6%) 915,717 (91.6%) 
Item naming (scissor): correct, 
n (%) 794 (96.1%) 2,272 (98.9%) 6,213 (98.4%) 984,307 (98.4%) 
President naming: correct, n 
(%) 674 (81.6%) 2,180 (94.9%) 6,047 (95.8%) 957,739 (95.8%) 
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Backwards count (20): correct, 
n (%) 601 (72.8%) 2,099 (91.3%) 5,779 (91.5%) 915,086 (91.5%) 
HRS total cognition, Mean 
(SD) 15.1 (6.4) 20.8 (5.3) 20.8 (5.3) 20.8 (5.3) 
Subjective cognitive status, n 
(%)     
Same as 2 years ago 518 (62.7%) 1,584 (68.9%) 4,423 (70.1%) 701,102 (70.1%) 
Better than 2 years ago 59 (7.1%) 46 (2.0%) 129 (2.0%) 20,412 (2.0%) 
Worse than 2 years ago 249 (30.1%) 668 (29.1%) 1,761 (27.9%) 278,486 (27.8%) 
Total MMSE (normalized), 
Mean (SD) 51.0 (25.1) 70.5 (19.1)  70.4 (19.2) 
Animal naming, Mean (SD) 11.5 (5.6) 15.5 (6.3)  15.5 (6.2) 
Word recall (yes), Mean (SD) 8.1 (2.3) 8.9 (1.8)  8.6 (1.8) 
Word recall (no), Mean (SD) 8.9 (2.1) 9.6 (1.2)  9.5 (1.2) 
Immediate story recall, Mean 
(SD) 13.3 (9.0) 16.4 (6.4)  14.2 (6.3) 
Delayed story recall, Mean 
(SD) 9.3 (8.5) 11.6 (7.4)  10.0 (6.7) 
Immediate constructional 
praxis, Mean (SD) 8.3 (2.1) 8.1 (2.3)  8.1 (2.3) 
Delayed constructional praxis, 
Mean (SD) 2.8 (1.1) 5.6 (3.2)  5.5 (3.2) 
Trails A, Mean (SD) 86.0 (62.4) 58.1 (34.5)  57.6 (33.3) 
Impairment group, n (%)     
Unimpaired 307 (37.2%)   373,112 (37.3%) 
MCI 98 (11.9%)   163,587 (16.4%) 
Dementia 273 (33.1%)   259,032 (25.9%) 
Other 148 (17.9%)   204,269 (20.4%) 

 

Table E.1: Sample characteristics for waves of multiply-imputed ADAMS, hotdeck imputed HCAP, and 
HRS relevant to the simulation study and the superpopulation generated for the simulation study. Cells 

that are grayed out indicated measures that are not available for the dataset.  
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Variable 
Unimpaired 

𝜸𝟏 
Other 
𝜸𝟐 

MCI 
𝜸𝟑 

Dementia 
𝜸𝟒 

     

Age X X X X 
Black X X X X 
Hispanic X X X X 
Female X X X X 
Years of Education X X X X 
Not working X X X X 
Retired X X X X 
Married/partnered  X X X 
Normalized MMSE X X X X 
Immediate word recall X X  X 
Delayed word recall X  X X 
Serial 7s X X X X 
Animal naming X  X X 
Word recall (yes) X X X X 
Word recall (no) X X X X 
Immediate story recall X X X X 
Delayed story recall X X X X 
Backwards count (20) X  X X 
Immediate constructional praxis X X X X 
Delayed constructional praxis X X X X 
Trails A X X X X 
HRS total cognition X X X X 
Item naming (cactus) X X X X 
Item naming (scissor) X X X X 
President naming X X X X 
Subjective cognition: better X X X X 
Subjective cognition: worse X X X X 
ADLs X X X X 
IADLs X X X X 
BMI X  X X 
History of stroke X X X X 
History of diabetes X X X X 
History of heart disease X X X X 
History of hypertension X X X X 
Current smoker X X X X 
Moderate drinking X X X X 
Heavy drinking X X X X 

 
Table E.2: Variables selected using LASSO regression for inclusion in each cognitive impairment class 
model described by Equations (4.1) - (4.5). An X denotes a variable selected for inclusion. Grayed-out 

cells indicate variables that were not selected. 
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Variable Dataset Range Bins 
    

Age HRS 70-107 [70, 85), 85+ 
Years of education HRS 0-17 Less than HS, HS, some college + 
Immediate word recall HRS 0-10 [0, 6), [6, 8), [8, 10] 
Delayed word recall HRS 0-10 [0, 5), [5, 7), [7, 10] 
Serial 7s HRS 0-5 [0, 5), 5 
HRS total cognition HRS 0-35 Quintiles* 
MMSE (normalized) HCAP 0-100 Quartiles 
Word list recall (yes) HCAP 0-10 [0, 9), 9+ 
Word list recall (no) HCAP 0-10 [0, 10), 10 
Animal naming HCAP 0-43 Quintiles 
Story recall (immediate) HCAP 0-35 Quartiles 
Story recall (delayed) HCAP 0-35 Quintiles 
Constructional praxis (immediate) HCAP 0-11 [0, 8), [8, 11), 11 
Constructional praxis (delayed) HCAP 0-11 [0, 5), [5, 7), [7, 9), 9+ 
Trails A HCAP 0-300 Quintiles 

 

*HRS total cognition was categorized by quintiles for HRS hotdeck imputation but was categorized by 
quartiles for generating values in the superpopulation. 

Table E.3: Binning for continuous and ordered categorical variables for hotdeck imputation in HRS and 
HCAP. If a variable is available in HRS, it is also available in HCAP. 
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Variable to be imputed Variables used for matching 
  

Subjective cognition: better Sex/gender; race/ethnicity; age; education; HRS total cognition 
Subjective cognition: worse Sex/gender; race/ethnicity; age; education; HRS total cognition 
Immediate word recall Sex/gender; race/ethnicity; age; education; HRS total cognition 

Delayed word recall Sex/gender; race/ethnicity; age; education; HRS total cognition; 
immediate word recall 

Serial 7s Sex/gender; race/ethnicity; age; education; HRS total cognition 

Backwards count (20) Sex/gender; race/ethnicity; age; education; HRS total cognition; 
serial 7s 

Item naming: scissor Sex/gender; race/ethnicity; age; education; HRS total cognition 

Item naming: cactus Sex/gender; race/ethnicity; age; education; HRS total cognition; item 
naming: scissor 

President naming Sex/gender; race/ethnicity; age; education; HRS total cognition 
MMSE Sex/gender; race/ethnicity; age; education; HRS total cognition 
Word recall (yes) MMSE; immediate word recall; delayed word recall 

Word recall (no) MMSE; immediate word recall; delayed word recall 
word recall (yes) 

Immediate story recall MMSE; immediate word recall; delayed word recall 
word recall (yes); word recall (no) 

Delayed story recall MMSE; word recall (yes); word recall (no) 
Animal naming MMSE 
Immediate constructional praxis MMSE 
Delayed constructional praxis MMSE; immediate constructional praxis 
Trails A MMSE; serial 7s; backwards count (20) 

 

Table E.4: Variables used for matching in HCAP 2016 hotdeck imputation. 

 
Variable to be imputed Variables used for matching 
  

MMSE Race/ethnicity; education 
Word recall (yes) MMSE; delayed word recall 
Word recall (no) MMSE; delayed word recall; word recall (yes) 
Immediate story recall MMSE; immediate word recall 
Delayed story recall MMSE; delayed word recall; word recall (yes); word recall (no) 
Animal naming MMSE 
Immediate constructional praxis MMSE 
Delayed constructional praxis MMSE; immediate constructional praxis 
Trails A MMSE; serial 7s 

 

Table E.5: Variables used for matching in superpopulation hotdeck imputation. 
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