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Mobile health has recently expanded to include wearable devices as a part of the 

vision of a holistic approach to wellness in general and health care services in particular. 

Once wearables become ubiquitous, they can provide healthy users, patients and doctors 

with an accurate reflection of the state of their body. This information will ultimately lead 

to better preventative medical practices and a truly personalized medical approach. Driven 

by the vision of a cable-free biomedical monitoring system, new wireless technologies that 

focus on sensor applications have been promoted as the next biomedical revolution, 

promising a significant improvement in the quality of health-care services. However, a 

major barrier to adoption of wearable technologies is the size and power requirements of 

wireless sensors which are typically dominated by the Radio Frequency (RF) section of the 

associated transceivers. There is a need to have a new class of devices that are small in area 

and exhibit ultra-low power consumption. An attractive solution to such emerging vision is 

the use of intra-body communication (IBC) systems where data transmission is achieved 

through the body rather than through air. Sensors and actuators can then inter-

communicate through body and be relayed to a centralized wireless hub that could be a 
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smart watch for instance. This technique would ultimately lead to body area networks 

(BANs) that operate at extremely low power, with minimal foot print by replacing 

expensive, power consuming Radio Frequency front ends, for each individual node with 

simpler interfaces.  

In this work, we study and explore the characteristics, nature, specifications and 

potential of the IBC technology. We introduce novel approaches to accurately model this 

new channel, through simulation techniques as well as physical ones, in form of physical 

phantoms, to understand and model the channel behavior and relation between the 

system’s different components. This work aims at providing a platform for the design of 

body area networks that adopt IBC as means of connection between the network’s nodes. 

Finally, possible applications that uniquely utilize such technology are introduced, verifying 

its potential to boost the healthcare field.   
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Chapter 1 

Introduction & Literature Survey 

1.1 Background 

Human resources are undoubtedly considered to be the most crucial and valuable asset in any 

system, consequently, ensuring the personal safety and efficiency is a major concern.  

Monitoring the performance of vital body functions (body temperature, blood pressure, heart 

beat, electrocardiogram, stress profile) for patients, personal that undergo harsh environments as 

firefighters, policemen and workers in mines, is thus a necessity for their safety, and has to be 

conducted without any hindering to their efficiency on field. Even for healthy individuals, 

monitoring one’s vitals is a necessity nowadays to maintain a certain healthy lifestyle, ensure 

adherence with a specific diet or even to just monitor any abnormalities in the bodies 

performance or activity. The solution for such need seems to residue in personal telemetry 

which, supported by the progress achieved in the field of mobile health, has recently expanded to 

include wearable devices as a part of the vision of a holistic approach to wellness in general and 

health care services in particular.  

Driven by the vision of a cable-free biomedical monitoring system, new wireless technologies 

that focus on sensor applications have been promoted as the next biomedical revolution, 

promising a significant improvement in the quality of monitoring the physical and mental 

condition of the personal. Moving from the cable era, where monitoring the individual’s vitals 

were tied by both time and space constraints, the next era, known as Wireless Body Area 

Networks (WBAN), proved to possess unprecedented potential for wide range of applications 
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that is not only limited to the health care field right now, but is extended to various other sectors 

that became able to harness the information obtained by the biosensors, about the body’s 

condition, behavior, physiological status, or even posture for adapting different environments for 

the individuals’ needs or satisfaction.  These applications range from simple health monitoring 

portals, to custom lifestyle applications, special diet programs, wellness and fitness courses, 

entertainment fields like video games and applications based on Augmented reality and virtual 

reality headsets, to security based applications (biometric identity), stress profile monitoring, 

driver’s behavior monitoring and many other applications that are emerging nowadays building 

upon this new wave of wireless and IoT (Internet of Things) networks and systems. Yet, as ca be 

inferred from the previous mentioned applications, designing a wireless body area network for 

biomedical and lifestyle applications faces multiple key challenges that must be taken in 

consideration: 

 Safety first and foremost, the basic concern of building body area networks is monitoring 

and maintaining a healthy life for the human being, thus adhering to the health safety 

regulations (output signal levels, frequency range of operation, power levels, heat 

dissipation, interference with the bio-signals ...etc.) is a necessity. 

 Security, since body area networks will be transmitting highly sensitive and confidential 

data, that is directly related to an individual’s body status and physical and mental 

condition, and sometimes can be considered as a biometric identity to that personal as 

well, securing such data is an important constraint that should be considered  

 Accuracy; some of these senor networks will be responsible for gathering sensitive data 

that determines the personal certain condition, like the stress profile of on duty personnel 

in the field as policemen and firefighters, upon which a decision by the person in charge 
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will be taken, thus it should be guaranteed that the correct sensors are placed at the 

correct position on the body and correctly calibrated as well. 

 Battery lifetime: in other words, the power consumption of the whole network in general 

and of each sensor node specifically, which is necessary for determining the reliability of 

the networks, especially for applications like implanted sensors, where changing the 

battery over short time cycle cannot be an option.  

 Sensor node footprint: area of the senor node, which includes the area of the senor itself, 

supporting signal processing circuits, communication modules and the battery as well. 

Numerous applications are currently being designed and implemented using wireless body 

sensors networks as their backbone. At the core of these networks, are a number of essential 

sensors that monitor the basic physiological bio-signals. A summary of these basic signals, with 

the minimum data rate required to correctly, accurately and continuously monitor and transmit 

these signals on a real time bases is represented in Table 1.1. As can be seen from the table, due 

to the nature of bio-signals that oscillate at low frequencies which do not exceed 42 Hz [1-2], the 

required bit rate to transmit bio-signals is in the order of few kb/s. To fulfill such requirements, 

innovative wireless solutions have been adopted from the telecommunications and the networks 

fields for such purpose, and are standardized by IEEE Task Groups as the IEEE 802.15.6 [3]. 

Table 1.2 reviews and compares the properties of the major wireless solutions adopted for 

wireless body area networks, such as Bluetooth, ZigBee, ANT, Sensium and Zarlink 

technologies. 

Bluetooth standard offers sufficient bit rate and low cost with the option of ultra-low power if 

using the low-power Bluetooth technique; Yet, all the other listed topologies incorporate lower 

power consumption with different data rates. ZigBee lower average power consumption is  
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Table 1.1.  Requirements for Bio-signals Data Rate and Latency 
 

Biomedical Signal  Data rate Latency 

Heart Rate 80 -800 bps < 1s 

Blood Pressure 80 – 800 bps < 1s 

Respiration 50 -120 bps < 300 ms 

Accelerometer < 100 bps < 300 ms 

ECG 4 Kbps per channel < 250 ms per channel 

 

EMG 

 

EEG 

 

64 Kbps per channel 

 

3 Kbps 

 

< 15.6 ms per channel 

 

< 350 ms per channel 

   

 

suitable for WBAN bio-signal sensors due to the low-duty-cycle of required devices. However, 

low data rate limits ZigBee priority over other standards. ANT and Sensium are proprietary 

standards that are optimized for WBAN health care and lifestyle applications. ANT features 

higher data rate compared to Sensium and it enables user trade-off between data rate and power 

consumption. Nevertheless, Sensium adopts ultra-lower power consumption. In contrast to all of 

the previous four technologies which is deployable for only wearable body sensor, Zarlink has 

developed a wireless implanted transceiver modeled as ZL70101. This system utilizes extremely 

low transmission power consumption which is suitable for implanted sensors due to the need for 

less frequent battery replacement. 

Bluetooth, ZigBee, ANT and Sensium technologies operate at the overcrowded industrial, 

scientific, and medical (ISM) band, ranging from 902MHz-928MHz and 2400MHz-2500MHz, 

with a frequency spectrum centered at 868 MHz, 915 MHz for Sensium and at 2.4 GHz for the 

other standards resulting in coexistence, interference and severe performance degradation 

problems which is a real concern for critical continuous monitoring medical applications. 
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Table 1.2: Characteristics summary of wireless technologies for BAN [4]. 

 

 Spectrum  Channels  Data rate  Peak power 

Bluetooth 2.4 GHz classic-79 

low energy-3 

classic (1-3 Mb/s) 

low energy(1 Mb/s) 

classic (45mA@3.3V) 

low 

energy(28mA@3.3V) 

ZigBee 2.4 GHz 16 250 kb/s 16.5 mA@1.8V 

ANT 2.4 GHz 125 1 Mb/s 22 mA@3.3V 

Sensium 868 MHz, 915MHz 16 50 kb/s 3 mA@1.2V 

Zarlink 

(ZL70101) 

402-405 MHz, 433-434 

MHz 

10 200-800 kb/s 5 mA@3.3V 

     

 

As demonstrated in Figure 1.1, together with the associated data from tables 1.1 & 1.2, it is clear 

that although the current available wireless technologies did help revolutionize the health care 

solutions, enabling telehealth and other numerous applications, there is still a huge margin for 

improvement. This is mainly due to the fact that most of these solutions were lent by the 

telecommunications field, yet not designed specifically for body area networks. These solutions 

provide higher data rates than needed for most bio-signals, and at the expense of higher and 

unnecessary power consumption, where it is in fact the lower left corner in Figure 1.1 is where               

 

Figure 1.1: Power consumption and data rates for currently available wireless solutions, showing the need for a 

novel and more efficient solution that satisfies the needs for body area networks [5] 
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the optimum design point for boy area networks system should be. A major reason for such 

inefficiency of the current wearable technologies is the size and power requirements of wireless 

sensors which are typically dominated by the RF section of the associated transceivers.  Clearly 

there is a need to have a new class of devices that are wirelessly networked, small in area and 

exhibit ultra-low power consumption thus having the ability to perform distributed monitoring in 

a seamless manner. An attractive solution to such emerging vision is the use of Intra-body 

Communication (IBC) systems where data transmission is achieved through the body rather than 

through air. Sensors and actuators can then inter-communicate through the body and be relayed 

to a centralized wireless hub that could be a smart watch for instance. This technique would 

ultimately lead to body area networks (BANs) that operate at extremely low power, with 

minimal foot print by replacing expensive, power consuming Radio Frequency (RF) front ends, 

for each individual node with simpler interfaces. Furthermore, while the body operates as a 

channel for the communicating nodes, it is relatively protected from the higher levels of 

interference expected when broadcasting via the air. From a security prospective, intra-body 

communications poses an important advantage over traditional wireless solution since the 

communication between the sensors/actuators, the processing units and the gateway would be 

confined to the human body only, providing higher level of security. Unlike in the wireless 

sensor case, where the safety of the personal would be at risk in case the transmitted data is 

anticipated by any hostile entity.  
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1.2 Intra-Body Communications (IBC) 

IBC is a novel merging technology, aiming at designing smart, secured and efficient body area 

networks. Through coupling the signal into the human body, the signal propagates through the 

body, that acts as a secure transmission medium, between the transmitter and receiver nodes 

being sensors, actuator, relays or just a wireless gateway. Such novel technology has the 

potential of eliminating the whole RF chain, thus minimizing the area of the senor node and the 

operating power significantly. IBC can thus be the technology that would enable body area 

networks to operate at the far lower left corner in Figure 1.1, where novel sensor networks would 

be solely designed to satisfy the needs and constraints of boy area networks.  IBC uses the 

human body as a communication channel/medium to facilitate data exchange and transmission 

between wearable-wearable, implanted- wearable and implanted-implanted sensors and actuators 

or to be exported to an external medical monitor for further processing, monitoring and medical 

assessment, as shown in Figure 1.2.   

 

Figure 1.2: An example for an IBC network where communications occur between wearable sensors, between 

wearables and implants, between sensors and a wireless gateway, like a smart watch, to transmit the data to the 

outside world for further processing and monitoring [6]. 
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To achieve so, there are two main techniques for implementing the IBC technology, namely 

through; electrostatic (capacitive) coupling or galvanic coupling. 

1.2.1 Electro-static (Capacitive) Near-field Coupling 

Capacitive or electrostatic coupling is historically the first historically introduced approach for 

constructing IBC systems, as introduced by Zimmerman in [7]. In this approach, the signal 

electrodes at both the transmitter and the receiver nodes are connected to the skin, while the 

ground/reference (GND) electrodes at both nodes are left exposed to air. This way, a closed 

circuit is formed, where the forward path is through the human body, while the return path is 

through the ground, and thus communication is established, as shown in Figure 1.3.  

 

Figure 1.3: Capacitive/Near field coupling, where the signal electrodes are attached directly or at a proximity with 

the skin, to form the forward path, while the ground electrodes are left floating in the air to form the return path 

through the air and ground. 
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The transmitting and receiving signal electrode can be placed directly on the human body or in 

close proximity to the body, still closing the circuit loop through capacitive/near field coupling. 

Such approach facilities near-field IBC. In spite of the system simplicity, the main drawback is 

the return path that goes through the air and ground. Such fact makes the simple susceptible to 

external interference, and may impose further restrictions to ensure the security of the 

transmitted data. 

1.2.2 Galvanic Coupling 

Introduced later [8], in galvanic coupling both electrodes at both the communicating nodes are 

placed in contact with the skin. The signal is thus totally coupled into the body at the transmitter 

side to be picked up at the receiver side, where a large portion of the injected current is mutually 

co-located between the transmitting electrodes, yet a small traveling current initiates body 

confined electromagnetic propagation that results in potential difference between receiving 

electrodes, as shown in Figure 1.4, and is mainly responsible for data transfer between both 

nodes. A major advantage for galvanic coupling is that the whole signal is confined into the 

body, thus more resilient to external interference and much more secure than the first approach, 

as taping into the signal is a much harder task with this approach, thus securing a safe data 

exchange. For this reason, among others that will be introduced throughout the dissertation, this 

approach will be our choice of implementation for the IBC technology, as it possesses the 

potential to overcome most of the challenges that faces currently available solutions for wireless 

body area networks, as will be discussed throughout the chapters of this dissertation. 
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Figure 1.4: Galvanic coupling approach, where both electrodes for both nodes are directly connected to the skin, 

thus the whole signal is confined into the body, providing a secure and reliable communication channel 

 

1.3 Prior Work 

In the rest of this chapter, we will review the major milestones in the history of Intra-body 

communications, the basic attempts to model the human body as a communication channel, and 

simple prototype systems that were built using this new technology.  We will also be able to 

point out the pros and cons of each of the above mentioned techniques, so that designer can 

select the approach that is more appropriate for the application at hand. More literature survey 

will also be introduced throughout the chapters of this dissertation, according to the topic/work 

that is being investigated. 
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1.3.1 Zimmerman & Personal Area Networks (PANs) 

As mentioned earlier, the first Intra-Body Communication system was first introduced by 

Zimmerman in 1995 [7]. The interest emerged out of a research conducted by MIT Media lab on 

using electric field sensing to determine object's position. Consequently, the motivation to 

interconnect wearable and carry-on devices with low powered, cheaper and smaller in size 

system hardware drove the author to investigate the validity of electrostatic coupling to transfer 

information which is known as capacitive coupling. By calculating the internal resistance of the 

human body and comparing electrode to body impedances, the human body is approximated as a 

perfect conductor. To derive a human channel model, all electric fields that result from 

electrostatic coupling were identified. Every capacitive coupling is calculated as pure reactive 

impedance to define the lumped-circuit electrical model. A coil is connected in parallel with the 

body to determine body to environment capacitance by measuring the resonance frequency. A 

lock-in amplifier is utilized to measure electrode capacitance. The coupling electrodes' size and 

shape is defined by the chosen wearable or portable object; For example, wrist watch, shoes and 

credit cards. The hardware components of suggested system consist of analog circuitry 

controlled by micro-controller with all components implemented on a single CMOS integrated 

circuit. Half-duplex transceiver is preferred over full-duplex transceiver in order to avoid 

receiver electrostatic field saturation. On-off keying (OOK) and direct sequence spread spectrum 

(DSSP) modulation techniques are investigated on the same implemented hardware system. 

Although DSSP reported higher received signal, OOK was the optimal modulation method due 

to the complexity of phase detection in the case of DSSP. The suggested PAN system showed a 

bit rate of 2400 bit per second. This is also considered as the first trial for implementing an IBC 

system using the electrostatic (Near-field) approach 
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1.3.2 Capacitive Coupling Trials 

Upon the transceiver system presented by Zimmerman, Partridge et al. used FSK modulation to 

replace OOK modulation technique in order to increase the overall performance of the physical 

and encoding layers [9]. The carrier frequency was set to 180kHz and 140kHz to ensure avoiding 

the body antenna effect. The transmitting voltage of 20V was selected. The transmitting 

electrodes and circuit were placed on a cardboard box which represents a wearable device with 

capacitive coupling electrodes. When the subject touches one of these electrodes, a return path is 

formed between the grounding environment and to one of the receiving electrodes that are 

attached to the subject. Different electrodes positioning has been investigated which showed that 

shoe position recorded the highest signal strength. The transceiver system implemented a data 

rate of 38.4kbps. 

1.3.3 Galvanic Coupling Trials 

Handa et al. in 1997 introduced the galvanic coupling implementation for IBC [8]. The main 

objective of their work was to investigate the transmission gain of very low-power health 

monitoring systems by attaching both transmitting and receiving electrodes and coupling the 

required signal directly into the human body which later one became known as the galvanic 

coupling approach. The bio-signal of interest was an ECG signal. Pulse-width modulator with a 

sampling frequency of 900Hz and carrier frequency of 70KHz was utilized by the detector to 

couple the modulated signal with power of 8µW to the relay transmitter. The transmitted signal 

through the body is detected by the micro data recorder or relay transmitter initially by 

amplifying the signal, filtering and demodulating it. Finally, prior stage is followed by FM 

modulation for wireless radio wave propagation. The final result of transmission system shows 
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the detected ECG without any significant distortion which is very promising to pursuit for further 

research in this coupling approach. 

In [10], Oberle et al. chose the galvanic approach to implement a low-power biomedical 

communication system. A simplified engineering model has been derived with respect to the 

human tissue's dielectric characteristics. The coupled alternating current is in the range of µA. 

The transceiver communication system utilized continuous phase frequency shift keying 

(CPFSK) modulation with encoding frequencies of 51.2kHz and 61.4kHz which provided a data 

rate of 4.8kbps. 

Hachisuka et al. used a function generator connected to Ag/AgCl electrodes that are attached to a 

human arm and an oscilloscope to detect the galvanic coupled signal, where they were able to 

determine the basic transmission characteristics of the human body [11]. The transmission results 

confirmed that the frequency of 10MHz has the highest transmission gain. To determine the 

electrode's contact impedance, a simple circuit model was proposed. It had been shown that 

regardless of the electrode metal material, the obtained impedance had small value fluctuation. 

Moreover, a phantom solution has been fabricated to replace the need for bio-signal 

experimentation which provided nearly the same gain as in human measurements at 10MHz. By 

using FM and FSK modulations, the authors observed a robust human channel communication 

against surrounding noisy devices with data rate of 9600bps. Further research by the authors 

however proved that two-electrode arrangement or electrostatic coupling is superior to the 

galvanic coupling [12]. 

Wegmueller et al. thoroughly investigated galvanic coupling approach throughout his work [13]. 

The Finite element method (FEM) alongside with in vivo measurements from 20 subjects has 

been conducted to estimate the human channel attenuation. The presented final results of FEM 
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and experimental measurements demonstrate gain value agreement at various frequencies that 

evaluate the effect of electrodes' size of both TR and electrodes transmission distance. The size 

of transmitting electrodes is proportional to the coupling gain. On the other hand, the muscle 

tissue resistivity and electrodes distance is inversely proportional to the gain. Different electrodes 

placing on the thorax area yields location independent gain data with channel capacity of 

130kbps and 30kHz channel band- width. Further conducted research by the group implemented 

an enhanced system which improved the thorax channel capacity to 0.87Mbps [14]. 

Nevertheless, higher data rate of 1.23Mbps is observed along the upper arm channel.  

1.3.4 Alternative & Mixed Trials 

Lindsey et al. in 1998 [15] proposed a transceiver system for an implantable device that includes 

a function generator with a fixed voltage of 3.25V rms, a current limiting resistor to vary the 

value of input current into 1mA, 2mA and 3mA rms and couple it through a galvanic approach 

using Ag-AgCl electrodes. Measurements have been conducted on a cadaver tissue. The 

transmission results shown by the oscilloscope prove that injected current is proportional to 

transmission gain as well to the inter-electrodes separation. However, transceiver electrodes 

separation distance and signal frequency is inversely proportional to the transmission gain. 

In [16], Fujii et al. focused on capturing the influence of transmitter ground electrode on 

surrounding and penetrating electric field which is the result of electrodes capacitive coupling. 

The transmitter components which includes electrodes and circuit board are modeled as perfect 

conductor sheets to simplify power calculations after deriving the circuit model and to enable the 

use of FDTD calculations. The human arm model has been selected and modeled as a rectangular 

parallelepiped with dielectric properties of muscle tissue. For simpler equivalent circuit 

derivation, common transmission line laws are imported. A sine wave with 3V amplitude and 
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10MHz frequency is fed to the transmitting electrode. With both GND configurations, attached 

and not attached transmitting electrode ground, the first setup showed full electric field 

distribution along the arm due to electric field penetrating the arm. On the other hand, the lateral 

configuration showed an electric field with less intensity resulting from the increase in reactive 

value of the human input impedance. 

Shinagawa et al. later replaced the common signal detection technique that utilizes a regular 

oscilloscope probe with an electro-optic (EO) probe [17]. The electro-optic sensor consists of 

both transverse and longitudinal type for sensing all electric field orientations. In addition, this 

sensor offers low electric field intensity detection due to the very high input impedance and ultra 

wide detection band. Two personal digital assistants (PDA) are connected to the transceiver 

system to transmit an information and verify receiving it correctly. All components are battery 

powered and suspended in the air to mimic an actual transmitting situation. A coupling voltage 

of 25V is assigned to the transmitting circuit; However, less than 100mV is induced on the 

human body. Finally, by sending a connection confirmation command, the authors established a 

half-duplex communication in accordance with IEEE 802.3 with data rate of 10Mbp. 

A comprehensive experimental measurement for both coupling approaches was presented by 

Callejon et al. to explore a suitable operating frequency range and to determine the influence of 

electrodes' types, channel length and grounding strategy [18]. The experimental setup of galvanic 

coupling included a signal generator, oscilloscope, coupling electrodes and baluns to eliminate 

the effect of internal ground of signal source and detector. A spectrum analyzer has been used in 

the capacitive setup to transmit and detect the coupled signal where the rest of experiment 

components are the same as the galvanic setup. Over a 100 experimental measurements have 

been conducted. An optimum operating frequency range between 20-60kHz has been determined 
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for the galvanic method and between 60-70MHz for the capacitive approach where the 

measurements were performed over several days. In addition, the authors concluded that the 

material of the electrodes did not have a significant influence on the channel performance; 

However, the capacitive approach measurements showed sensitivity to grounding electrode type. 

Also, they deducted that as the inter-electrode spacing of TX and RX increases, the transmission 

gain enhances for the galvanic status.  

1.3.5 Channel Modeling & Modulation Techniques 

Yong Song et al. had derived a transfer function that is able to capture the geometrical and 

dielectric properties of the human channels [19].  All the human main body tissues had been 

simplified into multiple concentric cylinders to construct a circuit model where each cylinder 

represent a human tissue with frequency dependent permittivity and conductivity values. and a 

diameter of 50mm is assigned to the largest cylinder of the arm with specific diameter for each 

tissue and set in proportion for other human parts. The measurement and simulation attenuation 

profiles of all presented human channels showed data agreement with a constant error which had 

been neutralized using a correction factor defined as K. 

Swaminathan et al. derived a tissue equivalent model with the same impedances distribution as 

shown by [19]; In addition, the authors considered the impedance of the path between each 

human tissue [20]. Finite element method has been utilized to verify the equivalent model which 

indicated data agreement for multiple transmission paths that are represented in terms of 

wearable to wearable, wearable to implant and implant to implant. The muscle to muscle path 

showed the highest SNR and stable readings compared to the other paths. Transceiver and inter-

electrode separation have been investigated which support the results of all prior mentioned 
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authors in this chapter. Finally, experimental measurement has been conducted on a porcine meat 

to validate the readings of the equivalent model which showed a small readings variation. 

Ruiz et al. investigated a new transmission frequency range; 1MHz-2.5GHz, in terms of received 

signal power magnitude [21]. In addition to setting an environmental ground, a signal electrode 

is isolated vertically from a reference electrode (GND) which is connected to the ground of a 

network analyzer for both TX and RX electrodes where two setups of GND electrode touching 

the skin or not touching are included. The network analyzer is used to display the received 

signal. The acquired data from the network analyzer verify that as the distance of transmission 

and the signal frequency increase, the detected signal magnitude decreases. A signal generator 

that is able to generate and modulate a radio signal in order to propagate it thorough the human 

body and a wireless communication analyzer that is capable to detect, demodulate and plot the 

received signal are implemented to evaluate the performance of digital modulation technique 

using intra-body channels. MSK, BPSK, QPSK, 8PSK and 16QAM were the digital modulation 

schemes of transmission with symbol rate of 100ksps to 5Msps. By contacting the signal 

electrode to the human body, which is referred by the authors as intra-body channel, along the 

modulation methods showed superior performance comparing to the other setup, which is 

referred to as air propagation, where MSK modulation reported the best performance, but 

16QAM the farthest symbols to the reference constellation points of the constellation diagram 

when the symbol rate is 100ksps and transmission distance is 60cm. By increasing the 

transmission distance and symbol rate, BPSK provided the best performance. By using Error 

vector magnitude (EVM), the authors were able to quantify the difference between the ideal and 

measured signal. The EVM measurements provided that BPSK modulation with symbol rate of 

2.5Msps could be used for transmission distance below 155cm to achieve high detection 
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accuracy and good modulation quality. Also, it provided 5Msps for distance of 20cm for BPSK 

and MSK modulations. More research by the authors aimed to derive a statistical channel model 

of intra-body propagation characteristics relying on the best fitting probability function where 

multiple families of probability distribution such as T-location scale, extreme value, normal, 

logistic and non-parametric are chosen based on their shape [22]. The same experimental setup 

had been applied; however, walking and static body situation has been tested to investigate its 

effect on human channel performance. The normal distribution showed the best fitting along all 

specified electrodes' placement. Finally, the authors were able to define a general linear 

statistical model for a reasonable range of transceiver distance. 

1.4 Summary & Challenges 

As seen in the prior work presented in the previous section, IBC is a promising technology that 

can offer major opportunities to various fields like healthcare, wellness, fitness, sports, 

emergency monitoring, entertainment and others. Table 1.3 shows a brief summary for the major 

contributions in this field. Table 1.4 summarizes the main differences between the basic two 

approaches as well; the galvanic and the capacitive coupling techniques, from a systems and 

implementation point of view, as observed from the presented prior art. However, there is still 

much research and standardization is needed to accurately and fully define the aspects of this 

new technology and how to best harness its potential. First major challenge is to fully understand 

this new communication channel, the human body, and accurately derive a channel model that 

can fully characterize the body as a transmission medium, to be used in later stages as systems 

and circuits design. As seen earlier, different approaches have been adopted to study this novel 

channel, where each of these approaches vary even for the same coupling method. Each of the 

previously presented prior work presented certain metrics for characterizing the channel, certain 
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Table 1.3. Summary for IBC System Trials [6] 

 Coupling Frequency Range Modulation Data Rate 

Zimmer 

Handa 

Lindsey 

Partridge 

Oberele 

Capacitive 

Galvanic 

Galvanic 

Capacitive 

Galvanic 

100-500 kHz 

10-100kHz 

2-160kHz 

140-180kHz 

-- 

OOK 

PWM 

FM 

FSK 

CPFSK 

2.4kbps 

0.9 kbps 

- 

38.4kbps 

4.8 kbps 

Fuji 

Hachisuka 

Capacitive 

Capacitive 

10-100MHz 

10k-50GHz 

OOK 

FSK 

9.6 kbps 

10 Mbps 

Shinagawa Capacitive -- -  

Wegmueller Galvanic 

 

10k-1MHz 1k-

10MHz 

FSk, BPSK 128,255 kbps 

Ruiz 

 

Song 

Callejon 

Capacitive 

 

Galvanic 

Galvanic/ 

Capacitive 

10k-1MHz 1k-

10MHz 

100k-5MHz 

10k-2MHz 

1M-100MHz 

BPSK, MSK 

 

-- 

-- 

 

100- 2500 Kbps 

 

-- 

-- 

Swaminathan Galvanic 100k-1MHz -- -- 

 

Table 1.4.  Comparison between Capacitive and Galvanic Coupling techniques 
 

 Galvanic Coupling Capacitive Coupling 

Topology  Both the signal and ground electrodes are in 

contact with the skin (body 

The signal electrodes are in contact, or 

close proximity, to the body, while the 

GND electrodes are floating in the   air 

 

Induced 

Signal 

Intensity 

Amplitude of the injected alternating current 

controls the intensity of induced signal 

Electrical potential difference controls 

the intensity of induced 

signal 

   

Interference 

and the 

surrounding 

environment 

Robust against these factors as the signal is 

confined into the body 

Sensitive to them 

   

Supported 

Data Rates 

 

Frequency 

range of 

Operation 

Low 

 

 

Low, < 50 MHz 

High 

 

 

High, > 50 MHz 
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proposed range for the operating frequency, as well as specific optimum frequency for 

optimizing the power budget. Unfortunately, there is still no solid standard values for these 

parameters, in spite of the effort exerted by the community and the regulation authorities and 

task groups, like the IEEE. Similarly, the setup and location of electrodes, as well as their impact 

of the system performance, are still debatable as well. The authors in [13], [15], and [18-19] 

showed the influence of transmission distance that separates the electrodes wherein the last two 

examined the inter-electrodes spacing effect of transmission.  

Simulation techniques have been extensively used in modeling the channel, from simple circuit 

models [19] to the Finite Element Methods [13] were all considered, where usually the gain/ 

attenuation profile (gain/attenuation of the channel versus frequency) is reported. Experimental 

setups were also considered as in [9], [13], [18-19] and [21] for data validation. Yet testing on 

human subjects, especially for a novel emerging technology as IBC, impose various restrictions 

and safety issues. Thus, there is a necessity for a more reliable testing platform, that is more 

reliable and accurate compared with computer models, yet doesn’t involve human subjects for 

safety reason. As a tradeoff, the research in [15] shows the use of a cadaver to conduct 

measurements. The authors in [11] and [17] followed simpler approach by using a polymeric 

material and polyvinyl chloride, respectively. The author in [20] utilized porcine tissue to 

conduct the experimental measurements. However, these models are not accurate enough, nor do 

they capture the different factors responsible for mimicking the signal propagation and diffusion 

throughout the various body tissues, thus there is still a need for more accurate testing platforms 

for IBC. 
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1.5 Dissertation Contribution 

The basic contributions presented in this dissertation can be summarized as follows: 

 Study, present and summarize prior work in the IBC fields, current challenges and 

opportunities, as well as possible applications 

 Explore and compare between the different possible data carriers to be used as means for 

data transmission over this novel channel – the body 

 Accurately model the channel characteristics and behavior over the targeted frequency 

range of operation, model the different basic components of the IBC system, as well as 

the biological aspects and parameters of the body that impacts the channel performance 

and characteristics, and conclude such findings in a circuit representation for that model. 

 Develop a 3D Finite Element Method (FEM) model to represent other factors and 

parameters, such as the field distribution 

 Perform and present an in depth study for the electrodes’ contact impedance, being the 

gateway between the electronics domain and the biological one, compare between 

different modeling approaches, study the effect of different design parameters on these 

modeling techniques, decide on the most comprehensive modeling technique, include it 

into the final developed IBC model, and study the impact of the electrode-related 

parameter on the overall channel performance. 

 Design, fabricate and test the first multi-layer tissue mimicking materials’ phantoms, 

designed specifically for IBC applications, providing a novel and unique physical 

platform for IBC technology testing – a platform that is provided for the first time with 

such accuracy in this field, to the author’s knowledge. 
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 Carryout experimental testing on real subjects, to study the IBC channel characteristics 

for different scenarios ad for different sensors’ location on the body, then statistical 

modeling approaches were studied and compared to better represent the channel behavior 

and dynamics with respect to both the time and frequency domains. 

 Develop a software platform that combines the knowledge developed throughout this 

research work, for the design of distributed body senor networks that utilizes the IBC 

technology as means of communications between the network’s different nodes. Stress 

profile analysis application is demonstrated as a use case. 

 Develop applications based on the IBC technology in the security field, where machine 

learning algorithms are used to process the experimental data collected throughout this 

project and successfully to demonstrate the use of IBC channel characteristics as a 

biometric identity, where data collected from subjects were used for both identification 

and authorization (verification) applications, with outstanding accuracy, exceeding 98% 

 

1.6 Dissertation Outline 

In Chapter 2, we start exploring the IBC channel by investigating the most appropriate data 

carrier for IBC applications that would secure the pros of IBC technique over other solutions. 

In Chapter 3, after deciding on the optimum data carrier for IBC, the human body as a 

communication channel is accurately modeled using different modeling techniques to study the 

relation between the different blocks of the IBC system and the impact of all on the performance 

of the IBC channel. 
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Chapter 4 focuses on modeling a crucial component in the IBC system, the electrodes, their 

impedance, relation with other IBC components and their influence on the overall system 

performance. 

Chapter 5 introduces the implementation of a multilayer arm phantom model to serve as a 

reliable and accurate test platform for body area networks in general and IBC applications 

specifically. 

Chapter 6 shows the experimental results performed on real subjects, where the channel 

performance is thoroughly investigated. We also introduce two novel applications that are 

developed using the IBC technology; namely a software design platform for distributed body 

sensor networks, and using the IBC channel characteristics as a biometric identity for security 

applications. 

Chapter 7 includes the conclusion and future work. 

 

 

 

 

 

 

 

 

 

 



24 
 

References 

[1] The Physics Factbook. Frequency of A Beating Heart. 

https://hypertextbook.com/facts/1998/ArsheAhmed.shtml, 2013 (Accessed: 2017- 09- 08). 

[2] WHAT ARE BRAINWAVES? http://www.brainworksneurotherapy.com/what-are-brainwaves, 2013 

(Accessed: 2017- 09- 08). 

[3] Riccardo Cavallari, Flavia Martelli, Ramona Rosini, Chiara Buratti, and Roberto Verdone. A survey 

on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys & 

Tutorials, 16(3):1635-1657, 2014. 

[4] Maulin Patel and Jianfeng Wang. Applications, challenges, and prospective in emerging body area 

networking technologies. IEEE Wireless communications, 17(1), 2010. 

[5] IEEE 802.15 TG6 http://www.ieee802.org/15/pub/TG6.html  (Accessed: 2019- 10- 04). 

[6] Ibrahim Alquaydheb; "Human Channel Modeling and Optimization for Intra-body Communication." 

Master Thesis, UC Irvine, 2018. 

[7] Thoams Guthrie Zimmerman. Personal area networks: near-field intrabody communication. IBM 

systems Journal, 35(3.4):609-617, 1996. 

[8] Takashi Handa, Shuichi Shoji, Shinichi Ike, Sunao Takeda, and Tetsushi Sekiguchi. A very low-

power consumption wireless ecg monitoring system using body as a signal transmission medium. In Solid 

State Sensors and Actuators, 1997. TRANSDUCERS'97 Chicago., 1997 International Conference on, 

volume 2, pages 1003-1006. IEEE, 1997. 

[9] Kurt Partridge, Bradley Dahlquist, Alireza Veiseh, Annie Cain, Ann Foreman, Joseph Goldberg, and 

Gaetano Borriello. Empirical measurements of intrabody communication performance under varied 

physical con_gurations. In Proceedings of the 14th annual ACM symposium on User interface software 

and technology, pages 183-190. ACM, 2001. 

[10] Michael Oberle. Low power systems-on-chip for biomedical applications. PhD Dissertation, 2002. 

https://hypertextbook.com/


25 
 

[11] Keisuke Hachisuka, Azusa Nakata, Teruhito Takeda, Yusuke Terauchi, Kenji Shiba, Ken Sasaki, 

Hiroshi Hosaka, and Kiyoshi Itao. Development and performance analysis of an intra-body 

communication device. In TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th 

International Conference on, 2003, volume 2, pages 1722-1725. IEEE, 2003. 

[12] Keisuke Hachisuka, Yusuke Terauchi, Yoshinori Kishi, Ken Sasaki, Terunao Hirota, Hiroshi 

Hosaka, Katsuyuki Fujii, Masaharu Takahashi, and Koichi Ito. Simplified circuit modeling and 

fabrication of intrabody communication devices. Sensors and actuators A: physical, 130:322-330, 2006. 

[13]Marc Simon Wegmueller, Andreas Kuhn, Juerg Froehlich, Michael Oberle, Norbert Felber, Niels 

Kuster, and Wolfgang Fichtner. An attempt to model the human body as a communication channel. IEEE 

transactions on Biomedical Engineering, 54(10):1851-1857, 2007. 

[14] Marc Simon Wegmueller, Michael Oberle, Norbert Felber, Niels Kuster, and Wolfgang Fichtner. 

Signal transmission by galvanic coupling through the human body. IEEE Transactions on Instrumentation 

and Measurement, 59(4):963-969, 2010. 

[15] Derek P Lindsey, Eric L McKee, Maury L Hull, and Stephen M Howell. A new technique for 

transmission of signals from implantable transducers. IEEE transactions on biomedical engineering, 

45(5):614-619, 1998. 

[16] Katsuyuki Fujii, Koichi Ito, and Shigeru Tajima. Signal propagation of wearable computer using 

human body as transmission channel. In Proceedings of the International Symposium on Antennas and 

Propagation ISAP-02, pages 512-515, 2002. 

[17] Mitsuru Shinagawa, Masaaki Fukumoto, Katsuyuki Ochiai, and Hakaru Kyuragi. A near-field-

sensing transceiver for intrabody communication based on the electrooptic elect. IEEE Transactions on 

instrumentation and measurement, 53(6):1533-1538, 2004. 

[18] Maria Amparo Callejon, David Naranjo-Hernandez, Javier Reina-Tosina, and Laura M Roa. A 

comprehensive study into intrabody communication measurements. IEEE Transactions on 

Instrumentation and Measurement, 62(9):2446-2455, 2013. 



26 
 

[19] Yong Song, Qun Hao, Kai Zhang, Ming Wang, Yifang Chu, and Bangzhi Kang. The simulation 

method of the galvanic coupling intrabody communication with different signal transmission paths. IEEE 

Transactions on Instrumentation and Measurement, 

60(4):1257-1266, 2011. 

[20] Meenupriya Swaminathan, Ferran Simon Cabrera, Joan Sebastia Pujol, Ufuk Muncuk, Gunar 

Schirner, and Kaushik R Chowdhury. Multi-path model and sensitivity analysis for galvanic coupled 

intra-body communication through layered tissue. IEEE transactions on biomedical circuits and systems, 

10(2):339-351, 2016. 

[21] Jordi Agud Ruiz and Shigeru Shimamoto. Experimental evaluation of body channel response and 

digital modulation schemes for intra-body communications. In Communications, 2006. ICC'06. IEEE 

International Conference on, volume 1, pages 349-354. IEEE, 2006. 

[22] Jordi Agud Ruiz and Shigeru Shimamoto. Statistical modeling of intra-body propagation channel. In 

Wireless Communications and Networking Conference, 2007. WCNC 2007. IEEE, pages 2063-2068. 

IEEE, 2007. 

 

 

 

 

 

 

 

 

 

 

 



27 
 

Chapter 2 

Intrabody Communications Data Carrier 

2.1 Introduction 

 First step to building an efficient IBC system is determining the optimum data carrier for this 

novel technology. In this chapter, a comparison of the main potential means of data carriers for 

IBC, namely using electro-magnetic waves, ultrasonic waves and magnetic coupling is presented 

where the pros and cons of each approach are discussed. 

2.2 Electromagnetic (EM) Waves 

 The first and most traditional approach for data transmission is EM waves. EM waves is the 

favorable data carrier for wireless communications in general, especially when the propagating 

medium is air or space. For IBC, EM waves were also adopted in the majority of the prior art as 

the data carrier of choice. As shown in the previous chapter, use of EM waves in intra-body 

communications can be categorized into two main types; capacitive coupling (near field coupling 

method) and galvanic coupling. In capacitive coupling, only the signal electrodes of the 

transmitter and the receiver are attached to the body while the ground (GND) electrodes are left 

floating in the air. The conductive body forms the forward path while the signal loop is closed 

through the capacitive return path between the transmitter and the receiver GND electrodes. The 

second approach, which depends on the galvanic coupling principle, uses a pair of electrodes for 

both the transmitter and the receiver to propagate the electromagnetic wave. The signal is applied 

over two coupler electrodes and received by two detector electrodes. An attractive feature of the 
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galvanic coupling approach is that the signal is totally confined to the body, unlike capacitive 

coupling where the signal return path is established through the air. Galvanic coupled signals 

experience minimal interference from other electronic devices, enabling robust and secure data 

exchanges. 

2.2 Magnetic Human Body Communications  

A new approach was recently proposed in [1] where resonant magnetic coupling was suggested 

to be used as an alternative physical layer for BAN. In this approach, coils wrapped around 

anatomy (arm, leg, head ...etc.) are used to generate magnetic base signals at the transmitter side 

and receive them (pick them up) at the receiver end, as shown in Figure 2.1. The main 

motivation is that the permeability of human tissues is similar to air which enables the magnetic 

fields to travel more freely through the human body. Unfortunately, this approach suffers from a 

number of drawbacks. The fact that the permeability of human tissues is similar to air makes it 

more difficult to confine the signal within the human body, thus part of the signal will be lost in 

the air. This means that the network power leakage will be high which cause two main 

drawbacks: 

 Increase the power budget to operate the whole network 

 Threatens the security of the transmitted data, as part of it is being leaked into the 

surrounding medium, thus IBC losses one of its main advantages over wireless solutions 

Moreover, it is not possible to separate the electric and magnetic fields for an EM wave as long 

as the displacement current ratio to the conduction one is considerable. The ratio is plotted for 

different body tissues, as shown in Figure 2.2, showing that in the Mega-Hertz frequency range it 
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is not possible to assume that both fields are independent. Such results imply that data 

transmission cannot be attributed to the magnetic field only, but to the electric field as well since 

Figure 2.1: Using magnetic fields as the data carrier solution for IBC, where coils wrapped around the arm are used 

to generate magnetic base signals at the transmitter side and pick them up at the receiver end [1] 

 

 

 

 

Figure 2.2: Ratio between displacement and conduction currents in different body tissues, showing that the 

displacement current values are large enough thus electric and magnetic fields cannot be assumed to be independent 

of each other in this frequency range. 
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Figure 2.3: For each communicating node that will use the magnetic fields only approach as means for data carrier, a 

wrapped coil is need [203], where each node becomes really bulky in size, inconvenient and not efficient compared 

with wireless solutions in this case. 

 

they cannot be separated at the frequencies of interest while propagating through human tissue. 

Moreover, the need to wrap a coil around the body wherever we need to setup a communication 

node limits the use of such approach, as shown in Figure 2.3, making it inconvenient especially 

if multiple nodes are considered, as each node becomes really bulky in size, which again, strips 

IBC technology of one of its important advantages over convenient wireless solutions, which is 

its potential to be significantly compact in size, thus convenient for body area networks 

applications. 

2.3 Ultrasonic Waves  

Acoustic waves are mostly used for underwater communications since they possess better 

propagation properties in water as compared to RF waves. Since more than 65% of the human 
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body consists of water, ultrasonic waves (acoustic waves at the non-audible frequency range; 

above 20 KHz) was thought to have good potential as a means of communication for BAN. 

Research then followed [2-3] to investigate the efficiency of using ultrasonic waves in BANs, 

mainly to communicate between implantable devices, since ultrasonic waves propagate very 

poorly through air. This approach suffered from some drawbacks as well. A major drawback is 

the acoustic bio-effects, among which are heating and cavitation [4]. As ultrasonic waves 

propagate through the body tissues, a portion of the wave energy is absorbed and converted to 

heat, leading to an increase of these tissues’ temperature, especially when wave intensity is 

increased, leading to undesirable biological effect. The other serious biological effect is 

cavitation. Ultrasonic waves are associated with pressure variations, causing bubbles in the 

propagation medium, body tissues in our case, to expand and contract. As this pressure variation 

activity increases, bubbles may collapse leading to tissue damage, a concern that has to be 

seriously considered when dealing with ultrasonic waves’ propagation on a periodic, repeated 

manner. However, the impact of these two bio-effects can still be minimized through techniques 

of impulsive transmissions with low power and pressure levels, as ways of keeping the acoustic 

intensities to which the tissues are exposed to within the safety limits [5]. 

2.4 Electromagnetic V.S. Ultrasonic Waves 

From the above, it became obvious that electromagnetic waves and ultrasonic waves are more 

convenient as data carriers for IBC and BANs applications in general. Yet, to decide which of 

them is the optimum data carrier for IBC, more in depth comparison will be shown between the 

two mediums, taking into consideration the biological properties of the human body, within the 

frequency range for intra-body communications; from low KHz up to 100 MHz’s. The main to 

consider, being key factors for any system design, are attenuation (gain) and the delay profiles. 
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This comparison is also based on the assumption that health safety issues were already 

considered and both solutions are being implemented and operated in a manner that would 

adhere to the health safety regulations mentioned earlier [6-7]. 

2.4.1 Attenuation 

Human tissue is considered to be a lossy medium where ultrasonic waves are dissipated in the 

form of heat. Attenuation of acoustic waves is caused mainly due to the absorption of the 

pressure energy by the medium in which the wave is propagating. Such attenuation is dependent 

on the type of the tissue as well as the frequency of operation. In general, attenuation for acoustic 

waves follows the relation: 

𝛼 = 𝑎𝑓𝑏 

Where α is the attenuation in (Decibels/ (centimeter*Mega-hertz)), f is the frequency, a and b are 

constants that depend on the acoustic properties of each tissue. Figures 2.4 and 2.5 clarify the 

attenuation properties of the main human tissue types (skin, fat, muscle, cortical bone and bone 

marrow) to the propagation of both ultrasonic and EM waves. For ultrasound attenuation profiles 

versus frequency, the constants a and b are calculated from previous work in literature [8-10] 

using curve fitting techniques. As for EM attenuation, it was calculated according to the 

following equation: 

𝛼 =
𝑤

2
√𝜇 휀(𝑤)tan (𝛿(𝑤)) 

Where α is the attenuation (dB/cm), 𝑤 frequency (rad/s), µ permeability, 휀(𝑤) frequency 

dependent permittivity and tan (𝛿(𝑤)) is the loss tangent, and these electrical properties were all 

calculated for each tissue [11].  
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(a) 

 

(b) 

Figure 2.4 (a)Attenuation that Ultrasonic waves experience when propagating through each of the main five tissues 

of the human body, (b) zoomed in version to show attenuation for skin, fat and muscle tissues. 
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Figure 2.5 Attenuation that EM waves experience when propagating through each of the main five tissues of the 

human body. 

 

From Figures 2.4 & 2.5, it can be shown that according to the attenuation profiles for the human 

body tissues, ultrasonic waves experience more attenuation, in the form of heat dissipation, 

compared with EM waves within the targeted frequency range for BAN. This means that 

adopting EM waves as the data carrier of choice would yield a smaller power budget, as less 

power is need to transmit a signal between two IBC nodes in case EM waves are used, when 

compared to the ultrasonic solution. 

2.4.2 Delay 

Another important aspect is the propagation delay; i.e. how fast these waves can travel through 

the body tissues. Ultrasonic waves are known to travel at very low speeds in the human body 

[12]; ranging between 1450 m/s in fat to 4080 m/s in bone. Such low speed introduces a 

significant delay at the receiver node which is directly translated into severe multi-path reflection 

problems. That drawback requires complicated system topologies and extra hardware at each  
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Figure 2.6 Propagation speed of EM waves in different body tissues. 

node, leading to more complicated power hungry systems. Such a problem is much less 

pronounced in the case of EM waves’ propagation. Velocity of EM waves’ propagation within 

the different body tissues are shown in Figure 2.6. With such high propagation speeds, delay 

problems can be considered to be much less severe to deal with, especially with short distance 

communications as in the case of BANs, when EM waves are used as data carriers as opposed to 

Ultrasonic waves. 

2.5 Conclusion 

From the previous comparison, it is clear that EM waves are advantageous over other mediums 

for data transmission through the human body. It was shown that EM waves possess better 

properties, that can support BAN requirements, versus ultrasonic waves as EM waves experience 

much less attenuation and delay when traveling through the body. Such facts are crucial for 

system designers, as although ultrasonic circuits may appear simple in general, the hardware that 

would be required to compensate for the loss caused by ultrasonic waves’ propagation in body 

tissues would add extra hardware and power compensation, making it a less attractive solution 
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when compare with EM waves. The magnetic field communication option showed a couple of 

drawbacks, namely: 

 Power leakage to the surrounding medium 

 Hard to implement from a scientific point of view, at the specific frequency range of 

interest for IBC, due to the inability to separate the magnetic fields from the electric ones 

within that frequency range. 

 The need for a wrapped coil at each node makes it bulky and inconvenient  

On the other hand, EM waves possess the following advantages: 

 Shows better tissue-related propagation properties (attenuation and delay) when 

compared to the ultrasonic solution 

 Simple system, with smaller area and power footprint 

 Much easier to integrate with currently available wearable systems and platforms, thus 

has the advantage of compatibility as well. 

For all of the above, it is concluded that Electro-Magnetic waves are indeed the optimum data 

carrier for IBC applications in the specified frequency range of interest (100 KHz till 100 MHz). 

Findings in this chapter are published in [13]. Next step is modeling the propagation of this data 

carrier through the human body as a communication channel. 
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Chapter 3 

Human Channel Modeling 

3.1 Introduction 

 As shown in chapter 2, Electromagnetic (EM) waves are the most efficient means for data 

transmission for applications adopting intra-body communications technology. Intra-body 

communications using EM waves can be categorized as mentioned earlier into into two main 

types; capacitive coupling (near field coupling method) and galvanic coupling. In capacitive 

coupling, only the signal electrodes of the transmitter and the receiver are attached to the body 

while the ground (GND) electrodes are left floating in the air. The conductive body forms the 

forward path while the signal loop is closed through the capacitive return path between the 

transmitter and the receiver GND electrodes. The second approach, which depends on the 

galvanic coupling principle, uses a pair of electrodes for both the transmitter and the receiver to 

propagate the electromagnetic wave. The signal is applied over two coupler electrodes and 

received by two detector electrodes. The coupler establishes a modulated electrical field, which 

is sensed by the detector. An attractive feature of the galvanic coupling approach is that the 

signal is totally confined to the body, unlike capacitive coupling where the signal return path is 

established through the air. Galvanic coupled signals experience minimal interference from other 

electronic devices, enabling robust and secure data exchanges. Having identified the appropriate 

data carrier, our next step is modeling the propagation of this data carrier through the human 

body, form a telecommunication, systems and circuits aspects, to take one step closer to the 

realization of practical intra-boy communications systems’ implementation. Numerous research 
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efforts exist that address modeling the body as a communication channel. In this chapter, we 

present a model for intra body communications using galvanic coupling. In the proposed model, 

biological parameters are assumed to be variable, taking into consideration the impact of 

important factors; such as age and weight, on these parameters and thus on the overall 

attenuation profile. For the proof of concept, a model for the arm was considered. The basic 

concepts for the model and how such biological factors were taken into considerations are 

explained. Simulation results are then plotted and compared with published experimental results, 

showing high accuracy in identifying the optimum frequency for signal transmission for intra-

body communications systems. Sensitivity of the model parameters, as well as the transmitter 

and receiver nodes’ components are investigated as well, for a more accurate understanding of 

the system design requirements and constraints.  

3.2 Basic Model Blocks 

 As shown in Figure 3.1, the basic blocks for any general intra-body communication channel 

model are: 

 Transmitter node; source of information being it a sensor that collects physiological data 

and or just a relay for improving the signal quality and account for the path loss 

 Receiver node; can be an actuator, a processing unit or even a gateway node, that 

transmits the data collected by the local body area network to the outside world 

 Electrodes; the interface between the circuits/systems domain and the biological/body 

domain, responsible for coupling the signal to and from the body 

 The Body; the channel/medium through which the signal propagates from the transmitter 

node to the receiver node. 
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Figure 3.1: Basic blocks constituting any general intra-body communications system 

The body is the corner block in the IBC system though, as its properties dictates the constraints 

and design requirements for all the other blocks. An accurate model for an IBC channel should 

thus be able to accurately represent the following: 

 The nature of each block 

 Basic parameters for each block 

 Relation between the different model blocks 

 Design variables and their effect on the model 

 Sensitivity of the model to all of these parameters 

Various approaches were adopted throughput the literature to fulfil these requirements in order to 

reach an accurate channel model for the IBC communication channel. Providing such model is a 

crucial step in order to be able to design systems and circuits that can efficiently utilize the IBC 

technology. The primary performance metric that is reported in literature for the comparison 

between different models and validation of these models against experimental results is the 

gain/attenuation profile.  Simply, the gain/attenuation profile is an accurate map of the body, 

representing the amount of gain/attenuation (loss) that the signal will witness as it propagates 

through the body from one node to the other. The gain/attenuation profile is frequency specific 

and distance dependent too. The gain/attenuation profile is also function in many parameters that 

should all be taken into consideration in order to accurately model the signal propagation through 

the body, and match the model results as much as possible with the experimental/actual findings. 

Transmitter  
Electrodes  

Receiver  
Electrodes  

Body  
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Among these parameters that should be taken into consideration are: 

 Transmitter: output impedance of the transmitter, spacing between the electrodes of the 

transmitter mode 

 Receiver; input impedance of the receiver, spacing between the electrodes of the receiver 

mode 

 Electrodes; material they are fabricated from, whether a gel is used or not, dimensions of 

the electrode, position of the electrodes 

 Body: electrical properties of the body tissues, the propagation path through the body, 

geometric features (thickness of each layer, height, mass, body frame, ...etc.), 

transmission distance (distance between the transmitter and the receiver). 

Other performance metrics were also reported in the literature, as the electric field distribution, 

current density distribution and potential distribution, yet these metrics vary significantly from 

one simulation to the other and also are very challenging to measure experimentally, that’s why 

in our study we will stick with the golden reference in reporting our results, which is the 

gain/attenuation channel profile. 

Different models are used for modeling the IBC channel, the most common of which are: circuit 

models and finite element models (FEM). When both models are accurate enough, circuit models 

are more favorable as they are simpler to build, much faster to simulate and easy to integrate 

with the system/circuits design process.  We started by building an accurate circuit model that 

takes as many parameters as possible into consideration. We then validated our model through 

comparing it to experimental results reported in the literature. Finally, we developed a FEM 

model as well to provide other performance metrics that may be required by the system designer,  
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Figure 3.2: (a) Circuit model for the IBC system, showing how the signal propagates through the body, taking into 

account the transmitter and the receiver nodes but not accounting for the electrode impedance [2]. 

to compare between both the circuit model and the FEM model and finally to provide a platform 

of modeling tools for the IBC technology in general. 

3.3 IBC Circuit Model 

For IBC circuit models, RC networks are used to represent the basic system blocks explained 

earlier. First model was proposed by Zimmerman [1], where transverse and longitudinal 

impedances were proposed to represent the signal propagation through the body. Improved 

models then followed [2-4], taking the transmitter and receiver nodes into account as well, as 

shown in Figure 3.2.  However, it was not until electrodes were taken into consideration [2], that 

circuit models started to provide an accurate and mature representation for the IBC system. In all 

of these models, the channel gain/attenuation profile versus frequency, and sometimes versus the 
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distance between the transmitter and receiver electrodes, are the main performance metrics 

reported. The gain/attenuation profile is computed through getting the transfer function 

expression that defines the relation between the input node of the system and the output terminal, 

in terms of the impedances modeling the different blocks of the system. Different impedances (as 

shown in Figure 3.2 for example) represent the different IBC system components as well as the 

signal propagation path (between the transmitter and the receiver nodes). These impedances are 

then computed through taking into consideration the biological, electrical and geometrical 

properties of the body. An accurate circuit model for galvanic IBC systems is proposed in [5], 

and is shown in Figure 3.3, where the signal transmission is represented by a four terminal circuit 

model.  𝑉𝑖  represents the signal source at the transmitter, 𝑍𝑐   represents the coupling impedance 

between the electrode and the skin. The two transmitting electrodes are attached to the human 

skin at 𝐼1  and  𝐼2 , while the receiving electrodes are attached to the human body at 𝑂1  and  𝑂2  . 

𝑍𝑖   represents the impedance between 𝐼1  and  𝐼2, thus can be considered as the input impedance 

of the human body. 𝑍𝑡1 and 𝑍𝑡2  are the transverse impedances of the transmission path, while 

𝑍𝑏1  and 𝑍𝑏2  are the cross impedances of the transmission path in the human body. The output 

resistance of the transmitter is represented as 𝑅𝑂 , while the input impedance of the receiver is 

represented by 𝑍𝑐𝑒𝑜. The unit for all these impendences is Ohms (Ω). The transfer function is 

then derived for the relation between 𝑉𝑖  and 𝑉𝑜  (voltage across 𝑍𝑐𝑒𝑜  ) which would give us the 

gain profile for the transmission through the human arm, in other words, how much of the signal  

𝑉𝑖   will be picked by the receiver. The transfer function of the model is then obtained where the 

final expression is: 

𝐻𝐴 =
𝑉0

𝑉𝑖
=

𝑍𝑖 𝑍ℎ

𝑍𝑖 𝑍ℎ+(2𝑍𝑐+𝑅𝑂)(𝑍𝑖+𝑍ℎ)
∗

𝑍𝑐𝑒𝑜

𝑍𝑐𝑒𝑜+2𝑍𝑐
∗ 𝐻ℎ     (3.1) 
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Figure 3.3. Full circuit model for the galvanic IBC system,  𝑉𝑖   represents the signal source at the transmitter, 𝑍𝑐    

represents the coupling impedance between the electrode and the skin. 𝑍𝑡1 and 𝑍𝑡2  are the transverse impedances of 

the transmission path, while 𝑍𝑏1  and 𝑍𝑏2  are the cross impedances of the transmission path in the human body. The 

output resistance of the transmitter is represented as 𝑅𝑂 , while the input impedance of the receiver is represented by 

𝑍𝑐𝑒𝑜. 

Where                                    𝑍ℎ =
𝑍𝑡1(𝑍𝑡2 𝑍01+𝑍𝑏1 𝑍01)

(𝑍𝑡1+𝑍𝑏1+𝑍01−𝐾1𝑍01)(𝑍01−𝑍𝑡2𝐻ℎ)
     (3.2) 

𝑍01 =
 𝑍𝑜(2𝑍𝑐+𝑍𝑐𝑒𝑜 )

(𝑍𝑜+2𝑍𝑐+𝑍𝑐𝑒𝑜)
     (3.3) 

𝐾1 =
𝑍𝑏2 𝑍𝑡1+𝑍𝑏2 𝑍01+𝑍𝑏1 𝑍𝑏2+𝑍𝑡1 𝑍01

𝑍𝑏2 𝑍𝑡1+𝑍𝑏2 𝑍01+𝑍𝑡1 𝑍𝑡2+𝑍𝑡1 𝑍01
     (3.4) 

𝐻ℎ =
 𝑍01(𝐾1−1 )

𝑍𝑏1+𝐾1𝑍12
     (3.5) 

The final gain in dB is then calculated as           𝐺 = 20𝑙𝑜𝑔10𝐻𝐴 + 𝐾      (3.6) 

Where K is a correction factor to account for uniform error across various frequency (calibration 

value obtained from experimental values). We will adopt this circuit model as the main circuit 

model representing the IBC channel, yet we applied novel, innovative and more accurate 

methods for modeling and calculating the impedances in these model.   
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Figure 3.4: Arm model used in calculating the values of the circuit elements. The model consists of five concentric 

cylinders representing the main body layers; skin, fat, muscle, cortical bone and bone marrow. 

Calculating these impedances in terms of the variables and parameters that represents the 

transmission properties of the IBC channel is a crucial step towards fully representing the IBC 

channel.   The different circuit impedances constituting the model are calculated according to the 

electrical properties of the different body tissues (mainly the permittivity and conductivity), the 

geometrical aspects of the body organs, the electrodes’ material and dimensions. To calculate the 

circuit impedances, an arm model is considered as shown in Figure 3.4, where the main tissue 

layers constituting the arm, namely; skin, fat, muscle, cortical bone and bone marrow, are 

represented as concentric cylinders. In order to obtain an accurate circuit model that can be 

sufficient for the next steps that would follow in the IBC system design-flow, more variables and 

channel dependent parameters need to be considered and accounted for the in the model as 

shown in the following sections. 
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3.3.1 Bio-Electrical Parameters 

As explained in the previous chapter, the nature of the Electromagnetic signal propagation 

through the body is mainly shaped by tissue related bioelectric properties. Among the most 

important are the dielectric properties of the tissues, namely conductivity σ(w) and permittivity 

ε(w). The permittivity of a tissue is its resistivity to form an electric field through the tissue, in 

other words, its ability to store a unit charge under the influence of an electric field. On the other 

hand, the conductivity of the tissue is its ability to transport charge. Due to the heterogeneous 

property of the human tissue, both values of σ and ε of the tissue are frequency dependent, as 

shown in Figures 3.5 and 3.6.  In these figures, the dielectric properties of each of the main five 

body tissue are plotted. These are experimental values that are reported in the literature [6-7] and 

are widely used as the standard values for body tissue dielectric properties. We will use these 

values in calculating the tissue-related impedances in our model as will be shown in the next 

sections. 

 

Figure 3.5. Conductivity of the main five tissues (skin, muscle, fat, cortical bone and bone marrow) using the 

experimental measurement values reported in [6-7]. 
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Figure 3.6. Relative permittivity of the main five tissues (skin, muscle, fat, cortical bone and bone marrow) using the 

experimental measurement values reported in [6-7]. 

3.3.2 Biological Properties 

 As mentioned earlier, in order to calculate the circuit impedances, an arm model is considered. 

as shown in Figure 3.4, where various layers are represented as concentric cylinders covering the 

main body tissues; skin, fat, muscle, cortical bone and bone marrow. In prior work [5], the 

thicknesses of the concentric cylinders were assumed to be calculated based on a constant ratio 

with respect to the arm radius, however, this does not capture the natural variation between 

individuals based on biological features such as age, weight (frame size) and gender. The model 

we propose assumes the layers’ geometry to be variable, with values dependent on biological 

features. Various statistical studies were considered, relating the thickness of some of these 

layers to biological factors such as age, gender and weight. Curve fitting techniques were utilized 

to yield equations that represent such relations. 
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3.3.2.1 Skin 

The effect of aging on the physical properties of skin was studied in [8]. The study was 

conducted over 39 individuals, males and females. Skin specimens were taken from two different 

sites on the body to represent both exposed and unexposed skin, thus including a wider range of 

skin properties. Findings of the study are summarized in Figure 3.7, which shows that on average 

women have thinner skin as compared to men. Furthermore, skin thickness reaches its peak at 

around 20 years of age and then steadily declines following a roughly linear progression with 

age.  Simple curve fitting techniques were then used to render a linear approximation to describe 

the relation between age and skin thickness, formalized in (3.7),  

  𝑆𝑘𝑖𝑛 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =       −0.0167882∗𝑎𝑔𝑒+1.9        𝑎𝑔𝑒 ≥ 20            

                                        0.04468∗𝑎𝑔𝑒 +0.5793       𝑎𝑔𝑒 < 20           (3.7) 

where skin thickness is in mm, and age in years. 

 

Figure 3.7: Findings from [8] where the skin thickness is plotted for different age groups. A linear approximation for 

the relation between age and skin thickness is proposed, represented by (3.7) 
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3.3.2.2 Bone 

Cross sectional geometric properties of different bones with different size measures (body mass) 

are compared in [9]. Properties were measured across a population of 100 individuals 

approximately equally divided between males and females. Results of the survey are plotted in 

Figure 3.8, showing results pertaining only to the Humerus bone, as it is more related to the 

model under consideration (arm model). As discussed in the skin section, a linear approximation 

as expressed by (3.8) is proposed to capture the relation between the bone cross section and the 

body mass, 

ln (bone cross sectional) = 1.491∗(ln(𝐵𝑜𝑑𝑦 𝑚𝑎𝑠𝑠))−0.9358      (3.8) 

where bone cross sectional area is in 𝑚𝑚2, and body mass in kg.  

 

Figure 3.8: Cross sectional area of humerus bone relative to the size (body mass), results were measured on samples 

from New Mexico (open squares) and East Africa; Kenya and Uganda (closed circles) [9]. Linear approximation, 

relating both quantities, is presented in (3.8). 
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The thicknesses of the remaining layers are then calculated according to the arm radius, the 

previously proposed ratio between layer’s thickness [5] and finally the recently calculated skin 

and bone thicknesses. 

3.3.3 Geometrical Approximation 

To calculate the input and output impedances of the human body (the impedance seen between 

each pair of electrodes), the signal path was assumed to be straight and vertical between both 

electrodes, as opposed to the curved cylindrical path that was assumed in [5]. Each layer is 

divided into smaller sectors, whose impedance is calculated according to its specific geometry 

(length and cross sectional area), and then assumed to be in parallel with other sectors in the  

 

Figure 3.9: The proposed method for calculating the input and output impedances, where each layer is segmented 

into parallel smaller sections, each represented with a resistance and capacitance in parallel, then each layer’s 

impedance is connected in series with the adjacent ones. 
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Sector Length 

Sector Area 

 

 

 

 

 

 

Figure 3.10: Side view (upper figure) and top view (bottom figure) for cylinder section approximation for the signal 

path between the two electrode of the same node, for calculating the input/output body impedance. 

 

same layer, as shown in Figure 3.9 The total impedance is then the series summation of these 

impedances. To calculate the length and cross sectional area of each sector, a geometrical 

representation is shown in Figures 3.10, 3.11, 3.12 and 3.13. Figure 3.10 highlights an example 

for one of the sectors (hashed sector) that we are interested in calculating its geometrical 

dimensions across different layers, where both a side and a top view (view for the cylinder 

showing the signal path underneath the electrode, thus the circle displayed in the top view is a 

circle with radius equals to that of the electrode used) are displayed. To get the area shaded in 

Figure 3.10, we will use the geometrical representation shown in Figure 3.11. 
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Figure 3.11: Calculating the cross sectional area for a mini-sector (seen from a top view), where r is the radius of the 

electrode, L1 is the distance from the center till the beginning of the sector of interest, L2 is the maximum depth for 

the section of interest and 2Ө is the angle enclosed by the 2 radii bounding the sector of interest.  

Assuming the cylinder used to represent the path between the two electrodes is uniformly 

divided into n vertical sectors. Then from Figure 3.11, for the outermost sector (S1): 

𝐿2 =
𝑟

𝑛/2
     (3.9) 

𝐿1 = 𝑟 − 𝐿2 =
(

𝑛

2
−1)𝑟

𝑛/2
     (3.10) 

Ө = 𝑐𝑜𝑠−1(
(

𝑛

2
−1)𝑟

(
𝑛

2
)𝑟

)     (3.11) 

Cross sectional area of the sector = 𝜋𝑟2 ∗ 2Ө − 2 ∗
1

2
∗

(
𝑛

2
−1)𝑟
𝑛

2

∗ 𝑟𝑠𝑖𝑛(Ө)      (3.12) 

Where r is the radius of the electrode, L1 is the distance from the center till the beginning of the 

sector of interest, L2 is the maximum depth for the section of interest of the, and 2Ө is the angle 

enclosed by the 2 radii bounding the sector of interest. To get the area of the next sector (S2), 

repeat the same above steps but for the new L1 & L2, where L1 would be the distance between 

the center of the circle and the beginning of the new sector, and L2 would be the radius minus 
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this L1.  The newly calculated area would be the total of both sectors (S1+S2) thus subtract the 

area of S1 from the calculated value to get the area of sector S2. Similarly, for sector 3 subtract 

the area of the previous two sectors (S1+S2) from the newly calculated area to get that of S3, and 

so on for the rest of the sectors. 

The next step is to calculate the length of each sector (the depth of each sector of the virtual 

cylinder that represents the path between the two electrodes). We used the geometrical 

representation shown in Figure 3.12, where for a certain sector, its inner chord (L3) is 

determined by the angle Ө1 and the outer chord (L4) is determined by Ө2, where L3 and L4 can 

be calculated as follows: 

Ө1 =
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 + 4∗𝑟

𝐴𝑟𝑚 𝑟𝑎𝑑𝑖𝑢𝑠
     (3.13) 

𝐿3 = 2 ∗ 𝐴𝑟𝑚 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ sin (
Ө1

2
)     (3.14) 

Ө2 =
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 

𝐴𝑟𝑚 𝑟𝑎𝑑𝑖𝑢𝑠
     (3.15) 

𝐿4 = 2 ∗ 𝐴𝑟𝑚 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ sin (
Ө2

2
)     (3.16) 

Where r is the radius of the electrode. Through getting the outer and inner length for each sector, 

the thickness of each layer enclosed by each sector is then determined and the impedance per 

unit sector is finally calculated, as represented in Figure 3.10, where for each sector in a certain 

layer 𝑙, 

𝑌𝑙 =
1

𝑅𝑙
+ 𝑗𝑤𝐶𝑙 =

𝜎𝑙𝑓𝑆𝑙

𝐿𝑙
+

𝑗𝑤𝜖𝑂𝜖𝑟𝑙𝑓𝑆𝑙

𝐿𝑙
      (3.17) 

Where 𝑌𝑙  is the admittance of this unit sector, 𝑅𝑙 is the parallel resistance, 𝐶𝑙 is the parallel 

capacitance, 𝑤 is the angular frequency,   L is the length of the signal transmission path (length 
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(a) 

 

(b) 

Figure 3.12: Calculating the length of each sector where in (a) the inner dimension is calculated and in (b) the outer 

dimension is determined.  

of layer 𝑙 in this sector), 𝑆𝑙 is the cross sectional area of the sector, 𝜎𝑙𝑓 and  𝜖𝑟𝑙𝑓 are the 

conductivity and relative permittivity corresponding to layer 𝑙 at frequency f and 𝜖𝑂 is the 

permittivity of free space. 
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The cross impedances (𝑍𝑏1 and 𝑍𝑏2) from Figure 3.3, representing the portion of the signal that 

flows from 𝐼1 to 𝑂2 as well as that from 𝐼2 to 𝑂1, were previously calculated from a circuit 

perspective as being the summation of the transverse impedance (𝑍t) and the input/output 

impedance (𝑍i /𝑍out) [5]. However, in the proposed model, we calculated the cross impedance 

based on a physical approach; following the same path as the transverse impedance but with a 

slightly longer signal path.  The transverse impedance (𝑍𝑡) is calculated as follows: 

𝑍𝑡 =
1

∑
1

𝑍𝑙
𝑙

=
1

∑ (
1

𝑅𝑙
+𝑗𝑤𝐶𝑙)𝑙

           (3.18) 

 

                   =  
𝐿

∑ (𝜎𝑙𝑓𝑆𝑙+𝑗𝑤𝜖𝑂𝜖𝑟𝑙𝑓𝑆𝑙)𝑙
 Ω         (3.19)        

 

where 𝑍𝑙 is the impedance of the layer 𝑙,  L is the length of the signal transmission path (between 

𝐼1 and 𝑂1), 𝑆𝑙 is the cross sectional area of layer 𝑙, w is the frequency, 𝜎𝑙𝑓 and  𝜖𝑟𝑙𝑓 are the 

conductivity and relative permittivity corresponding to layer 𝑙 at frequency f and 𝜖𝑂 is the 

permittivity of free space.  

The path proposed to calculate 𝑍𝑏1 (from electrode 𝐼1 to electrode  𝑂2 ) is explained by (3.19-

3.21), as represented in Figure 3.13 

(𝐼1𝑂2)2 = (𝐼1𝐼2)2 + (𝐼2𝑂2)2                         (3.20) 

𝐼1𝐼2 = 𝐴𝑟𝑚 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝜃𝑡𝑥                                     (3.21) 

𝐼2𝑂2 = 𝐿                                       (3.22) 

𝐼1𝐼2  is the distance between the two electrodes of the transmitter,  𝐼2𝑂2 is the separation between 

the transmitter and the receiver electrode pairs and 𝜃𝑡𝑥 is the angle between the transmitter 

electrode pair. Similar equations can be used for 𝑍𝑏2. 
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Figure 3.13: Geometry used in calculating the signal path between 𝐼1, and 𝑂2, showing the arm radius and the angle 

between each electrode pair (𝜃𝑡𝑥). 

Finally, to calculate the contact impedance  𝑍𝐶 ,  experimental values were measured for different 

electrodes at 100 KHz and 1 MHz in [4]. This set of data was used for parameter fitting where a 

linear relation was assumed for calculating the contact impedance parameters (R and C) in terms 

of frequency. 

3.4 Simulation results 

The gain profile, computed according to the circuit model described in this chapter, was then 

plotted as shown in Figure 3.14 Gain is plotted for three different body frames; 50, 70 and 90 kg. 

It can be observed that the gain increases sharply with the increase in frequency till it reaches the 

peak at 10.5 MHz, after which the gain decays slowly with frequency. Simulation results also 

showed that as the body frame (mass) increases, the gain of the channel decreases. Results are 

then compared with those using the conventional circuit model [5], where the layer thicknesses 

were assumed constant, and the input /output impedances, as well as, the cross impedances are 

calculated through the traditional method, as explained earlier. To validate our model, results are 

compared against experimental trials reported in [10], and plotted in Figure 3.15, where gain for 

transmission through air is compared to that through the body, showing much better performance  
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Figure. 3.14: Simulation results, where the Gain in dB is plotted from 100 KHz till 50 MHz, are plotted for three 

different body frames; small, medium and large. The results from our model are compared to those obtained from 

circuit model in which the biological parameters are assumed to be constant. The proposed model succeeds in 

determining the optimum frequency as well (10.5 MHz). 

 

in favor of intra-body communications for frequencies up to 35 MHz. Experimental results show 

that the frequency at which gain was found to be maximum is around 10.7 MHz, which is very 

close to what our model predicted, with a percentage error much less than that in case of 

adopting traditional techniques to calculate the model parameters. Figure 3.16 presents the 

impact of aging versus the channel profile.  Results show that as the age increases, the channel 

gain also increases (assuming constant mass), which is due mainly to the decrease in skin 

thickness. 
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Figure 3.15: Experimental results from [11], showing good match with results from our proposed model. 

 

 

Figure. 3.16: Simulation results, showing the channel sensitivity to the individual’s age, where gain is plotted for 

three different age groups; 20, 50 and 80 years old. 
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3.5 Finite Element Method 

As mentioned in earlier, there are other methods used for modeling the path loss through the 

galvanic IBC channel. In this section, we will use the Finite Element Method (FEM) for 

modeling the gain/attenuation profile for galvanic IBC channels. Finite element method are 

common methods for the analysis of the human body channel, yet they are sometimes being 

avoided due to the lengthy simulation time resulting from the complex geometry and 

interconnections of the human body [2]. We carried out FEM simulation on a reduced order 

human model with focus on the human arm. An arm model is then designed with simple 

constructed details yet capable to capture essential electrical properties. A comparative study of 

the two approaches is presented and the channel gain profile plotted. We vary the complexity of 

the model and investigate the effect of that on the simulation results. ANSYS Electronics 

Desktop was used for accurate full wave electromagnetic simulation to find an estimation of the 

human channel path loss. The tool can solve for Electro-Magnetic (EM) fields every tetrahedron 

of the 3D meshed structure of the arm model for the transmitting and receiving electrodes. 

Finally, results are compared with those obtained from the circuit model. 

3.5.1 FEM Models 

Simple Arm Mode: A simplified 3D model of an arm model has been constructed, as show in 

Figure 3.17, through constructing five concentric cylinders representing the five main tissue 

layers; skin, fat, muscle, bone marrow and cortical bone. The dimensions of the cylinders mimic 

the average total thickness of the arm related to each tissue thickness [4]. The dielectric 

properties, which are described in terms of conductivity 𝝈 and relative permittivity 𝝐, are the 

same as the experimental values used earlier [6-7]. 
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Figure. 3.17: Simple 3D arm model consisting of five concentric cylinders representing the five main tissue layers. 

Full Body Model: The full FEM model was based on the model created by NEVA 

Electromagnetic group which was subsequently imported on ANSYS HFSS environment as 

shown in Figure 3.18 [11]. In addition to the five main layers of human body, blood streams or 

veins are included in the design of the arm model. Moreover, the detailed geometry of the 

internal and external structure of the imported model mimics the proportions, dimensions and 

geometry of an averaged human arm.  

Although the detailed model results in higher accuracy, the simulation time is much longer than 

the required time in case of the concentric cylinders. Furthermore, in addition to the arm, the 

imported model includes over 25 tissues of other organs and human parts that complicate the 

meshing procedure of the targeted simulation by adding a high number of meshing elements to 

the simulation. 
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Figure 3.18: The full human model including with detailed geometry and anatomy where (a) is the human body and 

(b) is the human arm where the transmitter and receiver nodes are placed for the sake of comparison. 

3.5.2 FEM Simulations 

The transmitting and receiving electrodes dimensions of both models were 15x15 mm. Copper is 

used as the electrodes material. The transmission path length is 10 cm. The excitation of 

transmitting side is set to a lumped port which allows us to embed internal ports of excitation 

with an input impedance of 50 𝛀. The current source of the exciting ports is set to 1 mA which 

conforms to the safety standards of the International Commission on non-ionizing radiation 

protection (ICNIRP) by controlling the power of exciting source [12]. Results between both 

FEM models are plotted in Figure 3.19. As shown in the figure, in spite of the simplicity of the 

concentric cylinders’ 3D arm model, yet it is still accurate enough compared to the full body  
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Figure 3.19: Simulation results of transmission gain including the full-order human arm model, solid line, and the 

concentric cylinders representing the human arm, dashed line. 

 

Figure 3.20: Simulation results of the gain profile for the two FEM models at low frequencies (<10 MHz) 

model provided from NEVA. For low frequency IBC applications (<10 MHZ) we plotted the 

results in Figure 3.20, showing how still the accuracy of both models are still very close.    

3.5.3 Current Density Distribution 

One advantage for FEM simulations over circuit models is the ability to fully and accurately 

simulate and visualize the different fields and currents distributions in different layers, mediums 
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and spaces. In the galvanic coupling approach, the coupled electromagnetic signal exhibit dipole 

type field behavior [13]. This field can be represented in terms of current density vectors to show 

current paths along multiple tissues. Current paths are mainly composed of a primary path that 

flows between the transmitting electrodes and secondary path the results in potential difference 

between the receiving electrodes. The source electrode current exciting the primary and 

secondary flows is as follows 

                               𝐼 = ∬ 𝐽. 𝑑𝑠 = ∬ 𝜎. 𝐸. 𝑑𝑠                                  (3.23)
𝑠𝑠

 

Where J (𝐴/𝑚2)is the current density,  s is the surface area of the transmitter electrode and E is 

the normal electric field intensity component between the contact area of the transmitting 

electrodes and the skin tissue. Current density distribution within the five main human layers is 

affected by the relative permittivity and conductivity of these tissues. The skin layer has higher 

𝜎  than fat tissue. Due to this fact, current density distribution values in skin is higher than 

observed values in fat, which can be observed in Figures 3.21 and 3.22. Moreover, we can notice 

that the values of J along the muscle tissue are higher than along the fat layer, as shown in Figure 

3.23. The conductivity of muscle tissue, which is the highest compared to the other layers, is the 

reason behind this observation as the primary current of coupled signal penetrates through the fat 

tissue located under the transmitter electrodes and easily transmitted along the muscle tissue. 

Finally, the current distribution has been plotted along bone marrow tissue to verify the impact of 

its low conductivity property as shown in Figure 3.24.  
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(a) Primary current distribution                                                     (b) Secondary current distribution 

Figure 3.21: Skin tissue's current density distribution. 

 

 

(a) Primary current distribution                                                             (b) Secondary current distribution 

Figure 3.22: Fat tissue's current density distribution. 
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(a) Primary current distribution                                                             (b) Secondary current distribution 

Figure 3.23: Muscle tissue's current density distribution. 

 

 

(a) Primary current distribution                                                            (b) Secondary current distribution 

Figure 3.24: Bone Marrow tissue's current density distribution. 
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3.5.4 FEM Models & the Circuit Model 

Next step is comparing the results we obtained, for the transmission gain, from the FEM 

simulations with those obtained from the circuit model ones. With using the appropriate 

correction factor, results are shown in Figure 3.25 for low frequency IBC applications. To 

examine the whole frequency range where IBC technologies have high potential, we plotted the 

results over an extended range (100 KHz till 100 MHz) between the FEM model results (the full 

body model) and the simplified circuit model, as shown in Figure 3.26. It is clear now how, in 

spite of its simplicity, the circuit model with all the different biological and electrical parameters 

taken into consideration, is accurate enough compared with a much complicated 3D FEM model. 

However, the circuit model possesses one extra advantage due to its simplicity, which is being 

much faster to simulate and get accurate results.  

 

Figure 3.25: Simulation results for the circuit (analytical) model, the full body model and the concentric cylinders’ 

arm model, for low frequency IBC applications (<10 MHz), showing a good match between all results. 
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Figure. 3.26: Comparison between the gain profile for the galvanic IBC channel calculated once through the circuit 

model then using the FEM mode over an extended range of frequencies (100 KHz till 100 MHz) , showing how 

accurate the circuit model is. 

For comparison, the simulations have been executed on a common computing setup. Simulations 

were performed using a quad core processor running at 2.3 GHz with 8 GB of RAM. Simulation 

time is calculated in terms of CPU time required to complete each simulation. Table 3.1 

summarizes the estimated CPU time for each model simulation Clearly, the total CPU time of the 

detailed human arm FEM simulation is more than 48 times the estimated time in case of the 

simplified circuit model. 

Table 3.1: CPU time of the Circuit model, the arm of the full body model and the 3D concentric 
cylinders’ arm model. 

Model CPU time (hh:mm:ss) 

Circuit Model (00:00:1.77) 

FEM of cylindrical arm (00:02:34) 

FEM of human arm (01:34:07) 
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3.6 Galvanic IBC Channel’s Sensitivity to System Parameters 

Having identified the main blocks for the galvanic IBC system model, and proven how accurate 

our channel circuit model is, in this section we will study and summarize the sensitivity of the 

galvanic IBC channel to the electrical, geometrical and biological parameters of the system, 

through observing the channel gain/attenuation profile using the circuit model over the extended 

frequency range of interest for IBC; 100 KHz to 100 MHz, to provide the system designers with 

the basic guidelines and tradeoffs that they need to be aware of when designing an efficient IBC 

system. We will study the sensitivity of the system to the remaining biological/electrical aspects 

of the communication channel; the body, that were not considered earlier then will consider the 

impact of the system design parameters; properties of the transmitter (TX) and receiver (RX) 

nodes. Effect of the electrodes will be discussed in more details in the next chapter. 

3.6.1 Tissue’s Electrical Properties 

In the previous chapter, it was shown that electromagnetic waves possess better properties, that 

can support BAN requirements, versus ultrasonic waves as EM waves experience much less 

attenuation and delay when traveling through the body which is crucial for system designers. The 

basic human tissues’ properties of concern are those of the complex dielectric properties; namely 

the permittivity and the conductivity. The first sensitivity analysis test performed was then on 

how the variation in these electrical properties would affect the IBC channel characteristics 

(gain). We studied the effect of varying the properties of each tissue solely in a range between -

20 % to 20% of the average nominal values [6-7], and results are plotted in for skin and muscles 

in Figures 3.27 and 3.28. The error was also calculated (the deviation of the IBC channel gain 

from the nominal value) and summarized in Table 3.2, where the maximum error percentage is  
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reported for each case. As can be shown, the IBC channel characteristics are much more 

sensitive to the conductivity of the tissues over the permittivity, since the conductivity mainly 

accounts for the signal transmission capability through a certain medium. From a tissue 

perspective, muscle, skin and fat layers tend to affect the characteristics of the IBC channel more 

than cortical bone and bone marrow, this is due to: a) the better conductive properties of the first 

three tissues, b) the fact that only a tiny portion of the signal will travel through the bones (since 

most of the signal is transmitted through the skin, then muscles. 

 

Figure 3.27: The variation in the IBC channel gain profile, when varying the conductivity and permittivity of skin 

tissue, within the range -20% to 20% from the nominal measured values [6-7]. 

Table 3.2. Maximum error percentages for the deviation in the IBC channel gain when 
varying the Electrical properties of the Tissues 

Tissue 
Conductivity Permittivity 

-20% -10% 10% 20% -20% -10% 10% 20% 

Skin 0.1013% 0.05008% 0.04923% 0.09785% 0.04311% 0.02162% 0.02162% 0.04311% 

Fat  0.5278% 0.259% 0.2497% 0.4906% 0.03% 0.01506% 0.01525% 0.03069% 

Muscle 2.194% 1.053% 0.9776% 1.891% 0.1624% 0.08082% 0.08011% 0.1595% 

Cortical 

Bone 
0.004617% 0.002302% 0.002302% 0.004617% 0.001275% 0.000637% 0.000637% 0.001275% 

Bone 

Marrow 
0.0014% 0.000697% 0.000697% 0.0014% 0.000524% 0.000262% 0.000262% 0.000524% 
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Figure 3.28: The variation in the IBC channel gain profile, when varying the conductivity and permittivity of the 

muscle tissue, within the range -20% to 20% from the nominal measured values [6-7]. 

3.6.2 Transmitter and Receiver Impedances 

The final blocks in the IBC system are the transmitter and the receiver nodes. Since the channel 

characteristics are mostly affected by the relation between the impedances of the basic blocks of 

the system; an impedance matching issue for maximum power transfer between the electronics 

system and the body and vice versa, we will investigate the impact of the TX output impedance 

and the RX input impedance on the IBC channel. In Figure 3.29, we vary the magnitude of the 

RX input impedance between 100, 1K, 10 K, 100 K and 1M Ohms, and observe the channel 

gain. As expected, the gain of the channel improves as the RX input impedance value increases, 

as more signal power is delivered to the receiver node. However, after reaching a certain value 

(~10K in this case) the gain saturates, since the RX input resistance becomes much larger than 
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the system impedance, thus most of the power is transferred from the system (body and 

electrodes) to the RX anyway. On the TX side, the TX output impedance is our concern, since it 

partially determines the portion of the power that will be delivered from the source to the system. 

While 50 Ohms would be the nominal value that most devices/circuits try to design according to, 

for matching purposes, we included other values;10, 100, 500, 1K, 2K, 5K and 10K Ohms to 

study its impact on the gain of the channel, as shown in Figure 3.30. Clearly the gain improves as 

the value of the resistance drops, as less power is lost in the TX node; more transmitted to the 

system. 

 

Figure 3.29: Gain when varying the value of the RX input impedance; 100, 1K, 10 K, 100 K and 1M Ohms. 

 

Figure 3.30: Gain when varying the value of the TX output resistance; 10, 100, 500, 1K, 2K, 5K and 10K Ohms. 
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3.7 Conclusion 

In this chapter we presented a novel approach in modeling the human body as a communication 

channel for galvanic intra-body communications. A simple circuit model was adopted, where the 

different impedances in the model represents the whole system, starting with the output 

impedance of the transmitter, the contact impedances of the electrode, the body impedances 

representing the channel path and finally the input impedance of the receiver. The main novelty 

of this paper is in calculating the body impedances, so that it accurately models the features of 

the human body both physically (through the electrical properties of the tissues) and 

geometrically. Statistical studies were adopted to relate such geometrical aspects to practical 

parameters; namely age and body frame. More accurate approaches were also proposed in 

identifying the signal path through the body, thus imposing changes on the way some circuit 

elements are calculated. To validate the proposed model, results were compared with prior 

published experimental results, showing that the proposed model is able to capture the channel 

profile while accounting for variations due to difference between individuals. Sensitivity profile 

of the channel to age and body frame were also investigated, where gain was plotted for different 

values covering a reasonable range in which these two parameters are expected to change. We 

then compared the results with those obtained from simulation results using FEM on two 

different models; on the arm of a full body model and on a five concentric cylinder’s arm model. 

The circuit model’s accuracy proven to be very close to that of the FEM models over an 

extended frequency range (100 KHz till 100 MHz), yet with a much faster time execute, proving 

that it is the adequate model to be adopted in the later phases in the IBC system design flow. 

Finally, we used the corrected circuit model to study the sensitivity of the IBC channel to the 

system parameters. Findings in this chapter are published in [14-15]. 
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Chapter 4 

Electrode Modeling 

4.1 Introduction 

      A basic block in Intra-body communication systems is the electrode used. Electrodes are the 

main interface between the circuits/systems blocks and the human body (the channel), 

responsible for coupling the signal into the body at the transmitter side and picking it up at the 

receiver one. Accordingly, accurate modeling of the electrode impedance is crucial for IBC 

system performance estimation. In the previous chapter, we used values from experimental 

measurements to represent the contact impedance, yet that limits our modeling generality to the 

scenarios tested only. In this chapter, we present different approaches for modeling the electrode 

and electrode-body contact impedances. Each approach is thoroughly investigated and the 

channel model and overall gain characteristics for each case are presented. Different physical 

factors (material, size, spacing ...etc.) are also taken into consideration to study their impact on 

the overall attenuation profile. Finally, a study of the relation between the different impedances 

constituting the channel model, how electrode parameters affect them, how they change with 

respect to each other, and their role in shaping the final channel gain characteristics. 

4.2 Electrode Impedance Modeling 

A basic element in the human body communication channel is the electrode used at both the 

transmitter and the receiver sides. Modeling the electrode and electrode-body compact 

impedance has a significant impact on the overall channel model. Parameters as the electrode 
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size, material, shape, width, thickness …etc. should all be taken into account. Other factors that 

further determine the value of the electrode-contact impedance include the operating frequency, 

spacing between each of the electrode pairs (ex: separation between the two electrodes of the 

transmitter), location of the electrodes on the human body and finally the transmitted power level 

(operating voltage and induced current). Providing an accurate impedance model that would take 

in as many from the above-mentioned factors as possible is a complicated task. Several 

approaches had been considered for accurately modeling the electrode contact impedances. One 

approach is through measuring the impedance of the electrodes experimentally, as followed in 

[1], where the impedance measurement for different materials and different electrode areas, as 

well as different locations on the body were carried out at a number of frequencies. Collected 

data is then used to calibrate the circuit model. In [2], a set of measured impedances was also 

used to try to generate a simple equation that relates electrode impedance to the operating 

frequency and electrode size, using curve fitting techniques. Yet another approach is to use 3D 

Finite Element Models (FEM) [3], where more complex human body models are proposed, 

taking into consideration more biological features and factors, to accurately model the signal 

path through and around the human body. Although such models accurately solve the EM wave 

simulations, providing more insight on how the signal travels in various body tissues, diffusion 

of power into deeper tissues, power dissipation through the human limbs, and other vital 

information for the channel modeling, it still fails in accurately modeling the electrode-body 

contact impedance. The main reason for that is failing to represent the physical/biological 

interactions at the electrode interface; the ionization of the electrode/gel, movement of the ions 

and the interaction at the interface.  
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The same shortcomings apply to simplified circuit models used to represent IBC channel models 

[2] [4-6]. Although some of these models were able to accurately take into account the electrodes 

properties, it still suffered from drawbacks when it comes to the electrode-body impedance 

modeling, since in most cases very simple models were assumed, limiting the fidelity of the 

model when representing electrode-body interface. In [7], a new method was proposed for a 

better representation for the electrodes impedance, where a hybrid approach (circuit model, FEM 

technique and experimental measurements) was adopted for modeling the IBC channel. The 

proposed simulation model uses measurement-derived S-parameters for modeling the electrode-

body contact impedances and uses lumped circuit models to describe the electrode properties. 

Although this approach provided more accurate results, it still had some limitations. Mainly, the 

measurement-derived S-parameters are very unique to the measurement setup/conditions, 

including; the electrodes material and dimensions, subjects participating in the measurement and 

the operating frequency. If any of those parameters are changed, a new set of measurements will 

be needed, which would be a tedious process with expected variations due to the measurement 

setup conditions. Clearly there is still a need for an approach that would accurately model the 

electrode and electrode-contact impedances, taking into account the different factors and 

electrode properties, yet is not case specific (takes into account the electrodes material, size, 

spacing, operating frequency ...etc.).  

 Electrodes are responsible for connecting electronic systems to the human body through 

transducing ionic currents from the human body into electric currents and vice versa. Chemical 

reactions (oxidation-reduction) at the interface between the metal electrode and the electrolyte 

gel solution, as well as that between the electrolyte and the skin are responsible for carrying out 

this process, through the transfer of the charges between the electrons in the metal and the ions in  
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Figure 4.1: The electrical representation of the skin-electrode interface, showing the electrode, electrolyte, the skin 

layers impedances and the potential developed at the interfaces due to the chemical reactions. 

 

the electrolyte solution/the human body building up a potential difference at the interface [8]. 

Modeling this interaction is the main concern in this paper. The complexity of this process 

resides in the fact that it is a function of variable parameters such as the metal of the electrodes, 

the electrolyte, electrodes’ dimensions, quality of the electrode attachment to the skin and the 

skin electrode interface which may vary from one person to the other. The basic electrical 

representation for the skin electrode interface [8] is shown in Figure 4.1. It shows the electrode, 

electrolyte, skin layers, and the potential differences developed at the interfaces; Eelectrode 

representing the potential difference at the electrode electrolyte interface and Esweat-epidermis  

representing that at the electrolyte skin interface. Model parameters are highly subjective, due to 

the complexity of subject dependent voltage sources, capacitances and ohmic resistances. 
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A number of circuit modeling representations (with varying degrees of fidelity) have been 

proposed to capture the parameters shown in Figure 4.1. The following section, compares three 

common models (under the same assumptions) to illustrate the variability in channel gain profile 

that can be attributed to electrode-body interface modeling.    

4.2 Single Order Model 

For simplicity, an alternative electrical representation [8] for the electrode skin interface is 

shown in Figure 4.2. R1 and C1 represent the impedance associated with the electrode-electrolyte 

interface and the polarization at that interface, R2 is the series resistance associated with 

interfacial effect as well as the resistance of the electrode material, and E is the potential 

developed at the interface due to the chemical interaction between electrons/ions. This simplified 

model is commonly used in circuit models for channel representation in the IBC field.  The 

amplitude of the electrode-interface impedance using the single order model is plotted in Figure 

4.3 over the frequency range of interest for galvanic coupling (100 KHz till 50 MHz). In order to 

generate the impedance shown in the Figure, curve fitting was used to find appropriate R, C 

values based on the experimental frequency dependent values of R, C presented in [1]. 

 

Figure. 4.2:  Simple circuit model representation for the skin-electrode interface. 
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Figure. 4.3: Equivalent Impedance for the first order Electrode-Skin contact model for copper electrodes of radius 5 

cm. 

 

Figure. 4.4: Channel model for galvanic intra-body communications using the first order model for representing the 

electrodes contact impedance. Gain is plotted from 100 KHz till 50 MHz, distance between transmitter and receiver 

is 10 cm. 

The first order electrode impedance is then integrated into the full channel circuit model that we 

proposed in the previous chapter to encapsulate all main five layers constituting the human body; 

skin, fat, muscle, cortical bone and bone marrow. The corresponding channel model (Gain 
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profile) is shown in Figure 4, where the gain of the channel through a human arm is plotted; the 

transmitter and receiver are 10 cm apart, electrodes of the same node are 3.5 cm apart, electrode 

radius is 5 cm and is made from copper. 

4.3 Double Order Model 

While the single order model is simple and fast in simulations, it lacks the details needed to 

accurately represent the details shown in Figure 4.1. Thus, a double order model was introduced 

in [9-10]. The proposed electrode-gel-skin model consists of two main parts; a circuit model 

representing the electrode – electrolyte (gel) impedance, and another representing the electrolyte-

skin impedance, as shown in Figure 4.5. The authors used curve fitting techniques to obtain the 

values of the circuit elements from experimental data that they conducted.  

In order to compare the two approaches, we used the same channel model we proposed in 

chapter 3. Impedance values (equivalent impedance for each of the two sections solely, then the 

overall combined electrode-skin impedance) were computed over the range of frequencies of 

interest, as shown in Figure 4.6. The corresponding channel gain is plotted in Figure 4.7.  

It is important to note that the two channel gain profiles are not identical. This fact highlights that 

the channel gain profile is highly dependent on the electrode modeling approach used and hence 

a thorough understanding of the parameters affecting the model is needed. In subsequent section, 

we elaborate on such parameters and their impact on channel gain profiles.  

 In [11], the authors proposed a more generic model for the second order electrode-human 

body contact impedance, shown in Figure 4.8, where the model included variables that represent 

the electrode dimensions and material. In the model,  Cd represents the double layer capacitance 

between the electrode and the electrolyte solution in the body tissue, Ra is the activation  



83 
 

 

Figure. 4.5: A double order model, consisting of a section modeling the electrode-electrolyte impedance and another 

modeling the electrolyte-skin impedance. 

 

 

Figure 4.6: Equivalent Impedance of the double order model; electrode-electrolyte impedance, electrolyte-skin 

impedance and the overall electrode skin impedance. 

polarization resistance, Rw and Cw represent the diffusion polarization impedance (Warburg 

impedance), Z is the reaction impedance and Zt is the impedance of the tissue under the 

electrode (skin). Using this model, we computed the equivalent impedance for the electrode-skin 

contact for three different materials; copper, brass and stainless steel over the frequency range of 

interest, where material dependent parameters are as given in [11].  



84 
 

 

Figure 4.7: Channel model for galvanic intra-body communications using the double order model for representing 

the electrodes contact impedance. 

 

Figure 4.8: Contact impedance circuit model proposed in [11], taking into consideration the activation polarization, 

diffusion polarization, reaction impedance and the body tissue impedance. 

 

Results are shown in Figure 4.9. The corresponding channel profile using results obtained from 

this model, for the three electrode materials, are then shown in Figure 4.10, which again show a 

deviation from the two channel gain profiles presented earlier. 
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Figure 4.9: Equivalent Impedance using the model suggested in [11], for three different materials; copper, brass and 

stainless steel, with an electrode area of 100 mm2 each. 

 

 

Figure 4.10: Channel model for galvanic intra-body communications for three different electrode materials; copper, 

brass and stainless steel. 
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4.4 Channel Model Variation with Respect to Electrodes Parameters 

It is now clear how sensitive the channel gain profile is to the adopted electrode skin contact 

impedance model. It is thus imperative to choose a model that captures as many of the biological 

processes as possible. The model presented in [11] considers the activation polarization, 

diffusion polarization, reaction impedance and the body tissue impedance. In the remainder of 

the paper, we use this circuit model to gain further insight in the impact of various parameters on 

the channel model.  

 Effect of distance between the transmitter node and the receiver node electrodes: In Figure 4.11, 

the electrode area is fixed at 1  cm2, the separation between each pair of electrodes at the same 

node is 6 cm. The distance between the two nodes is varied (10, 30 and 50 cm).  

 

Figure 4.11: Effect of the distance between the transmitter electrodes and the receiver on the channel gain profile, 

where the distance is varied, while the electrode area and the separation between each pair of electrodes are kept 

constant at 1 cm2 and 6 cm respectively. 
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Figure 4.12: Varying the separation between electrodes of each node; 1cm, 6cm and 10 cm, while both the electrode 

area and distance between the transmitter and the receiver are kept fixed at 1 cm2 and 30 cm respectively. 

        

Figure 4.13: Changing the electrode area; 1 cm2, 10 cm2 and 100 cm2 while distance between nodes and separation 

between pair of each nodes are kept constant at 30 cm and 6 cm respectively 

As expected, the results show that as the distance between the transmitter and the receiver 

increases, the channel gain drops (more attenuation). 

Effect of node specific parameters: In Figure 4.12, the separation between electrodes of each 

node is varied; 1cm, 6cm and 10cm, while the electrode area and distance between the 
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transmitter and the receiver are kept fixed at 1  cm2 and 30 cm respectively. In Figure 4.13, the 

electrode area is varied; 1  cm2, 10  cm2and 100 cm2, while the distance between the nodes and 

separation between pair of each nodes are kept constant at 30 cm and 6 cm respectively. From 

the results, one can infer that as the area of the electrode increases, the impact its impedance has 

on the overall channel gain profile decreases, especially at the high frequencies (above 30 MHz). 

To further illustrate this point, consider the results shown in Figures 4.14 and 4.15 where the 

electrode area is kept constant at 100 cm2 and the distance between the transmitter and the 

receiver as well as the separation between each electrode pairs is varied. Although the same 

relations deduced earlier stays the same, the channel profile, especially at lower frequencies, 

follows a different trend. 

Electrode Contact Impedance vs. Body Impedance: In order to better understand the change in 

channel gain profiles for different electrode areas, it is important to understand the regions in 

which certain impedances dominate; namely the electrode contact impedance and the body 

impedance (input impedance seen between the two terminals of the node). 

 
 

Figure 4.14: Gain vs. distance for electrode area of at 100 cm2 and separation between each pair of electrodes of 6 

cm.  
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Figure 4.15: Gain vs. separation between electrode pairs of the same node, for electrode area of at 100 cm2 and 

distance between transmitter and receiver of 30 cm. 

To better understand the impact of electrode area, a simulation was run, where two extremes for 

the electrode area were used; namely 1 cm2 and 100 cm2. The magnitude of the equivalent 

impedances is plotted in Figures 4.16 and 4.17 respectively. From the figures, we notice that for 

smaller area electrodes, the electrode contact impedance is dominant over the body input 

impedance, which means the contact impedance has higher impact on the channel gain profile. 

As the electrode area increases, its impedance drops till the body input impedance becomes 

dominant over it, thus the body input impedance will have the higher impact on the channel 

profile. This also explains the results shown in Figure 4.13, as the electrode area increases its 

impact on the channel gain profile, especially at higher frequencies, becomes negligible. 

Moreover, changing the separation between the electrode pairs at each node, changes the input 

impedance seen between these two electrodes according to the model we proposed in the 

previous chapter, thus the final channel gain will be determined according to the relation 
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between the various impedances (input impedance, electrode impedance, transmission path 

impedance …etc.). 

 
 

Figure 4.16. Magnitude of the electrode contact impedance as well as the body input impedance seen between the 

two electrodes of each node, for electrode area of 1cm2. 

 

 
 

Figure 4.17. Magnitude of the electrode contact impedance and the body input impedance for electrode area of 100 

cm2 . 
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4.5 Conclusion 

In this chapter, we investigated various methods used to model the electrical circuit 

representation of the electrode-body contact. The impact of adopting each of these models on the 

characteristics of the galvanic intra-body communication channel, using the channel model that 

we proposed in chapter 3 is presented. We then studied the impact of varying different 

parameters, related to the electrodes as the electrode area, distance between the transmitter and 

the receiver nodes and the separation between each pair of electrodes on the characteristics of the 

channel gain/attenuation profile. It is clear that the gain drops with increasing the distance 

between the two nodes, yet it increases with increasing the separation between the electrodes of 

the same node. To further understand the obtained results, we studied the relation between the 

basic impedances forming our channel model; mainly the electrode contact impedance and the 

body input impedance. Through observing the values of each for different electrodes dimensions, 

it became clear the role and impact of each one of them on the channel gain characteristics, and 

how the relation between both of them dictates the behavior of the channel profile. Results are 

published in [12] 
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Chapter 5 

Physical Multi-Layer Phantom Models 

5.1 Introduction 

As seen in the previous chapters, initial work in the IBC field focused on evaluating the 

suitability of the human body as a communication medium. Research efforts were first directed 

towards modeling the gain/attenuation profile of the body channel versus frequency and 

simulating its behavior using different software tools. The goal of this characterization was to 

identify the optimum frequency range for IBC as well as the frequency range at which the body’s 

attenuation to the signal propagation would be minimal, thus minimizing the power needed for 

transmission. Factors affecting such profile were also considered, such as, type, shape and size of 

the electrodes used, distance between the transmitter and the receiver, biological parameters of 

the human body and the environmental conditions [1-9]. However, simulation results alone are 

not sufficient and must be verified through comparison with experimental data from 

measurements that are carried out on real subjects. Carrying out experiments on real subjects is a 

tedious process that requires long and complicated procedures, mainly to ensure the safety of the 

subjects under test, especially for emerging technologies. The above facts, together with the 

urgent need for experimental data for verifying the proposed channel models, encouraged 

researchers to adopt the idea of using including thermal, physical and electrical characteristics, in 

their experimental routines. Phantoms are widely used in the medical and biological studies as 

substitutes for animals in experiments, lending themselves readily for BAN research. 
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In this chapter we will focus on two main topics: 

1) Describing a methodology to create multilayer phantoms that mimic the electrical properties 

of the body tissues for low frequency applications such as the IBC, while capturing the effect of 

the multiple layers in the human body, namely, skin, fat, muscle, cortical-bone and bone-

marrow. 

2) Providing experimental measurement results for different prepared samples over the 

frequency range from 100 KHz till 100 MHz. 

Key features that should be captured by phantoms are presented and discussed. Next, phantoms 

are introduced, and two different methods for preparing phantoms suitable for IBC applications 

are presented. Experimental procedures and setup for preparing different materials constituting 

the phantom are detailed. Measurement results are then discussed, and properties of the prepared 

samples are compared with those of the tissues of concern. Composite models are then proposed, 

wherein results for the experimental measurements are shown proving the efficacy of the 

methodology in producing multilayer phantoms. 

5.2 Phantoms 

Phantoms are physical models that simulate certain characteristics of the biological tissues they 

represent. Phantoms have been used extensively in the medical field [10]. Historically known 

imaging phantoms were first introduced as objects for evaluating the performance of imaging 

devices. Phantoms then underwent various improvements, mimicking biological characteristics 

more accurately, where they proved to be useful solutions for experimentation at the early 

investigative stages prior to working with living subjects or cadavers. There are various 

classifications for phantoms, the most commonly used is according to the final state of the 
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phantom; solid (dry or wet), gel or liquid [11-19]. Finally, phantoms provide a stable and more 

controllable experimental setup/platform that is hard to realize using living subjects. 

Several trials were reported in literature for the use of phantoms for IBC applications as a stable 

and easy to control, yet accurate experimental setup [20], [21]. Liquid phantoms were usually 

adopted in these trials, being the easiest to prepare. In [22], the authors used an insulator 

(polyvinyl chloride bag) containing conductive liquid (salt water) to model the human arm as a 

cylinder. In [23], the authors used a liquid phantom as well that consists of 0.45% NaCl and 2 

gallons of water filled in a plastic container, yielding a solution of conductivity ~ 0.52 S/m at 

13MHz and ~1S/m at approximately 900MHz. In [24], the authors used a phantom that is a gel 

material with a conductivity of 0.59 S/m at 6.75 MHz and packed by a plastic sheet. In [25], the 

authors constructed a circular phantom consisting of two homo-centric sections each filled with a 

different substance; water with a given sodium concentration and agar. Agar was used to emulate 

the skin and a saline solution accounted for the interstitial fluid and muscle. In [26], a semi-

cylindrical container was proposed formed by two homo-centric layers composed of different 

chemical compounds emulating the skin and muscle. In [27], the authors proposed a solid 

phantom in the form of a rectangular parallelepiped with a relative permittivity of 81 and a 

conductivity of 0.062 S/m. Wegmueller et al. showed in [28], an ellipsoidal phantom for the 

simulation of a cross-section of the torso, filled with a muscle simulating fluid that emulates the 

conductivity of muscle at 27MHz.  

A main drawback for the above mentioned trials is that the proposed phantoms all considered the 

arm as one homogeneous layer; using a single material to represent the whole arm. Such 

approach results in: 
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1) Neglecting the biological and physical nature of the arm, mainly the dielectric properties of 

each of the main five tissues, and over the whole range of frequencies of interest (instead of just 

reporting such values at one or two discrete frequencies). 

2) Considering the arm as one single layer also neglects the interaction between one layer 

(tissue) and the other, which accordingly neglects and eliminates other important facts of how 

the signal would diffuse from one layer to the other, propagation of the signal in different layers, 

etc. 

3) Inaccurate representation of the arm’s geometry; dimensions of the arm and thickness of each 

layer (which has a considerable impact on the overall results and performance for IBC) are 

almost totally neglected.  

For the above reasons, it became clear that if phantoms are to serve as stable, controllable, 

accurate and reliable testing setup for IBC, then more elaborate and detailed phantoms need to be 

used. In chapter 3, we proposed an accurate circuit model of the human arm as an IBC channel.  

Since the gain profile obtained using the model showed very good match with experimental 

results previously reported in the literature, we opted to follow the same approach in constructing 

the proposed phantom. Two different methods were studied to construct the samples that would 

satisfy our goal. 

5.3 Oil Phantoms 

In [29], equivalent anthropomorphic breast phantoms were constructed for use in ultrasound 

elastography and magnetic resonance (MR) elastography. The proposed method seemed to 

possess a potential for yielding materials with dielectric properties that can be varied through 

varying the ratios of the elements used in the preparation of each sample. The main 
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elements/components used for preparing the materials are shown, with the order at which each 

element is added throughout the preparation process for each material as shown in Figure 5.1. 

The liquid aqueous gelatin and the safflower oil are the main two components of the mixture. By 

varying the ratios of these two components each time, a new material with different dielectric 

properties is generated. Each resultant sample is identified by the percentage of oil to the total 

final sample weight; for instance, a 50% sample has safflower oil at 50% of the weight of the 

final product. The main steps for preparing each sample are as follows [29]: 

1. In a beaker, prepare a room temperature solution of propylene glycol and 18 megohm-cm 

doubly de-ionized water. 

2. Slowly add, while stirring, 200 bloom calf-skin gelatin so that no clumping occurs and a 

uniform "slurry" results. 

3. Cover the beaker with a plastic food wrap held in place with a rubber band. Punch a small hole 

or slit in the plastic wrap so that the gas pressure above the slurry during heating remains at 

atmospheric pressure. 

4. Place the beaker in a larger container of hot water so that the level of the hot water is at or 

above the top of the gelatin slurry in the beaker. 

5. Heat the water until the gelatin temperature rises to about 90◦ C and becomes transparent. 

Remove any bubbles at the meniscus. The transparent hot gelatin is referred to below as molten 

gelatin. 

6. Remove the beaker of molten gelatin from the hot water bath and immerse it partially in a cold 

water bath. Cool the molten gelatin, while stirring, to 50◦ C and remove it from the cold water 

bath. 
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7. While cooling the molten gelatin in step 6, heat the safflower oil to 50◦ C. 

8. Add the molten gelatin to the 50◦ C safflower oil and mix vigorously with a tablespoon that is 

bent at right angles near the bowl of the spoon. During mixing, keep the bowl of the spoon 

beneath the surface and moving about a horizontal axis, thus minimizing disturbance to the 

surface of the mixture. 

9. Add the liquid surfactant and continue the stirring motion until the emulsion is nearly white 

and a separation of oil does not occur when stirring is stopped. 

10. Cool in the cold water bath to 40◦ C and slowly add with stirring formalin. 

11. Continue cooling the emulsion to about 34◦ C and pour into molds. 

12. Allow at least 8 hours for cross-linking of the gelatin by formaldehyde to occur before 

removing the phantom component from its mold. 

 

Figure 5.1: Elements used in preparing the oil samples [29]. 
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5.4 Oil-Kerosene Phantoms 

In [30], tissues mimicking phantom materials were proposed for microwave applications, where 

satisfactory results were reported for different samples, yet for a higher frequency range than the 

one we are interested in. To be able to use these materials within the frequency range of interest 

for IBC applications (100 KHz till 100 MHz), some modifications were applied. The main 

elements used in preparing the samples are shown in Figure 5.2. The main difference between 

this method and the previous one is that the oil solution in this case would be an equal mix of 

kerosene and safflower oil. The preparation steps for these materials are very similar to those of 

the Oil Phantom mentioned earlier, and can be found in more details in [30]. Another important 

advantage to the two methods being adopted for preparing the phantom materials is that they can 

be employed in a heterogeneous configuration (samples with different concentrations being 

constructed side by side) without change in geometry or dielectric properties of any of them, a 

feature that is needed to construct a multi-layer phantom structure. 

 

Figure 5.2: Elements used in preparing the oil-kerosene samples [30]. 
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5.5 Experimental Setup 

To investigate the potential of both methods - i.e. prepare samples that would have the closest 

dielectric properties to those of the five body tissues we are trying to mimic- nine different 

samples of each method were prepared, where the oil (or oil-kerosene solution) percentage was 

varied from 10% of the sample weight to 90%, with a 10% step each time. The exact weights and 

percentages of the elements used in preparing the samples are given in Table 5.1 for the oil 

phantoms and Table 5.2 for the oil-kerosene ones.  

After pouring the prepared samples in their molds and allowing time to mature (at least for 5 

days for the formalde-hyde cross-linking of gelatin to be completed [30]), the dielectric 

properties were measured. An HP Agilent 4291B [31] impedance analyzer was used to perform 

the measurements. Both the real part and the imaginary part of the complex permittivity are 

measured using the device. Results are then processed using MATLAB software to compute both 

the permittivity and conductivity of each sample and compare them with those of the five body 

tissues. The 16453A dielectric material test fixture was attached to the 4291B impedance 

analyzer, where the function of this fixture is to obtain accurate dielectric constant and loss 

tangent measurements through employing the parallel plate method, which sandwiches the 

material between two electrodes to form a capacitor. To be able to use this fixture, the thickness 

of the sample to be tested should not exceed 3 mm. For each prepared material, at least three 

different test samples from different locations across each mold were used to make sure that the 

results are not affected by the position of the sample in the mold. Results are then averaged over 

the collected readings to compute the dielectric properties for each prepared material. To 

investigate the properties of the prepared materials over time, measurements were repeated after 

8 weeks to study the change in the properties of the material over time. 
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TABLE 5.1. Weight of Elements Used in Preparing the Oil Phantom Samples 

 

Material\ Sample 

Percentage 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Propylene 

Glycol(units) 

10.5  10.5  10.5  10.5  10.5  10.5  10.5  10.5  10.5 

De-ionized 

water(units) 

169 169 169 169 169 169 169 169 169 

Gelatin(units) 26.95  26.95  26.95  26.95  26.95  26.95  26.95  26.95  26.95 

Safflower 

Oil(units) 

19.4 43.75 75 116.7 175 262.5 408.3 700 1575 

Ultra Ivory(units) 0.2314 0.48125 0.825 1.2837 1.925 2.8875 4.4913 7.7 17.325 

Formalin(units) 1.323 1.323 1.323 1.323 1.323 1.323 1.323 1.323 1.323 

 

 

TABLE 5.2. Weight of Elements Used in Preparing the Oil-Kerosene Phantom Samples 
 

Material\ Sample 

Percentage 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

P-Toluic acid (g) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

De-ionized water 

(ml) 

190 190 190 190 190 190 190 190 190 

N-Propanol (ml) 10 10 10 10 10 10 10 10 10 

Gelatin (g) 34 34 34 34 34 34 34 34 34 

Oil-kerosene (ml) 22.2 50 85 133.3 200 300 466 800 1800 

Ultra Ivory (g) 1.26 2.8 4.76 7.46 11.2 13 15 17 20 

Formalin (g) 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 

 

 

5.6 Experimental Results 

Using the experimental measurements provided in [32], [33], the dielectric properties 

(conductivity and permittivity) for the main five tissues skin, muscle, fat, cortical bone and bone 

marrow, are determined, as followed in the previous chapters. 

The dielectric properties of the samples are plotted in Figure 5.3 (for oil only samples) and 

Figure 5.4 (for oil and kerosene samples). The figures show that as the oil or oil-kerosene 

concentration increase, both the conductivity and permittivity of the prepared sample decrease, 

which is expected as oil in general has more of an insulator properties (weak electrical  
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(a) 

 

(b) 

Figure 5.3: (a) Measured conductivity for the Oil-only samples for the different Oil concentrations. (b) Measured 

permittivity. 

conductivity, yet better heat conductivity). Comparing such results, with the tissue properties 

plotted in Figures 3.5 and 3.6, it can be observed that both follow the same behavior with respect 

to frequency; conductivity increases with frequency, while permittivity experiences a sharp fall 

at lower frequencies and then almost saturates at higher frequency values. Comparing the  
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(a) 

 

(b) 

Figure 5.4: (a) Measured conductivity for the Oil-kerosene samples for different Oil-kerosene to the gelatin solution 

concentrations. (b) Measured permittivity. 

electrical properties plotted in Figure 3.5 and 3.6 with those plotted for the different samples in 

Figure 5.3 and 5.4, the accurate oil percentage can thus be selected depending upon which 

specific tissue needs to be mimicked, as well as which electrical property is of more concern 
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(conductivity or permittivity), and the frequency range of interest. For instance, samples with 

low oil solution concentration can be utilized for mimicking tissue with high dielectric 

permittivity, while samples with high oil solution concentration can be used to mimic tissues 

with low conductivity like cortical bone, as shown in Figures 5.5 and 5.6, where the 80% oil-

kerosene solution sample perfectly mimics the permittivity characteristics of the cortical bone, 

especially for the frequency range between 30 MHz to 100 MHz. 

As shown in Figures 5.5 and 5.6, the electrical properties of different tissues can be matched 

with samples of certain formulations and concentrations, depending on the electrical property of 

interest (whether conductivity or permittivity is more of concern), and the range of frequency in 

which the IBC application will operate within. It is important to note that most IBC applications 

utilize less than 1 MHz of bandwidth [20], due to the nature of medical applications, that 

typically require low bit rates. A summary of such results; best matching samples (samples that 

shows less than 10 % matching error) with respect to different tissues, regarding conductivity 

and permittivity, for different frequency ranges (Fmin is the minimum frequency and Fmax is the 

maximum frequency in MHz defining the band over which the matching error is below 10%) 

within the IBC application band, is provided in Table 5.3. 
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(a) 

 

(b) 

 

(c) 

Figure 5.5: An example for matching the samples with certain solution concentration with the tissue of concern 

within certain frequency bands: (a) 30% oil-kerosene solution shows accurate match with the muscle tissue, from the 

permittivity point of view, for frequencies above 30 MHz, (b) 40% oil-only solution for the skin (wet) tissue, 

regarding the permittivity, for frequencies above 40 MHz, (c) 80% oil-kerosene solution shows accurate match with 

fat tissue, from the conductivity point of view, for frequencies above 10 MHz 
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(a) 

 

(b) 

 

(c) 

Figure 5.6: Matching tissues with different samples that show good accuracy within certain frequency ranges; (a) 

80% oil-kerosene with the cortical bone, from the permittivity point of view, and specially for frequencies greater 

than 30 MHz, (b) 80% oil-only solution with the bone marrow, from the conductivity point of view, within the 

frequency range 12 MHz till 100 MHz, (c) (b) 80% oil-only solution for the Fat tissue, from the permittivity point of 

view, especially for low frequencies. 
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5.7 Composite Sample 

Building a composite sample that spans multiple layers is essential to observe the behavior of the 

electric signal and how it diffuses from the skin into other layers while propagating from one 

node to the other. Towards that goal, a composite oil-kerosene sample was prepared. First, an 

oil-kerosene sample with 20% oil solution concentration was prepared, and then left it in the 

mold for two days, to allow the sample to solidify and the chemical reactions to conclude.  The 

sample was then placed in a bigger mold, where a 60% oil-kerosene sample was prepared and 

poured in the same mold, forming a composite sample in the form of two concentric cylinders, 

with the 20% sample enclosed by the 60% one, as shown in Figure 5.7. The composite sample 

was then kept at room temperature for another two days, before experimental measurements 

were executed. Samples were then taken from three different positions to measure the electrical 

properties, as shown in Figure 5.7; samples were first taken from position 1 which is deeply in 

the 60% concentration sample section, others taken from position 2 which is in the middle of the 

Table 5.3    Matching Tissues with Samples of Best Accuracy (less than 10% matching error) 
for Different Frequency Ranges 

Tissue Electrical Property 

Conductivity Permittivity 

Sample 

Concentration 

Fmin 

(MHz) 

Fmax(MHz) Sample 

Concentration 

Fmin 

(MHz) 

Fmax(MHz) 

Cortical 

Bone 

70% (Oil-Kerosene) 4.2 11 60% (Oil-Kerosene) 1.8 7 

60% (Oil Only) 5.9 100 70% (Oil-Kerosene) 11.8 20 

- - - 80% (Oil-Kerosene) 30 100 

Bone 

Marrow 

80% (Oil Only) 12.8 100 90% (Oil Only) 1.8 25 

Dry Skin 30% (Oil Only) 7 9 10% (Oil Only) 25 33.7 

20% (Oil Only) 10 14.5 10% (Oil Only) 42 58 

- - - 20% (Oil Only) 58.4 90 

- - - 30% (Oil Only) 93 100 

Wet Skin - - - 10% (Oil Only) 11.9 16.8 

- - - 20% (Oil-Kerosene) 24 38 

- - - 30% (Oil Only) 38 71 

- - - 40% (Oil Only) 73 100 

Fat 80% (Oil-Kerosene) 11 100 90% (Oil Only) 2.3 11.5 

Muscle - - - 30% (Oil Only) 24 54 

- - - 30% (Oil-Kerosene) 39 100 
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20% concentration sample, and finally the last samples were taken from position 3 which is at 

the interface between both samples. Results were averaged over the samples taken at each 

position and plotted in Figure 5.8. It is clear that the permittivity for both concentrations 

remained almost the same; however, the 60% sample was a more affected at the interface than 

the 20% one. Similarly, the conductivities for the same samples are plotted in Figure 9 (b). The 

conductivity values at the interface were more affected by depositing two different 

concentrations side by side compared to the permittivity ones. However, both curves, when 

compared with the results in Figure 3.5 and 3.6, show that the electrical properties at the core of 

each sample is almost unchanged, which proves the capability of these materials in the 

preparation of a composite multi-layered phantom models, for an accurate mimicking of the 

human body, from the electrical properties point of view. 

 

Figure 5.7: The oil-kerosene composite sample being prepared, where the 60% concentration sample is being poured 

into a mold containing an already semi-solid 20% concentration sample. Inscribe are the positions where samples 

were taken for experimental testing; 1-from the 60% sample,2- from the 20% sample and finally 3 is take from the 

interface at both samples. 
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(a) 

 

(b) 

Figure 5.8: (a) Measured permittivity for samples taken from positions 1, 2 and 3 as indicated in Fig.6, (b) Measured 

conductivity for the same samples. 

 

 

 

 



111 
 

5.8 IBC Channel Sensitivity Analysis 

As was shown in Table 5.3, sometimes for the same tissue, it’s possible to realize one electrical 

property through the preparation of a material with a certain oil solution concentration, yet the 

same final material would not be the best for realizing the other electrical property. An example 

for that would be the muscle tissue; the 30% Oil-Kerosene solutions accurately mimics the 

permittivity of the tissue with the frequency range 39 – 100 MHz, yet the error in the resultant 

conductivity is greater than 10%. To solve this issue, a decision need to be taken on which 

electrical property is more of concern; more critical for the application at hand. In our case, for 

IBC applications, the IBC channel profile (gain/attenuation) is the major concern, since that’s 

one of the primary goals for preparing these phantom models in the first place. To decide on 

which material is best for mimicking the electrical properties of tissues of concern, a sensitivity 

analysis was performed to study the impact of both the conductivity and permittivity of each of 

the five tissues on the IBC channel profile. The analysis was performed using the circuit model 

that we proposed in chapter 3, where the electrical properties of each tissue is varied between -20 

% to +20% from its nominal values (experimental values published in [32-33]), then the final 

IBC channel profile is computed as well as the error - deviation of the channel profile from the 

nominal (0% deviation) case- is computed and shown in Table 5.4 where the maximum error 

percentage is reported for each case. As shown from the results, the IBC channel characteristics 

are much more sensitive to the conductivity of the tissues over the permittivity, since the 

conductivity mainly accounts for the signal transmission capability through a certain medium. 

This finding is crucial for applications like phantoms design, for manufacturing more accurate 

tissue mimicking materials. From a tissue perspective, muscle, skin and fat layers tend to affect 

the characteristics of the IBC channel more than cortical bone and bone marrow, this is due to:   
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a) the better conductive properties of the first three tissues, b) the fact that only a tiny 

portion of the signal will travel through the bones (since most of the signal is transmitted 

through the skin, then muscles, as shown in [9]). 

5.9 Muscle Tissue Mimicking Materials (Al/TX-150) 

It’s now clear how conductivity of the tissues impacts the performance of the IBC channel more 

than their permittivity, thus more attention should be given to conductivity when designing the 

phantom’s materials. Moreover, variations in muscle tissue’s conductivity impacts the channel 

performance significantly, which is expected due to the high conductive properties of the muscle 

tissue which forces a significant portion of the electrical signal to propagate through the muscle. 

For these reason, it was necessary to find an alternative method for preparing a phantom material 

that can mimic the conductivity of the muscle tissue more accurately than the two proposed 

methods, since none of them provided a sample with acceptable error. After a thorough search 

was performed in the literature, findings shown in [34] presented promising results. The 

proposed method uses mainly TX-150, aluminum powder and NaCl to realize the conductivity of 

the muscle tissue for multiple frequency ranges, including our range of interest, through varying 

Table 5.4:    Maximum error percentages for the deviation in the IBC channel gain when 
varying the Electrical properties of the Tissues 

Tissue 
Conductivity Permittivity 

-20% -10% 10% 20% -20% -10% 10% 20% 

Skin 0.1013% 0.05008% 0.04923% 0.09785% 0.04311% 0.02162% 0.02162% 0.04311% 

Fat  0.5278% 0.259% 0.2497% 0.4906% 0.03% 0.01506% 0.01525% 0.03069% 

Muscle 2.194% 1.053% 0.9776% 1.891% 0.1624% 0.08082% 0.08011% 0.1595% 

Cortical 

Bone 
0.004617% 0.002302% 0.002302% 0.004617% 0.001275% 0.000637% 0.000637% 0.001275% 

Bone 

Marrow 
0.0014% 0.000697% 0.000697% 0.0014% 0.000524% 0.000262% 0.000262% 0.000524% 
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the percentages of these components with respect to the final mixture. The basic ingredients are: 

TX-150, Aluminum powder, water and NaCl. The steps for preparing the mixture, as outlined in 

Figure 5.9, are as follows: 

1) Weigh all ingredients and determine percentages by weight, as suggested in Table 5.5. 

2) Mix aluminum powder and TX150 and pour in 14-20 "C water and mix with a 10-cm shear 

stirrer rotating at 1,200 rpm for 45-120 seconds on a drill press 

3)  If the stirring time is not sufficient, the aluminum powder will sink (Since air bubbles are 

easily formed in this mixture, it is necessary to rotate the mixing bucket constantly and 

move it up and down to ensure proper mixing.) 

4) When the mixture turns thick, slow down the drill press to about 800 rpm to avoid 

generation of air bubbles. (If stirred too long, the mixture will become too hard to pour) 

5) Pour the mixture slowly into mold to allow the escape of air bubbles from the mixture. 

After preparing different samples with the weights shown in Table II, the dielectric properties of 

the resultant samples were measured using the HP Agilent 4291B impedance analyzer. Both the 

real part and the imaginary part of the complex permittivity are measured using the device. Results 

are then processed using MATLAB software to compute both the permittivity and conductivity of 

each sample and compare them with those of the five body tissues, as done for the previous oil and 

oil-kerosene samples.  From comparing the results obtained with the properties of the muscle 

tissues, it was clear that if a single sample to be used over the whole frequency range of the IBC, 

the sample with 10 grams of Aluminum powder gave the best matching results (error less than 

10%). Results are plotted in Figure 5.10. Results show that using the sample that contained 10  
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Table 5.5 Composition of Phantom muscle tissue for different frequencies 

 

Frequency 

(MHz) 

TX-150 

(g) 

Aluminum 

Powder (g) 

H2O 

(mL) 

NaCl 

(g) 

100 34 7.4 307 1.7 

70 36 9.5 303 1.4 

40.68 34 32.2 283 1 

27.12 34 31.7 283 0.9 

13.56 34 32 283 1 

 

grams of Aluminum powder, it is possible to accurately mimic the dielectric properties of the 

muscle tissue, with low error (less than 10% for both properties) over almost the entire range for 

IBC. Table 5.6 then presents a final summary of the best matching samples (samples with less than 

10% matching error) using all the three preparation methods (Oil phantoms, Oil-Kerosene 

phantoms and Muscle phantoms) with respect to different tissues, regarding conductivity and 

permittivity, for different frequency ranges. 

 

Figure 5.9: Steps and components for preparing the muscle tissue mimicking material [34] 
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(a)                                                                                          (b) 

 

Figure 5.10:  Matching the sample, prepared by the authors, that included the 10 grams of Aluminum powder with 

the muscle tissue (experimental values obtained from testing on actual muscle tissues reported in [32-33]): (a) 

conductivity of the prepared sample shows accurate match almost over the entire range of interest, (b) the 

permittivity of the prepared samples shows accurate match with that of the muscle tissue. 

Table 5.6    Final Summary for Matching Tissues with Samples of Best Accuracy (less than 
10% matching error) for Different Frequency Ranges Prepared using the three different 

preparation methods 

Tissue Electrical Property 

Conductivity Permittivity 

Sample 

Concentration 

Fmin 

(MHz) 

Fmax(MHz) Sample 

Concentration 

Fmin 

(MHz) 

Fmax(MHz) 

Cortical 

Bone 

70% (Oil-Kerosene) 4.2 11 60% (Oil-Kerosene) 1.8 7 

60% (Oil Only) 5.9 100 70% (Oil-Kerosene) 11.8 20 

- - - 80% (Oil-Kerosene) 30 100 

Bone 

Marrow 

80% (Oil Only) 12.8 100 90% (Oil Only) 1.8 25 

Dry Skin 30% (Oil Only) 7 9 10% (Oil Only) 25 33.7 

20% (Oil Only) 10 14.5 10% (Oil Only) 42 58 

- - - 20% (Oil Only) 58.4 90 

- - - 30% (Oil Only) 93 100 

Wet Skin - - - 10% (Oil Only) 11.9 16.8 

- - - 20% (Oil-Kerosene) 24 38 

- - - 30% (Oil Only) 38 71 

- - - 40% (Oil Only) 73 100 

Fat 80% (Oil-Kerosene) 11 100 90% (Oil Only) 2.3 11.5 

Muscle 10 grams of 

Aluminum Powder 

(Al/Tx-150 method) 

4.5 100 10 grams of 

Aluminum Powder 

(Al/Tx-150 method) 

15.8 100 

- - - 30% (Oil Only) 24 54 

- - - 30% (Oil-Kerosene) 39 100 
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5.10 Composite Sample II 

From Table 5.6, it’s obvious that if a multilayer tissue mimicking material phantom model is to 

be constructed, the muscle tissue mimicking material will be placed in between other two 

materials prepared using one of the first two methods (Oil only or Oil and Kerosene). To insure 

that the final composite sample will still maintain the same dielectric properties that the samples 

are designed for, we prepared a composite sample as shown in Figure 5.11., where an Oil sample 

with 60 % Oil concentration was prepared then left to solidify for two days, allowing the 

chemical reactions to conclude. The sample was then placed in a bigger mold and a muscle 

mimicking material sample (Al/TX-150 method) with 10 grams of Aluminum powder 

concentration was prepared and poured into the mold, forming a composite sample in the form of 

two concentric cylinders. The composite sample was then left at room temperature for another 

two days, before starting the experimental measurements.  

 

Figure 5.11.: The composite sample where a 60% Oil concentration sample is surrounded by a Al/TX-150 sample 

with 10 grams of Aluminum powder. Samples for measurement were taken from the middle of the Al/TX-150 

sample, from the middle of the Oil Sample and finally from the interface between both samples. 
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Samples were then taken from three different positions to measure the electrical properties, a) 

from the middle of the Al/TX-150 sample, b) from the middle of the Oil Sample, c) from the 

interface between both samples. Results were averaged over the samples taken at each position 

and plotted in Figure 5.12. From the results, it’s shown that results are almost the same at the 

center for each of the two samples, however properties slightly change for samples close to the 

interface between the two phantom layers.  Moreover, results show that the conductivity of the 

aluminum powder phantom slightly changes at the interface, with a margin greater than that by 

which the conductivity of the Oil phantom does. These results are expected due to the interaction 

between both phantoms, specially the diffusion of some of the Oil solution into the aluminum 

powder phantom, however as shown from Figure 5.12 and Figure 5.10, the electrical properties 

of the core of the phantom remains almost unchanged, thus multilayer phantoms that include 

tissue mimicking materials prepared through any of the three explained methods can be prepared  

 

 

(a)                                                                                  (b) 

Figure 5.12:  a) Measured conductivity for samples taken from various locations across the composite material. B) 

Measured permittivity for samples from the aluminum powder phantom in the composite sample. 
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side by side (deposited adjacent to each other) without altering the dielectric properties of any of 

these materials in a significant way. These findings then permit the preparation of a multilayer 

arm phantom model, that consists of five different tissue mimicking materials to represent the 

five main body tissue layers, with a very high accuracy in terms of the dielectric properties of 

these tissues; conductivity and permittivity. 

5.11 IBC five-layer Arm Phantom Model (IBCFAP) 

5.11.1 Construction of the Phantom 

Using results shown in Table 5.6, an IBC five-layer Arm Phantom Model (IBCFAP) will be 

constructed. To build an arm model that would cover the whole range from 100 kHz till 100 

MHz, with the least possible error over the whole frequency range for all the five layers, we 

decided to construct the phantom model with the mixture samples shown in Table 5.7. The 

IBCFAP will be constructed in the form of concentric cylinders, where each cylinder will 

represent one of the arm tissue layers, with the inside–out order as follows: bone marrow, 

cortical bone, muscle, fat and finally skin. As shown earlier, layers of tissue mimicking materials 

prepared using any of the three methods can be prepared adjacent to each other without altering 

their dielectric properties. Several trials were performed to find the best methodology for 

preparing the whole IBCFAP in the most efficient way; to make sure that all the prepared layers 

are deposited efficiently adjacent to each other, eliminating any vacuum or air bubbles in 

between the different layers to ensure the smooth and accurate continuity at the interfaces 

between the different layers for the final phantom. For this reason, and to prepare inner or middle 

layers with certain thicknesses, phantom material molds were used as an intermediate mold. The 

phantom material mold used will be one of the Oil-only phantom materials, and will contain Oil- 
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Table 5.7.  Composition of the Five Layer Arm Phantom Model 
 

Tissue  Method Used Concentration 

Skin Oil Only 20%  Oil Solution 

Fat Oil Kerosene 80%  Oil Solution 

Muscle Al/Tx-150 10 grams Al powder 

Cortical Bone Oil Only 60%  Oil Solution 

Bone Marrow Oil Only 80%  Oil Solution 

 

solution concentration close to that of layer that it will be used in preparing, for the following 

reasons: 

a) Avoid using another chemical material that might interact with the components of our 

prepared tissue mimicking materials, thus changing their dielectric properties in an 

undesired way. 

b) We studied earlier in section 5.4, the effect of preparing two adjacent layers using the 

first two phantom preparation methods, and it showed how the dielectric properties at the 

core of each sample remains almost the same. 

c) The Oil-only samples tend to be more solid than samples prepared through the other two 

methods, thus will serve better as a mold for preparing other layers. 

Another difficulty we faced was getting the very thin layers out of the molds, or removing the 

molds off the prepared samples, in case the outermost constructed layer is very thin/delicate. For 

this reason, fake layers were prepared to help preserving the shape and volume for that layer, 

then outer layers would be constructed, then the fake layer would be removed (usually it’s 

geometry would be distorted at this phase) and then the final layer would be poured in a molten 
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form in the preserved volume, to take the right shape, volume and positon in the final phantom 

model. Throughout the construction of the IBCFAP, only a single layer was prepared per day 

(being it a final layer in the arm phantom, a layer to be used as a mold for other layers and then 

will be discarded, or a fake layer for volume and position preservation). The length of the 

prepared IBCFAP is 20 cm. The ratio for thicknesses of each layer, using the standards followed 

in the literature [35-36] for an arm of radius 50 mm are as follows: 1.5 (skin), 8.5 (fat), 27.5 

(muscle), 6 (cortical bone), and 6.5 mm (radius, bone marrow layers). 

The following are the final steps for the preparation of the IBCFAP: 

1- Since the bone marrow layer is delicate, a fake bone marrow tissue mimicking layer is 

prepared. 

2- Muscle tissue mimicking material will be prepared using the Al/Tx-150, which has the 

weakest solid mechanical properties, so it will be prepared first then the surrounding 

layers will be deposited adjacent to it to fill any empty space between the layers. 

3- Prepare a solid mold with the outer diameter as that of the cortical bone layer. 

4- Construct the muscle tissue mimicking material (Al/Tx-150 method with 10 grams of 

Aluminum powder) around that mold. 

5- Prepare a mold with a fake skin tissue mimicking layer (as the skin layer thickness is very 

thin, so the final real layer has to be poured at the end) 

6- Insert the previously prepared muscle tissue mimicking material inside the mold that 

contains the fake skin layer, then pour in the fat tissue mimicking material in between to 

fill the volume in between them. 
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7- Remove the cortical bone mold around which the muscle tissue mimicking material was 

prepared, insert the fake bone marrow layer in the center, then pour the final cortical bone 

tissue mimicking layer (60% Oil-only sample), to fill the space between the fake bone 

marrow layer and the muscle layer. 

8- Remove the fake bone marrow layer and pour in the final bone marrow tissue mimicking 

layer (80% Oil-only sample). 

9- Remove the fake skin layer and pour in the final skin tissue mimicking layer (20% Oil-

only sample) 

10- Leave the final phantom for at least twenty-four hours for the cross linking of different 

mixture components. 

5.11.2 Results 

To test how accurate the constructed arm phantom is in mimicking the dielectric properties of the 

body tissues, in other words how successful is the phantom in modeling the IBC channel 

performance, the next step was measuring the gain / attenuation profile of the constructed arm 

model and comparing the results with those obtained from real subjects for validation. To 

carryout experimental measurements, a vector network analyzer (miniVNA Pro [37]) was used 

to measure the gain/attenuation profile of the constructed phantom. The experimental setup is 

shown in Figure 5.13, where Ag/AgCl electrodes (30 mm x 24 mm, with sensing area of 80 mm2 

[38]) were used to be compatible with the measurements performed on the real subjects. 

Measurements were done for a distance of 14cm between the transmitter electrodes and the 

receiver ones, while the separation between the electrodes at each node were varied between 5 

cm and 8cm. Results for the two cases are shown in Figure 5.14, showing the gain of the arm 
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model phantom channel over the frequency range 100 kHz till 100 MHz. Results agree with 

results in shown in the previous chapter, in which it was shown that as the inter-electrode 

distance (separation between electrodes of the same node) increases, the overall channel gain 

increases due to the matching between the input impedance of the body and that of the 

electrodes. Yet, to validate the behavior of the channel gain/attenuation profile, the same 

experiment was carried out on three different real subjects, where the same experimental setup 

was used to obtain the channel gain/attenuation profile for the arm. Results obtained from the 

three subjects, together with those obtained using the phantom are plotted in Figure 5.15. As 

shown in the figure, results obtained using the phantom matches with those obtained from testing 

on real subjects. The results show how accurately the phantom models the IBC channel 

performance; in other words, how accurately the phantom mimics the dielectric properties of the 

body tissues. 

 

Figure 5.13.  Experimental test setup for evaluating the performance of the constructed arm phantom model. A 

portable VNA is used to measure the gain/attenuation profile of the constructed phantom to test if it can accurately 

model the body communication channel characteristics, over the frequency range of interest; 100 kHz till 100MHz. 
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Figure 5.14.  Experimental results for the channel Gain for the constructed arm phantom model measured using 

the miniVNA Pro, with Ag/AgCl electrodes, with the distance between the transmitting and receiving node   14cm, 

for two different separation distances between the electrodes of each node; 8 cm and 5cm, over the frequency  range 

for IBC; 100 kHz till 100MHz.  

 

Figure 5.15 IBC channel gain results obtained from carrying out the experiment on three different subject, compared 

to the results obtained from the phantom, showing how accurate the phantom is in modeling the IBC channel 

behavior (gain/attenuation profile) over the frequency range of interest (100 kHz till 100 MHz). 
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Overall channel behavior is almost the same, yet the absolute values might vary from one subject 

to the other, which is expected due to the biological and geometric difference from one subject to 

the other (weight, body frame, age …etc. To the authors knowledge, the constructed phantom is 

the most accurate physical model designed and tested for IBC applications specifically, and body 

area networks applications in general. 

5.12 Conclusion 

Throughout this chapter, a five-layer tissue mimicking material arm phantom model was 

designed, fabricated and tested, to serve as a reliable and accurate test platform for intra-body 

communication applications, and can also be easily extended to other body area/sensors 

networks applications. Tissue mimicking materials were first investigated to decide on the 

materials that can most accurately mimic the dielectric properties of the main body tissues; skin, 

fat, muscle, cortical bone and bone marrow. Sensitivity of the IBC channel performance, 

gain/attenuation profile, to the variation of the dielectric properties of the body tissues were 

studied to find the best formation for a multilayer phantom that would possess the least error in 

modeling the IBC channel. A different method is proposed to construct the muscle tissue 

mimicking material, to reach accurate conductivity values, thus improving the accuracy of the 

whole phantom channel modeling performance. Using that knowledge, a five-layer arm phantom 

model was constructed [39]. The final model constructed phantom was then tested and the 

channel behavior (gain/attenuation profile) was measured and compared with results obtained 

from testing on real subjects. Results show unprecedented accuracy in modeling the human body 

communication channel using a physical phantom, which would pave the way for numerous 

possibilities in the body area networks field. With the accuracy of the phantom validated through 

comparison with results from real subject, the phantom can now be used for rigorous testing for 



125 
 

understanding more about the nature of the IBC channel, its potential, and performance in 

various situation/working conditions. Moreover, it offers a safe testing platform, for testing the 

performance of systems designed for IBC; testing power levels, radiations, communication 

system metrics … etc. before carrying out testing on real subjects, to improve and accelerates the 

system design process and guarantee safety of the human subjects at the same time. To date, this 

is the first accurate physical five-layer phantom arm model fabricated for intra-body 

communication applications covering this frequency range and with such high accuracy. 
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Chapter 6 

Applications Based on IBC 

6.1 Introduction 

In the previous chapters, we studied the nature of the IBC channel, modeled it through an 

accurate circuit model, then validated and compared the model to a FEM simulation model as 

well. We then prepared a reliable testing platform for IBC and body area networks in general, 

through the multilayer physical phantom proposed in chapter 5, to facilitate the research effort in 

this field, through providing a reliable and accurate test setup for carrying out extensive 

measurements that would aid in further understanding the nature of the channel as well as system 

design constraints. It also provides a safe test platform, as a step to validate the designed system 

safety, before taking it to testing on real subjects. Finally, the physical model was validated 

through comparing the obtained results with those obtained from tests on real subjects. In this 

chapter, we provide more insight regarding the nature of the IBC channel, through providing the 

experimental results for testing on the IBC channel in different testing scenarios. These results 

are then used in a number of applications, including the stress profile analysis, obtaining a 

statistical model for the channel, for use by other applications and last but not least, biometric 

identity, demonstrating a prove for the tremendous and unique potential that this novel 

technology possess in different fields of applications. 
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6.2 Experimental Setup 

As mentioned in chapter in chapter 5, testing was performed using the miniVNA Pro [1]. The 

miniVNA Pro is a handheld, portable Vector Network Analyzer that covers the frequency range 

of 100 KHz till 200 MHz. In addition to its accuracy, the device has a number of advantages that 

makes it an appropriate candidate for the experimental setup: 

 Covers the whole frequency range of interest 

 Portable, allowing the subject under test to move freely, thus more testing scenarios are 

made possible 

 Measures and reports the S-parameters, which we are interested in (especially the S21, 

which represents the channel gain) 

 Maximum RF output power is 0 dBm, thus it adheres to the health safety limits 

mentioned earlier [2-3] 

Testing was performed on five real subjects in addition to two models of the five-layer’s arm 

phantom that we proposed in the previous chapter, and were prepared in our lab. Testing was 

done after getting approval from the UC Irvine Institutional Review Board (UCI IRB) for our 

human subjects research protocol, under the number: HS# 2017-4049. Off the self Ag/Agcl 

biomedical electrodes were used for the testing. Electrodes were placed on the arm and 

measurements were carried out for distances between transmitter and receiver of 10 cm, 15 cm 

and 20 cm. Spacing between electrodes of the same node are kept at 5cm apart from each other. 

Measurements for each scenario are taken over 50 different instances, where the average is then 

taken. These different trials will then be used for getting the statistical model for  
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Figure 6.1 IBC channel gain results obtained from carrying out the experiment on seven different subject; five real 

subjects and two arm phantom models over the frequency range of interest (100 kHz till 100 MHz), for a transmitter 

– receiver distance of 10 cm and separation between electrodes of 5 cm. 

representing the channel. Results for the total seven subjects, for a TX-RX distance of 10 cm is 

shown in Figure 6.1. As can be seen from the figure, although the channel response seems very 

similar in behaviors, each subject still has a unique response, due to the biological and 

geometrical differences as outlined in previous subjects. To study the effect of different 

parameters, and to validate the deductions and conclusions reached in the previous chapters 

regarding the nature of the channel and the relation between different parameters, we carry out 

the measurements in different scenarios. Same behavior is observed over all subjects, so we will 

show the results for a single subject, although the conclusions hold for all subjects. Also from 

Figure 6.1, it is clear that the gain drops at higher frequencies, especially around the 60 MHz, 

due to various reasons, as the impedance values increase, as well as the body antenna effect, 
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where at the high frequencies, the human body operates as an antenna radiating the signal power 

into the air; can be considered as leakage/loss power as demonstrated in [4]. In Figure 6.2, we 

examine the effect of the distance between the transmitter and the receiver (in the miniVNA pro 

case, by the transmitter and the receiver we mean the two different ports of the VNA, as the IBC 

channel is considered as a two port network), where the distance was varied between 10, 15 and  

 

Figure 6.2 IBC channel gain for subject 1 when varying the distance between the transmitter and the receiver to be at 

10, 15 and 20 cm and separation between electrodes of each node is 5 cm. 

 

Figure 6.3. Position of the electrodes for the results shown in Figure 6.2 
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20 cm, while the separation between both electrodes of each node are kept at 5 cm apart, as 

shown in Figure 6.3.  

As expected, the grain drops as the distance between the transmitter and the receiver increases, 

since the propagation path increase, thus the signal suffers more power loss (dissipation) along 

the way, thus the channel overall gain drops. In Figure 6.4, we study the effect of varying the 

separation between transmitter and the receiver for two scenarios; once when the transmitter and 

receiver are 20 cm apart, yet placed on the same arm, and the other case when the transmitter is  

placed close to the wrist of one arm and the receiver electrodes at the wrist of the other arm as 

shown in Figure 6.5. 

 

Figure 6.4. Studying the effect of varying the separation between transmitter and the receiver for two scenarios; once 

when the transmitter and receiver are 20 cm apart, yet placed on the same arm, and the other case when the 

transmitter is placed close to the wrist of one arm and the receiver electrodes at the wrist of the other arm as shown 

in Figure 6.4. 
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Figure 6.5. Position of the electrodes for the results shown in Figure 6.4, for the arm to arm case 

To study the effect of the body posture as well as the movement, we carried out the measurement 

over one arm, where the transmitter is placed near the wrist while the receiver electrodes are 

placed just after the joint elbow of the same arm. Measurements were performed for three 

different scenarios;  

a) when the arm is still (no movement) and stretched 

b) when the arm is bent at 90 degrees, but still, no movement 

c) when the arm is moving between both the first two scenarios (stretched and bent at 90 

degrees) 

Results are shown in Figure 6.6, and the electrodes positions are shown in Figure 6.7. Although 

the channel behavior remains the same, bending the arm or moving it, does affect the channel 

gain value, especially at higher frequencies. This change is also observer in the case when the 

arm is bend at 90 degrees and stays still as well.  
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Figure 6.6. Results for when the electrodes are placed at the wrist, and after the elbow of the same arm. The arm is 

first kept stretched and still, then bent at 90 degrees, then moving between both positions. 

 

 

Figure 6.7. Position of the electrodes for the results shown in Figure 6.6, where the arm is bent at an angle of 90 

degrees, then the arm is moving between the stretched position and the bend position. 
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Finally, to cover all the possible positions for the sensors, we compared the results of having the 

sensors on the same arm (when 20 cm separated), with that when having one node on the wrist, 

while the other is on the leg (close to the ankle), as shown in Figures 6.8 & 6.9, As expected, 

there is a drop in the gain for the arm–to-leg case as the propagation path increases. 

 

Figure 6.8. Comparison between results for the placing the communicating nodes/sensors/ports on the same arm, 

with the scenario shown in Figure 6.7, where one node is at the wrist while the other is closer to the ankle. 

 

Figure 6.9. Position of the electrodes for the results shown in Figure 6.7, one node is at the wrist while the other is 

close to the ankle (mimicking a set of accelerometers for motion/fall detection scenario for example) 
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6.3 Stress Profile Analysis Platform 

As mentioned in chapter 1, IBC technology possesses a huge potential for body area networks, 

especially for the ones that requires a network of distributed sensors for gathering physiological 

data. IBC body area networks can thus offer much more compact, ultra-low power and a highly 

secured solution for these applications, that was not really practical earlier with the currently 

available wireless solutions, since they are bulky, power hungry and security has always been a 

concern. Among such applications is stress profile analysis. Since human resources are 

undoubtedly considered to be the most crucial and valuable asset in any organization, ensuring 

the personal safety and efficiency of the members of the organization is a major concern. 

Monitoring the performance of vital body functions (body temperature, blood pressure, heart 

beat, electrocardiogram, stress profile) for personnel that operate in stressful and harsh 

environments such as firefighters, policemen and workers in mines, is thus a necessity for their 

safety, and has to be conducted seamlessly without any hindering to their efficiency on the field. 

Under conditions of stress for example, the sympathetic division of the autonomic nervous 

system prepares the body for a rapid defense reaction by modulating hemodynamic patterns [5]. 

Major responses include increased heart rate and contractile force, dilation of blood vessels in 

skeletal and cardiac muscles, and constriction of blood vessels that supply internal organs. The 

redistribution of blood flow in superficial vessels causes changes in skin temperature that can be 

detected through having the appropriate sensing elements distributed over various locations 

along the body. The personal telemetry biofeedback for assessing the personnel‘s stress 

profile/status, provided by sensors, can be used by the officers themselves to modulate their 

response, or monitored remotely at the command and control center to decide on appropriate 

actions.  In addition to the use cases discussed above, stress profile analysis scan also be used for 
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civilian applications, for ensuring the physical and mental wellbeing of people, and to maintain a 

healthy and less stressful lifestyle.  A comprehensive study was carried out to pin out the most 

vital body signals and parameters (temperature, blood pressure, heart rate ...etc.) that need to be 

monitored and would be adequate to accurately identify the personal’s mental and physical state, 

including his/her stress profile [5 -12].   

6.3.1 Physiological Signals 

Numerous research [5-14] has been done to try and associate the state of stress, when a person 

starts getting stressed or develop a stressful sensation, and the change in the body’s various 

physiological signals. Research was able to identify certain physiological signal and parameters 

that show certain behavior when the person develops certain sensations, like stress, fear, joy 

...etc. Among the physiological signals that showed behavior correlation with the change in a 

subject’s sensation /mood are: Heart Rate (HR), Heart rate Variability (HRV), Skin Temperature 

(ST), Galvanic Skin Response (GSR), Respiration rate, Blood Volume Pulse (BVP) and finally 

the electrical activity of the muscles.  

Heart Rate:  determines the number of heart beats per minute. An electrocardiogram (ECG) can 

be used to determine the heart rate, where it records the electrical activity of the heart using 

electrodes placed upon the body. The ECG signal is usually periodic, as shown in Figure 6.10, 

consisting of three parts: the P wave, the QRS complex and the T wave. The heart rate is 

measured using the R waves as the reference; in other words, through the R-R interval.  

Heart Rate Variability (HRV) [15-16]: Heart rate variability (HRV) is the temporal variation 

between sequences of consecutive heart beats. On a standard ECG, the maximum upwards  
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Figure 6.10: ECG signal [17]. 

deflection of a normal QRS complex is at the peak of the R-wave and the duration between two 

adjacent R-wave peaks is termed as the R-R interval. The ECG signal requires editing before 

HRV analysis can be performed, a process requiring the removal of all non-sinus-node 

originating beats. The resulting period between adjacent QRS complexes resulting from sinus 

node de-polarizations is termed the N-N (normal-normal) interval. HRV is finally the 

measurement of the variability of the N-N intervals. 

Galvanic Skin Response (GSR): The sweat glands and the skin blood vessel are only connected 

to the sympathetic nervous system, not the parasympathetic one.  Sweat secretion increases the 

conductance of the skin proportionally, thus the GSR is measured by the conductivity of the skin. 

The density of sweat glands is highest around the palms of the hands or the feet, so this is usually 

where it is measured. 

Blood Volume Pulse: An alternative method for measuring the heart rate, where 

Photoplethysmogram (ppg) is used to measure the differences in light caused by the blood  
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Figure 6.11: Physiological signals of concern, for monitoring a person’s stress activity, level and profile, and the 

potential location on the body where the bio-sensors to monitor such vitals are to be placed. 

volume pulsations. Photoplethysmogram can measured by using a pulse oximeter which 

illuminates the skin and measures changes in light absorption. 

Skin Temperature: Under conditions of stress for example, the sympathetic division of the 

autonomic nervous system prepares the body for a rapid defense reaction by modulating 

hemodynamic patterns [5]. One of the major responses include the constriction of blood vessels 

that supply internal organs. The redistribution of blood flow in superficial vessels causes changes 

in skin temperature in various body locations, including but not limited to, a subject’s back as 

well as the distal phalanx of the thumb. 

Electromyogram (EMG) [14]: records the electrical potential generated by skeletal muscle cells. 

Needle electrodes are used in this purpose, usually placed on an arm, a leg or a shoulder. Facial 

electromyography is also common, where electrodes are placed upon various facial muscles. 



142 
 

A summary for the potential physiological signals to be monitored for evaluating the subject’s 

stress level/profile, with the potential locations where the sensors would be placed to monitor 

these signals [5-14], is shown in Figure 6.11. 

To determine the stress profile (whether a person is stressed or not), a workflow/methodology is 

proposed in Figure 6.12. The first step is monitoring certain vital signals, as explained earlier, 

through having a network of distributed sensors at various locations across the body. Machine 

learning algorithms would then be used to train models to be able to associate the change in the 

physiological signals with whether a person is stressed or not. To do so, certain features will be 

extracted from these physiological signals, as the mean, standard deviation, amplitude, 

maximum, minimum and others. These features will then be extracted from the measured signals 

and fed as inputs to the machine learning algorithms to train the models. The output would then 

be the state of the body; whether the person is stressed or not.  A summary for the features that 

proved to be distinguishable in determining whether a person is stressed or not, as proven in the 

literature [5-14] is shown in Table 6.1.  

 

Figure 6.12: Methodology/workflow for determining the body state including; the test that will be applied for 

stimulating the response, the Bio-signals that will be captured and features to be extracted. 
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Table. 6.1. Bio-signals to be captured and the features of interest regarding each 

 

Heart Rate (HR) 

Hear Rate 

Variability 

(HRV) 

Galvanic Skin 

Response (GSR) 

Skin 

Temperature 

(ST) 

 

EMG 

Mean 

Global max of 

peak-to-peak 

intervals (PPI) 

 

Number of local 

maxima and 

minima 

Amplitude Raw Mean 

Amplitude Global min of PPI 
Global maximum 

and minimum 
Mean Rectified RMS 

Standard 

Deviation 
Mean of PPI 

Difference 

between max and 

min 

Deviation ------------------ 

Mean of absolute 

values of first 

differences 

Standard deviation 

of PPI 
Normalized mean ------------------ ------------------ 

------------------ 
LF/HF ratio 

 
Deviation ------------------ 

 

 

6.3.2 IBC Design Platform 

Using the knowledge that we presented throughout the previous chapters, as well as in first part 

of this chapter, we were able to provide a unique and comprehensive platform for IBC 

applications design. Since stress profile analysis is a good show case for the potential of the IBC 

technology, due to its need for a network of distributed sensors, thus minimizing power and area 

is crucial, we designed a platform with the knowledge that we developed in this field, that would 

provide the basic foundation for the design of a network of sensors for this application, as well as 

for other similar applications that would use data gathered from different distributed biosensors 

across the body. The basic architecture of the platform is shown in Figure 6.13. The main goal of 

the platform is providing a step by step solution that would provide the basic system design 

parameters for a certain application that would adopt the IBC technology for the communication 

between its nodes, being them sensors, actuators, relays, processing units, central hub, or a 

wireless gateway.  The platform would also provide the exact mixture for building the 

appropriate multilayer phantom, that is designed specifically for the application in hand to ensure 
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accurate dielectrically properties for the targeted frequency range and to provide a safe testing 

platform once the system’s hardware is designed, before testing it on real subjects. 

 

Figure 6.13: The basic flow chart for the proposed IBC platform for designing body area networks, like stress profile 

analysis system, using the IBC technology. 

 

The basic steps in the platform’s workflow are as follows: 

1- According to the application, the designer selects the bio-signals of interest that needs to 

monitored. 
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2- The platform then calculates accordingly the adequate/standard data rate and bandwidth 

needed for the correct and accurate transmission of each of these signals, as shown in 

Table 1.1. 

3- The platform also determines the standard location on the body where the sensor should 

be placed for accurately monitoring the signal of concern, while the user then specifies 

the distance between each of these sensors and the next node 

4- With the knowledge now of the locations of the communicating nodes and the separation 

between each of them, the model then loads the appropriate IBC channel model, from the 

experimental results that we provided earlier in this chapter, which covered the basic 

potential locations where the sensors are expected to be located 

5- The platform then uses these channel models, together with the bandwidth requirements 

determined earlier, to find the best carrier frequency at which gain is maximum, and the 

available bandwidth sufficient to cover the transmission requirements for the signal. 

6- Finally, with the knowledge of the frequency range of interest, the platform then uses the 

information presented in chapter 5, Table 5.6, to determine the mixture and concentration 

of constituting materials needed to build a multilayer phantom, that would be designed 

specifically for this application (mimics the dielectric properties of the body with the 

highest possible accuracy) 

For the ease of usage, we designed a Graphical User Interface (GUI) application, using 

MATLAB, that automates the whole platform process flow that we just explained. The interface 

for this GUI application is given in Figure 6.14 (a). The inputs for the platform are simply the 

application or bio-signal of interest, the number of channels needed (in case of ECG and EMG 

signals) and the spacing between the communication nodes; the sensor responsible for capturing 



146 
 

the signal, and the following node, that can be another sensor, a repeater or a wireless gateway 

for example. The application then processes these inputs, and goes through the steps explained 

earlier to generate the following outputs: 

- The suggested carrier frequency, and the associated available bandwidth 

- The channel gain/attenuation profile, that depends on both the sensors location on the 

body as well the separation between them 

- The appropriate phantom preparation method, required materials and their 

concentrations, for constructing the appropriate phantom for that certain frequency range. 

 

 

Figure 6.14 (a): The GUI application interface for the proposed IBC platform. 
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Figure 6.14 (b): The followed process/steps for the proposed automated IBC design platform. 

With the targeted signals and sensor locations suggested in Figure 6.11, a prototype for the 

platform was designed, covering the suggested bio-signals, the shown locations on the body, and 

the standard data rates determined in Table 1.1, as shown in Figure 6.14 (b). An example for the 

available options for bio-signal that are incorporated in our platform, is shown in Figure 6.15. An 

example for the final outputs, for a case when ECG is selected, with only 2 channels and with 20 

cm separation between the communication nodes are selected, is shown in Figure 6.16, where the 

carrier frequency and bandwidth values are given in Hz, and the appropriate experimental 

channel model is plotted. The final frequency band for that application, with the 3dB bandwidth 

for this application is plotted in Figure 6.17. 
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Figure 6.15: An example for the applications/bio-signals incorporated in the platform. 

 

Figure 6.16: Results for an ECG example, with two channels and a separation of 20 cm between the senor and the 

next communicating node 
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Figure 6.17: The gain available within the bandwidth suggested for communication for the case shown in Figure 

6.16. 

With the proposed IBC design platform, we combine the knowledge and information that we 

developed throughout this project, to provide the system designers with a very powerful tool that 

would provide the basic system design parameters, as well as a safe and accurate testing platform 

- the phantoms, for a variety of healthcare applications, such as stress profile analysis systems, 

that would rely on body area networks of sensors, that are communicating together efficiently 

and securely through the novel IBC technology. The platform is highly flexible and modular, 

thus can easily be continuously updated to include more applications, more IBC channel models 

as more data is gathered, as more design rules and constraints, to facilitates the IBC system 

design process, provide an early prototyping solutions, as well as building safe and accurate 

testing platforms to ensure the system’s safety and functional operation, before carrying out any 

further testing on human subjects. 

 

 



150 
 

6.4 Biometric Identity 

Results presented throughput this work shows how the body’s behavior as a signal transmission 

channel, depends on different features, both biological and geometrical, and is thus unique to 

each person. The characteristics of this channel can therefore be used as a unique identifier for 

each individual, hence the idea of using the channel characteristic (gain/attenuation profile) as a 

biometric identity. An advantage for using this proposed biometric over the conventional 

biometrics currently used, as the fingerprints, is that it can provide periodic and continuous 

identification/authorization with no required effort from the person; the two nodes can 

communicate very single period of time for re-authorization while the person is working or doing 

a normal activity, while in the case of fingerprint for example, the person has to touch the 

scanner every single instance where authorization is needed. Moreover, some biometrics can be 

hacked or replicated, yet the biometric used in this invention is extremely hard to replicate, since 

the signal has to physically travel inside the body first before being picked up by the RX node. 

The concept to sue IBC technology was first introduced, yet in a different form, in 2004 [18], 

through a device called Redtackon. The device was a prototype for a transceiver system that 

utilizes the Electrostatic (Capacitive) coupling IBC technology for communications. Among the 

applications intended for Redtackon was authentication, as shown in Figure 6.18, where the IBC 

channel just acts as s medium for connecting the ID or tool used for authentication with the other 

end where authentication is required; in other terms, the body just acts a safe communication 

channel for transporting the identity information, without the actual IBC cannel characteristics 

being used in the identification process [18-20]. Research then followed, and in 2007 authors in 

[21] suggested using the IBC galvanic channel characteristics as a metric for identification 

among different subjects. Using the setup shown in Figure 6.19, testing was performed on five  
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Figure 6.18: Communication from a device on the person, containing the authentication data, to an external 

embedded system that requires authentication, through the body that closes the circuit for the flow of data to occur 

(more like wired communications) 

subjects, where a technique based on Euclidian distance technique, calculated using the sum of 

the power spectrums at different frequency bands; 0 -30 MHz, 30 MHz – 60 MHz and finally 

from 60 MHz till 90 MHz was used to calculate the similarities between certain measured 

datasets and the different subjects to identify which subject it belongs to. The best verification 

rate of 58% was obtained in the 30-60MHz sub-band. In [22], the same research group used the 

galvanic IBC channel response, but this time when the TX and RX are on the palm only, as 

shown in Figure 6.19. Support Vector Magnitude (SVM) machine learning technique was use, 

but still an identification error of 25 % (verification accuracy of 75 %) was achieved.  In [23] 

authentication using biometric pulse response was introduced, where the subject under test holds 

brass cylindrical electrodes in his/her hand for signal flow, then a pulse is transmitted through the 

body, where the pulse response is recorded using an oscilloscope and is used for verification and 

authentication purposes. 
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Figure 6.19: The method proposed in [21] for using the galvanic channel response for verification and subject 

identification, with an accuracy of 57% achieved. 

 

Figure 6.20: Measurement of the intra-palm propagation signal [22] 

Although these trials did prove that IBC technology does poses the potential to be used as a 

biometric identity, verification accuracy results were still not very encouraging, or the setup used 

is not very practical for a daily life scenario. In order to fill this gap, we proposed a simple yet 

effective method for using galvanic IBC channel response as a biometric identity for both subject 

verification and authentication.  
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6.5 Our Proposed Solution for Biometric Identity 

Using the knowledge we developed in the field, as well as the experimental measurements we 

obtained, an accurate solution for using IBC channel characteristics as a biometric identity is 

proposed and tested. Our methodology is tested for the purpose of both biometric identification 

and authentication. 

Biometric authentication refers to identify confirmation or verification. When a user claims a 

certain identity, authentication entails deciding whether the claim is correct or not. The goal of 

the biometric classifier is to compare the current sample to the known template for that user, as a 

kind of 1:1 comparison [23].  

Biometric identification differs from authentication where the current sample comes from an 

unknown user, and the job of the biometric classifier is to match it to a known sample, being a 

1:n comparison, where n is the number of subjects.  

The proposed system follows the methodology described below:  

1- An electrical signal is coupled into the body at the transmitter (TX) node, then picked up at 

the receiver nodes (RX).  

2-The received signal would then include information about the channel that it was transmitted 

through - the body in this case - which is unique for each person and can thus be used as a 

biometric identifier.  

3-The above procedure would be repeated automatically a couple of times (taking few Nano to 

Micro-seconds) for the calibration of the system, to extract unique features to be able to 

accurately identify this subject  
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4-Once the system is calibrated the person’s identity will thus be stored, yet still will be unique 

and relevant to the specific system (hardware) used, adding an extra layer of security.  

5-Continuous authentication/identification/authorization can then take place, where a predefined 

signal is then transmitted from the TX node, every specific time interval.  

6-The received signal is picked up at the RX node and further processed through machine 

learning algorithms to complete the identification process and verify the identity of the subject, 

after comparing the received signal with previously recorded identifiers that are unique for that 

subject. 

The experimental setup we used is the same as defined earlier in this chapter, where the 

miniVNA is used to obtain the galvanic IBC channel gain (S21), for different transmitter and 

receiver positions along the arm 

6.5.1 Identification 

First step was carrying out the experiment to obtain the best features that can be used a unique 

identifier for each subjects. We used the results obtained using the miniVNA that defined the 

channel characteristics, in terms of gain/attenuation profile. We started extensive testing first on 

four different subjects (two humans and two arm phantoms), to first identify the best identifying 

features, to be used for training and testing the machine learning algorithms, then we added more 

subjects to the experiment. Measurements were carried out for three scenarios for each subject; 

distance between TX and RX were varied between 10, 15 and 20 cm, while the separation 

between electrodes of the same node are kept constant at 5 cm. For each subject, more than 150 

measurement instances were carried out, with 632 measurement point per instance. To study the 

different features that can used for subject’s identification, we explored various approaches: 
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1- Using the amplitude of the galvanic channel gain at different frequencies directly as the 

features, over the whole frequency range, at each TX-RX separation distance separately 

2- Use the same approach as 1 but when using all the data for the different TX-RX 

separations, as different cases 

3- Same as approach 1, but when combining the measurements for all TX-RX separation 

measurements, not as test cases, but as features (magnitude at 10 MHz for the 10cm is 

used as feature, while the magnitude at 10 MHZ for the 15 cm is used as a different 

feature, thus for each measurement case, the three separations are combined as a single 

trial) 

4- Divide the spectrum into bins of equal sizes (example: 1 MHz bin, 5 MHz bin), compute 

the total power spectral density for the frequency components within each bin, then use it 

a single feature.  

MATLAB [24] was used for signal processing, and computing the above mentioned features. 

These features were then imported to WEKA [25-26], a suite of machine learning software 

written in Java, developed at the University of Waikato, New Zealand and is a free software 

licensed under the GNU General Public License, for applying different machine learning 

algorithms for training and testing the data, and obtain performance metrics for comparison 

between different approaches in features selection as well as comparing between different 

machine learning algorithms. The machine learning algorithms that we used are: Support Vector 

Magnitude (SVM), the k-nearest neighbor, J48, Random Forest and the Naïve Bayes classifier. 

The Support Vector Magnitude (SVM) is a discriminative classifier formally defined by a 

separating hyperplane. In other words, given labeled training data (supervised learning), the 

algorithm outputs an optimal hyperplane which categorizes new examples. In two dimensional 
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space this hyperplane is a line dividing a plane in two parts where in each class lay in either side 

[27]. 

The k-nearest neighbors (KNN) is a non-parametric, lazy learning algorithm. Its purpose is to use 

a database in which the data points are separated into several classes to predict the classification 

of a new sample point. 

The J-48 is the WEKA implementation of the C4.5 algorithm which builds decision trees from a 

set of training data using the concept of information entropy.  At each node of the tree, C4.5 

chooses the attribute of the data that most effectively splits its set of samples into subsets 

enriched in one class or the other. The splitting criterion is the normalized information gain 

(difference in entropy). The attribute with the highest normalized information gain is chosen to 

make the decision. The C4.5 algorithm then recuses on the partitioned sub lists [28].  

Naïve Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' 

theorem with strong (naive) independence assumptions between the features. 

Finally, Random Forest classifiers are an ensemble learning method for classification, regression 

and other tasks that operates by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes (classification) or mean prediction (regression) 

of the individual trees [29].  

The basic performance metrics that will be used for comparison are: accuracy, precision, recall 

and F-measure. 

Accuracy is simply the percentage of correctly predicted cases, among all the predicted ones; in 

other terms, how many time the algorithm was correct in its final prediction. 

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Mode_(statistics)
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Precision for a class is the number of true positives (i.e. the number of items correctly labeled as 

belonging to the positive class) divided by the total number of elements labeled as belonging to 

the positive class (i.e. the sum of true positives and false positives, which are items incorrectly 

labeled as belonging to the class).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall is defined as the number of true positives divided by the total number of elements that 

actually belong to the positive class (i.e. the sum of true positives and false negatives, which are 

items which were not labeled as belonging to the positive class but should have been) [30]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

F1-score combines both metrics, for getting a more accurate performance metric as follows: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

6.5.2 Identification performance and Feature Selection 

In tables 6.2, 6.3 and 6.4, results for applying different machine learning algorithms, using 

WEKA, are shown, where the standard performance metrics are reported, for the results when 

the first approach (the gain at each frequency component is used as a feature), for each of the 

TX-RX separations of 10, 15 and 20 cm. Total number of features used for each case is 632 

feature, and a cross validation of 10 folds’ technique is used for training/testing. As can be seen 

from the results, and is expected as well, when using measurements obtained from the 10 cm 

separation, results are better, reaching an identification accuracy of 98% ~100%.  
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Table. 6.2. Performance Metrics for TX-RX of 10cm features (632 features per case) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 98.8372% 0.989 0.988 0.988 

SVM 95.5% 0.962 0.955 0.955 

KNN 100% 1 1 1 

Random Forest 96% 0.962 0.960 0.959 

J48 92% 0.939 0.920 0.923 

 

Table. 6.3. Performance Metrics for TX-RX of 15cm features (632 features per case) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 91.9811% 0.920 0.920 0.920 

SVM 90.566% 0.909 0.906 0.907 

KNN 91.9811 % 0.921 0.920 0.920 

Random 

Forest 

91.9811% 0.921 0.920 0.920 

J48 81.6038% 0.827 0.816 0.818 

 

Table. 6.4. Performance Metrics for TX-RX of 20cm features (632 features per case) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 71.6102% 0.740 0.716 0.691 

SVM 80.5085% 0.838 0.805 0.812 

KNN 83.8983 % 0.750 0.581 0.655 

Random Forest 79.661% 0.793 0.797 0.782 

J48 78.3898% 0.606 0.645 0.625 
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Yet the accuracy drops, for the same classifiers, when using data for bigger separations (15 cm 

and 20cm). Once again, such findings are expected, since the signal is most powerful for smaller 

separation between the communicating nodes, yet as the separation increases, the attenuation 

increase, thus more channel characteristics are lost. Results for approaches two and three are 

shown in Tables 6.5 and 6.6 respectively. For approach two, results from all TX-RX separations 

are used in a single training/test run, meaning that test trials are all used as train/test cases, yet 

each is considered as a separate case. Total number of features per case stays the same, at 632. 

For approach three, a case from each TX-RX separation is combined with other separations, to 

form a combo case, thus number of features per case would be 1896 features. For approach two, 

it is similar to training the system using the 10 and 15 cm cases, and testing it on the 20 cm 

cases. In spite of fact that the characteristics and geometry changes, as shown in the previous 

chapter, the performance would still reach an accuracy of 89% for the KNN classifier, which is 

still an acceptable result, given that training and testing are performed for different TX-RX 

separation cases. As for approach three, where each frequency component has three different 

features (gain at 10 cm, 15 cm and 20 cm), the performance stays at a very good level ~98%, 

since more features are added to the system. The SVM classifier didn’t converge for both cases 

Table. 6.5. Performance Metrics for all TX-RX as different cases (632 features per case) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 85.9756% 0.844  0.609  0.708  

SVM --- ---- ---- ----- 

KNN 89.4817 % 0.894  0.895 0.894 

Random 

Forest 

87.0427 % 0.870 0.870  0.868 

J48  82.3171% 0.833  0.823 0.826  
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Table. 6.6. Performance Metrics for all TX-RX as different features (1896 features per case) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 97.9695 % 0.981    0.980  0.980  

SVM ---- - - - 

KNN 96.9543 % 0.970 0.970 0.970  

Random Forest 97.9695 % 0.981  0.980  0.980 

J48  92.3858% 0.941 0.924 0.926 

 

The final approach is to divide the spectrum into power bins of equal sizes (example: 1 MHz bin, 

5 MHz bin), compute the total power for the frequency components within each bin, then use it a 

single feature. This approach is more resilient to noise and system/environment changes, as it 

computes the feature as the average power within a range of frequencies, not just at a single 

relative one, thus has higher ability to eliminate noise and irregular changes. In Table 6.7, we 

show the performance metrics for the case when the spectrum is divided into bins of size 0.5 

MHz each. 

Table. 6.7. Performance Metrics for the power bin approach (0.5 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 98.8889  % 0.989 0.989 0.989  

SVM 96.6667 % 0.971 0.967 0.967 

KNN 99.4444 % 0.995 0.994 0.994 

Random Forest   81.6667 % 0.849 0.945 0.944 

J48 50 % 0.675  0.500  0.484  
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Results for this approach are better and more reliable, especially for the Naïve Bayes and KNN. 

Since this approach possess other advantages as we explained earlier, we decided to adopt the 

power bin approach. The next step would be: 

- Determine the exact frequency range of interest for our experiment 

- Determining the optimum size for the power bin (how wide the spectrum of each bin 

should be, which would determine the number of features as well; the wider the bin, the 

less features used) 

For the above shown results, we used the conventional frequency (100 KHz till 100 MHz), yet 

we observed that the gain drops at higher frequencies (greater than 50 MHz), this occurs due to 

different reasons; body antenna effect, causing power leakage as well as signal interference, and 

the attenuation introduced by body tissues. This is also confirmed in [21], where the frequency 

band of less than 60 MHz showed better results. We then tested our algorithms, for the last 

approach of the power bins, for the frequency range of 100 KHz till 50 MHz (only half the 

number of features is now used, compared with the full spectrum case). Results for a bin size of 

50 MHz are shown in Table 6.8. As seen from the results, although the number of features is 

decreased by half, the performance stayed almost the same (only 1% degradation), thus it is 

much more efficient to use this approach, for a frequency range till 50 MHz only, where 

performance stays almost the same, while memory needed and processing time are reduced 

significantly. To finally determine the optimum bin size, we repeated these algorithms and tests 

for different bin sizes, of 0.5 MHz increment for each trial. Some of the results are shown in 

Tables 6.9 – 6.13. As can be observed, the identification accuracy drops as the power bin size 

increases (as the number of features decreases).  
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Table. 6.8. Performance Metrics for the power bin approach (0.5 MHz bin size, frequency range 

of 100 KHz till 50 MHz only (instead of 100 MHz)) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 97.2222  % 0.974  0.972 0.972 

SVM 97.22227%  0.975 0.972 0.973  

KNN  97.2222 % 0.976  0.972  0.973 

Random Forest    84.4444% 0.871 0.844 0.828  

J48 50 % 0.675  0.500  0.484  

 

Table. 6.9. Performance Metrics for the power bin approach (1 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 96.1111 % 0.965 0.961 0.961 

SVM 96.6667 % 0.971 0.967 0.967 

KNN 97.2222 % 0.976 0.972 0.973 

Random Forest  77.7778% 0.795  0.778 0.759 

J48 40 % 0.668 0.4  0.365 

 

Table. 6.10. Performance Metrics for the power bin approach (1.5 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes  95.5556 % 0.959 0.956 0.954 

SVM 93.8889 % 0.947 0.939  0.940 

KNN 96.1111% 0.963 0.961 0.960 

Random Forest    78.8889 %  0.807 0.789 0.763 

J48 32.7778 % 0.631 0.328 0.309  
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Table. 6.11. Performance Metrics for the power bin approach (2 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 93.8889  % 0.949 0.939 0.939 

SVM  95 %  0.957 0.950 0.951  

KNN 92.2222 % 0.939 0.922  0.922  

Random Forest     72.7778%  0.759  0.728 0.708 

J48 40.5556 % 0.646 0.406 0.406  

 

Table. 6.12. Performance Metrics for the power bin approach (3 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 90.5556  % 0.911 0.906 0.904  

SVM 91.1111 %  0.927 0.911 0.912 

KNN  90 %  0.911  0.900  0.900  

Random Forest 66.6667 %  0.681   0.667 0.650  

J48 36.6667 %   0.635 0.367 0.361 

 

Table. 6.13. Performance Metrics for the power bin approach (4 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 87.7778  % 0.889  0.878 0.875 

SVM 87.2222 %  0.901 0.872  0.875  

KNN  86.1111 %  0.868 0.861 0.860 

Random Forest    63.3333 %  0.628   0.633  0.614 

J48 35  %   0.575  0.350 0.338 
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Results are plotted in Figure 6.21 & 6.22, showing the tradeoff between accuracy and bin size; 

basically between accuracy and available resources (more features, thus bigger networks, which 

means more hardware and more processing time needed).   

 

Figure 6.21: Accuracy for different classifiers versus the number of features. 

 

Figure 6.22: Accuracy for different classifiers versus power bin size 
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Table. 6.14. Performance Metrics for the power bin approach (0.5 MHz bin size) 

 

Classifier Accuracy Precision Recall F-measure 

Naïve Bayes 98.4127 % 0.984 0.984  0.984 

SVM 94.9206 % 0.963 0.949 0.952 

KNN  97.7778 % 0.978 0.978  0.978 

Random Forest 87.619  % 0.892 0.876  0.863 

J48 47.9365 % 0.750 0.479 0.512 

 

From the findings we reached after the above trials, we concluded that for best accuracy, with 

efficient resources, we will use the averaged power bin approach, with bin size of 0.5 MHz, over 

the frequency range of 100 KHz till 50 MHz only, with either the KNN or Naïve Bayes 

classifiers, since they are simple yet accurate classifiers in our case. Finally, we use these 

findings for testing the identification technique on all 7 subjects we have; five human subjects 

and two arm phantom models. Results are shown in Table 6.14. It’s clear how solid the 

identification algorithm is, where the performance metrics stayed almost the same, even when 

number of subjects increased. MATLAB Classification learner toolbox was also used for running 

the machine learning classifiers and obtaining the performance metrics as well. Similar results 

were obtained, where a sample for these results for the SVM classifier are shown in Figures 6.23 

– Figure 6.26. The accuracy obtained was 99.7%, and the confusion matrix, as well as other 

performance metrics as the true positive rate and the false negative rate …etc. are plotted in 

Figures 6.23, 6.24 and 6.25.  
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Figure 6.23: Confusion Matrix for the Identification results of using SVM classifier on measurements from 7 

subjects  

 

Figure 6.24: Performance Metrics Matrix for the Identification results of using SVM classifier on measurements 

from 7 subjects. 
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Figure 6.25: Other performance Metrics Matrix for the Identification results of using SVM classifier on 

measurements from 7 subjects.  

 

 

(a)                                                                                                (b) 

Figure 6.26: ROC Curves for (a) Subject 1 & (b) Subject 4 for the Identification results of using SVM classifier on 

measurements from 7 subjects.  
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Finally, the ROC curves (Receiver Operating Characteristic curves; graphical plots that illustrate 

the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The 

ROC curve is created by plotting the true positive rate against the false positive rate at various 

threshold settings) for the identification performance for a couple of subjects are plotted in 

Figure 6.26.  

6.5.3 Authentication  

As mentioned earlier, authentication refers to identify confirmation or verification. That’s when a 

user claims a certain identity, authentication entails deciding whether the claim is correct or not. 

Training a system for that purpose is thus different from the identification case. First of all, for 

training purposes, data for only a single subject will be provided. Also the output of the system 

will be just confirming the identity of the subject; whether he is the person he claims to be or not. 

For such an application, the model is trained with a set of data that should include both data for 

the subject of concern; the person whose identity is to be associated with the account/ ID, and 

outliers: biometric identity data that doesn’t belong to this subject, in other terms, fake ID data. 

A flow chart for the steps followed for the authentication process is shown in Figure 6.27: 

1- First the VNA/hardware used is connected to the subject whose identity is to be identified 

and stored, and experimental testing is carried out to store the subjects’ IBC channel 

characteristic (gain/attenuation profile), where the features explained earlier (power bins 

of 0.5 MHz wide each, for the frequency range from 100 KHz till 50 MHZ) are processed 

and stored. 

2- A statistical model for the IBC channel is then generated using the subject’s data, then 

used to generate distorted and noisy versions of these characteristics and features (IBC  
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Figure 6.27: Flowchart for the methodology followed for the subject identity authentication process  

channel characteristics for fake subjects), as for the authentication process the channel                     

characteristics of other subjects won’t be available for the system. 

3- Train the classifier using the current dataset which consists of two parts: experimental 

data set for the subject, used to train the classifier to recognize the subject identity, and 

outlier cases, generated using the statistical model, to train the classifier to reject any 

other identity that is not the same as that of the subject’s. 

4- Finally test the classifier using a dataset that contains: test samples for the subject of 

concern (yet should be cases that wasn’t used in the training process) and real test cases 

Measure the channel 

characteristics for the subject of 

concern & extract the features 

Use statistical model to generate 

distorted signals as outliers for 

training the authentication model 

 

Train each the model to verifying the identity of the 

subject, using the data measured from the subject as 

positive identity, and the ones generated by statistical 

model as false identity 

 

Test the model using experimental 

data from all the other subjects 
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from other subjects (representing other unauthorized subjects trying to access this 

subject’s device) 

Statistical Model: To generate a statistical model for the IBC channel, ifft (inverse fast Fourier 

transform) is first performed to transfer the IBC channel response to the time domain. An 

example for the channel response in the time domain is shown in Figure 6.28, where results for 

50 different experimental instances are plotted (instances are measurements taken at different 

time instances, yet for the same subject and for the same experimental setup; same electrodes, 

electrodes spacing and TX-RX separation). Different statistical models are then compared to see 

which model best fits and represents the distribution of the channel in the time domain.  

 

 

Figure 6.28: Time domain representation for the IBC channel response for fifty different measuring instances.  
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Figure 6.29: Using Different statistical models to fit a single time component for the IBC channel response, for fifty 

different measurement cases.  

An example is shown in Figure 6.29, where Normal, logistic, Weibull and Nakagami models are 

used to fit the amplitude of the channel response at a certain time component, and for all the 50 

experimental instances. Although the difference between the model were very small, Normal 

distribution seems to best fit the experimental data. Normal distribution was then used to fit the 

data for different time domain components for the statistical data we had. Model parameters 

were then saved and later used to generate distorted version of the IBC channel characteristics to 

represent outliers for training our system.  

Finally, following the steps shown in Figure 6.29, we trained different classifiers to test the 

feasibility of using the IBC channel characteristics as a biometric identity for authentication 

purposes. Best results we got was using the Naïve Bayes classifiers, as shown in Table 6.15. 
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Table. 6.15. Performance Metrics for Authentication Using IBC Channel Characteristics, for the 

Naïve Bayes Classifier Case 

 
 Subject

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 

Subject 

7 

Accuracy 96.46 % 98.80 % 100% 100% 98% 97.21 % 99.2 % 

Precision 0.975 0.988 1 1 0.983 0.973 0.992 

Recall 0.965 0.988 1 1 0.98 0.972 0.992 

F-

measure 

0.969 0.0987 1 1 0.981 0.967 0.992 

 

As can be inferred from the Table, the classifier shows high accuracy for the authentication 

applications. The features used for the training are the same that specified in the identification 

part (power bins, where we integrate the power within a certain frequency range, 0.5 MHz in this 

case, over the frequency range from 100 KHz till 50 MHz). Results are shown for each subject, 

where the classifier is trained for each subject, then tested against the when the other six subjects 

trying to be falsely identified as the subject of concern. These results show that the IBC channel 

characteristic can be used as an accurate, secure and reliable biometric identity, and for both 

types of ID biometrics; identification and authentication/verification. 

6.6 Conclusion 

In this chapter, we first started by extracting the IBC channel characteristics experimentally, 

identifying the gain/attenuation profile for various body locations and postures. Such information 

was later then used to verify the feasibility of using the IBC technology in various applications. 

Two major applications were selected to show the unique potential of the IBC technology, 

namely; the platform for designing and building a stress profile analysis system and the other is 

the biometric identity. Identifying the basic physiological signals needed to identify whether a 
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person is stressed or not, the platform then provides the system specifications needed to 

physically build such system, using IBC as the mean of communications between the different 

nodes. Not only did IBC show potential for distributed body area networks, but it was shown that 

it can be used in another crucial applications as security. Using the IBC channel characteristics, 

which are found to be unique to each person, as a biometric identity, showed huge potential for 

both identification and authentication applications, which opens the door for numerous 

continuous verification and identification applications, that can be even useful for securing the 

distributed body area networks suggested in the first application. 
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Chapter 7 

Conclusion & Future Work 

Throughout this dissertation, we demonstrated the basic characteristics of the IBC channel. We 

first started by reviewing the prior work in the literature in this field, and identified the basic two 

approaches for the IBC technology; capacitive coupling and galvanic coupling. We presented the 

main efforts published in an attempt to study this novel channel and explore its potential for 

various applications.  We then took one step back to verify if the electromagnetic signals were 

indeed the optimum data carrier for this emerging technology. We compared the characteristics 

of the channel for EM waves, with that of ultrasound ones, being a potential for various 

applications in the biomedical field, However, as demonstrated in chapter two, not only are the 

EM waves more convenient from the systems and circuits point of view, but it is the optimum 

data carrier from the body tissues’ electrical and signal propagation characteristics. Having 

verified the optimum data carrier, the next step was modeling this new channel. In chapter three 

we introduced two different approaches for modeling the IBC channel. We first proposed a 

simple yet accurate circuit model that takes into consideration various system, geometric and 

biological variables and parameters into account, thus improving the model’s accuracy 

significantly. Next, a model relying on the FEM approach was introduced as well, and compared 

with the circuit model, verifying the accuracy of the circuit model as well as its efficiency when 

it came to the time needed for running both simulation models. 

The electrode contact impedance was further investigated in chapter 4, showing the crucial role 

played by that component in the IBC system, and its major impact on the IBC overall channel 
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characteristics. The relation between the electrode impedances and the other system component 

impedances’ were investigated as well. In chapter 5, we designed the first multi-layer tissue 

mimicking phantom for the IBC applications field. We showed how the phantom accurately 

mimicked the die-electrical properties, the ones shaping the IBC channel characteristics. 

Experimental measurements, performed on real subjects, confirmed our claims as well, proving 

that the phantom can be used as an accurate testing platform for body area networks applications 

in general and IBC applications specifically. Finally, we explored some of the applications that 

can make use of the potential of the IBC technology, namely distributed sensor networks for 

healthcare monitoring – stress profile analysis in our example- as well biometric identity, where 

IBC channel characteristics showed unique potential to be used for identifying subjects using 

their own channel characteristics as a unique biometric identity. 

Throughout the dissertation, we laid the foundation for setting up an accurate and reliable 

platform for the design of systems built upon utilizing the IBC technology. Telecommunications 

and networking research can use our circuit model for exploring the modulation schemes, 

network topologies and other parameters that would suit different body area networks 

applications. Circuits designers can use our physical phantoms for rigorous testing for their 

system specifications, such as the output power levels, field distribution and intensity as well as 

adherence to the safety limits for electric and magnetic fields exposure, before doing any testing 

on real subjects. System designers can also use our IBC design platform application for 

determining the basic system parameters and specifications, needed to design a senor network 

using the IBC technology. 

Further research is still necessary in the circuits and electronic design field, to be able to harness 

the potential of the IBC technology. Designing a compact, ultra-low power circuit, that is 
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uniquely and solely designed to operate using the IBC technology should be the next step in the 

IBC research efforts, since the basic characteristics and features of the IBC channel have been 

identified, in this work and in prior research available in the literature. New design techniques 

should be considered as well, such as using flexible electronics for designing IBC circuits and 

sensor nodes. Research into an efficient and optimum solution for powering IBC circuits and 

systems is crucial, to preserve and maintain the advantages of the IBC technology and to further 

expand the horizon for the applications that can make use of this emerging technology. And last 

but not least, safety standards for the operation of this technology should be more thoroughly 

explored and clearly determined, to ensure the safety of such systems. After all, the basic 

motivation behind this technology and this research is designing systems and technologies for 

sustaining a safe and healthy life for the human being. 




