
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Accelerating Synchronous Many-Core Networks on FPGAs

Permalink
https://escholarship.org/uc/item/2tf1748c

Author
Miller, Bailey Alan

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2tf1748c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Accelerating Synchronous Many-Core Networks on FPGAs

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Bailey Alan Miller

June 2014

Dissertation Committee:

Dr. Frank Vahid, Chairperson

Dr. Tony Givargis

Dr. Philip Brisk

Dr. Sheldon Tan

Copyright by

Bailey Alan Miller

2014

The Dissertation of Bailey Alan Miller is approved:

 Committee Chairperson

University of California, Riverside

iv

ACKNOWLEDGMENTS

I'd like to first thank my advisor, Dr. Frank Vahid, for his incredible mentorship over

the past 5 years. I was just a quiet kid in the back of an undergraduate course, and with

your guidance I somehow stumbled into a PhD. Thank you for sharing your wisdom, for

your friendship, and for being gentle when reviewing those early first paper drafts.

To my parents, Alan and Mary Jane. For some reason, probably because it kept me

quiet, you let me play on my computer for hours on end as a child. Because of this

philosophy, I was able to find my passion for computers and engineering that otherwise

may never have been. You encouraged me to grow, and inspired merit through hard work

in every pursuit. This thesis and the degree that it represents would not have been

possible without your love and support. You are paragons for everyone around you, and I

love you both.

To my family, including especially my siblings Colin, Andrew, Scott, and Janelle,

and their families. Thank you for being supportive, despite perhaps wondering why

school should take a person more than years. I look forward to spending more time with

you all.

Finally, to my wife Tricia, whom cares little about acknowledgements but is

deserving of them anyways. For 5 years you have been a constant pillar of support,

always encouraging when times were hard. I feel like the past 5 years have been a

constant battle for us. We've experienced awesome and inspiring events like having a

v

beautiful wedding. We've toured some of the world and had so many great experiences.

We've also each struggled with finding our own direction and purpose. Luckily, we have

one another for guidance through those hard times and the inevitable graduate-student

periods of self-doubt. You are always there to pick me up when I struggle, and I hope to

be there as much for you also. Without you, this journey would have been impossible.

Thank you and I love you.

Some of the work contained within this dissertation has been previously published

by the Association of Computer Machinery (ACM) and the Institute of Electrical and

Electronics Engineers (IEEE).

vi

DEDICATION

Dedicated to my wife Tricia.

vii

 ABSTRACT OF THE DISSERTATION

Accelerating Synchronous Many-Core Networks on FPGAs

by

Bailey Alan Miller

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2014

Dr. Frank Vahid, Chairperson

Applications running on custom architectures with hundreds of specialized

processing elements (PEs) on field-programmable gate arrays (FPGAs) can gain 10x or

greater speedups versus desktop or embedded processors. Applications benefiting from

such many-core PE networks include applications with non-centralized communication

and memory requirements, like real-time emulation of physical systems, video streaming

applications, signal processing, and more. Synchronous many-core networks (syncMCs)

consist of synchronized many-core PE networks that execute distributed computations in

parallel, keeping each PE in the network in lockstep through a regular, periodic

communication phase.

viii

An FPGA has limited logic and routing resources on which to place a synchMC

network. Large or densely connected synchMCs can overwhelm the available resources

and severely impact the resulting FPGA circuit frequency, and thus application

performance. This dissertation focuses primarily on methods for successfully

implementing large synchMCs, consisting of hundreds of PEs and thousands of

interconnects, on an FPGA. An approach is described that considers the natural structure

of a physical model, such as a mesh, ring, or cube, to perform a graph embedding of a

synchMC on a 2-dimensional grid of physical PE regions. The described PE placement

techniques reduce critical path length and allows previously unroutable designs able to

complete place-and-route. In addition, an automated approach to reduce the number of

wires in a synchMC allows applications of arbitrary size and complexity to fit within the

resource constraints of a target FPGA. Time-multiplexed communication for synchMCs

is introduced, and a greedy scheduler, a heuristic scheduler, and an integer linear program

scheduler are described. Finally, an approach for exploring the configuration space of a

synchMC executing real-time emulation of a physical model is described. Using the

described synthesis approaches, synchMCs enable the fastest emulation of physical

models on a moderately priced platform, executing 15x faster than a desktop PC, 26x

faster than a GPU, 9x faster than a network-on-chip (NoC), and 9x faster than a circuit

produced via high-level synthesis (HLS).

ix

TABLE OF CONTENTS

Acknowledgments .. iv

Dedication vi

ABSTRACT OF THE DISSERTATION.. vii

Table of Contents.. ix

List of Figures... xi

List of Tables .. xiv

Chapter 1. Synchronous Many-Core (synchMC) Networks 1

1.1 Introduction... 1

1.2 Related work ... 4

Chapter 2. Placement of Structured Applications on FPGAs Using SynchMCs 7

2.1 Physical model structures ... 9

2.2 Phase 1: Mapping equations to virtual PEs... 12

2.2.1. Partitioning equations .. 13

2.2.2. Folding ... 13

2.2.3. Lung model example.. 15

2.3 Phase 2: Mapping virtual PEs to physical regions.................................... 16

2.3.1. FPGA platform two-dimensional grid ... 17

2.3.2. Utilizing model structure ... 20

2.3.3. Graph embedding... 21

2.3.4. Example: Binary tree embedding onto 2D grid 23

Chapter 3. Placement of Non-Structured Applications .. 27

3.1 Cost function... 27

3.2 Neighbor function ... 30

3.3 Simulated annealing algorithm strategies ... 31

3.4 Placement results .. 33

x

3.5 Using graph drawing algorithms to generate initial placement 37

3.5.1. Graph drawing algorithms ... 40

3.5.2. Placement using graph drawing ... 41

Chapter 4. Reducing Network Congestion ... 45

4.1 Impact of model size on syncMC circuits... 46

4.2 Introducing time-multiplexing communication into synchMCs............... 48

4.2.1. Network size cost metric.. 49

4.2.2. Network performance cost metric.. 53

4.2.3. Cost function.. 54

4.2.4. Reducing synchMC wires .. 55

4.2.5. Finding reductions ... 57

4.3 Comparing synchMCs with time-multiplexing synchMCs 61

4.4 Comparing time-multiplexing synchMCs with general purpose CPUs.... 63

4.5 Comparing with network-on-chip... 65

Chapter 5. Scheduling Time-Multiplexed SynchMCs ... 68

5.1 Greedy scheduler .. 69

5.2 Match-schedule ... 70

5.3 Integer linear program scheduler .. 75

5.4 Scheduling evaluation... 78

Chapter 6. Exploring SyncMC Config. Space When Emulating Physical Models 81

6.1 Upgradeable Models ... 84

6.1.1. Functional equivalence of models ... 84

6.1.2. Scaling model size ... 86

6.2 SynchMC parameters and metrics .. 87

6.3 DOE-based exploration of synchMCs .. 89

6.3.1. The DPG algorithm.. 90

6.3.2. Tool .. 92

6.4 Case study ... 96

References 99

xi

LIST OF FIGURES

Figure 1-1: PE compiler structure. A model is translated into an ODE dependency

graph. Equations are partitioned to PEs, the PEs are scheduled, and RTL is produced. 2

Figure 2-1: Two-phase approach of mapping equations to a structured graph of

virtual PEs, and mapping virtual PEs to an FPGA with graph embedding. 8

Figure 2-2: Various physical models and graphs of their representative structures.. 10

Figure 2-3: Folding graphs: (a) binary tree (b) 3-dimensional mesh......................... 15

Figure 2-4: A 4x4 grid of physical PEs on a FPGA. ... 18

Figure 2-5: Six level binary-tree placed on a square 2-dimensional mesh. Dashed

boxes indicate recursive splits into subtrees. .. 24

Figure 2-6: Embedding 7-level binary tree into a 2D grid: (a) Initial split; (b) two

more recursive splits. For clarity not all branches shown... 25

Figure 3-1: Neighbor function minimizes wire length of PE1. (a) Area to move PE1.

(b) PE1 moved to empty region if available, (c) otherwise, PE1 swapped with PE2....... 31

Figure 3-2: Analyzing the annealing results. (a) Cost function correlates with

frequency, (b) comparing random to custom neighbor, and (c) average effect of

perturbations per iteration; ∆Cx is the improvement over 1 perturbation / iteration........ 33

Figure 3-3: Freqs. of PE networks. Missing entries did not finish place-and-route. . 34

Figure 3-4: Different placements of 256 PE Weibel lung model: (a) unconstrained

placement; (b) simulated annealing; (c) graph embedding... 36

xii

Figure 3-5: Finding initial layout using graph-drawing algorithms. (a) Finding initial

layout, and (b) creating a valid configuration. .. 39

Figure 3-6: Using different graph drawing algorithms to the same graph. 40

Figure 3-7: Freq. of circuits for various models and methods. Missing results could

not be routed by Xilinx or are not applicable. .. 44

Figure 4-1: Reducing network connections leads to a faster, more routable design. 46

Figure 4-2: PE network compiler flow with additional network reduction phase..... 49

Figure 4-3: Reducing an architecture graph G to reduced architecture graph H. (a) G

with 4 PEs and 4 wires. (b) H with fewer wires than G, but requiring multiplexing b,c.. 50

Figure 4-4: Wires alone do not predict frequency well; (a) note circled points with

low wire count but low frequency. (b) The proposed cost function is a better predictor. 52

Figure 4-5: Greedy algorithm for finding a reduction of graph G............................. 57

Figure 4-6: Reducing network wires. (a) Computing H via condensation of G;

strongly connected components circled. (b) Limiting component size to 3 gives fewer

wires but requires more cycles.. 58

Figure 4-7: Cost of a PE network design as a function of CompMAX. 60

Figure 4-8: Time to execute one iteration of a model. General PEs are 3x faster than

CPU(1), and custom PEs are 6x faster than CPU(1). ... 64

Figure 5-1: Greedy scheduling algorithm.. 69

Figure 5-2: Scheduling a tasks Ta,b and Tc,d using Match-Schedule. Each cycle is

scheduled via a maximum-weighted matching operation... 71

Figure 5-3: Match-Schedule pseudocode. ... 73

xiii

Figure 5-4: Number of cycles required by each scheduling approach. 79

Figure 5-5: Match-schedule better utilizes bandwidth early in a schedule. 80

Figure 6-1: (a)A set of upgradeable models, and (b)relative accuracy of each model.

Dashed lines show variations in accuracy from different solvers / step sizes. 82

Figure 6-2: Effect of different models on area/speedup/accuracy metrics. 85

Figure 6-3: Possible configurations for a 300 ODE model. Three dashed lines

indicate area constraints. Each solution shown with step sizes 1e-2, 0.5e-2, and 0.25e-2

ms with Euler solver. Dashed circles show possible area/performance Pareto points. 87

Figure 6-4: (a) The DPG algorithm flow. (b) Finding Pareto points for an

upgradeable set via DPG... 90

Figure 6-5: Weighted parameter interdependency graph generated by DPG............ 92

Figure 6-6: Architecture of the PE network exploration tool. 93

Figure 6-7: Regression model for estimating circuit frequency. 94

Figure 6-8: 3-dimensional Pareto point plots projected onto 2-dimensional space. (a)

Speedup v. area, (b) accuracy v. area, and (c) accuracy v. speedup. Yellow points show

where accuracy parameters are constant, emphasizing area/speedup tradeoff only. 97

xiv

LIST OF TABLES

Table 3-1: Initial and final cost of graph drawing algorithms for structured and

unstructured models. 'N/A' entries could not complete the drawing algorithm.............. 43

Table 4-1: The clock frequency drops and designs eventually become unroutable as

model complexity increases. ... 47

Table 4-2: Number of PEs and wires alone do not predict clock frequency. 50

Table 4-3: Effect of λ on network throughput. .. 60

Table 4-4: A reduction phase enables synthesis of previously unsynthesizable

designs... 1

Table 4-5: NoC performance is limited by the number of available endpoints. The

2D mesh topology with 64 endpoints yields the best performance. 66

Table 6-1: Enumerated input parameters and bounds for DPG................................. 96

1

Chapter 1. SYNCHRONOUS MANY-CORE

(SYNCHMC) NETWORKS

1.1 INTRODUCTION

Many-core architectures, consisting of hundreds to thousands of small processing

elements (PEs), are powerful platforms for executing applications with extensive

parallelism. Examples include iterative numerical systems solvers and high-performance

streaming applications [1][18]. In general, many-core architectures are often a good fit

for applications that can be modeled as Kahn process networks (KPNs) [26]. Previous

research has introduced many-core PE networks that are synchronized, referred to as

synchronous many-core networks (synchMCs), having a compute phase that executes a

sequential process within each PE, followed by an update phase that resolves any data

dependencies between PEs [22]. SynchMCs are able to emulate complex physical

systems 2x-100x faster than other embedded platforms, and faster than a desktop PC

(15x), GPU (26x), or high-level synthesized circuits (9x).

SynchMCs are particularly fitted for applications adhering to the synchronous data

flow (SDF) computation model, a variant of the KPN model wherein the nodes of a

network periodically fire to generate and consume tokens [31]. SDF-based applications

can be mapped to synchMCs by considering the nodes of the SDF as the synchMC PEs,

the connections between SDF nodes as the point-to-point communication architecture of

2

the synchMC, and the tokens as synchMC messages passed between PEs during each

iteration. While this work focuses on the emulation of physical models as the driving

example application, synchMCs are applicable to other domains and applications besides

numerical solvers, especially those framed within the SDF model.

To accelerate physical model emulation using synchMCs, researchers previously

introduced a lightweight programmable general ODE-solver PE for a field-programmable

gate array (FPGA), where the PE was optimized for solving tens of ODEs [20]. The work

included a new synthesis tool, referred to as the PE compiler, that automatically maps

thousands of ODEs onto a statically-scheduled custom network of tens or hundreds of

PEs, each PE solving a subset of ODEs [22]. Because physical systems are typically

comprised of numerous physical objects communicating locally with neighboring objects,

Figure 1-1: PE compiler structure. A model is translated into an ODE dependency graph.

Equations are partitioned to PEs, the PEs are scheduled, and RTL is produced.

Instruction

scheduler
Automatic

partitioner

ODE-dependency

graph

Model parser

Partition

Abstract

PE
PE

assembler

Design RTL

#PEs
Generic model

3

physical systems represent an excellent match for FPGAs, which excel at performing

numerous parallel computations with local communication.

The PE compiler has the structure shown in Figure 1-1. A text description of the

equations define the model are supplied in the form of a subset of MML [38]. A parser

extracts the equations from the description and determines the ODEs of the model.

Equations are then partitioned to a number of PEs using a simulated annealing heuristic

that primarily attempts to reduce the number of wires in the design while balancing

computation cost across the network. Once the annealing is complete, the computation of

each PE is scheduled, the global communication tasks are added to the end of the

schedule, and RTL is generated.

The compiler schedules synchronized iterations of the equations, separating

computation and communication in to two unique stages. The first stage is an evaluation

stage, in which each PE computes its assigned variables. The second stage is an update

stage, in which data dependencies between PEs are resolved. For example, if a PE2

computes x' = y+y, and y is computed in PE3, then PE3 must update PE2 with the value

of y in the current iteration. All PEs are synchronized such that their schedule lengths are

identical, and the update phase of the network occurs simultaneously for all PEs.

More details on the PE architecture and compiler are available in past research

manuscripts [20][21][22].

4

1.2 RELATED WORK

Previous researchers have introduced many-core networks as an alternative

architecture for high-performance computing. Advantages of many-core networks

include reduced power usage, and throughput potential that increases linearly with the

number of cores [10]. The past decade has seen work towards creating programming

frameworks and operating systems focused on many-core networks, such as Corey [9],

Barrelfish [50], Tessellation [33], Helios [44], and others. Modern many-core

architectures networks are a derivative of past research efforts on systolic arrays, which

are (typically) homogeneous arrays of small processors called cells that communicate

only with neighboring cells [27].

This work focuses on an application-specific many-core network, instead of

generalized many-core frameworks and/or operating systems. In an application-specific

network, the architecture and scheduling has been produced for a specific instance of an

application. Furthermore, the architecture is based around small and simple cores with

distributed memories local to each core—thus, the architecture has no global shared

memory and all sharing between cores must be scheduled as explicit tasks. Perhaps the

most similar work to ours is GraphStep [12], an architecture and framework for executing

sparse graph-based applications as many-core networks in FPGAs. GraphStep achieves

10x-20x speedups for a knowledge base search application, similar to speedups in our

previous work. Other similar work includes AsAP (Asynchronous Array of simple

Processors) [56][64], which consists programmable processors connected via a

reconfigurable mesh network and implemented as an ASIC. In contrast to synchMCs,

5

each processor can be individually clocked via a globally asynchronous locally

synchronous (GALS) approach. By targeting ASIC platforms AsAP achieves ~1GHz

clock frequencies compared to the ~300MHz clock frequencies of synchMCs on FPGAs.

Thus AsAP has faster performance and higher throughput, but higher cost and less

flexibility in terms of being able to set the number of processors on the chip, or add

additional logic or debug capabilities to the platform.

This dissertation focuses on physical model emulation as a driving example, thus we

give some background here on that domain. Languages have been introduced for

modeling physical systems, such as MML [38], SBML [23], and CellML [34]. Tools

have been built that can simulate physical models, such as Matlab [36], and LabView

[43]. These tools usually aim to produce accurate results rather than real-time emulation.

The tools described in this paper use a subset of MML to capture model equations as

high-level textual descriptions, which are then parsed and compiled to many-core

networks.

Many case studies using FPGAs to speedup physical model emulation have been

conducted. For example, Yoshimi [63] obtained 100x speedups of a fine-grained

biological emulation compared to a single-core processor, and showed why multi-core

processors were not suitable. de Pimentel [49] proposed an FPGA solution to emulate a

heart-lung system model in real-time, while a PC required 1.5 hours to simulate 60

seconds of the same model. Their FPGA performance was estimated by a theoretical

optimal formula, rather than via an implementation. Osana developed the ReCSiP [46]

tool to generate chemical models on FPGAs using the SBML language. The crossbar

6

communication structure used in ReCSiP may not scale to larger models. Those previous

efforts mostly used manual design approaches to implement the models on FPGAs.

7

Chapter 2. PLACEMENT OF STRUCTURED

APPLICATIONS ON FPGAS USING SYNCHMCS

Fast physical model simulations are required in various domains, including

biomedical engineering, physics, chemistry, and much more. A physical model represents

some observable physical phenomena, usually as a set of normal, partial differential, or

ordinary differential equations. The set of equations can be solved using time-stepping

equation solvers.

In the cyber-physical system domain, previous work uses physical models to interact

with and test devices such as ventilators [39], pacemakers [24], and unmanned aerial

vehicles [17]. Using physical model simulations for testing can be preferable over the

actual physical environment when such an environment is difficult, expensive, or

dangerous to create or use. Physical models may also be more accurate than physical

analogs, e.g., a balloon may capture some of the behavior of a lung, but may not be able

to accurately model various lung diseases.

Our previous research has been able to speed up physical model simulation up to

three orders of magnitude versus multi-core desktop processors, by partitioning physical

model computation across hundreds of processing elements in a synchMC, each PE

optimized to execute time-stepping equation solvers [20].

Many physical models share the same natural structure as the corresponding physical

system. For example, a Weibel lung model [61] utilizes a binary tree structure because

8

the lung physiology itself is a tree in which the trachea is the root and where gas

exchange occurs at the leaves. Similarly, atrial cell models utilize a three-dimensional

mesh structure to simulate the propagation of electrical signals across tissues of cardiac

cells [65]. Equations of the physical system are grouped naturally, e.g., the volume and

pressure of a lung branch have data dependencies and thus should ideally be placed

within the same PE to minimize communication costs. Generally, the natural structure of

a physical model provides an optimal grouping of equations that minimizes

communication costs.

A key contribution of this work is utilizing the natural structure of simulated physical

model during placement of a PE network onto an FPGA. By using graph embedding

techniques that have been extensively researched in graph theory literature, the structure

of the physical model can be embedded onto a two-dimensional grid of PE elements on

Figure 2-1: Two-phase approach of mapping equations to a structured graph of virtual PEs,

and mapping virtual PEs to an FPGA with graph embedding.

Virtual PE

Phase Two:

Mapping

virtual PEs to

physical PEs

Physical placement
Structured virtual PE

graph

Phase One:

Mapping

equations to

virtual PEs

FPGA

EqP1

EqV1

EqP2

EqV2

EqP3

EqV3

EqP4

EqV4

EqP7

EqV7

EqP5

EqV5

EqP6

EqV6

EqP1

EqV1

EqP2

EqV2

EqP3

EqV3

EqP4

EqV4

EqP7

EqV7

EqP5

EqV5

EqP6

EqV6

Physical PE region

Placed virtual PE

EqP2

EqV2

EqP4

EqV4

EqP1

EqV1

EqP3

EqV3

EqP6

EqV6
EqP5

EqV5

EqP7

EqV7

Physical model

equations

9

an FPGA. By performing graph embeddings, the resulting circuit incurs less

communication cost and enables higher circuit frequencies, translating to faster execution

of physical models. A secondary contribution is the definition of a simulated annealing

approach that provides cost and neighbor functions for minimizing distances between

PEs placed on a grid of physical regions on a FPGA, used for unknown model structures

and also for evaluating the first contribution.

Figure 2-1 details a two-phase approach for embedding a physical model onto an

FPGA. The first phase maps the physical model equations to a structured virtual PE

graph. A structured virtual PE graph has virtual PE nodes that contain groups of

equations, have connections to other virtual PE nodes, and is structured in the form of the

physical model. Physical placement can then be performed by defining physical PE

regions where virtual PEs may be mapped, and then either applying the appropriate graph

embedding algorithm or using a general simulated annealing approach to perform the

mapping. In the right side of Figure 2-1, a graph embedding algorithm maps a binary tree

to a two-dimensional grid by placing the root in a physical PE region in middle of the

grid, and expanding the child subtrees out in different directions.

2.1 PHYSICAL MODEL STRUCTURES

Physical models often have a natural structure associated with a corresponding

layout in the physical world. Consider a human lung, which begins at the trachea and

splits into nearly identical left and right lobes. Each lung contains more than twenty

additional splits as the airway passage diameters decrease and eventually are able to

10

support blood-gas exchange alveoli. The lung has thus often been modeled as a binary

tree of twenty or more generations such that gas flow at the trachea can be used to

compute the pressure and volume of internal branches [61]. Similarly, cell models that

simulate electrical activity across heart atrium walls utilize a three-dimensional mesh

structure to allow neighboring cells to propagate signals. Figure 2-2 shows some

examples of physical models and their corresponding structures, which are described

below.

Weibel lung: The classical binary tree shaped lung model, in which an inlet flow at

the root of the tree is used to compute volume and pressure at lower branches [61]. Each

node of the tree computes the volume V and flow F of the corresponding branch:

6_5_43

21

CVCVCFCV
dt

dF

FCVCF
dt

dV

childLchildRii
i

iiparent
i

⋅−⋅−⋅−⋅=

+⋅+⋅=

Atrial heart cells: A 3-dimensional mesh of cells, where each cell propagates signals

to its neighbors [65]. vi is the membrane potential of cell i and is computed by the

following equation.

Figure 2-2: Various physical models and graphs of their representative structures.

Weibel Atrial heart Neuron Wave Hemodynamics

11

3232121211))((ccvcvvvvvvc
dt

dv
izzyyxx

i ⋅⋅⋅−++++++= Neuron synapses: A 1-dimensional

array of cells that simulates the firing of neuron synapses. s is the synaptic variable, v is

the membrane potential, and w is a channel gating variable [54].

iii
i

ii
i

iiiii
i

sccvsc
dt

ds

vwc
dt

dw

sscvcwvc
dt

dv

⋅−−⋅−⋅=

−⋅=

+⋅−⋅−+⋅= +−

321

1

11321

)()1(

)()(

Wave: A wave model has a two-dimensional mesh network structure and is often

used to model the propagation of sound, acoustics, etc [39]. The amplitude of the signal

at node i is given by:

iyyxx
i ucuuuuc

dt

du
⋅++++⋅= 221211)(

Hemodynamics: A model that simulates the circulation of the human body, and

includes submodels for the left/right heart ventricle and pulmonary/systemic tissues [59].

The hemodynamic model is arranged in a circular structure. Since there are many

different types of equations to model this system, we omit the detailed descriptions here.

Large physical models such as those described above can be partitioned to hundreds

of PEs in a network to achieve very fast simulation speeds. By maintaining the structure

associated with the physical model during physical placement of PEs onto an FPGA, the

routing overhead between PEs can be minimized. The natural structure of a physical

model typically uses an optimally minimal number and length of wires, because only

local communication between cells, lung branches, etc. is required. Previous work in

12

physical model simulation attempted to recover the physical model structure via heuristic

annealing algorithms, after having converted the specification of the physical model's

equations to an equation dependency graph [20]. However, finding the globally optimal

solution for physical models containing thousands of equations and hundreds of PEs is

not feasible with this approach. Instead of attempting to recover structures with

heuristics, we propose to preserve the connections as they were modeled so as to

minimize communication cost.

2.2 PHASE 1: MAPPING EQUATIONS TO VIRTUAL

PES

Given the specification of a physical model that enumerates the physical model

equations, a map must be built that groups equations into a structured virtual PE graph G

that maintains the structure of the physical model. Equations must first be partitioned to a

structured virtual PE graph of unconstrained size. Second, the graph must be reduced in

size via folding to fit into available resources of the target platform. The target platform,

which is typically an FPGA but could be an ASIC, is the device that the circuit will be

placed on. There are limited resources on the target platform, thus folding is necessary for

physical models whose structured virtual PE graphs exceed the size of the target

platform.

13

2.2.1. PARTITIONING EQUATIONS

Let G=(v,e), where v={v1,v2…,vn} is a set of n vertices and e={e1,e2,…,ek} is a set of

k edges between vertices in v. Let E={E1,E2,...,Em} be the set of equations defined in the

specification of the physical model. The set of vertices v represent virtual PEs, which

may have equations from E allocated to them. The set of edges e represent

communication channels between virtual PEs. If an edge ei=(v,u) exists, then there exists

dependencies between the equations hosted in v and u. The graph G and its nodes and

edges are defined by the structure of the physical model; a three-level binary-tree shaped

Weibel lung model thus would have a graph that contains:

Gv={v1,v2,v3,v4,v5,v6,v7}

Ge={(v1,v2),(v1,v3),(v2,4),(v2,v5),(v3,v6),(v3,v7)})

Each equation Ei can be allocated to a vertex vi in G according to a surjective

mapping function f : E→Gv. The function f depends on the structure of G, and maps

groups of equations that represent the same physical element, e.g., a lung branch or atrial

cell, to a single vertex. The result of applying the map function f to each equation yields a

structured virtual PE graph G which maintains the basic structure of the physical model,

and where each vertex (virtual PE) contains equations that represent some physical

element of the physical model.

2.2.2. FOLDING

A physical model may be very large – a Weibel model with 11 generations contains

4000 differential equations. In order to meet the physical constraints of using a real

14

platform when mapping virtual PEs to physical PEs, the virtual PE graph G must first be

scaled down. We perform graph folding on G by applying a homomorphic folding

function φ that maps the larger graph to a smaller, more compact version G’ while

preserving the structure of G. In particular, φ maps G to G’, where the size n of the vertex

set of G’ is less than or equal to the number of supportable PEs in the target platform S; φ

: G→G’ | G’n < S. φ must also maintain the topology of G in G’ by either maintaining an

existing edge of G in G’, or by merging the equations of vertex a ∈ G into vertex b ∈

G' such that the length of any edge connected to the merged vertices is constant.

Informally, structures that are symmetric can generally be folded by cutting the graph

into two subgraphs, and merging vertices that share the same position in each subgraph.

Folding of graphs has been previously explored in graph theory literature [1][14][60].

Aleliunas [1]and Ellis [14] utilized folding techniques in order reduce the aspect ratio of

rectangular graphs into forms that could be embedded onto a two-dimensional grid. Other

work has developed algorithms for folding strongly balanced hypertrees in order to

embed them into hypercube structures [60].
The exact definition of φ depends on the physical model structure. Different physical

models can reuse the same folding functions as long as their structures match, thus a

folding function for each structure type must be identified. A potential pitfall of folding is

that structured virtual PE graph sizes tended to be reduced by halves, potentially creating

a situation where almost half of the physical PE regions of the target platform are empty.

One solution is to simply manually merge the final few virtual PEs if the size constraint

of the target platform is only slightly less than the size of the structured virtual PE graph.

15

The following section provides examples that target binary tree physical models,

describing the mapping function f and folding function φ which result in the generation of

a structured virtual PE graph.

2.2.3. LUNG MODEL EXAMPLE

A small Weibel lung model with three generations of bifurcating airways is

structured as a binary tree with 2
3
-1 = 7 branches, or fourteen interdependent differential

equations for computing the pressure and volume of each branch. Let the set of equations

E in the specification of the physical model be ordered such that the first l equations

compute the volume and pressure of the root node, the next l equations compute the left

child of the root, followed by l equations for the right child of the root, and so on.

Equations can thus be initially partitioned to vertices in G via f(ei) = i / l. The left side of

Figure 2-3: Folding graphs: (a) binary tree (b) 3-dimensional mesh.

EqN1

EqN2

EqN3

N2

EqN4

EqN6

EqN5

EqN7

EqN1

EqN2

EqN3

EqN4 EqN5 EqN6 EqN7

(a)

(b)

T2 T1

TR

16

Figure 2-3(a) shows a representative structured PE graph, where EqNx represents the

equations allocated to each node.

Consider if the target platform for the three-generation Weibel lung model is an

FPGA that contains only enough resources for three PEs. Since each vertex in the graph

represents a virtual PE that must eventually be physically placed, an excess of four PEs

will not fit into the device. The graph can be folded as shown in the right side of Figure

2-3(a), by merging nodes in such a way as to maintain the graph structure. Let TR be the

root of the graph G, and T1 and T2 be the subtrees whose roots are the left and right

children of TR, respectively. We fold T2 into T1 by traversing down each subtree

simultaneously, and moving any equations within the current node of T2 into the

equivalent node of T1. The root node TR is also merged into the root node of T1, otherwise

TR would contain only a single child. This method maintains the adjacency of vertices in

T2 within T1, as long as each subtree is symmetrical. Non-symmetrical structures can still

be folded imperfectly by merging the vertices in T2 that have no corresponding vertex in

T1 such that a minimum of additional edge length is required.

2.3 PHASE 2: MAPPING VIRTUAL PES TO PHYSICAL

REGIONS

Once a structured graph of virtual PEs has been created, each virtual PE must be

mapped to a physical location on the target platform. This mapping must consider both

the average and maximum distances between PEs to reduce congestion and critical paths

introduced via inter-PE communication channels. The simple solution to this problem is

17

to let a commercial synthesis tool flatten the design hierarchy, and run heuristic

algorithms to select an appropriate placement. However, a circuit that contains hundreds

of PEs is sufficiently complex such that modern tools cannot find good solutions without

having additional constraints specified. Our approach defines a two-dimensional grid of

physical PE regions on a target FPGA platform. Each physical PE region in the grid

contains just enough resources to implement a single PE. Physical PE regions are defined

at specific locations to create a two-dimensional grid that can be addressed using a XY

Cartesian coordinate system. Whether or not the physical PE region actually contains a

physical PE depends on the subsequent mapping. Virtual PEs can be mapped to physical

PE regions on the grid using either structure-specific graph embedding techniques that

place a guest graph into a host graph algorithmically, or by a generic simulated annealing

approach with custom cost functions to reduce wire length.

2.3.1. FPGA PLATFORM TWO-DIMENSIONAL GRID

When performing place and route operations on large PE networks using commercial

tools (Xilinx ISE 13.4) and a flattened netlist, we noticed that the critical path most often

manifests between memories or logic components that belong to the same PE. Each PE in

our design requires two memories (BRAMs), one multiplier (DSP), and approximately

250 lookup-tables (LUTs). We expected that communication channels between different

PEs would be the primary cause of delay. Because of the complexity of large PE

networks, the tools are not able to always place components of the same PE nearby each

other. This problem can be addressed via the use of placement constraints during

synthesis and place and route.

18

We first utilize Relationally Placed Macros (RPMs) to establish relative distances

between PE memories. RPMs have been shown to provide faster circuit designs, even

with modern tools [52]. On Xilinx FPGAs, a Cartesian coordinate system is used to

specify the locations of components like DSPs and BRAMs (Figure 2-4). BRAM and

DSP modules are physically located in homogeneous columns that stretch the height of

the FPGA. We create an RPM for a PE using the Xilinx RLOC constraint by specifying

that the offset between its instruction and data memories should be X=0, Y=1, and that

the offset between the instruction memory and the DSP should be exactly X=-4, Y=0.

The RPM thus ensures that PE memories are placed in neighboring BRAMs within the

same BRAM column, and that the related DSP module is in the closest available location

in a neighboring DSP column.

RPMs are useful for ensuring the close locality of BRAM and DSP modules that

belong to the same PE, but we still must constrain each PE to specific physical PE

Figure 2-4: A 4x4 grid of physical PEs on a FPGA.

DSP column

BRAM column

x

y
FPGA

(0,0) (1,0) (2,0) (3,0)

(0,3) (1,3) (2,3)

BRAMs/DSP
Relationally

Placed Macro

(RPM)

= pblock

19

regions on the target platform. We utilize the Xilinx AREA_GROUP constraint during

place and route to place PEs into physical PE regions. A selection of physical

components of the FPGA (BRAM, DSPs, and slices) is first grouped into a pblock. We

use the Xilinx PlanAhead tool to manually create pblocks in a grid structure. Each Pblock

contains enough resources for a PE: two BRAMs, multiple DSPs, and more than 300

LUTs. The PEs in the design netlist can then be constrained via the AREA_GROUP

constraint to a specific pblock region. The use of pblocks not only designates an exact

location to place a PE, but also helps the place and route tools by requiring that the

components in a PE hierarchy be placed within the pblock area. Since the area of the

pblock is roughly what is required of a PE, the resulting PE implementation is densely

packed and optimized. The use of placement constraints helps to shift the circuit critical

path from internal PE connections to PE network communication channels.

We target a Xilinx XC6VSX475T. The Virtex6 platform contains approximately

297K LUTs, 2K DSP units, and 1K Block RAM (36KB each) memories. The grid size

that can be constructed is 14x39, yielding a maximum of 504 PEs. For the vast majority

of physical models, 500 PEs is sufficient for much faster than real-time simulation

speeds. We note that our approach is not limited to one specific tool, platform or vendor;

all FPGAs consist of a regular, reconfigurable fabric and most vendors allow blocks of

resources to be grouped to create uniform structures. We consider only the specifically

denoted FPGA and vendor (Xilinx) above to ease the discussion.

20

2.3.2. UTILIZING MODEL STRUCTURE

Physical models that exhibit common structures are able to take advantage of graph

embedding techniques during physical placement. Graph embedding is the process of

mapping a guest graph of architecture g onto a host graph of a different architecture h.

Graph embedding has studied for at least 30 years by mathematical theorists, and many

optimal solutions have been found for the embedding of structures like trees and meshes

onto grids and hypercubes [11][35][58]. The typical metric that graph embedding

algorithms are evaluated by is maximum dilation, or the maximum number of nodes that

a wire may need to pass through to be completed. Since in physical model-solving PE

networks the communication channels are point-to-point between PEs, the dilation is

always exactly one. We thus alter the metric’s definition slightly to be the maximum wire

length between any two PEs. A second important metric is the average dilation, or the

average wire length of all communication channels in the circuit.

By taking advantage of the research on graph embedding techniques to map virtual

PEs to physical PEs on the target platform, the resulting physical placement can achieve

smaller maximum and average dilation in the circuit. Smaller maximum dilation implies

a reduction in the critical path, since once a PE has been constrained using RPMs and

pblocks the longest wires for any complex network is typically connected between

different PEs (as opposed to internal PE connections). Lower average dilation means that

less routing resources will be required, which typically results in faster circuits [62]. In

the next sections, we first define the graph embedding problem. We then show how to

21

utilize a graph embedding technique called H-tree construction to embed a binary tree

structured physical model into a 2D grid of PEs.

2.3.3. GRAPH EMBEDDING

The graph embedding problem relates to the general mapping problem [6], where

computational tasks must be placed onto a host architecture such that communication

between PEs is minimized. Let GT = (VT,ET) be the guest graph, where GT is the

structured virtual PE graph (see section 4). Let GH = (VH,EH), where GH is a graph that

represents the physical PE layout. VH is a set of all the physical PE regions, and EH is

initially empty because no connections exist until virtual PEs are placed. An embedding

of GT onto GH is a result of applying an injective mapping function ψV : VT → VH to every

vertex in GT. Once the vertex mapping has been completed and a placement is created,

then an additional mapping ψE : ET → EH can be inferred automatically by creating an

edge e = (u,v) ∈ EH for every edge p = (l,k) ∈ ET where ψV
-1(l) = u and ψV

-1(k) = v.

The quality of the graph embedding is denoted by the average and maximum dilation

of the result of applying ψV and ψE. Since dilation in the context of PE networks on

FPGAs with point-to-point communication is wire length, we use a basic Euclidean

distance measure D = sqrt((y2-y1)2 + (x2-x1)2). While possible to measure dilation

using specific FPGA routing architecture characteristics [19], at a macro level the simple

distance between physical grid locations will suffice.

Embedding binary trees onto two-dimensional grids is a solved problem

[11][32][58]. Embedding a binary tree onto square grids has an O(sqrt(n)) maximum

22

dilation, where n is the number of generations of the tree. We utilize the H-tree

construction technique (popular in VLSI) for the layout of tree architectures onto

optimally sized square hosts [57]. H-tree construction creates an H-fractal tree where

each subsequent branch of the tree alternates between horizontal and vertical tracks and

wire length is halved. The graph is split recursively into four subtrees until leaf nodes can

be placed. Where each split occurs, a track is used to host the root of the split and its two

children, which are the roots of the actual 4 subtrees. Additional horizontal tracks are

added for the three relevant parent nodes of each split subtree. Following the second split,

leafs can be placed nearby their parents.

For square grids, the H-fractal tree method produces optimal results (in terms of

dilation); however, for rectangular-shaped grids such as the 14x39 PE grid available on

our target FPGA, H-tree construction requires some modifications. For example, the

number of vertical tracks required for a 7-generation tree using the H-tree method is 31,

or more than twice the number of available columns in the FPGA PE grid. We leverage

the fact that our FPGA can route wires between PEs diagonally, as opposed to the strict

row-column ordering of previous H-tree considerations [32]. Also, since the width of the

target is the limiting factor to the number of possible recursive splits, it is not possible to

maintain the ideal H-fractal shape in a rectangular grid. We therefore define a base case

for the bottom k-generations of a tree that can no longer maintain H-fractal shape, such

that an optimal placement of lower generations and leaf nodes can be completed. To

embed the tree, we first perform placement via recursive splits down to the leaves of the

23

tree, than perform compaction and reordering of rows to further minimize maximum wire

length.

Figure 2-6 illustrates the process. The binary tree is split into four subtrees and

assigned to a quadrant of the grid. The blue lines mark connections between physical PE

regions that contain a mapped virtual PE, which are marked with blue dots. The graph

embedding follows the H-tree fractal shape design until the grid becomes too narrow to

maintain the shape when placing the final two generations of the tree. At that point, a

base case known placement is utilized to place the remaining virtual PEs into physical PE

regions with minimal wire lengths. Rows four and ten contain no mapped virtual PEs,

which unnecessarily inflates the maximum wire length. A simple greedy algorithm can be

used to compact the graph embedding by moving the row with the longest wire until no

improvement can be made.

2.3.4. EXAMPLE: BINARY TREE EMBEDDING ONTO 2D GRID

Embedded binary trees onto two-dimensional grids is a thoroughly researched area

[11][32][58]. It has been proven that the graph embedding of a binary tree onto

optimally-sized square grids have an O(sqrt(n)) maximum dilation, where n is the

number of generations of the tree. We utilize the H-tree construction technique that is

used in VLSI for the layout of tree architectures onto optimally sized square hosts

[57][66]. H-tree construction creates an H-fractal tree shaped liked that of Figure 2-5,

where each subsequent branch of the tree alternates between horizontal and vertical

tracks and wire length is halved. This process is done by splitting the graph recursively

24

into four subtrees until leaf nodes can be placed. Where each split occurs, a track is used

to host the root of the split and its two children, which are the roots of the actual 4

subtrees. In Figure 2-5, the tree is labeled by breadth-first ordering, such that the root is

‘0’, the left child is ‘1’, the right child is ‘2’, and so on. Leaf nodes are not labeled for

figure clarity. The thick dashed boxes represent the subtrees of the first recursive split;

the row of vertices ‘0’, ’1’, and ‘2’ have a horizontal track allocated to them. The thin

dashed boxes represent the subtrees created by a second recursive split of each of the first

four subtrees. Additional horizontal tracks are added for the three relevant parent nodes

of each split subtree. Following the second split, leaf nodes can be placed nearby their

parents.

For optimally-sized square grids, the method demonstrated in Figure 2-5 produces

optimal results (in terms of dilation). However, for rectangular-shaped grids such as the

14x39 PE grid available on our target FPGA, H-tree construction can not be immediately

applied without some modifications. For example, the number of vertical tracks required

for a 7-generation tree using the H-tree method is 31, or more than twice the number of

Figure 2-5: Six level binary-tree placed on a square 2-dimensional mesh. Dashed boxes indicate

recursive splits into subtrees.

25

available columns in the FPGA PE grid. We can take advantage of the fact that our

FPGA can route wires between PEs diagonally, as opposed to the strict row-column

ordering of previous H-tree considerations [32]. Also, since the width of the target is the

limiting factor to the number of possible recursive splits, it’s not possible to maintain the

nice H-fractal shape of the graph embedding in a rectangular grid. We therefore define a

base case for the bottom k-generations of a tree that can no longer maintain H-fractal

shape, such that an optimal placement of lower generations and leaf nodes can be

completed.

To embed the tree, we first perform placement via recursive splits down to the leaves

of the tree, than perform compaction and reordering of rows to further minimize

maximum wire length.

1. Separate the grid into 4 quadrants to host the initial split of the tree.

2. Place the root node M0 and its children L0, R0 in the center row of the grid.

Figure 2-6: Embedding 7-level binary tree into a 2D grid: (a) Initial split; (b) two more

recursive splits. For clarity not all branches shown.

(b) R0

M1 L1 R1

M2

M2 L2
R2

R2
L2

lR2 lR2

lR2 lR2

lL2

lL2

lL2

lL2

M2

M2

0 1 2 3

0

1

2

3

4

5

7

6

10

9

8

11 M

R0 L0

t1 t2 t3 t4

t1

t2

t3

t4

FPGA

R0

M0
L0

Placed

virtual

(a)

26

M0 is placed in a column in the center of the grid. L0 and R0 are placed in a

middle column of the neighboring upper and lower quadrants

3. Place each child of L0 and R0 onto the same vertical track as its parent, and

onto the center row of a quadrant (Figure 2-6(a)).

4. Recursively split each subtree by placing the children of the subtree’s root

on the same row, and allocating additional rows to host new subtrees (Figure

2-6(b)).

5. At generation N-1, utilize a known placement to place the final levels (non-

fractal shape).

The process described in the steps above can be seen in Figure 2-6. The binary tree is

split into four subtrees and assigned to a quadrant of the grid. The blue lines mark

connections between physical PE regions that contain a mapped virtual PE, which are

marked with blue dots. The graph embedding follows the H-tree fractal shape design until

the grid becomes too narrow to maintain the shape when placing the final two generations

of the tree. At that point, a base case known placement is utilized to place the remaining

virtual PEs into physical PE regions with minimal wire lengths. Note that rows four and

ten contain no mapped virtual PEs, which unnecessarily inflates the maximum wire

length. A simple greedy algorithm can be used to compact the graph embedding by

moving the row with the longest wire until no improvement can be made.

27

Chapter 3. PLACEMENT OF NON-STRUCTURED

APPLICATIONS

Simulated annealing is a general method that can map any structured virtual PE

graph onto physical PEs. This approach is useful when a physical model has no obvious

structure for which a graph embedding algorithm could be used, such as unbalanced or

asymmetrical trees [16]. Simulated annealing also yields useful comparisons to

embedding by providing reasonable PE placements.

The simulated annealing approach utilizes methods previously described for timing-

driven placement in the VPR tool [35]. We define a cost function that considers FPGA

architectural features, wiring cost, and timing cost (critical path length); it is shown

experimentally that our cost function correlates linearly with resulting circuit frequency.

We also present a neighbor function that swaps virtual PEs based on the relative

placement of connected virtual PEs. Our neighbor function provides faster convergence

and results in lower cost placements than random swaps.

3.1 COST FUNCTION
The cost function is calculated each iteration of the simulated annealing algorithm to

determine the effect of a perturbation on the current solution state. The Wiring_Cost term

determines the cost associated with routing all of the inter-PE nets in the design. This

term is a summation of all the wire lengths in the design that are routed between physical

PE regions:

28

∑ =
=

NETSN

n SRCSNK nnDCostWiring
0

),(_ (1)

D(nSNK, nSRC) is the distance of the net from source to sink, defined below. The

VPlace algorithm of VPR uses a similar equation to calculate routing cost, although using

a Manhattan distance measure and a factor to compensate for the extra resources required

by highly connected nets. Minimizing the wiring cost during simulated annealing

produces a placement with less congestion, resulting in faster circuit implementations

[62].

The Timing_Cost term considers the impact of the longest wires in the design, which

are most likely to form a critical path in the circuit. Similar to the T-VPlace algorithm,

wires are assigned a weight depending on their length [35]. Wires closer to the maximum

wire length of the design are weighted heavily, while shorter wires have less impact. Note

that our current implementation assumes a delay that corresponds linearly to the distance

between physical PE regions; future work could achieve more accurate timing cost

estimates by modeling the delay between physical PE regions in the target FPGA. Each

wire is assigned a weight according to the below equation.

Wmax

)n ,D(n-Wmax
1Weight(n) SRCSNK−=

(2)

Wmax is the maximum PE-to-PE wire length in the design. The Timing_Cost for

each net is calculated as below.

W_exp

SRCSNK Weight(n))n,D(nt(n)Timing_Cos ⋅= (3)

29

W_exp is a user-defined exponent that causes higher-weighted wires to have more

impact on timing cost. In T-VPlace this exponent is called the criticality exponent.

FPGAs commonly contain architectural features which prevent placement of logic in

specific areas. For example, Figure 3-4 shows a Virtex6 FPGA that has a large gap in the

middle for monitoring/programming components. Wires routed across such gaps incur an

additional timing cost penalty through exponentiation of the distance by a user-defined

constant Arch_exp. The exponentiation adds high penalties to wires that are both long and

cross a gap. Whether or not a wire crosses a gap is determined by projecting a vector v

from source to sink, and recording intersecting physical PE regions in a set route.

Physical PE regions that contain gaps or features restricting logic are annotated and

recorded in a set ignored. Distance is then calculated based on whether or not route and

ignored are disjoint.

 otherwise)(

)(
D(n)

exp_

Ø ignored route

ndist

ndist

Arch

=∩





=
(4)

Above, dist(n) is the distance measure, e.g., Euclidean or Manhattan distance. The

total timing cost for the PE network placement is equal to the summation of the timing

cost of every net.

Furthermore, the cost function incorporates previously described auto-normalization

techniques to ensure that the cost of a single perturbation is related to relative changes in

both the wiring and timing costs.

iring_CostPrevious_W

tWiring_Cos
)1(

iming_CostPrevious_T

tTiming_Cos ∆
−+

∆
⋅=∆ λλCost

(5)

30

λ controls how much weight to give each cost term after each iteration. For all

experiments in this paper we use λ = 0.5.

Figure 3-2(a) shows a linear regression representing how the cost function relates to

the resulting circuit frequency of a PE network once placed and routed.

3.2 NEIGHBOR FUNCTION
In simulated annealing, a neighbor function is a local perturbation of a solution,

which may or may not improve its overall quality. An initial solution, which is likely to

be far from optimal, can be computed randomly or using an efficient polynomial-time

heuristic. A simple neighbor function in the context of our PE placement problem is to

randomly select two PEs within the network and swap their locations; we use this

neighbor function as a baseline.

The neighbor function presented here attempts to cluster connected PEs together,

with the goal of reducing wire lengths in the process. A random physical PE region P1

that contains a mapped virtual PEV is selected first. Each connection e = (P1,Pp) in V is

evaluated, where Pp is the physical PE region of the virtual PE connected to V. A

Euclidean vector is constructed from P1 to Pp. An average of all the vectors originating

from P1 identifies a physical PE region that minimizes the average wire length of all

connections to the PE if the virtual PE were placed there.

If a virtual PE does not already occupy the target physical PE region, then P1 can be

placed immediately on the target. Otherwise, the algorithm examines each of the target

PE’s neighbors. If any neighbor is unoccupied, then P1 is moved there. If all neighbors

31

are occupied, the algorithm selects the physical PE region whose average connection

vector endpoint is closest to P1 for swapping.

Figure 3-1 provides an example. P1 is randomly selected. An average of the two

connections e1 and e2 yields an area of the platform where P1 should be placed to

minimize wire lengths. If there is an empty physical PE region than P1 is moved there.

Otherwise, each physical PE region in the area is evaluated and the best candidate is

swapped with P1. The best candidate is determined by computing the potential cost

reduction

3.3 SIMULATED ANNEALING ALGORITHM STRATEGIES
The cooling schedule used during simulated annealing can cause dramatic

differences in the obtained solution [45]. We experimented with linear [T(t) = T0 - ηt],

geometric [T(t) = T0 / t], and exponential [T(t) = T0α
t
] cooling schedules. We found that

both linear and geometric schedules produce a configuration with a similar cost for a

given physical model, while the exponential schedule (α = 0.99) yields a configuration

that is highly dependent on the initial random placement and does not generally produce a

Figure 3-1: Neighbor function minimizes wire length of PE1. (a) Area to move PE1. (b) PE1

moved to empty region if available, (c) otherwise, PE1 swapped with PE2.

e1

Move to empty region, if available

e2

(a) (b)

P1

(c)

P1

Otherwise, swap with best choice

P1

P2

e1

e2

P1

Area that minimizes sum

of wire lengths.

32

good result. This is due to the quickly decaying nature of the exponential function, which

makes it difficult to escape local minima in the solution space. All experiments in this

paper utilize a geometric cooling schedule.

Figure 3-2(c) shows the effect that modifying the number of solution perturbations

performed per iteration has on the average final cost of 5 different models (Weibel10,

neuron1d, neuron2d, asymmetrical tree, and random). More perturbations/iteration

implies a longer runtime, but with more swaps occurring at a higher temperature. Using

16 perturbations/iteration gives a 19% decrease in the final cost, on average, over 1

perturbation/iteration. The runtime of simulated annealing for a large 500 PE network

using 32 perturbations/iteration is less than 10 minutes, while the runtime when using 1

perturbation/iteration is approximately 2 minutes.

The initial temperature is determined automatically for each run by performing trial

annealing runs and searching for a temperature that results in a given acceptance ratio

[25]. We use an acceptance ratio of 0.9 in this paper for all simulated annealing runs.

Additionally, a restart functionality resets the current configuration if no perturbation

produces a higher-quality configuration after 250 consecutive iterations, hence the

oscillations on the right-hand side of Figure 3-2(b) for the random neighbor function. The

reset functionality helps to ensure that the annealing process does not get stuck in a local

minima after having accepted a worse solution. When a reset occurs, the best

configuration seen thus far is reloaded, but the anneal schedule continues without being

reset. Instead of continuing along a worse path indefinitely, the algorithm can reset to a

better known configuration and continue. The number of iterations allowed before a reset

33

is configurable - setting the number too low may ruin the hill-climbing capabilities of the

algorithm, but setting too high may result in longer runtimes. The annealing process ends

if 1000 consecutive iterations do not improve the configuration.

3.4 PLACEMENT RESULTS

Figure 3-3 shows the resulting circuit frequencies of implementing PE networks on

an FPGA with the four different techniques. The first and second columns use the

equation partitioning performed by the PE network compiler. The third and fourth

columns use a partitioning based on the structure of the model, and the corresponding

graphs were folded to meet target platform constraints.

R
2
 = 0.8942

0

50

100

150

200

250

300

0 1500 3000 4500 6000 7500 9000

Cost

F
re

q
u

e
n

c
y
 (
M

H
z
)

0

5000

10000

15000

20000

0 5000 10000 15000

Iteration #

C
o

s
t

Random neighbor
Custom neighbor

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32
Pertubations/iteration

∆
C

x

Figure 3-2: Analyzing the annealing results. (a) Cost function correlates with frequency, (b)

comparing random to custom neighbor, and (c) average effect of perturbations per iteration; ∆Cx is

the improvement over 1 perturbation / iteration.

34

The first columns do not use physical placement constraints. These data points

represent the ability of Xilinx ISE to place and route the PE network compiler-generated

circuit without any guidance. The second columns use the same RTL as the first, but with

placement constraints generated via simulated annealing that map virtual PEs to physical

PE regions. The difference between the two columns in each case show that applying

placement constraints through an automated simulated annealing process can provide

some marginal improvement, and is even able to route a network that Xilinx was unable

to do without constraints.

The third and fourth columns use a partitioning of equations based on the model's

structure. The third column uses simulated annealing and the fourth column uses a

topology-specific graph embedding algorithm to generate the placement. The graph

embedding approach is almost always able to produce a circuit that tops 300 MHz. The

ceiling for the circuit frequency in a PE network is approximately 310 MHz for the

selected platform. We determined the ceiling by placing and routing a circuit with a

0
50

100
150
200
250
300
350

256 PE 500 PE 256 PE 500 PE 256 PE 500 PEs

10Gen Weibel 1D Neuron 2D Neuron

256 PEs 500 PEs 256 PEs 500 PEs 256 PEs 500 PEs

Comparison of PE Placement Algorithms

Weibel Lung 1D Neuron 2D Neuron

0

100

300

200

No placement constraints (Xilinx ISE) Topology-specific SA w/ random initial placement

Topology-specific embedding algorithmUnfolded SA w/ random initial placement

F
re

q
u

e
n

cy

(M

H
z)

0
50

100
150
200
250
300
350

256 PE 500 PE 256 PE 500 PE 256 PE 500 PEs

10Gen Weibel 1D Neuron 2D Neuron

256 PEs 500 PEs 256 PEs 500 PEs 256 PEs 500 PEs

Comparison of PE Placement Algorithms

Weibel Lung 1D Neuron 2D Neuron

0

100

300

200

No placement constraints (Xilinx ISE) Topology-specific SA w/ random initial placement

Topology-specific embedding algorithmUnfolded SA w/ random initial placement

F
re

q
u

e
n

cy

(M

H
z)

Figure 3-3: Freqs. of PE networks. Missing entries did not finish place-and-route.

35

single PE and evaluating the critical path of the internal datapath. It is not possible for a

network of PEs to operate faster than the ceiling, and any decrease in performance can be

attributed to critical paths introduced by inter-PE connections. The graph embedding

approach is typically able to minimize the critical path length and provide placements

that allow the circuit to approach the ceiling. The only embedding example that could not

reach the ceiling of 310 MHz is the 10-generation Weibel lung model using 500 PEs.

Because the two-dimensional grid of the physical PE regions is narrow, an optimal

embedding of the tree cannot occur. Wire lengths between successive generations are

longer, resulting in longer critical path delays.

Missing columns indicate that the Xilinx tools were not able to place and route the

design due to high congestion. The compiler that partitioned the equations and created the

communication network could not sufficiently reduce the data dependencies between PEs

for these large physical models, resulting in an overwhelming number of wires in the

network. Note that these designs are routable if we use either a topology-specific

simulated annealing or graph embedding approach.

Figure 3-4 depicts the placement of the first few generations of a nine generation

Weibel model on 256 PEs, as captured by the Xilinx PlanAhead tool. An overlay of

nodes and connections shows where virtual PEs have been mapped onto the FPGA.

Figure 3-4(a) shows how Xilinx ISE implements the PE network in the absence of

additional constraints that map to specific physical regions. Due to the complexity of the

circuit, the resources of a single PE can be spread over a wide area, thus we have marked

only the approximate central location of the first four generations of the left subtree of the

36

graph. Note that if we do not specify placement constraints, the tool places PEs at sub-

optimal locations, yielding potentially long wire distances between PEs. For example, the

wires between node two and its children five and six span more than halfway across the

entire design.

Figure 3-4(b) depicts the placement produced by the simulated annealing algorithm.

Each black block indicates a virtual PE that has been mapped to a physical PE location.

An empty space is a physical PE region onto which no virtual PE was mapped. As a

consequence of simulated annealing, nodes that share connections tend to be grouped

together, while the overall tree tends to expand outward from the center of the grid

toward leaf nodes grouped on the perimeter.

Figure 3-4(c) shows the tree embedded in the host grid using a topology-specific

algorithm. The center of many common (Xilinx) FPGAs contains immutable logic, and

minimization of the routing across the center is desired. This embedding requires a single

wire across the gap, at the second generation of the tree.

Figure 3-4: Different placements of 256 PE Weibel lung model: (a) unconstrained placement;

(b) simulated annealing; (c) graph embedding.

(a) (b) (c)

0 1

5

23

24 26

25

13 14

3 7

15

16 18

17

10

19

20 22

21 27

28 30

29

4

11

2

9

12

6

8

2

3

4

5

6
7

8

9 10

0
1

0

1

4

5

7

8

10

12

16

15

17
18

20
19 21

22

23 24

25 26

9

11

29

27

28

30
14

6
13

2
3

37

We also measured the static and dynamic power of each case using the Xilinx

XPower Analyzer. The unconstrained placement uses approximately 20% less absolute

dynamic power on average than both the simulated annealing and embedding constrained

placement approaches. The Xilinx ISE options for power reduction during circuit

implementation were disabled for every reported experiment, thus timing is the driving

optimization goal.

3.5 USING GRAPH DRAWING ALGORITHMS TO GENERATE

INITIAL PLACEMENT
 Thus far, the placement techniques have been limited to structured physical models

with topologies for which embedding algorithms are known. For example, the H-Tree

embedding for binary trees is not immediately translatable to assymmetric trees, which

are representative of lung blood circulatory models [16][28]. Furthermore, some physical

models are fully irregular. For example, a spiking neural network model, which simulates

a human brain cortical network, consists of interconnected groups of neurons with

statistically generated connectivity [42]. Such models result in random, commonly non-

planar graph structures that make embedding difficult, if not impossible. Furthermore, if

the structure is not clear, then a structured virtual PE graph can not be created. We refer

to models that are not easily embedded into the 2-dimensional FPGA host grid as non-

structured models.

Simulated annealing can generate placement constraints for non-structured models,

thereby improving circuitry frequency compared to placement using commercial tools

with unconstrained placement. In this section, we describe improvements to the simulated

38

annealing algorithm that provide better solutions with increased clock frequency for

unstructured models.

 As described previously, our simulated annealing placer uses a randomly generated

initial placement as an initial solution. To improve the overall quality of results, we

introduce a heuristic to generate a lower cost initial solution compared to a random

placement. One of the benefits of simulated annealing algorithms is that good solutions

can be found even from random, high entropy initial configurations. However, by starting

with a good placement that is assumed to be close to an approximately global optimal

solution, the annealing process can focus on performing target-specific optimizations and

find a good solution in less time. Decades of research into graph drawing techniques has

produced algorithms that attempt to minimize edge distances, edge intersections, and the

area of drawing size [15]. Such techiques can be leveraged to generate an initial layout of

network PEs on the FPGA’s two-dimensional grid that has substantially less cost

compared to a random initial layout. Previous research has shown that a better-than-

random starting solution can yield better final solutions, on average [25].

We extended our previously introduced PE network compiler to use graph drawing

algorithms to generate an initial placement. The approach uses the graph drawing and

visualization tools Graphviz and/or Tulip to generate a layout of an existing, possibly

folded, virtual PE network. Graphviz and Tulip are freely available open-source projects.

Given a DOT-formatted input file that describes the nodes (PEs) and edges (wires) of the

graph, the output of a graph drawing tool is the virtual PE network with X,Y coordinates

assigned to each node. The placed graph is then transposed onto the FPGA 2-dimensional

39

grid by normalizing the aspect ratio of the graph with that of the grid. Graph nodes are

placed onto physical PE regions based on their normalized X,Y coordinates from the

placed graph output of Graphviz. Figure 3-5(a) illustrates the process of mapping

Graphviz output to the FPGA.

The result of the initial mapping may be an invalid configuration, which may occur if

more than one virtual PE is mapped to the same physical PE region. The normalization

process shrinks a graph layout down to fit the FPGA ; sometimes, several virtual PEs

may overlap. In such scenarios, a process, shown in Figure 3-5(b), can legalize the

configuration. Our solution evaluates each physical PE region in turn to determine if it

contains multiple virtual PEs. If so, then all but one must be relocated to empty physical

PE regions. Ideally they will be relocated to nearby empty regions to maintain the

Figure 3-5: Finding initial layout using graph-drawing algorithms. (a) Finding initial layout, and

(b) creating a valid configuration.

0

2

1

7

8 3

9 10

4
6

5

Drawing
algorithm
creates layout

Virtual PE
Graph

input DOT

file

0

1

3
2

4

(2, 3.3)
(6.5, 4)

(2.2, 0.5)
(6, 0)

(11, 2)

(a)

0

1

2 3

4

Graph scaled
and fitted to

FPGA 2D grid

Placed graph w/ (X, Y) coordinates

1

3

4

0

2

5

10 9

8

6 7

Placed graph w/ (X, Y) coordinates

(b)

Multiple PEs

mapped to same

region.

Invalid configuration

0

2

1

7

5 8 3

9 10

6

4

Valid configuration

11 11 11

40

placement generated by the drawing algorithm as much as possible. Our approach is to

search an expanding radius of neighbor regions until an empty region is found. Neighbors

with a distance of 1 are searched first (shaded lightly in Figure 3-5(b)), then a distance of

2 (shaded dark), etc. Thus, overlapping virtual PEs are moved a minimum distance from

their original location, and an empty region is guaranteed to be found, provided that

num_PEs <= num_regions. Other approaches besides the presented greedy algorithm are

possible.

3.5.1. GRAPH DRAWING ALGORITHMS

Many graph drawing algorithms exist, and each may produce a different layout of

the same graph. Various categories of graph drawing algorithms exist, including force-

directed, orthogonal or planar, layered, and tree layout strategies.

As shown in Figure 3-6, different graph drawing algorithms give different layouts.

Force-based algorithms, like neato and Frutcherman-Reingold, give reasonable layouts

for almost any model. Such algorithms utilize their own heuristics to converge on a good

Figure 3-6: Using different graph drawing algorithms to the same graph.

Fruchterman -
Reingold

neato

41

solution that may not be optimal, but will at least be within some local minima with

reduced edge lengths and better layout than a random approach.

In contrast to force-based drawing algorithms, other algorithms are specific to certain

structures or graph-types. Heirarchical and tree based algorithms perform best if the

model has a specific structure that matches the algorithm. Often such algorithms work

only on graphs of a specific structure, e.g., a tree drawing algorithm may fail when trying

to draw a graph with cycles.

3.5.2. PLACEMENT USING GRAPH DRAWING

Table 3-1 shows initial and final costs of 5 different graph-drawing algorithms

applied to structured and non-structured models. The cost is calculated by the equation

presented in Section 0, which considers the wire length total, critical path, and the

architectural features of the target platform (Xilinx Virtex 6). We implement and

compare the force-based algorithms neato, fdp, and Frutcherman-Reingold (FR), the

heirarchical algorithm Sugiyama (Sg), and the radial layout algorithm circo. Each

reported result is the average of 5 simulated annealing runs for each configuration. We

establish initial temperatures using an acceptance ratio of 0.9, although a lower

acceptance ratio might better preserve the initial placement seed yielded by the graph

drawing algorithm.

Run times of the simulated annealing algorithm vary with network size and

connectivity. The minimum run time was 36 seconds for 256 PE binary tree model; the

maximum was about 6 minutes for the 2D neuron model. The run time of the Xilinx tools

is not affected by the placement constraints, requiring 1-3 hours depending on the model.

42

In contrast, implementing an embedding algorithm can take hours to days, depending on

the complexity of the structure. The simulated annealing approach thus provides a faster

and more generalized method for creating faster circuits automatically without requiring

structure-specific implementations.

Every drawing algorithm, except for the heirarchical algorithm Sugiyama (Sg),

produces a layout with lower cost than a random mapping. Sugiyama creates very wide

layouts with large aspect ratios with most nodes at the bottom, which makes for poor

starting points to the annealing process.

The force-based algorithms neato and fdp generate the best initial layouts, reducing

the initial cost compared to random by an average of 4.31X and 4.22X. In two cases circo

produces the best initial layout. Circo produces layouts similar to H-tree embedding for

tree-like acyclic graphs. The PE network compiler may generate networks that recapture

some of the tree structure of the original model, thus the initial layout resembles an H-

tree.

The higher-quality initial layouts that are generated by drawing algorithms result in a

lower final costs on average for the neato, fdp, and circo algorithms. The fdp and neato

algorithms produce final costs that are 17% and 14% lower, on average.

The placement constraints generated by the best-performing drawing algorithm for

each model were used during an implementation of the circuit; the results are reported in

Figure 3-7. The first three columns do not use a graph folding technique to capture the

model-structure. Instead, a PE network compiler produced the architecture. In contrast,

the columns labeled "Topology-specific" had equations partitioned according to the

43

model structure, which typically reduces the number of wires in the circuit and results in

less congestion during place-and-route.

The embedding approach achieves close to optimal implementations, because the

embedding placement migrates the critical path from intra-network PE-to-PE

communication channels to intra-PE logic. The three rightmost models, which are non-

structured models (asymetrical tree counts as non-structured becaus there is no simple

embedding), lack folded or embedded results because such models can not use those

approaches. The largest model, neuron2d(500), could not not be implemented by any

unfolded approach due to high number of wires in the design. The neuron2d(256) results

could only be routed if placement constraints were used. In some cases where the

Structure
(#PEs)

Initial cost Final cost after simulated annealing

rand neato fdp FR Sg circo rand neato fdp FR Sg circo Drawing
algorithm

Structured graphs

bitree(255) 11500 1433 1128112811281128 1389 20256 4847 1028 944 920920920920 1052 9028 990

bitree(500) 19496 9005 8073807380738073 10282 11782 9006 1917 1702 1606160616061606 2848 2455 1746

linear(256) 10335 899899899899 1045 1280 1785 2529 861 704704704704 759 1019 905 837

linear(500) 19366 6047 8278 8415 4784478447844784 8157 1600 1355 1366 2651 1582 1319131913191319

mesh(256) 29832 8386838683868386 8466 9082 19496 18204 8778 7728 7715771577157715 8329 9996 8629

mesh(500) 96K 73K 69K 67K N/A 65K65K65K65K 63K 61K 58K58K58K58K 60K N/A 63K

Unstructured graphs

a_tree(500) 19806 6836 9242 7833 13079 5931593159315931 2697 1981 2423 2353 2664 1875187518751875

noStrc(300) 9440 2329232923292329 2379 2490 3854 5249 2290 1950 1905190519051905 2060 2153 2117

noStrc(500) 13135 6454 6124 7574 8007 5355535553555355 3346 2713271327132713 2865 2923 3500 2894

Avg. impr.
over

random (X)
-- 4.314.314.314.31 4.22 3.70 2.40 2.41 -- 1.171.171.171.17 1.14 0.95 0.85 1.12

Table 3-1: Initial and final cost of graph drawing algorithms for structured and unstructured

models. 'N/A' entries could not complete the drawing algorithm.

44

connectivity of the network is low, Xilinx is able to perform place and route effectively

without placement constraints. The described approaches have the most benefit for larger,

more connected structures.

The third columns in Figure 3-7 shows the frequency of the circuit when using the

graph drawing-algorithm approach on an unfolded graph. The second columns show a

random initial-layout approach. Comparing these two results for each model yields the

improvement in circuit frequency due to better initial placement using graph drawing

algorithms, which is an average of 9% higher frequency. The leftmost columns show no

placement constraints. Comparing "No physical placements constraints" with "Unfolded

SA w/ graph initial placement" yields a 13% average improvement in circuit frequency

due to placement constraints and initial graph-drawing layouts, even when not

considering model-specific structure.

Unfolded SA w/ random initial placement

0

50

100

150

200

250

300

350

256 PE 500 PE 256 PE 500 PE 256 PE 500 PEs 500 PE 256 PE 500 PE

10Gen Weibel 1D Neuron 2D Neuron Asym. Tree No Structure

F
re
q
u
en
cy
 (
M
H
z)

No physical placement constraints Topology-specific SA w/ random initial placement

Topology-specific embedding algorithm

Unfolded SA w/ graph initial placement

Comparison of PE Placement Algorithms

Unfolded SA w/ random initial placement

0

50

100

150

200

250

300

350

256 PE 500 PE 256 PE 500 PE 256 PE 500 PEs 500 PE 256 PE 500 PE

10Gen Weibel 1D Neuron 2D Neuron Asym. Tree No Structure

F
re
q
u
en
cy
 (
M
H
z)

No physical placement constraints Topology-specific SA w/ random initial placement

Topology-specific embedding algorithm

Unfolded SA w/ graph initial placement

Comparison of PE Placement Algorithms

Figure 3-7: Freq. of circuits for various models and methods. Missing results could not be routed

by Xilinx or are not applicable.

45

Chapter 4. REDUCING NETWORK CONGESTION

The PE network compiler can generate implementable designs for models consisting

of up to approximately a few thousand equations. However, compiling very large models

consisting of tens of thousands of equations will result in designs that saturate the

available FPGA routing resources. The architecture of the generated network is point-to-

point, meaning that every data dependency between PEs requires a communication

channel between those PEs. If a network contains a few thousand such channels, then the

routing resources of the FPGA will be saturated and the network may be too congested to

complete place-and-route. This paper describes a new reduction phase of the synthesis

problem, wherein following partitioning of equations to PEs, the reduction phase reduces

the network communication architecture to fit the routing resource constraints of a target

FPGA. The reduction phase of the network is combined with new time-multiplexing of

channels to trade off final circuit frequency for latency.

For example, Figure 4-1 shows a set of model equations, partitioned into 8 PEs. Each

of the 8 PEs computes equations that have a data dependency on variables partitioned to

other neighboring PEs. The partitioning and dependencies yield an architecture graph,

which specifies point-to-point connections between processing elements. Each

connection a, b, c, etc. in Figure 4-1 represents a communication bus when the network is

implemented on an FPGA. A new reduction phase generates a reduced architecture

graph, wherein the total number of edges of the graph have been reduced to meet routing

constraints of the target FPGA, but the reachability of the graph remains unchanged such

46

that intermediate PEs may serve as routing switches to store and forward data. The

communication tasks are then scheduled using time-multiplexing over shared channels

available in the reduced architecture graph.

4.1 IMPACT OF MODEL SIZE ON SYNCMC CIRCUITS

Using the above-described approach, compiling large models into PE networks may

produce designs that saturate the available FPGA resources. The partitioner component of

the compiler is constrained by the available LUTs, BRAMs, and DSPs available on a

target FPGA. However, the partitioner has no such fixed resource constraints on the

number of inter-PE connections allowed. The partioner provides a parameter that drives

the partitioning heuristics to favor either size or performance of a network. Favoring size

produces designs with fewer inter-PE connections and more computation cycles per

iteration; favoring performance produces designs with more inter-PE connections and

Figure 4-1: Reducing network connections leads to a faster, more routable design.

Equations

partitioned

to PEs

PE network

reduction PE network

implemented

on FPGA

Architecture graph;

thousands of wires: a, b, c, d, e, ...

PE1 PE2 PE4

PE5 PE7 PE8 PE6

PE3
b,d

a,c,d
c,

PE1 PE2 PE4

PE5 PE7 PE8 PE6

PE3

a

b

d

c

e

Atrial cell model’s ODE form
(repeated thousands of times):

Reduced architecture graph PE2

 PE4

PE3

PE1

PE8

PE7

 PE6

PE5

47

fewer computation cycles per iteration. For very large models, setting the

performance/size parameter to favor size can not compensate for the high amounts of

data dependencies, and synthesis tools may not be able to achieving acceptable clock

frequencies for the compiled PE network. Note that exploring the configuration space of

PE networks is an interesting problem itself, which we previously researched [40].

Table 4-1 shows the throughput of a number of PE networks emulating various

models. The results for partitioner size/performance ratio ρ is shown for 0.1 (favor

performance), 1 (balanced), and 10 (favor size). Comp. cycles describes the number

cycles in the computation phase of each model iteration; similarly, comm. cycles

describes the number of communication cycles per iteration. Freq gives the final circuit

clock frequency. KIters/sec describes how many thousands of model iterations can be

executed per second. Finally, ODEs/sec describes how many ODEs are solved per

 ρ #PEs #wires
Comp.

cycles

Comm.

cycles

Total

cycles

Freq

(MHz)

KIters

/ sec

ODEs/

sec x 109

0.1 420 849 167 11 178 207 1.16 4.76

1 441 905 151 11 162 195 1.20 4.92
Weibel 10

(2048

ODEs) 10 480 1261 144 13 157 173 1.10 4.51

0.1 500 1130 277 13 290 183 0.63 5.16

1 500 1268 260 12 272 171 0.63 5.14
Weibel 11

(4096

ODEs) 10 500 2564 252 17 269 -- 0 0

0.1 500 1298 496 14 510 158 0.310 5.07

1 500 2177 483 18 501 -- 0 0
Weibel 12

(8192

ODEs) 10 500 5170 481 31 512 -- 0 0

0.1 500 2576 950 21 971 -- 0 0

1 500 3519 946 29 975 -- 0 0

Weibel 13

(16384

ODES) 10 500 12985 946 65 1011 -- 0 0

Table 4-1: The clock frequency drops and designs eventually become unroutable as

model complexity increases.

48

second, which is a function of the total number of cycles, number of model ODEs, and

final circuit clock frequency. Entries with 0 frequency could not be placed and routed

using Xilinx ISE 14.2, due to designs that were too congested for a Virtex6-475T

architecture. From the table, we can observe that designs with more than 1500-2000

wires can not complete place-and-route.

Clearly there is a need to reduce the required routing resources for very large models,

since peer-to-peer network architectures do not scale well on FPGAs. The number of

communication cycles compared to computation cycles per iteration is relatively small,

usually less than 5%-10% of total cycles. Introducing time-multiplexing may allow for

large models to still complete place-and-route, but with added communication cycles per

iteration.

4.2 INTRODUCING TIME-MULTIPLEXING

COMMUNICATION INTO SYNCHMCS

This section describes a basic (naive) approach to performing an additional graph

reduction phase following PE allocation and partitioning of equations to PEs. Figure 4-2

shows an updated compilation flow, where the new reduction phase takes as input the

architecture graph, and produces a reduced architecture graph.

Reduction of the graph is an optimization problem with the following definition:

Given an architecture graph G = (V, E), generate a graph H = (V, E') such that the

reachability of G = H, and the metrics CostSIZE and CostPERF (introduced later) are

minimized. The reachability relationship requires that G and H have the same transitive

49

closure, i.e., that for all edges e = (u, v) ∈ E there exists a path from u to v. CostSIZE and

CostPERF are metrics that give an estimate of the network performance in terms of

architectural (circuit frequency) and performance (iteration cycle time) cost, respectively.

Figure 4-3 gives example representations of G and a reduction H. Both G and H use

the same vertex set, but the edge set is different. H is considered a reduction of G because

H has fewer wires (3 in H compared to 4 in G), and the same transitive closure. The two

communication tasks b and c in H must be routed through intermediate nodes to reach

their destination.

4.2.1. NETWORK SIZE COST METRIC

We first establish a metric that is a measure of the "implementability” of the network

on a target FPGA device, i.e., the estimated clock frequency of the placed-and-routed

network. One primary factor of network size is the total number of wires, num_wires.

Figure 4-2: PE network compiler flow with additional network reduction phase.

Network

reduction

Automatic

partitioner

ODE-dependency graph

Model parser

Architecture

graph

Reduced

architecture graph

PE

assembler

#PEs Generic model specification

Network

scheduler

RTL description

partitioning

50

However, the number of wires alone is not a good indicator of clock frequency. Networks

that are very dense, having a high ratio of edges to nodes, may not yield high clock

frequencies due to congestion during place-and route.

Table 4-2 shows a variety of networks and corresponding clock frequencies for

increasing levels of network density. Such networks might be present as subcomponents

of a larger design containing hundreds of PEs. Even for networks consisting of only 20

PEs, substantial timing penalties begin to accrue as the density increases.

Consider the graph in Figure 4-4(a), which plots final circuit frequency after place-

Figure 4-3: Reducing an architecture graph G to reduced architecture graph H. (a) G with 4 PEs

and 4 wires. (b) H with fewer wires than G, but requiring multiplexing b,c.

PEs

Wires

Density

(#wires/#PEs)

Freq

(MHz)

5 20 4.0 299

10 90 9.0 284

15 210 14.0 265

20 200 10.0 270

20 300 15.0 256

20 380 19.0 188

25 592 23.7 0

30 847 28.2 0

Table 4-2: Number of PEs and wires alone do not predict clock frequency.

PE1

PE2

PE4

PE3

a b

d c

(a)

PE1

PE2

PE4

PE3

a
b

d
c

(b)

51

and-route against the number of wires in the network for a variety of different models. In

fact, if a network is particularly dense, than circuit performance can drop dramatically as

shown (circled points). There are cases in which particularly dense designs consisting of

500-1000 wires can not complete place-and-route, while other designs containing 1000-

1500 wires achieve 150-200 MHz clock frequencies.

To accurately estimate clock frequency the densest-at-least-k-subgraph problem,

denoted d(k), is solved for a given reduced architecture graph H. d(k) is the density of the

most dense subgraph in H with at least k vertices. k is a parameter chosen by considering

the size and architecture of the target FPGA. Choosing higher values of k filters out dense

subgraphs with small numbers of PEs, which is useful because smaller subgraphs have

minimal impact on frequency and may be ignored. Note that the densest-at-least-k-

subgraph problem is NP-complete; we compute an approximation whose algorithm

requires O(m) time for the unweighted ODE dependency graphs [4].

A function D(k) is defined that represents the overall density of a given network.

()
()

()

















<

=
otherwise

d

kd
C

dkd

kD
FPGA ,exp*

,1

min

min

(1)

dmin is a parameter that sets a limit on the minimum allowable density before circuit

performance is impacted. If the densest-at-least-k subgraph found by d(k) is less than

dmin, than D(k) evaluates to 1. However, if d(k) ≥ dmin then the cost is scaled by an

exponential factor d(k)/ dmin. CFPGA is a user-selected parameter chosen based on the size

52

and architecture of the target FPGA. We use CFPGA = 0.5 for a Xilinx Vertex6-475T

FPGA; when targeting smaller devices CFPGA should be increased, since a smaller device

can less effectively implement a dense design compared to a larger device, and vice-

versa. We use KFPGA = 15 and dmin = 10 throughout this paper

Using the above density function D(k), the cost metric CostSIZE can be defined.

()FPGASIZE KDwiresnumCost *_= (2)

A high value of CostSIZE corresponds to a more complex architecture and a high

amount of congestion. A low value corresponds to an architecture easily placed on the

target FPGA. Figure 4-4(b) shows the correlation between CostSIZE and final circuit

frequency using the results from Table 4-1, Table 4-2, and additional PE networks

synthesized implementing matrix multiplication applications consisting of 100-500 PEs.

Figure 4-4: Wires alone do not predict frequency well; (a) note circled points with low wire count

but low frequency. (b) The proposed cost function is a better predictor.

1DNeuron(Table 4-2) Weibel(Table 4-1)

(a) (b)

53

There is a clear limit to the complexity of a design that can be supported on any given

platform, denoted as TLIM. For a Xilinx Vertex6-475T FPGA, TLIM = 1500. TLIM may be

reached either through sheer network size and the number of wires, or if a network

contains dense subgraphs of nontrivial size. Ideally TLIM is set to a value that represents

the maximum size cost that can still be implemented, albeit at a low final circuit

frequency. Any value greater than TLIM would likely result in a failure during place-and-

route.

4.2.2. NETWORK PERFORMANCE COST METRIC

The CostPERF metric measures the performance of an architecture in terms of the

number of communication cycles required per model iteration. Time-multiplexing

multiple communications impacts the peak throughput of the network, since intermediate

PEs must spend additional cycles to store and forward each intermediate communication.

Thus, CostPERF is the maximum number of communication cycles ci required in any PE in

the network.

),...,,max(21 nPERF cccCost = (3)

As an example, consider the number of communication cycles required for each

graph in Figure 4-3. The communication of the original graph G can be optimally

scheduled in 2 cycles. In the first cycle PE1 outputs a, PE2 stores a and outputs c, and

PE4 stores c. In the second cycle PE1 outputs b, PE3 stores b and outputs d, and PE4

stores d. Thus, G has a CostPERF value of 2. H is a reduction of G, having one fewer wire

but requiring time-multiplexing of the middle physical channel. H can be scheduled in 3

54

cycles. In the first cycle, PE1 outputs a, PE2 stores a and outputs c, PE3 stores c and

outputs d, and PE4 stores d. In the second cycle PE1 outputs b, PE2 stores b, PE3 outputs

c, and PE4 stores c. In the third cycle PE2 outputs b and PE3 stores b. Thus, H has a

CostPERF value of 3.

4.2.3. COST FUNCTION

The goal of the optimization is to minimize CostSIZE + CostPERF. Since CostPERF is

small compared to CostSIZE, each term is adjusted to fit on a scale from 1-100 so that

changes in each metric are relative to the actual impact on the final design throughput.

CostSIZE is scaled according to the maximum allowable value for a given target TLIM.

For example, if a network has a value of CostSIZE = 500, then the normalized value

NCostSIZE is 500/1500 * 100 = 33.3 when targeting a Virtex6-475T. If CostSIZE > TLIM,

then NCostSIZE is set to the maximum 100 value.

100*1,
Cost

min SIZE









=

LIM

SIZE
T

NCost (4)

CostPERF is scaled according to the overhead introduced by time-multiplexing. The

normalized value NCostPERF should be 1 when there is no overhead, i.e. there has been no

reduction of the graph. On the other hand, NCostPERF should be 100 when high amounts

of overhead will severely limit the peak total throughput of the network. We select

NCostPERF to be 100 when the number of cycles per iteration CI for the reduced graph

reaches 10x the required CI for a non-reduced graph. Note that CI includes both

computation and communication cycles required per iteration so that schedules

55

dominated by computation cycles are not penalized by marginal increases in

communication cycles.

100*1,
*10

Cost
min PERF









=

I

PERF
C

NCost (5)

Finally, a weighting parameter λ allows a designer to favor either size or

performance. Setting λ to 0 only considers the communication overhead, setting to 1

considers only the size and complexity of the network, and fractional values in the range

[0,1] balance the costs accordingly.

() PERFSIZE NCostNCostCost 1* −+= λλ (6)

4.2.4. REDUCING SYNCHMC WIRES

Now that a cost function has been established and the quality of reduced architecture

graphs can be evaluated, we present a greedy approach for generating reductions of PE

networks architectures. Starting with the architecture graph and partitioning generated by

the PE network compiler, the architecture graph is iteratively reduced while maintaining

the graph reachability. We investigated graph theoretic techniques referred to as graph

sparsification [53] as a method for reducing PE network density. However, while

sparsification techniques for undirected graphs are well known, similar techniques for

directed graphs remain an open problem. As such, we have developed our own method of

56

eliminating edges that maintains important PE network properties like reachability by

finding partial transitive reductions, as described in Section 4.2.5.

The transitive reduction of a directed acyclic graph G is the graph H with the fewest

edges that has the same reachability as G [1]. The architecture graph generated by the PE

network compiler and the transitive reduction of that graph represent the two boundaries

of the solution space. The architecture graph represents a high size cost and low

performance cost, since all communication is point-to-point. The transitive reduction

represents a low size cost and high performance cost, due to time-multiplexing over the

smallest possible number of channels. Our approach begins with the architecture graph as

the initial solution, iteratively computing partial transitive reductions of the graph where

each iteration is allowed to remove more wires. The size and performance cost of the

resulting network after each iteration is evaluated, and the algorithm terminates when the

cost is no longer decreasing.

Figure 4-5 gives an overview of the greedy algorithm, which consists of four main

components within a do/while loop:

1. Compute a reduction of the original architecture graph G, given a maximum

component size parameter that increases at each iteration (explained in detail in Section

4.2.5).

2. Schedule the communication tasks of G on reduced architecture H, yielding the

maximum number of communication cycles required for any node in the network.

3. Compute the densest-at-least-K-subgraph of H.

4. Compute the total cost. Terminate the search if no improvement seen.

57

Note that scheduling the time-multiplexing is a critical process that can have large

impact on network performance - Chapter 5 discusses scheduling in more detail.

4.2.5. FINDING REDUCTIONS

A transitive reduction of a directed graph G containing cycles can be found by first

computing the condensation of G. A condensation is created by contracting the strongly

connected components of the graph into a single vertex, and then adding edges between

the condensation vertices if an edge exists between the strongly connected components in

the original graph. Once the condensation of G has been found, then a Hamiltonian cycle

(possibly consisting of both original and newly added edges) in each strongly connected

component is identified and wires not in this cycle can be removed. Thus, the resulting

Figure 4-5: Greedy algorithm for finding a reduction of graph G

GREEDYSEARCH(G):

 CompMAX ← 1

 Cost ← ∞

 Last_cost ← cost

 do
 H ← NetworkReduce(G, CompMAX)

 comm_cycles ← Schedule(G, H) // Schedule communication tasks of G on reduced

architecture H.

 density ← Ds(H, KFPGA) // Find densest-at-least-KFPGA-subgraph of H

 CostSIZE ← min((H.edges * density) / TLIM, 1) * 100

 CostPERF ← min(comm_cycles / (CI*10), 1) * 100

 Last_cost ← Cost
 Cost ← λ*CostSIZE + (1- λ)*CostPERF

 CompMAX += ∆ // Increase max component size reduces wires in H next iteration

 while Last_cost > Cost

 Return H

58

graph has a minimal number of wires in each strongly connected component, and no

more than δ edges exists between any two components in a given direction. δ is a user-

selected parameter than defines a minimum graph cut-size.

 Figure 4-6(a) shows an example of finding the transitive reduction by first finding

the condensation. Two strongly connected components exist in the graph, each node in a

component being able to reach any other node in the same component. The condensation

replaces the edges in each component with a Hamiltonian cycle; reachability in the

component remains unchanged, but now the maximum latency for a communication is

the size of the component minus one. For example, for PE2 to communicate with PE1, 4

hops are required to PE4, PE5, PE3, and finally PE1.

 Of course, computing the transitive reduction yields a graph with the minimum

number of wires. The solution space between the original graph and the transitive

reduction is of the most interest. Searching this space is enabled by introducing a

parameter CompMAX that sets the maximum size of a strongly connected component.

Components larger than CompMAX are partitioned into separate components.

Figure 4-6: Reducing network wires. (a) Computing H via condensation of G; strongly connected

components circled. (b) Limiting component size to 3 gives fewer wires but requires more cycles.

(b)
PE1 PE2

PE3

PE6
PE7

PE8

PE5

PE4

(a) PE1 PE2

PE3

PE7

PE7

PE8

 PE5

PE4

PE1 PE2

PE3

PE6

PE7

PE8

 PE5

PE4

PE1 PE2

PE3

PE6 PE7

PE8

PE5

PE4

59

 Figure 4-6(b) shows the effect of setting CompMAX to 3 for the given graph. The left

component, originally consisting of 5 nodes, is split into two separate components. The

cycles are constructed by linking a series of nodes together, and condensation edges are

placed between components. Setting CompMAX to higher values results in graphs with

fewer edges, while setting CompMAX to low values yields graphs with more edges; setting

CompMAX to 1 gives the original graph with no changes.

Note that finding Hamiltonian cycles in a graph is NP-Complete. However for this

application, it is not necessary to select the cycle within each component using existing

edges. That is, every edge in a component can be deleted, and a cycle can be formed

simply by creating new edges to link each node together, as shown. Thus, with the caveat

that arbitrary edges can be placed to form a cycle, the problem becomes more tractable

and expensive heuristics to find existing cycles are avoided. The order of the nodes

chosen currently is random, but some improvement may be possible by keeping as many

original edges of the graph as possible, reducing the overall amount of hops required

during an update phase.

60

To avoid bottlenecks, maintaining a minimum cut-size between any two components

is important to overall network performance. A parameter α can be set that limits the

maximum number of edges between components. We use α = 2 throughout this work.

Once condensation edges have been identified, a cycle is built in each component in H by

linking nodes together. On an average case, the distance of a hop is approximately

CompMAX / 2, since a communication may be the next node in the cycle in the best case,

or may be the last reachable node in another component in the worst case.

Figure 4-7: Cost of a PE network design as a function of CompMAX.

λ NCostSIZE NCostPERF

Freq

(MHz)

ODEs /

sec x 109

0.1 57.1 2.8 130 1.62

0.2 39.4 6.3 148 1.61

0.3 33.1 8.4 200 1.92

0.4 33.1 8.5 200 1.91

0.5 33.1 8.4 200 1.92

0.6 30.1 11.4 215 2.06

0.7 25.9 12.6 209 1.64

0.8 25.9 12.7 209 1.63

0.9 23.1 15.17 213 1.66

Table 4-3: Effect of λ on network throughput.

0

20

40

60

80

100

4 10 16 22 28 34 40 46

Comp_max

C
o
s
t

NCostSIZE NCostPERF Cost(λ=0.1) Cost(λ=0.5) Cost(λ=0.9)

61

Figure 4-7 shows the effect of CompMAX on CostSIZE and CostPERF for various settings

of the weighting coefficient λ.

Table 4-3 shows the throughput of a PE network implementing an 11-generation

Weibel lung model with 256 PEs and ρ = 1. Best network throughput is achieved when λ

is around 0.5 - 0.6, such that the size and performance weightings are balanced.

4.3 COMPARING SYNCHMCS WITH TIME-

MULTIPLEXING SYNCHMCS

The key benefit of introducing the reduction phase and time-multiplexing

communication is that models of arbitrary size and complexity can complete place-and-

route on target FPGAs. Table 4-4 gives place-and-route results for four Weibel lung

models of varying complexity, along with the corresponding peak possible computation

rates for each implementation. Without a reduction phase, the more complicated models

quickly begin to produce designs that are too congested for the target Virtex-6 FPGA,

and can not be implemented. Using a reduction phase allows even the largest of models

to be implemented successfully.

Smaller models that can fit on the target device likely will have better performance if

a reduction phase is not used. Introducing time-multiplexing communication may

lengthen the schedule such that the improved frequency of the reduced design does not

compensate for the extra cycles. In Table 4-4 the throughput of routable designs is

reduced approximately 50% in each case. However, if the synthesized model is only a

62

part of a design destined for the target FPGA, i.e. if including soft-core control processor

or I/O logic, then the increased clock frequency may be desired to meet timing

requirements of other components. In such cases, a designer likely would set a minimum

requirement on network performance, and then reduce the network while the performance

requirement is met, such that clock frequency is maximized.

Note that λ = 0.5 is used as the weighting coefficient for each model. For smaller

models like Weibel10, a lower setting of λ would likely produce designs with higher peak

throughput, since removing wires is not as important as reducing the schedule length.

The targeted platform is a Xilinx Virtex6-475T FPGA; the circuits are implemented

using Xilinx ISE 14.2. ISE is run in Performance Evaluation mode, which does non-

timing driven implementation. Performance evaluation mode is used to approximate

 Without reduction phase

(ρ=1.0)

With reduction phase

(λ=0.5, ρ=1.0)

Model

PE

 #

wires

cycles

Freq

(MHz)

ODEs/sec

x109

wires

cycles

Freq

(MHz)

ODEs/sec

x109

250 784 265 208 3.21* 431 444 214 1.97* Weibel10

(2048 ODEs)
500 1006 154 223 5.92* 817 344 190 2.27*

250 1262 495 -- 0 382 927 214 1.89 Weibel11

(4096 ODEs) 500 1325 271 162 4.89* 770 569 192 2.76*

250 3468 982 -- 0 382 2750 174 1.03 Weibel12

(8192 ODEs) 500 1651 502 -- 0 836 1338 174 2.47

250 7209 1969 -- 0 522 5378 140 0.85 Weibel13

(16384 ODEs) 500 3553 975 -- 0 656 2442 154 2.06

Atrial30x30x30

(27,000 ODEs)
500

5984 1500 -- 0 842 6935 103 0.60

Neuron100x100

(30,000 ODEs)
500

13559 1171 -- 0 1052 5175 137 0.80

Table 4-4: Reduction phase enables synthesis of previously unsynthesizable designs.

 *A reduction phase reduces throughput of a design because of time-multiplexed communication, but can

increase clock frequency. Smaller designs can achieve better performance by not using a reduction phase.

63

circuit performance; generally about 10-15% performance increases in clock frequency

could be achieved by re-running place-and-route using the performance evaluation result

as a timing constraint [62], though such benefits would apply to both the reduced and

non-reduced designs.

4.4 COMPARING TIME-MULTIPLEXING SYNCHMCS

WITH GENERAL PURPOSE CPUS

Targeting FPGA platforms is worthwhile only if the speedup over more traditional

platforms is substantial. Previous work showed general PE networks could achieve 15x

speedup in performance over a 3 GHz Intel CPU [22]. Custom PE networks, wherein the

processing elements are custom pipelined data paths instead of general-purpose-

processors, were shown to achieve 4-9x performance increases over the general PE

approach, 9x over high-level synthesis, 26x over GPU, more than 100X over a 6-core

DSP, and 24x over a 4-core CPU.

The past results investigated models whose size was amenable to fitting on the target

FPGA. In this work, we evaluate very large models that must introduce a time-

multiplexing scheme so that place-and-route of the network is possible. Figure 4-8

compares the performance of the three previously described large models, consisting of

16,000, 27,000, and 30,000 variables respectively. The graph shows the time to execute a

single iteration of the model - lower time indicates faster execution speeds.

CPU results are given for 1 and 4 threads. The CPU used was a quad core Intel i7-

3770, clocked at 3.4 GHz. The code was compiled using GCC 3.4.4 and full

64

optimizations (-O3). We wrote custom kernels to solve each model, and parallelized the

programs by partitioning the lung branches / neurons / atrial cells among the available

threads. Each model is executed one second of real time, and then hardware performance

counters are queried to obtain performance results. Adding additional threads to the CPU

implementation did not result in additional performance gain, since thread management

overhead requires synchronization after each iteration and limits possible performance

gains.

On average for the given three large models, general and custom PE networks

achieve 3.2x and 6.2x better performance than the single-core CPU implementation,

respectively. Although custom PE networks previously were shown to achieve over a

order of magnitude speedup over even general PEs, here their benefits are less

pronounced (but still 2x faster than general PEs). The schedule of large models is

dominated by the communication update phase, instead of the compute phase, thus the

faster-computing custom PE networks have diminishing returns.

Figure 4-8: Time to execute one iteration of a model. General PEs are 3x faster than CPU(1),

and custom PEs are 6x faster than CPU(1).

0

50

100

150

200

T
im

e
 t
o

 e
x
e
c
u

te
 o

n
e

it
e

ra
ti
o

n
 (

u
s
)

CPU(1)

General PEs

CPU(4)

Weibel13 100x100Neuron Atrial30x30x30

Custom PEs

Network-on-Chip

65

4.5 COMPARING WITH NETWORK-ON-CHIP

Network-on-Chip (NoC) architectures have been shown to be an effective and

scalable platform for implementing multi-core system-on-chip designs [30]. In this

section we compare time-multiplexing PE networks to the Configurable NEtwork

Creation Tool (CONNECT) [47]. CONNECT is a highly parameterized NoC RTL

generator that specifically targets FPGA architectures. The generated NoC can be

customized to fit a given application by specifying the number of endpoints, network

topology, pipelining, packet size, and so on. Below, we describe the parameters used to

generate NoC architectures for comparison to PE networks.

• Topology - Structure of the network. We evaluate a subset of the possible

topologies: double-ring, fat tree, and 2D mesh.

• Number of endpoints - How many PEs can be connected to the NoC. This

parameter is constrained by available FPGA resources; we evaluate NoCs that

can support 16-64 PEs.

• Number of VCs - How many virtual channels: We use 2 VCs.

• Flow Control Type - How the PEs interface with the NoC. We use CONNECT's

peek flow-control in lieu of credit-based control flow.

• Flit Data Width - Size of a flit. Each packet consists of a single flit of size 42, not

including header information. 32 bits is data, and 10 bits is used to identify the

variable.

• Flit Buffer Width - Depth of buffers in flits. We use 64-flit size buffers.

66

• Allocator - Router allocation algorithm: We use separable input-first round-

robin.

• Pipeline Router - The router core is pipelined to increase clock frequency.

The traffic pattern of synchronized PE networks is different from typical applications

that target NoC architectures. Typically network traffic is uniformly distributed in terms

of flits/cycle, with minor variations depending on the application. However, due to the 2-

phase update/compute synchronization, PE networks have spikes of high loads during an

update phase, followed by no load during the compute phase. Our NoC architectures

must therefore be able to operate under high load without becoming saturated. To account

for the load spikes, the CONNECT Flit Buffer Width parameter is set to its maximum

value of 64, and packet injection during an update phase is limited to avoid saturation.

To test the performance of a generated NoC we first use the PE network compiler to

partition an application into a set of PEs, and then schedule the global communication

between PEs. The global communication tasks are translated into packets to be routed by

 Weibel13 Atrial30x30x30 2DNeuron100x100

Topology

PEs

Freq

(MHz)

cycles

uSec /

iter

cycles

uSec /

iter

cycles

uSec /

iter

DoubleRing 32 182 19789 109 31613 174 49938 274

DoubleRing 64 135 14788 110 23112 172 39783 296

Mesh 32 107 20117 189 26388 247 19310 369

Mesh 64 126 10734 85 14840 118 24129 191

FatTree 32 80 19275 242 24767 311 42619 535

Table 4-5: NoC performance is limited by the number of available endpoints. The 2D mesh

topology with 64 endpoints yields the best performance.

67

a NoC. A NoC architecture is simulated on a cycle-accurate simulator (Xilinx ISim).

Each PE attempts to inject a packet into the NoC on each cycle, until all the packets have

been routed. To avoid saturating the network, we found that idle cycles needed to be

introduced between packet injections. The number of idle cycles depends on the number

of packets and network architecture, and ranges from 3 to 17 cycles. The NoC

architectures are synthesized to obtain a clock frequency, and the time to compute an

iteration of model is found as the product of the period and total schedule length. The

schedule length is the number of computation cycles and number of cycles to route all

packets.

68

Chapter 5. SCHEDULING TIME-MULTIPLEXED

SYNCHMCS

Time-multiplexing introduces new challenges to scheduling the update phase of a PE

network. Every communication task of the original PE network architecture graph must

be scheduled on the newly generated reduced architecture graph, using intermediate PEs

to store and forward non-direct messages. We investigate three different approaches to

scheduling: a shortest-path greedy scheduler, a heuristic based on path lengths, and an

integer linear program.

The scheduling problem has the following definitions and constraints:

1. Operations per cycle — Each PE can execute at most one storing action per cycle,

and at most one forwarding action per cycle.

2. Intermediate local storage — A PE can store intermediate values in local memory in

cases where a higher priority message must be handled, such as forwarding a message

with a long path length.

3. Objective — The optimal schedule minimizes the maximum number of

communication cycles required for any given PE (including idle cycles).

Related work by Kapre investigated scheduling of packet-switched and time-

multiplexed overlay networks on FPGAs [29]. The work utilizes a greedy algorithm for

69

scheduling, although the authors note that a PathFinder implementation is also available.

Although PathFinder is designed to be used as a routing algorithm, we hope to investigate

its use as a heuristic for scheduling PE networks in future work.

5.1 GREEDY SCHEDULER

A simple approach is a greedy scheduler that loops over every message and routes

that message on the shortest path from source to sink. Let T be the set of communication

tasks that must be routed. Let Ta,b be a communication task with source a and sink b. The

shortest path from a to b is denoted Pa,b, and consists of an ordered set of vertices a = v1,

v2, ..., vk = b. Figure 5-1 gives the algorithm psuedocode. Insts is a data structure that

stores the communication instructions for each PE at every cycle. In the inner loop, for

any i, we find the first cycle for which message Ta,b can be forwarded from vi to vi+1, that

is the first cycle when vi is not busy forwarding some other message and vi+1 is not busy

storing some other message.

The Search() function can be any appropriate graph path-finding algorithm; we use

A* search. Even for large graphs, the algorithm generally requires less than one second to

Figure 5-1: Greedy scheduling algorithm

GREEDYSCHEDULE(H, T):

 Insts[PE][cycle] ← {}

 foreach Ta,b in T

 Pa,b ← a = v1, v2, ..., vk = b // Shortest path from a to b

 cycle ← 0
 foreach edge (vi, vi+1) in Pa,b

 while (!AvailableForward(vi, cycle) || !AvailableStore(vi+1, cycle))

 cycle ← cycle + 1

 Insts [vi][cycle] ← Forward(Ta,b)

 Insts [vi+1][cycle] ← Store(Ta,b)

 cycle ← cycle + 1

70

complete scheduling. However, the simplicity of the approach comes at the cost of less-

than optimal schedules. Because the shortest path is always taken, alternative routes that

are longer but less congested are not used. While the greedy algorithm can produce near-

optimal schedules for simple and sparse networks, dense networks with high amounts of

traffic yield poor scheduling results. As an example, a lung model with 2000 equations

implemented on a 75-PE network is scheduled in 1550 cycles, which is about 3x more

cycles than the optimal schedule.

5.2 MATCH-SCHEDULE

A better scheduler utilizes alternative paths from a to b when scheduling Ta,b, instead

of always taking the shortest path. Given a reduced architecture graph H and set of tasks

T, the presented algorithm iteratively schedules each cycle. The scheduling of each cycle

is framed as an optimization problem, where a subset of active tasks can be scheduled

(given the constraint of at most one store/forward operation per PE), and each task can

choose from many possible paths through the network. The objective is to maximize the

number of tasks scheduled in the cycle, while considering the relative importance of each

task, quality of each path for every task, and PE congestion.

To schedule each cycle l = 1,2,3,... a weighted bipartite graph Jl is first constructed.

For reference, see Figure 5-2 (the bipartite graph of each cycle being bounded by the

dashed vertical lines). The current vertices on the left-hand side of Jl are PEs that contain

an active task to be scheduled in the current cycle l (set Al). The next vertices on the right-

71

hand side of Jl are PEs for which a task Ta,b currently in Al can take to reach sink b (set

Bl).

Let Ta,b,l = x be the current PE of task Ta,b at cycle l; let y be a PE in Bl. An edge (x,

y, Ta,b) from x to y with label Ta,b exists in set El if sink b can be reached from x through

y. Multiple edges can exist from x to y for different tasks. The bipartite graph Jl is thus

defined by the vertex and edge sets (Al, Bl, El). To illustrate, cycle 1 of Figure 5-2 shows

a task Ta,b originating from PE a that can choose one of three neighbors of a on a path to

sink b, and a task Tc,d that can choose from two neighbors of c on a path to sink d. A1

consists of PEs a and c, B1 consists of three neighbors of a on a path to b and two

neighbors of c on a path to d. E1 consists of five edges between A1 and B1.

Weights are assigned to each edge in Jl according to a weighting function (described

in the following section). The weighting function considers path length, source

Figure 5-2: Scheduling a tasks Ta,b and Tc,d using Match-Schedule. Each cycle is scheduled via a

maximum-weighted matching operation.

current next

a

b

d

..

5

6

7

Ta,b,1

Cycle 1

c

2

4

Tc,d,1

..

5

2

Cycle 2

current next

b

a

Ta,b,1

Ta,b,2

c

d
20

Tc,d,2 Tc,d,1

5

2

Cycle 3

current next

b

a

Ta,b,1

Ta,b,2 Ta,b,3

c

d

Tc,d,2 Tc,d,1
Tc,d,3

current next
a

b
 25

Cycle 4

Ta,b,1

Ta,b,2 Ta,b,3 Ta,b,4

c

d

Tc,d,2 Tc,d,1
Tc,d,3

Final schedule
a

b
Ta,b,3

Ta,b,1

Ta,b,2 Ta,b,4
Ta,b,5

c

d

Tc,d,2 Tc,d,1
Tc,d,3

72

congestion, and expected path delay. Once weights have been assigned to each edge, the

maximum-weighted matching of Jl is computed. The maximum-weighted matching

operation finds a set of edges of maximum total weight in which no two edges share an

endpoint. Thus, the constraint of at most one store or forward operation per PE per cycle

is met. In Figure 5-2 two paths Ta,b and Tc,d are scheduled; in cycle 1 the edge weights 6

and 4 yield the maximum matching weight of 10. The figure shows only an example with

two tasks, for clarity. (Also, the weight values are selected by hand, not according to the

formulas below.) In reality, in the applications we consider, the algorithm may schedule

thousands of tasks in each cycle, and there is high contention between tasks for next

hops.

The maximum matching operation is implemented by describing the problem as an

integer linear program. Our implementation calls IBM's CPLEX 12.6 linear program

solver to compute the optimal solution. The linear program is quite simple, requiring only

constraints that limit the number of edges connected to any endpoint, while maximizing

edge weights [13].

Figure 5-3 gives an overview of the Match-Schedule pseudocode. For any two PEs x

= Ta,b,l and y, the FindPath() function determines whether y is a neighbor of x, and

whether y is on a path to b in H (in which case edge (x, y, Ta,b) will be created).

FindPath() can be implemented via a BFS search originating from each y where edge (x,

y) exists in H. Possible optimizations include only adding edges of paths that are not

longer than the average distance of all paths from x to b, or using a backwards BFS

originating from b to instead of multiple BFSs from each y.

73

The weighted bipartite graph for each cycle l is constructed by finding Al and Bl, then

adding edges where paths for each task exist from current PE Ta,b,l = x∈Al to b through

y∈Bl. Edges are weighted according to the weighting function described below. Then the

maximum matching is found and the result is used to schedule forward operations for PEs

in Al, and store operations for PEs in Bl in the current cycle.

The weighting of each edge (x, y, Ta,b) considers three factors: urgency, estimated

delay, and source congestion. Urgency represents the global importance of task Ta,b

compared to all other tasks. Tasks whose minimum distance to the sink b is large have

higher urgency and should be scheduled first. The urgency of edge (x, y, Ta,b) depends

only on x and b. Every edge has estimated delay that represents a bound on the delay

required to reach sink b via y. Paths with smaller estimated delay are favored. Finally, for

Figure 5-3: Match-Schedule pseudocode.

MATCHSCHEDULE(H, T):

 l ← 0 // current cycle
 while not all tasks Ta,b scheduled

 Al ← set of all PEs with pending tasks in cycle l
 Bl ← all PEs

 foreach x in Al

 foreach task Ta,b: Ta, b, l = x

 foreach y in Bl

 if path x→y→...→b exists in FindPath(x, y, b, H)

 add_edge((x, y, Ta, b), El) // Add edge (x, y) with label Ta, b to set El

 Jl ← (Al, Bl, El) // Create bipartite graph

 foreach edge e = (x, y, Ta, b) in El

 e.weight = α*U(Ta, b) + β*E(x, y, Ta, b) + γ*C(x)

 foreach edge e = (x, y, Ta, b) in MaxMatch(Jl)

 x.ScheduleForward(Ta, b)

 y.ScheduleStore(Ta, b)

 l ← l + 1

74

all x in Al, the source congestion represents the number of messages currently waiting in

x to be forwarded. PEs with higher amounts of congestion should be favored so that no

PE becomes a bottleneck. All three factors are represented by values between 0 and 1,

which are then weighted to obtain the final weight of edge (x, y, Ta,b).

Urgency can be calculated as the shortest path length from x to sink b in H.

Normalizing task urgency to the maximum urgency of all tasks yields a value in the

interval [0,1]. Let Da,b represent the shortest distance from Ta,b,l = x to b (through any hop

y). Then the urgency of Ta,b is calculated as:

()
()vu

ba

a,b
D

D
TU

,vu,

,

max
= (7)

The estimated delay of edge (x, y, Ta,b) is determined based on the path length from y

to b. Let Da,b,y represent the minimum distance in H from Ta,b,l = x to b through hop y. We

need to convert Da,b,y into a value in [0,1] that is decreasing with respect to Da,b,y, so that

shorter paths are given higher priority. To this end, we first replace Da,b,y by D'a,b,y =

Da,b,y - minh(Da,b,h), where the minimum is over all possible hops h in Bl, and then the

priority value representing estimated delay is computed as

() D'

,
yb,a,,,

−
= δbaTyxE (8)

The value of δ controls the strength of weighting paths of different lengths. For

example, if a task's shortest path has length 2 and the longest path has length 10, then a δ

value of 2.0 would give the shortest path E = 1, and the longest path E = ~0.004. If δ is

closer to 1, for example 1.1, then for the same length paths the shortest path has E = 1,

75

and the longest path has E = ~.47. We have found experimentally that a δ value of 1.5

works well.

The source congestion of a PE x is the number of active tasks waiting to be

forwarded in x, that is the number of tasks Ta,b for which Ta,b,l = x. The corresponding

priority value C(x) is computed by normalizing the congestion of x to the maximum

congestion for all PEs in Al, to give a value in the interval [0,1].

A coefficient for each of the above factors allows tuning the relative importance of

each term. The final weight is calculated as:

() () () ()xCTyxETUTyxW bababa *,,**,, ,,, γβα ++= (11)

Experimentally we have found that the parameter values for α, β, γ of 0.75, 1.0, and

0.25 respectively give good results, although the network architecture and traffic

characteristics can influence the ideal parameter settings.

5.3 INTEGER LINEAR PROGRAM SCHEDULER

We have developed a system of integer linear program (ILP) constraints that can

generate an optimal schedule of a PE network, given that the reduced architecture and the

paths for each task are provided as input. The ILP can be solved optimally for small

networks using CPLEX. However, ILPs for medium to large-sized networks, i.e.

networks with more than approximately one hundred PEs, more than a few hundred

paths, or requiring more than a few hundred cycles to schedule, can not be solved

because they are too large (having more than a few millions of variables and constraints).

76

We found that such ILPs could not be solved on an Intel i7-based desktop PC, as the

available 8 GB of RAM was insufficient. Thus, while the ILP approach can not scale to

producing optimal solutions for networks that are the most interesting (large and dense),

we can use the ILP approach as a baseline indicator of the greedy scheduler's and Match-

Schedule's performance on smaller networks.

Our ILP uses 0-1 variables XP,a,b,l, where P is a path, (a, b) is an edge in path P, and l

is a cycle. The variable XP,a,b,l indicates whether edge (a, b) in path P is used in cycle l.

For each cycle l, we also have variable yl that indicates whether cycle l is used in any

path.

Using these variables, a natural objective function would be to minimize ∑lyl, the

quantity that represents the number of cycles used in the schedule. We found, however,

that with this objective function, ILPs for networks requiring a hundred or more cycles to

schedule could not be solved in a reasonable amount of time (say, within 24 hours). As

such, the above objective is useful only for very small networks. Instead, we use an

alternative approach, where we set a maximum number of cycles L and check whether or

not any solution with at most L cycles can be found that satisfies the constraints of the

ILP (given below). A binary search approach can then be used to find the optimal

schedule length, decreasing the number of cycles L when the ILP is feasible, and

increasing L when the ILP infeasible. In this case, we do not need any objective function

in our ILP.

77

We now list the constraints of the ILP. The variable l representing a cycle number is

in the range [0, L]. The first constraint enforces that yl is 1 if cycle l is used. To this end,

for all l = 0,...,L, for all paths P, and for all edges (a,b) ∈ P, we have inequalities:

lbaPl Xy ,,,≥ (12)

The system must be constrained such that each hop of a path occurs in the correct

order in the schedule. For example, if a path is a→b→c, then a→b must be used before

b→c. To ensure this, for all l = 0,...,L-1, for all paths P, and for all pairs of consecutive

edges (a,b), (b,c) ∈ P, we have inequalities:

∑ ∑
=

+

=

≥
l

i

l

i

icbPibaP XX
0

1

0

,,,,,, (13)

Two or more paths cannot use the same edge on the same cycle. Thus, for all l =

0,...,L, and for all pairs of tasks P and Q, and for all edges (a,b) ∈ P∩Q, we include

inequalities:

1,,,,,, ≤+ lbaQlbaP XX (14)

For every cycle, each PE can only store or forward at most one communication task,

that is only one incoming edge and one outgoing edge for any PE may be used. Thus, for

all l = 0,...,L, for all paths P, and for all PEs v, we have:

78

∑
∈

≤
PvaaP

lvaPX
),(:,

,,, 1
(15)

∑
∈

≤
PbvbP

lbvPX
),(:,

,,, 1
(16)

Finally, to drive the system to produce a nonzero solution, each edge in every path

must actually be taken at some cycle l. Thus, for all paths P, and for all edges (a,b) ∈ P,

we have constraints:

1
0

,,, =∑
=

L

i

ibaPX (17)

Alternatively, to lower the number of constraints, such a constraint may be given

only for the final edge in every path.

When compiling a PE network, OPL code describing the above linear system

program is automatically generated. This code is passed to IBM CPLEX Optimizer 12.6

and solved to generate a schedule. The maximum number of cycles L has a drastic impact

on program size -- we have found the simplest approach is to allocate as many cycles as

the greedy scheduler requires initially. If performance is too slow then L is reduced until

a solution can be found or the program is deemed to be infeasible by CPLEX.

5.4 SCHEDULING EVALUATION

Figure 5-4 shows the number of communication cycles required for a variety of

physical models, for each of the greedy, Match-Schedule, and ILP scheduling

79

approaches. The models were selected to represent a wide range of possible complexity

and network densities. The lung models are a binary tree-structured lung model, MM25 is

a 25x25 matrix multiplication application, and 2KNeuron simulates a 2000 element

neural network. On average, Match-Schedule generates a schedule with 25% fewer

cycles than the greedy algorithm for the given examples with high network density.

When considering only designs whose ILP solution could be computed, Match-

Schedule requires 9% more cycles than the ILP solution on average. Note that the ILP

approach can only schedule the first few models, which have a low number of variables

and require less than a hundred cycles. The ILP solutions use the paths generated from

Match-Schedule as input - there may be alternative paths that could yield a better

schedule. Thus the ILP solutions should not be considered globally optimal for the given

reduced architecture graph.

Figure 5-4: Number of cycles required by each scheduling approach.

Match-Schedule Greedy ILP
#
 C

y
c
le

s

Model (#PEs)

L
u

n
g

5
(1

0
)

L
u

n
g

7
(1

0
0

)

L
u

n
g

6
(2

5
)

L
u

n
g

9
(1

5
0

)

L
u

n
g

1
3

(5
0

0
)

L
u

n
g

9
(7

5
)

L
u

n
g

9
(1

2
5

)

L
u

n
g

1
0

(1
0

0
)

L
u

n
g

1
0

(1
5

0
)

L
u

n
g

1
1

(1
5

0
)

M
M

2
5

(7
5
)

M
M

2
5

(1
5
0

)

2
K

N
eu

ro
n

(7
5

)

2
K

N
eu

ro
n

(1
5

0
)

0

500

1000

1500

2000

2500
2

K
N

eu
ro

n
(2

0
0
)

L
u

n
g

7
(5

0
)

L
u

n
g

9
(1

0
0

)

L
u

n
g

1
0

(7
5

)

L
u

n
g

1
3

(2
5

0
)

2654 2686

80

Figure 5-5 helps to illustrate why Match-Schedule performs better than greedy by

illustrating the percentage of total possible bandwidth being utilized each cycle. Allowing

alternative paths allows more of the existing channels to be utilized per cycle, thus

allowing progress to be made despite high amounts of congestion early in schedule.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

Figure 5-5: Match-schedule better utilizes bandwidth early in a schedule.

%
 T

o
ta

l
b
a

n
d
w

id
th

u
ti
liz

e
d

Cycle #

Match-Schedule

Greedy

81

Chapter 6. EXPLORING SYNCMC CONFIG. SPACE

WHEN EMULATING PHYSICAL MODELS

Physical models capture environmental phenomena such as biochemical reactions, a

beating heart, or neuron synapses, using mathematical equations. synchMCs can execute

orders of magnitude faster on FPGAs (Field-Programmable Gate Arrays) compared to

desktop PCs. Different models of the same physical phenomenon may vary, with more

accurate (“upgraded”) models being more accurate but using more FPGA area and having

slower performance. We propose that design space exploration considering upgradable

models can dramatically increase the useful design space. We present an analysis of the

solution space for utilizing networks of processing-elements (PEs) on FPGAs to emulate

physical models, implement a web-based frontend to a compiler and cycle-accurate

simulator of PE networks to estimate solution metrics, and utilize design-of-experiments

(DOE) statistical methods to identify Pareto points. By considering upgradeable models

during the design space exploration of a human lung physical model, the solution space

of possible speedup, area, and accuracy by 6X, 7.3X, and 1.5X, respectively, compared to

evaluating a single model.

Previous work has applied traditional design space exploration, partitioning

equations among different types and numbers of processing elements to achieve area and

performance tradeoffs. However, physical systems provide a rather unique additional

solution option. The same physical system can be modeled with different equations. Each

82

model may have tradeoffs in terms of the number of equations, ease of computation, and

accuracy. We denote sets of models that are functionally similar as upgradeable models,

since a designer may 'upgrade' to a more accurate model at the expense of area and

performance. For example, Figure 6-1(a) shows three models that capture the behavior of

the same physical system of lung airway mechanics. A simple RC model can coarsely

capture the behavior using a single ordinary differential equation (ODE). For higher

accuracy, a binary-tree shaped Weibel model [61] with variable levels of complexity can

be used at the expense of higher computational costs. Accuracy also depends on the step

size and type of equation solver. A smaller step size yields higher accuracy but slower

performance. Likewise, more accurate solvers yield slower performance. Figure 6-1(b)

illustrates the accuracy of each model, where dashed lines represent some deviations in

accuracy due to different step solvers or step sizes.

Figure 6-1: (a)A set of upgradeable models, and (b)relative accuracy of each model. Dashed lines

show variations in accuracy from different solvers / step sizes.

(a)
...A

9 gen. Weibel:

1024 ODEs

RC lung:

1 ODE

4 gen. Weibel:

32 ODEs

(b)

Lung

pressure

Time

83

Upgradeable models substantially increase the solution space that must be explored,

not only via expanding area and performance ranges, but also by adding the design metric

of accuracy. Figure 6-1 shows various tradeoffs in terms of speedup, area, and accuracy

for a set of upgradeable models.

Upgradable models introduce numerous additional parameters that influence and

tremendously increase the design space. The influence on design metrics of those

parameters can be complex and interdependent. To deal with these new parameters, we

apply the statistical method known as design-of-experiments (DOE), which efficiently

determines the impacts and dependencies of parameters, to enable efficient search of the

design space. We introduce an approach that expands design space exploration to

consider upgradeable models. To search the large design space, we utilize DOE statistical

method to generate the Pareto points of the design. By generating the Pareto points, the

design space can be pruned to enable a feasible exploration of solutions. We present a

web-based tool that uses a processing-element (PE) network compiler and cycle-accurate

simulator to automatically generate a PE network from an MML-language [38] based

input model specification and evaluate the relevant size, performance, and accuracy

metrics of PE network implementations. The web-based tool also supports automatic

exploration of the design space using DOE techniques to aid in finding and appropriate

model to use from an upgradeable set of models and an appropriate underlying PE

network implementation that meets given constraints.

84

6.1 UPGRADEABLE MODELS

Upgradeable models in the context of physical systems emulation refers to having

multiple underlying sets of equations that are each able to emulate the same physical

model, with tradeoffs among accuracy versus area and performance. In this section, we

define how to determine if relative models are part of the same upgradeable set, and

discuss size-scalable upgradeable models.

6.1.1. FUNCTIONAL EQUIVALENCE OF MODELS

We consider different models to be a part of the same upgradeable set if they meet

the following requirements:

1. The models contain the base input/output interface required to support the physical

system behavior.

2. The models are functionally similar, i.e. they produce similar output for all

possible inputs.

The first requirement ensures that all models can operate on the same inputs and can

provide the same outputs. Physical model emulations are usually a part of a larger design,

often for testing purposes, thus ensuring that all models in an upgradeable set have a

similar interface ensures smooth transitions and reduces the potential to introduce new

errors. Some small differences in interfaces may be acceptable, as long as a correct

transformation is available. For example, a lung model may require either an air flow

input or an air pressure input. Flow can be easily converted into air pressure, and vice

versa, thus we may still consider the models to be functionally equivalent. Models may

85

also provide a supplemental input/output interface, in addition to the required base

interface. For example, the Weibel lung model of Figure 6-2(a) provides output pressures

at each of the leaf nodes, whereas the RC lung model provides only a single output

pressure node below the capacitor. The supplemental interface is not required, but may

improve model accuracy or provide additional information about the internal model state

to the designer.

The second requirement requires that all models in an upgradable set produce similar

outputs for given inputs. This requirement ensures that the physical model being

emulated is similar in functionality, despite any differences in the underlying equations

that are computed. Similarity can be determined by both qualitative and quantitative

methods. Figure 6-2(b) shows the output of three various lung models; the models are

Figure 6-2: Effect of different models on area/speedup/accuracy metrics.

10 gen. Weibel:

2048 ODEs

RC lung:

1 ODE

4 gen. Weibel:

32 ODEs

Less

accurate

More

accurate

Larger time steps (less

accurate)

Smaller time steps

(more accurate)

Area

Area

Speedup

Accuracy

Larger time steps

(more speedup)

Smaller time steps

(less speedup)

86

considered interchangeable because they all produce an output of the same physical

system, yet they have different quantitative and qualitative measures of accuracy. A

designer can either determine that models are close enough to be functionally

interchangeable, or a distance measure could be automatically calculated.

6.1.2. SCALING MODEL SIZE

Many physical moderns have a common, repeating pattern or structure. The

previously introduced Weibel model has a binary tree structure, which resembles the 23

bifurcating branches of a human lung. Neuron or cell models can consist of hundreds or

thousands of individual elements that are connected to neighboring elements in mesh or

grid structures. Previous work has shown that physical model structure can even be

utilized to aid placement of PE networks on FPGA fabrics [40]. Physical models with

regular structures can be considered upgradeable if the physical model can be scaled in

size by adding new elements into the structure.

Scaling a physical model may or may not affect the accuracy of the model, but

certainly impacts the resulting area and performance of the implementation. The Weibel

model can be scaled in size to have more or less tree generations - having more

generations implies a higher level of accuracy because the number of branches is closer

to actual lung physiology. However, doubling the number of cells in a cell tissue model

doesn't necessarily imply that the equations of each individual cell are more accurate.

Even so, a designer may want to know how many cells can be included, given some area

or performance constraints.

87

6.2 SYNCHMC PARAMETERS AND METRICS

For a given physical model of sufficient size and complexity, the solution space for a

PE network that emulates the model is extremely large. This is due mostly to the

parameters available during PE network synthesis, and partly to the non-deterministic

heuristics used during equation partitioning. The considered key parameters are the

model specification itself, PE network type, equation partitioning neighbor function

weightings, the given resource constraints, step size, and solver type. The key solution

metrics are FPGA area (LUTs, memory, and DSP usage), performance (speedup over

real-time), and accuracy (closeness to exact solution).

Figure 6-3 depicts a chart of possible PE network solutions for a neuron model with

300 equations. Three sections are shown which depict solutions yielded by using

different area constraints. For each area constraint, the PE network type, neighbor weight,

Figure 6-3: Possible configurations for a 300 ODE model. Three dashed lines indicate area

constraints. Each solution shown with step sizes 1e-2, 0.5e-2, and 0.25e-2 ms with Euler solver. Dashed

circles show possible area/performance Pareto points.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Area (Equivalent KLUTs)

S
p

e
e

d
u

p

General PE Network Custom PE Network Heterogeneous PE Network

area constraint 1 area constraint 2 area constraint 3

Effect of neighbor

weight parameter large step (↓ accuracy)

small step (↑ accuracy)

88

and step size parameters are varied. Area/speedup metric Pareto points are circled; the

accuracy metric is not measured explicitly in the figure, though points towards the bottom

typically use smaller time steps and thus would be more accurate.

The model itself is an important parameter. The PE network solutions that can be

generated depend highly on how many equations are in the model, the complexity of each

equation, and the data dependencies between the equations. The user also must specify a

coefficient that quantitatively captures the quality of the model compared to the others in

the set. For example, the 9 generation Weibel lung model may be considered to be the

most accurate, and have a coefficient of 1. The RC model may be considered to have a

coefficient of 0.4, because it only coarsely captures realistic behavior. The coefficients

are used when comparing relative accuracies of different models.

PE type is a critical parameter that determines the type of PE network that is

generated to emulate the model. There are three options: homogeneous general PE

network, homogeneous custom PE network, and heterogeneous PE network. A general

PE is a flexible, programmable, ALU-based processor that can solve any equation. A

custom PE uses a pipelined datapath to solve a single specific equation much faster than a

general PE, but may use more FPGA resources and incur higher routing congestion cost.

Heterogeneous PE networks combine general and custom PEs to create a network with

balanced performance and area metrics.

Neighbor weight refers to an option within the PE network compiler that controls

whether the equation partitioning favors size or performance. This option is a sliding

scale that can be set from 1 (favor size) to 10 (favor performance).

89

Area constraints detail the available LUTs, DSPs, and BRAMs on the target

platform. The PE compiler will not allocate more than the available resources. The area

constraint may have a very large area or performance impact on sufficiently complex

models. An area constraint which is too small for the given model will not allow enough

PEs to be allocated and reduce the possible speedup. Small models will typically not be

affected highly by the area constraint parameter.

Solver type selects the iterative step solver to use. The currently supported solvers

are Euler and Runge-Kutta4. Euler is the most simple solver, but can be inaccurate or

diverge with medium to large time steps. The Runge-Kutta solver type is much more

accurate, but may require up to 4X more computation time than the Euler solver.

Step size determines the amount of time between iterative solutions of the model

equations. Decreasing the step size requires more computations per second, which

reduces the performance of the model, but allows the solvers to be more accurate.

6.3 DOE-BASED EXPLORATION OF SYNCHMCS

To explore the space of PE network solutions for a set of upgradeable physical

models, we have developed a visual web-based frontend coupled with a design-of-

experiments statistical approach to identifying Pareto points that span an upgradeable set

of physical models. In the following section we describe briefly what DOE is, and how

our tool utilizes DOE.

Design-of-experiments is a statistical technique that identifies a minimal set of

experiments that provide maximal cover of the possible solution space. Originally, DOE

90

was developed for use in agriculture, but has since been developed into a powerful

statistical technique used in many fields. DOE automatically identifies each parameter's

magnitude of influence on the solution, since the differences between physical models

(complexity, connectivity of equations, etc.) can impact how much a specific parameter

like PE network type or neighbor weight matters. For example, a model with few

equations will not be sensitive to area constraints.

6.3.1. THE DPG ALGORITHM

The DOE-based Pareto-point Generation (DPG) algorithm [51] can be used to apply

DOE to and identify PE network solution Pareto points. By applying DPG to the

upgradeable models, such that the models themselves are a parameter to the algorithm,

the Pareto points that span across the set can be easily located. A basic flow chart of DPG

is given in Figure 6-4. DPG consists of three phases: running initial experiments to

identify parameter interdependencies, generating initial Pareto points, and filling in gaps

Figure 6-4: (a) The DPG algorithm flow. (b) Finding Pareto points for an upgradeable set via DPG.

DOE initial experiments

Compute interdependencies

Generate initial Pareto

points

Generate fill-in Pareto

points

phase 1

phase 2

phase 3

...

DPG

Model A Pareto point

Model B Pareto point

Model C Pareto point

Upgradeable

set Pareto point

(a) (b)

A B C

91

in the Pareto curve. DOE uses either two or three-level parameters. Since PE networks

have some continuous parameters, such as step size, we always select the minimum and

maximum and midpoint values for continuous parameters to ensure we cover the space

well enough. Phase three fills of DPG fills in the gaps of the solution space left by this

discretization.

Phase 1 of DPG runs an initial Plackett-Burman [48] set of experiments to

automatically generate a weighted parameter interdependency graph. This graph details

the relationship between parameters for each metric in a single description. DPG

generates the graph by first estimating the solution metrics for every pair of parameters in

the system, and then running the experiment. The amount error between the estimated

and actual value suggests the amount of interdependency between the parameters. Figure

6-5 shows the interdependency graph for the speedup metric for a RC lung, 6 gen. Weibel

lung, and 9 gen. Weibel set of upgradeable models. Each node represents a parameter: A

is the model from the set, B is the area constraint, C is the step size, D is the PE network

type, E is the solver, and F is the neighbor weights. Higher edge weights represent higher

levels of interdependency; for example, the 0.99 weight between D and F indicates that

the effects of the PE type and neighbor weight options on the solution depend on one

another, which is observable in Figure 6-3 by examining the changes in speedup due to

different neighbor weights.

Phase 2 of DPG generates initial Pareto points from the parameter interdependency

graph. The algorithm starts by evaluating the edge with the highest error weighting, and

exhaustively searching the possible ranges of the two associated parameters. DOE uses

92

either two or three level parameter values, so there is a maximum of nine possible

configurations to run. The solutions of the search are pruned to only the local Pareto

points, and the two parameter nodes of the graph are merged. This continues until only

one node remains which contains a set of Pareto points for the entire design.

Phase 3 of DPG identifies regions which were not explored, due to the reduction of

continuous parameters into a discrete three-level parameter. Parameters which are

constant on either side of the region are locked, and a local search within the region takes

place. New Pareto points are added to the set identified in phase two.

6.3.2. TOOL

A tool to explore PE network solution space consists of a web page frontend and

server DPG backend, implemented in ASP.NET 4.0. A PE network compiler and

Figure 6-5: Weighted parameter interdependency graph generated by DPG.

93

simulator are implemented as .NET WCF web services. Figure 6-6 shows the

architecture of the tool. The set of upgradeable models and parameter bounds are entered

by the user. Parameter bounds include minimum and maximum area constraints, step

sizes, etc. The DPG backend selects a set of experiments to run, and iteratively runs the

compiler and simulator to generate area, speedup, and accuracy metrics. Pareto points are

selected from the results by DPG and plotted visually on the web page.

The PE network compiler accepts a set of arguments generated by the DPG

algorithm to partition the equations of a specific model across a set of PEs. Once the

equations have been partitioned, a scheduler generates a schedule for each PE in the

network. The partitioning and schedule information is enough to generate the area and

speedup metrics. Area is reported back by the compiler in terms of the number of LUTs,

DSPs, and BRAM components used. The compiler automatically calculates the number

Figure 6-6: Architecture of the PE network exploration tool.

Web frontend

Parameter bounds

Arguments

PE network compiler

Simulator

Scheduling results

DPG backend

Accuracy

Area &

Speedup

Pareto
points

94

of these components based on the type and frequency of each PE type. General PEs use

only one DSP and one BRAM each, while custom PEs may use arbitrary numbers of

DSPs and typically a single BRAM. The final area metric is equivalent LUTs, which is a

useful method for comparing resource usage for designs with various usage of logic cells

and hard macros like DSPs. For a Xilinx Virtex6-240T, we use the following equation to

calculate equivalent LUTs, where LEQ is the number of equivalent LUTs, L is the number

of LUTs, KDSP is the equivalent LUTs per DSP (250), D is the number of DSPs, KBRAM is

the equivalent LUTs per BRAM (360), and B is the number of BRAMs:

BKDKLL BRAMDSPEQ ++=

To calculate the speedup metric, the frequency of the resulting circuit must be

estimated. The maximum frequency for a single PE is approximately 300 MHz when

targeting a Virtex6, thus the maximum frequency that a larger PE network could achieve

is also 300 MHz. As the number of PEs and connections between PEs grows larger, the

Figure 6-7: Regression model for estimating circuit frequency.

0

50

100

150

200

250

300

0 100 200 300

Actual frequency (MHz)

E
s
ti
m

a
te

d
 f

re
q

u
e

n
c
y
 (

M
H

z
)

95

place-and-route tools (Xilinx ISE 14.2) can not maintain the same timing due to

congestion. We have created a regression model to estimate the frequency based on

FPGA resource usage and the number of connections in the design:

LUTBRAMDSP RKRKRKWKKFreq 43210 −+−−=

Freq is the estimated frequency of the design, K0, K1, K2, and K3 are regression

coefficients based on experimental data from PE networks targeting a Virtex6. W is the

number of wires in the design (PE-to-PE connections), and RDSP, RBRAM, and RLUT are

resource usage ratios. This model is able to estimate frequencies to within 5% of their

actual values, as shown in Figure 6-7.

Once the frequency has been estimated, total speedup can be calculated:

SC
Freq

Speedup

**
1

1
=

C is the number of cycles required to compute one iteration of the model. S is the

step size parameter given to the compiler. The factor 1/Freq*C yields the amount of time

to compute one iteration; multiplying by S then gives the simulated time per second,

which is translated to a factor of real-time by dividing 1 second with the result.

Accuracy is determined by simulating the PE network. A cycle-accurate simulator

executes each instruction of each PE for a short interval of time. The simulation is

performed twice: once using the given solver and step size parameters, and once using a

'golden' set of parameters that consists of the most accurate configuration. For the golden

parameters, we use an RK4 solver and a 0.01 ms step size.

96

After the simulations are complete, the time-series traces of each variable are

retrieved and compared. The simulator finds the variable in the user-defined simulation

that is of a maximal distance from the golden standard simulation trace and returns the

error. The error is then multiplied by the coefficient that describes the model's relative

accuracy in the upgradeable set, as described in section 0.

6.4 CASE STUDY

The following details a case study that performs exploration of a set of upgradeable

RC and Weibel lung models. We target a Xilinx Virtex6-240T FPGA, which consists of

150K LUTs, 716 DSPs, and 417 BRAMs. Table 6-1 enumerates the parameters and

bounds that are input into the DPG algorithm for each set of models, since DOE uses 2 or

3-level parameters.

The set of upgradeable lung models includes the RC model and 6-generation and 9-

generation Weibel models previously described. We use coefficients of 0.4, 0.9, and 1.0

to describe relative model accuracy, respectively. Figure 6-8 shows three plots comparing

the area, speedup, and accuracy metrics of the 57 Pareto points found by the DPG

Parameter Low Mid High

LUTs 10K 50K 150K
DSPs 20 200 716
BRAMs 20 200 417
PE Type General Custom Hybrid
Neighbor weight 1 5 10
Solver type Euler - RK4
Step size (ms) 0.01 0.1 1.0

Table 6-1: Enumerated input parameters and bounds for DPG.

97

0

0.2

0.4

0.6

0.8

1

0.1 10 1000 100000
Speedup

A

c
c
u
ra

c
y

0.1

1

10

100

1000

10000

100000

1 10 100 1000

RC

9gen Weibel

6gen Weibel

S

p
ee

d
u
p

 Area (Equivalent KLUTs)

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

 Area (Equivalent KLUTs)

A

c
c
u
ra

c
y

(a)(a)(a)(a) (b)(b)(b)(b)

(c)(c)(c)(c)

algorithm. We consider the total design space size to be over 7,200 configurations, if the

area constraint is discretized into just ten levels. Thus, the DPG algorithm prunes more

than 99% of the design space, making exploration of the solutions more feasible. Filled

circles indicate where groupings of Pareto points originate from the same model. For

example, the left-most plot showing speedup vs. area has a group of Pareto points in the

top-left corner that all are related to the RC model. Since the RC model is relatively

simple, it has high speedup and low area requirements; however, the other plots that

include accuracy indicate the low fidelity of the solution.

Figure 6-8: 3-dimensional Pareto point plots projected onto 2-dimensional space. (a) Speedup v.

area, (b) accuracy v. area, and (c) accuracy v. speedup. Yellow points show where accuracy

parameters are constant, emphasizing area/speedup tradeoff only.

98

The lighter points of Figure 6-8 illustrate Pareto points that correspond to

configurations using an RK4 solver, 0.01 ms step size, and the 9-generation Weibel

model. The points represent the 'normal' design space exploration of a PE network that

has configurable type, number of PEs, etc. Considering only the middle case of the 6-

generation Weibel model yields a solution space with speedups between 8X and 9200X,

area between 4KLUTs and 55 KLUTs, and accuracy between 0.33 and 0.89. By

considering the RC and 9-generation Weibel models during exploration, the solution

space expands to speedups between 0.86X and 55000X, area between 1.7KLUTs and

376KLUTs, and accuracy between 0.15 and 0.99. Overall, the solution space that can be

considered has increased in size by 6X in terms of speedup, 7.3X in terms of area, and

1.5X in terms of accuracy.

99

REFERENCES

[1] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien

Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. 2009. Numerical

linear algebra on emerging architectures: The PLASMA and MAGMA projects. IOP

J. Physics: Conference Series, 180, 1 (2009).

DOI:http://dx.doi.org/10.1145/1188913.1188915

[2] Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. 1972. The transitive

reduction of a directed graph. SIAM J. Comput. 1, 2 (1972), 131-137.

DOI:http://dx.doi.org/10.1137/0201008

[3] Aleliunas, R., and Rosenberg, A.L. 1982. On Embedding Rectangular Grids in

Square Grids. Computers, IEEE Transactions on , vol.C-31, no.9, pp.907-913, Sept.

1982.

[4] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size

bounds. In Algorithms and Models for the Web-Graph, Springer Berlin Heidelberg,

25-37. DOI:http://dx.doi.org/10.1007/978-3-540-95995-3_3

[5] Banerjee, P., Sur-Kolay, S., Bishnu, A., Das, S., Nandy, and S.C., Bhattacharjee, S.

2009. FPGA placement using space-filling curves: Theory meets practice. ACM

Trans. Embed. Comput. Syst. vol. 9, no. 2, Oct. 2009.

[6] Berman, F., and Snyder, L. 1987. On mapping parallel algorithms into parallel

architectures, Journal of Parallel and Distributed Computing, vol. 4, no.5, Oct. 1987,

pp 439-458.

[7] Bhatelé, A., and Kalé, L.V. 2008. Benefits of Topology Aware Mapping for Mesh

Interconnects. Parallel Processing Letters, vol.18, no.4, pp.549-566, 2008.

[8] Bokhari, S.H. 1981. On the Mapping Problem. Computers, IEEE Transactions on ,

vol.C-30, no.3, pp. 207-214, March 1981.

[9] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M. Frans Kaashoek,

Robert Morris, Aleksey Pesterev et al. 2008. Corey: An Operating System for Many

Cores. In Proceedings of the 8th USENIX conference on Operating Systems Design
and Implementation (OSDI '08). USENIX Association, Berkeley, CA, 43-57.

100

[10] Shekhar Borkar. 2007. Thousand core chips: a technology perspective. In

Proceedings of the 44th annual Design Automation Conference (DAC '07). ACM,

New York, NY, 746-749. DOI:http://dx.doi.org/10.1145/1278480.1278667

[11] Chen, W.K., and Stallmann, M. 1995. On embedding binary trees into hypercubes. J.

Parallel Distrib. Comput. 24, 2 (February 1995), 132-138.

[12] Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Eslick,

Raphael Rubin, Tomas E. Uribe, Thomas F. Jr. Knight, and Andre DeHon. 2006.

GraphStep: A System Architecture for Sparse-Graph Algorithms. In Proceedings of
the 14th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM '06). IEEE Computer Society, Washington, DC, USA, 143-151.

DOI:http://dx.doi.org/10.1109/FCCM.2006.45

[13] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, l-vertices. J.
Res. Nat. Bur. Standards B, 69, (1965), 125-130.

[14] Ellis, J.A. 1991. Embedding Rectangular Grids Into Square Grids. IEEE

Transactions on Computers, pp. 46-52, Jan. 1991.

[15] Thomas M. J. Fruchterman and Edward M. Reingold. 1991. Graph drawing by force-

directed placement. Softw. Pract. Exper. 21, 11 (November 1991), 1129-1164.

DOI=10.1002/spe.4380211102 http://dx.doi.org/10.1002/spe.4380211102

[16] Gabryś, E., Rybaczuk, M.,and Kędzia, A. 2005. Fractal models of circulatory

system. Symmetrical and asymmetrical approach comparison, Chaos, Solitons

Fractals, vol. 24, no. 3, May 2005, pp 707-715.

[17] Gholkar, A., Isaacs, A., and Arya, H. 2004. Hardware-In-Loop Simulator for Mini

Aerial Vehicle, Sixth Real- Time Linux Workshop, NTU, Singapore, Nov. 2004.

[18] Maya Gokhale, Jan Stone, Jeff Arnold, and Mirek Kalinowski. 2000. Stream-

oriented FPGA computing in the Streams-C high level language. In IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM '00).

IEEE, 49-56. DOI:http://dx.doi.org/10.1109/FPGA.2000.903392

[19] Gopalakrishnan, P., Li, X., and Pileggi, L. 2006. Architecture-aware FPGA

placement using metric embedding. In Proceedings of the 43rd annual Design

Automation Conference (DAC '06). ACM, New York, NY, USA, pp. 460-465.

[20] Huang, C., Vahid, F., and Givargis, T. 2011. A Custom FPGA Processor for Physical

Model Ordinary Differential Equation Solving. Embedded Systems Letters, IEEE ,

vol.3, no.4, pp.113-116, Dec. 2011.

101

[21] Huang, C., Miller, B., Vahid, F., and Givargis, T. 2012. Synthesis of custom

networks of heterogeneous processing elements for complex physical system

emulation. In Proceedings of the eighth IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis (CODES+ISSS '12). ACM, New

York, NY, USA, pp. 215-224.

[22] Chen Huang, Frank Vahid, and Tony Givargis. 2013. Automatic synthesis of

physical system differential equation models to a custom network of general

processing elements on FPGAs. ACM Trans. Embed. Comput. Syst. 13, 2, Article 23

(September 2013), 27 pages. DOI:http://doi.acm.org/10.1145/2514641.2514650

[23] Michael Hucka, A. B. B. J. Finney, Benjamin J. Bornstein, Sarah M. Keating, Bruce

E. Shapiro, Joanne Matthews, Ben L. Kovitz et al. 2004. Evolving a lingua franca

and associated software infrastructure for computational systems biology: the

Systems Biology Markup Language (SBML) project. Systems biology 1, 1 (2004),

41-53. DOI:http://dx.doi.org/10.1049/sb:20045008

[24] Jiang, Z., Pajic, M., and Mangharam, R. 2011. Model-Based Closed-Loop Testing of

Implantable Pacemakers. Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM
International Conference on, pp.131-140, April 2011.

[25] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon.

1989. Optimization by simulated annealing: an experimental evaluation. Part I, graph

partitioning. Oper. Res. 37, 6 (October 1989), 865-892. DOI:

http://dx.doi.org/10.1287/opre.37.6.865

[26] Gilles Kahn. 1974. The semantics of a simple language for parallel programming. In

Information Processing: Proceedings of the IFIP Congress. 74, (1974).

[27] H. T. Kung. 2003. Systolic array. In Encyclopedia of Computer Science (4th ed.),

Anthony Ralston, Edwin D. Reilly, and David Hemmendinger (Eds.). John Wiley

and Sons Ltd., Chichester, UK 1741-1743.

[28] Keith Horsfield, Wendy Kemp, and Sally Phillips. 1982. An asymmetrical model of

the airways of the dog lung. J. Applied Physiology, 52, 1, (1982) 21-26.

[29] Nachiket Kapre, Nikil Mehta, Michael deLorimier, Raphael Rubin, Henry Barnor,

Michael J. Wilson, Michael Wrighton, and Andre DeHon. 2006. Packet Switched vs.

Time Multiplexed FPGA Overlay Networks. In Proceedings of the 14th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM

'06). IEEE Computer Society, Washington, DC, USA, 205-216.

DOI:http://dx.doi.org/10.1109/FCCM.2006.55

[30] Shashi Kumar, Axel Jantsch, J-P. Soininen, Martti Forsell, Mikael Millberg, Johny

Oberg, Kari Tiensyrja, and Ahmed Hemani. 2002. A Network on Chip Architecture

102

and Design Methodology. In Proceedings of the IEEE Computer Society Annual
Symposium on VLSI. IEEE Computer Society, Washington, DC, USA, 105-112.

DOI:http://dx.doi.org/10.1109/ISVLSI.2002.1016885

[31] Edward A. Lee and David G. Messerschmitt. 1987. Synchronous data flow. In

Proceedings of the IEEE. IEEE Computer Society, Washington, DC, USA, 75, 9

(1987), 1235-1245. DOI:http://dx.doi.org/10.1109/PROC.1987.13876

[32] Lee, S.K., and Choi, H.A. 1996. Embedding of complete binary trees into meshes

with row-column routing. Parallel and Distributed Systems, IEEE Transactions on ,

vol.7, no.5, pp.493-497, May 1996.

[33] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and John

Kubiatowicz. 2009. Tessellation: space-time partitioning in a manycore client OS.

In Proceedings of the First USENIX conference on Hot topics in
parallelism (HotPar'09). USENIX Association, Berkeley, CA, USA, 10-10.

[34] Catherine M. Lloyd, Matt DB Halstead, and Poul F. Nielsen. 2004. CellML: its

future, present and past. Progress in biophysics and molecular biology, 85, 2 (2004),

433-450.DOI: http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.004

[35] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. 2000. Timing-driven

placement for FPGAs. In Proceedings of the 2000 ACM/SIGDA eighth international

symposium on Field programmable gate arrays (FPGA '00). ACM, New York, NY,

USA, 203-213. DOI=10.1145/329166.329208

http://doi.acm.org/10.1145/329166.329208

[36] Mathworks. 2011. Matlab and Simulink. Retrieved April 22, 2014 from

http://www.mathworks.com

[37] Matic, S. 1990. Emulation of hypercube architecture on nearest-neighbor mesh-

connected processing elements. Computers, IEEE Transactions on , vol.39, no.5,

pp.698-700, May 1990.

[38] Miller, J. A., Nair, R. S., Zhang, Z., Zhao, H. "JSIM: A JAVA-based simulation and

animation environment". Simulation Symposium, 1997. Proceedings. 30th Annual,

pp. 31-42. IEEE.

[39] Miller, B., Vahid, F., and Givargis, T. 2012. Digital mockups for the testing of a

medical ventilator. In Proceedings of the 2nd ACM SIGHIT International Health

Informatics Symposium (IHI '12). ACM, New York, NY, USA, pp. 859-862.

[40] Bailey Miller, Frank Vahid, and Tony Givargis. 2013. Exploration with upgradeable

models using statistical methods for physical model emulation. In Proceedings of the

103

50th Annual Design Automation Conference (DAC '13). ACM, New York, NY,

USA, , Article 154 , 6 pages. DOI:http://doi.acm.org/10.1145/2463209.2488925

[41] Motuk, E., Woods, R., and Bilbao, S. 2005. Implementation of finite difference

schemes for the wave equation on FPGA. ICASSP.

[42] Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L. Krichmar, Alex Nicolau,

and Alexander V. Veidenbaum. 2009. A configurable simulation environment for the

efficient simulation of large-scale spiking neural networks on graphics processors.

Neural Netw. 22, 5 (July 2009), 791-800.

DOI:http://dx.doi.org/10.1016/j.neunet.2009.06.028

[43] National Instruments. 2001. NI FPGA. Retrieved April 22, 2014 from

http://www.ni.com/fpga.

[44] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen

Hunt. 2009. Helios: heterogeneous multiprocessing with satellite kernels.

In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles (SOSP '09). ACM, New York, NY, USA, 221-234.

DOI:http://doi.acm.org/10.1145/1629575.1629597

[45] Nourani, Y., and Andresen, B. 1998. A comparison of simulated annealing cooling

strategies. Journal of Physics A: Mathematical and General, vol. 31, no. 41, 1998.

[46] Yasunori Osana, Tomonori Fukushima, and Hideharu Amano. 2004. ReCSiP: a

reconfigurable cell simulation platform: accelerating biological applications with

FPGA. In Proceedings of the 2004 Asia and South Pacific Design Automation
Conference (ASP-DAC '04). IEEE Press, Piscataway, NJ, USA, 731-733.

DOI:http://doi.ieeecomputersociety.org/10.1109/ASPDAC.2004.172

[47] Michael K. Papamichael and James C. Hoe. 2012. CONNECT: re-examining

conventional wisdom for designing nocs in the context of FPGAs. In Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate
Arrays (FPGA '12). ACM, New York, NY, USA, 37-46.

DOI:http://doi.acm.org/10.1145/2145694.2145703

[48] Petersen, R. "Design and Analysis of Experiments". Mercel Dekker Inc. New York,

New York, 1985.

[49] de Pimentel, J.C.G., and Tirat-Gefen, Y.G. 2006. Hardware Acceleration for Real

Time Simulation of Physiological Systems. Engineering in Medicine and Biology

Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE , vol.,

no., pp. 218-223, Aug. 2006.

104

[50] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham,

Tim Harris, and Rebecca Isaacs. 2008. Embracing diversity in the Barrelfish

manycore operating system. In Proceedings of the Workshop on Managed Many-
Core Systems, p. 27.

[51] Sheldon, D., Vahid, F. "Making good points: application-specific pareto-point

generation for design space exploration using statistical methods". International
Symposium on Field Programmable Gate Arrays, 2009, pp. 123-132. ACM.

[52] Singh, S. 2011. The RLOC is dead - long live the RLOC. In Proceedings of the 19th

ACM/SIGDA international symposium on Field programmable gate arrays (FPGA

'11). ACM, New York, NY, USA, pp. 185-188.

[53] Daniel A. Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for

graph partitioning, graph sparsification, and solving linear systems. In Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing (STOC '04).

ACM, New York, NY, USA, 81-90.

DOI:http://doi.acm.org/10.1145/1007352.1007372

[54] Terman, D., Ahn, S., Wang, X., and Just, W. 2008. Reducing neuronal networks to

discrete dynamics, Physica D: Nonlinear Phenomena, vol. 237, no. 3, March 2008.

[55] Tagkopoulos, I., Zukowski, C., Cavelier, G., and Anastassiou, D. 2003. A custom

FPGA for the simulation of gene regulatory networks. In Proceedings of the 13th

ACM Great Lakes symposium on VLSI (GLSVLSI '03). ACM, New York, NY,

USA, pp. 132-135.

[56] Truong, D.N., Cheng, W.H., Mohsenin, T., Zhiyi Yu, Jacobson, A.T., Landge, G.,

Meeuwsen, M.J., Watnik, C., Tran, A.T., Zhibin Xiao, Work, E.W., Webb, J.W.,

Mejia, P.V., Baas, B.M. 2009. A 167-Processor Computational Platform in 65 nm

CMOS, Solid-State Circuits, IEEE Journal of, 44 (4), 1130-1144, April 2009

DOI:http://doi.acm.org/10.1109/JSSC.2009.2013772

[57] Ullma, J.D. 1984. Computational Aspects of VLSI. W. H. Freeman & Co., New

York, NY, USA.

[58] Ullman, S., and Narahari, B. 1990. Mapping binary precedence trees to hypercubes

and meshes. Parallel and Distributed Processing, 1990. Proceedings of the Second
IEEE Symposium on , pp. 838-841, Dec. 1990.

[59] van Meurs, WL. 2011. Modeling and Simulation in Biomedical Engineering:

Applications in Cardiorespiratory Physiology. McGraw-Hill Professional.

105

[60] Wagner, A.S. 1991. Embedding all binary trees in the hypercube. Parallel and
Distributed Processing, Proceedings of the Third IEEE Symposium on , pp. 104-111,

Dec 1991.

[61] Weibel, E.R. 1963. Morphometry of the Human Lung. Berlin, Germany: Springer-

Verlag 1963.

[62] Xilinx, 2010. Inc. Virtex-6 FPGA Routing Optimization Design Techniques.

http://www.xilinx.com/support/documentation/white_papers/wp311.pdf

[63] Yoshimi, Masato, Yasunori Osana, Tomonori Fukushima, and Hideharu Amano.

2004. Stochastic simulation for biochemical reactions on FPGA. In Field
Programmable Logic and Application, pp. 105-114. Springer Berlin Heidelberg,

2004. DOI:http://dx.doi.org/10.1007/978-3-540-30117-2_13

[64] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy

Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan Baas. 2006. An

asynchronous array of simple processors for DSP applications. In IEEE International
Solid-State Circuits Conference (ISSCC’06), 49, 428-429.

[65] Zhang, H., Holden, A.V., and Boyett, M.R. 2001. Gradient model versus mosaic

model of the sinoatrial node. Circulation, 103, 584-588.

[66] Zienicke, P. 1990. Embeddings of Treelike Graphs into 2-Dimensional Meshes.

In Proceedings of the 16th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG '90). London, UK, pp. 182-192.

