
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Automatic Detection of Breaking Strong Encapsulation in Java Modules

Permalink
https://escholarship.org/uc/item/2tf1d64x

Author
Chen, Yongbo

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2tf1d64x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Automatic Detection of Breaking Strong Encapsulation in Java Modules

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Yongbo Chen

Thesis Committee:
Assistant Professor Joshua Garcia, Chair

Professor Sam Malek
Associate Professor James A. Jones

2024

© 2024 Yongbo Chen

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1
1.1 Motivation . 1
1.2 Organization of the Thesis . 5

2 Java Platform Module System and BSE Problem 6
2.1 Overview of Java Platform Module System 6

2.1.1 Module and Module Directives . 6
2.1.2 Unnamed Module . 11

2.2 Overview of Breaking Strong Encapsulation (BSE) problem 12

3 Design Principles for Detecting Abuse Instances 15
3.1 Module Abuse Instance Construction . 15
3.2 BEAD Detection Approach and Implementation 20

3.2.1 Step 1: JDK Info Scanning . 21
3.2.2 Step 2: JDK Info Combining . 22
3.2.3 Step 3: Invocation Analysis . 24
3.2.4 Step 4: Abuse Instance Analysis . 27

4 Case Study: Evaluation of BEAD 28
4.1 RQ1: JDK Module Interfaces Design . 29
4.2 RQ2: Result Analysis Of BEAD for

Detecting BSE Abuse Instances . 30
4.3 RQ3: Detected JDK Abuse Instances and

Commonly-Abused Packages . 32
4.3.1 Abuse Instances of Reflection . 32
4.3.2 Abuse Instances of Compile-Time Invocation 34

4.4 RQ4: BEAD Against JDK Compiler’s Abuse Detection 35

ii

4.4.1 Javac’s Detection BSE Detection at Compile Time 36
4.4.2 Detection of Reflection-Oriented BSE Abuse 39

4.5 RQ5: Efficiency of BEAD . 42

5 Discussion 43
5.1 Implications . 43
5.2 Threats to Validity . 45

6 Related Work 47

7 Conclusion 49

Bibliography 50

iii

LIST OF FIGURES

Page

1.1 Example of BSE problem propagation . 3

2.1 Example of module declarations and their directives provided in JUnit 5

module-info.java files . 7
2.2 Specified dependencies between modules based on their directives 8

3.1 A high-level overview of BEAD . 21
3.2 JDKModule structure example . 23

4.1 Compile Error message for Un-exported Packages 37
4.2 Example Output of BEAD Abuse Detection Under Compile Time 37
4.3 JVM Abuse Warning Message Example . 40
4.4 BEAD Reflection Abuse Report Example 40

iv

LIST OF TABLES

Page

3.1 Functions describing exports and opens directive dependencies based on JDK
implementation and the way that source code invoke members 17

4.1 Subject Applications . 29
4.2 Identified Abuse Instances of Subject Applications 30
4.3 Abused Instance via. Reflection Invocation in Subject Applications 32
4.4 Top 5 Abused Packages Under Compile-Time Invocation 34
4.5 Abuse Information Provided by Javac at Compile-Time 36
4.6 Abuse Information Provided by BEAD at Compile-Time 38
4.7 Abuse Information Provided by JVM via. Reflection 39
4.8 Abuse Information Provided by BEAD via. Reflection 41
4.9 Result of Execution Time . 42

v

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude to Professor Joshua Garcia, Professor James A.
Jones, Professor Sam Malek, and all the professors and friends who helped me during my
master’s years.

vi

ABSTRACT OF THE THESIS

Automatic Detection of Breaking Strong Encapsulation in Java Modules

By

Yongbo Chen

Master of Science in Software Engineering

University of California, Irvine, 2024

Assistant Professor Joshua Garcia, Chair

Starting from JDK 9, the Java Platform Module System (JPMS) was introduced to facilitate

resolving the monolithic ball-of-mud architecture of the original JDK by offering architectural

modules in the Java language that provide various benefits for Java projects, especially in

terms of protecting its internals from dangerous static or dynamic usage. However, a recent

study has shown evidence that many existing projects bypass Java module boundaries to

access internal APIs which, in turn, break the strong encapsulation (BSE) of Java modules.

BSE leads to exceptions, errors, and other maintenance issues for Java systems. To address

BSE, we propose a detection tool, BEAD, that leverages static analysis to identify BSE

abuse instances within Java projects and evaluate BEAD on open-source Java projects.

Our analysis revealed that JDK modules are designed with strong encapsulation principles,

but BEAD detected numerous abuse instances, predominantly at compile-time, indicating

prevalent unauthorized access to internal packages. Besides, our analysis found evidence of

a correlation between the detected abuse instances and reported GitHub issues, validating

the ecosystem impact of those detected abuse instances. Our findings demonstrate BEAD’s

effectiveness of detection capabilities in terms of BSE problem.

vii

Chapter 1

Introduction

1.1 Motivation

As modern software systems grow in size and complexity, maintaining them only at the

code level of abstraction (e.g., traditional functions, classes, and packages) has become a

challenge for maintainers, especially as the lines of source code for a single system increasingly

reach into the hundreds of millions. The traditional approach to dealing with such large

and complex software systems is through the lens of the software architecture’s constructs

(e.g., components, connectors, and configurations) [42] [45] [46]. Unfortunately, ensuring

consistency between architecture and code-level abstractions has been a core problem of

software architecture drift and erosion [43] [47], which we collectively refer to as architectural

decay.

A significant example of architectural drift and erosion is in the Java ecosystem, especially

the Java Development Kit (JDK), which has described as a ball-of-mud architecture [40]

[44]. To address the architectural rigidity associated with the monolithic structure, the JDK

now includes the Java Platform Module System in the Java Language. This new system

1

brought a new architectural module called Java Module. Those Java modules have a higher

abstraction level and serve as package containers, which allows developers to declare the

visibility and related access permissions of a module’s internal package to external APIs

and other modules by setting specific directives, like exports and opens. Besides, JPMS can

provide developers with an editable architecture, a file called module-info.java, used to store

the contents of the modules and the categories used for inter-communication.

Despite the numerous benefits of JPMS, such as robust encapsulation for Java projects, it’s

crucial to address the architectural decay issues that have surfaced in real-world implemen-

tations. One such issue is the over- and under-exposure of Java modules.

Over-exposure occurs when a Java module grants access to its internal packages, even though

none of the external classes utilize them. Conversely, under-exposure is when external usage

of specific packages within the Java module is allowed, but the module’s declaration doesn’t

open access to these packages to the outside world.

Previous studies have investigated the problem of over-exposure and under-exposure of Java

modules to some extent. For example, Ghorbani et al.’s study [28] proposes an automated

framework, Darcy, for detecting and automatically repairing defect models consisting of

formally defined eight architectural inconsistencies, i.e., eight over-exposure scenarios in Java

modules, through static analysis techniques.

2

Figure 1.1: Example of BSE problem propagation

The under-exposure problem occurs in the opposite case, where an external class tries to

access an internal package in a Java module that does not grant access permissions. Existing

studies [33] have already found evidence that many projects still attempt to bypass the strong

encapsulation provided by JPMS in order to access internal APIs for different reasons and

lead to technical debts that affect the broader ecosystem. Such kind of abuse problem has

been identified as Breaking Strong Encapsulation (BSE) problem [24] [25]. One BSE example

is described in Figure 1.1, JUnit 5 [11] tries to access internal APIs by adding Java Virtual

Machine (JVM) arguments, i.e., the flag --add-exports, which allows code in the target

module to access types in the named package of the source module. A deeper investigation

3

of JUnit 5 reveals that JUnit 5 needs to break strong encapsulation because it relies on a

plugin called Spotless [13], which employed similar JVM arguments in its configuration file.

Eventually, an investigation of Spotless ’s GitHub issue [9] [12] revealed that the source of

the behavior that caused Spotless to break strong encapsulation was a tool called Google

Java format [8], designed to reformat Java source code according to the Google Java Style

guidelines [10]. This example shows in detail how a BSE issue can cause problems at the

project level and affect other projects in its dependency chain, affecting the relevant Java

ecosystem.

While Darcy focuses on detecting and repairing the over-exposure problem, none of the

prior studies focus on detecting under-exposure problem, i.e., BSE problems in actual pro-

grams [33]. In order to bridge the gap, this thesis will first briefly introduce (1) the Java

Platform Module System and (2) the BSE problem. Then, I will propose BEAD (Breaking

Encapsulation Abuse Detector), a detection tool that combines static analysis techniques to

identify potential abuse instances within Java projects that could lead to illegal access bugs.

More precisely, BEAD helps the program (1) obtain the specific JDK module information

under the current running environment, (2) locate and acquire the reflected and static calls

of the analyzed program, and (3) check whether the relevant calls of the analyzed program

will abuse the original definition of JDK’s module specific declarations. Finally, to test the

BEAD, I have performed a case study by analyzing five open-source Java projects within

the BEAD, including the abuse detection result, social impacts of abuse instances, and the

running efficiency of the BEAD.

4

1.2 Organization of the Thesis

The rest of the thesis will follow: Chapter 2 introduces the Java Platform Module System

and BSE problems. Chapter 3 presents the design principles of detecting abuse instances

in the program. Chapter 4 describes the case studies to test BEAD and shows the result.

Chapter 5 presents further discussions about the findings. Chapter 6 presents some related

work. Chapter 7 concludes the thesis.

5

Chapter 2

Java Platform Module System and

BSE Problem

2.1 Overview of Java Platform Module System

2.1.1 Module and Module Directives

In Java Platform Module System (JPMS), a module can be treated as a container with a

unique name designed to store reusable groups of related packages and resources like images

and XML files [2]. Each module requires a descriptor file named module-info.java, which

stores the module’s internal meta-data and declarations of a named module.

The structure of a module declaration file consists of a unique module name and a module

body. The module body can be empty or contain one or more module directives that specify

the module’s contacts with other modules or modules that need to be accessed [29].

6

module org.junit.platform.launcher {

requires transitive org.junit.platform.engine;

uses org.junit.platform.engine.TestEngine;

...

}

module org.junit.jupiter.engine {

requires org.junit.platform.commons;

provides org.junit.platform.engine.TestEngine

with org.junit.jupiter.engine.JupiterTestEngine;

opens org.junit.jupiter.engine.extension to

org.junit.platform.commons;

...

}

module org.junit.platform.commons {

exports org.junit.platform.commons.logging to

org.junit.platform.engine;

...

}

module org.junit.platform.engine {

exports org.junit.platform.engine;

...

}

Figure 2.1: Example of module declarations and their directives provided in JUnit 5

module-info.java files

7

Figure 2.2: Specified dependencies between modules based on their directives

The above two figures, Figure 2.1 and 2.2, show an example of JUnit5, which adopted JPMS

in its implementation [14]. The declarations of 4 modules and their relationship to each other

is illustrated in Figure 2.1: org.junit.jupiter .engine, org.junit.platform.commons,

org.junit.platform.launcher, and org.junit .platform.engine. Figure 2.2 describes

the detailed relationship between the same modules based on dependencies in their declara-

tions.

To build module dependencies and access relationships, JPMS provides the following five

directives to specify a module’s interface and its usage: the requires directive specifies the

packages that the module needs to access, the exports and opens directives enable the mod-

ule’s packages to be available to other modules, the provides directive specifies the services

8

provided by the module, and the uses directive specifies the services consumed by the pack-

age. The specific declaration rules for these five directives are explained below [29]:

• The requires directive allows developers to declare the module dependency by re-

quiring another module. When module A requires module B, it is said that module

A has both a run-time and compile-time dependency on module B. For instance,

module org.junit.jupiter.engine is depicted in Figure 2.1 which requires module

org.junit.platform.commons. Another option JPMS provides for building module

dependencies is the requires transitive directive. This directive specifies that any

module that requires the declaring module implicitly gains a dependency on another

specified module. In the example of Figure 2.1, module org.junit.platform.launcher

has transitively required module org.junit.platform.engine. Therefore, when mod-

ule C requires module org.junit.platform.launcher, module C can access module

org.junit.platform.engine without requires org.junit.platform.engine.

• The exports and exports...to directives specify the module’s packages whose public

types (and their nested public and protected types) should be accessible to all other

modules or a comma-separated particular module list at both compile and run time.

As an example, in Figure 2.1, module org.junit.platform.engine exports its pack-

age access to all other modules, while module org.junit.platform.commons specifi-

cally exports the access of package org.junit.platform.commons.logging to module

org.junit.platform.engine.

• The opens and opens...to directives define the module’s packages whose public

types (and their nested public and protected types) should be accessible to all other

modules or a comma-separated particular module list at only the run time but not

compile time. These directives also grant reflective access to all the types in the

module, including the private types and all its members from other modules. In

Figure 2.1, package org.junit.jupiter.engine.extension was opened by module

9

org.junit.jupiter.engine to the module org.junit.platform.commons.

• The provides with directive describes a module’s provision of a service. Its decla-

ration is written as for module a, it provides c1 with c2, c3, ..., cn. This declaration

indicates that this directive will be used by module m1 as a service provider and spec-

ifies c1 as an abstract class or interface and one or more service provider classes to be

used with java.util.ServiceLoader via the with clause. A service is a well-known

set of interfaces and (usually abstract) classes, and a service provider is a specific im-

plementation of a service. In Java, the class java.util.ServiceLoader provides a

simple service-provider implementation that loads a provider to implement the ser-

vice with type S [1]. As exemplified by module org.junit.jupiter.engine provides

the class org.junit.jupiter.JupiterTextEngine as a service using the interface

org.junit.platform.engine.TestEngine in module org.junit.platform.engine

as the service’s implementation.

• The uses directive indicates a module’s consumption of a service. When module A

is declared using a directive of the form uses c1, this means module A uses a service

object of an abstract class or interface, c1, which is provided by another module. For

this purpose, module A needs to discover the specified service provider beforehand via

class java.util.ServiceLoader, which is used to load service provider instances. For

example, module org.junit.platform.launcher uses the service object of interface

org.junit.platform.engine.TestEngine.

With these directives described above, JPMS can utilize Java modules to perform dynamic

load and unload operations at runtime, thereby changing the normative and descriptive

architecture of the system according to different use cases [36].

10

2.1.2 Unnamed Module

An additional concept in JPMS is the Unnamed module, which is a container for all “non-

module classes,” including (1) classes without module descriptors at compile time and (2)

any class loaded from the classpath at compile and run time [15] [36].

Theoretically, the strong encapsulation system employed by JPMS was initially designed to

treat each module as an independent unit of functionality. However, for backward compat-

ibility reasons, creating modules in JPMS is not mandatory, and as a result, classes that

are not part of any defined module are automatically placed into an unnamed module. An

Unnamed module is a default, catch-all module for types not included in any named module,

whereas a Named Module refers to any module explicitly defined with a name in the module

declaration. More specifically, unnamed modules encapsulate all classes on the classpath,

apply specific rules to them, and integrate them into the modular system, making unnamed

modules less encapsulated than named modules [15] [24] [25] [27] [36].

On the other hand, unnamed modules can effectively run without a module descriptor in

practice. Despite not having a formally defined name (which also makes it impossible for an

unnamed module to be directly referenced in a module declaration), an unnamed module has

the same three key attributes as a named module, i.e., it implicitly reads and exports all other

modules contained in the module graph and opens up all of its packages for reflection, which

is another reason for unnamed modules to be less encapsulated. For the service availability

mechanism, unnamed modules can utilize META-INF/services to provide services to the

outside via the ServiceLoader class [15] [25].

11

2.2 Overview of Breaking Strong Encapsulation (BSE)

problem

In Java 9+, the strong encapsulation rules provided by JPMS make the behavior of the JVM

strictly consistent with these rules, thus effectively preventing illegal accesses from occurring

at compile time. However, given the fact that some Java programs written before Java

9+ may call internal APIs encapsulated by JPMS in their code implementations, this also

makes it possible to cause under-exposure problems when attempting to migrate to version

9+, where the program tries to access a package within the JDK that is not declared open or

export to the outside. As a result, the runtime environment initially adopted a more lenient

stance in favor of backward compatibility [17] [18] [19], i.e., the default runtime setting is

--illegal-access=permit. this mechanism is intended to enhance the compatibility of

applications initially developed for Java 8 and earlier and to facilitate a smoother migration

of these applications to versions 9 and above [16] [27] [41].

However, this mechanism of allowing illegal access by default at runtime has been phased out.

In JDK 16, the default illegal access setting was changed from permit to deny, and in JDK

17, it was deprecated [20] [21]. Previously, JDK 16 and earlier versions would raise relevant

warnings in the console log for illegal access operations. With JDK 17, these illegal access

operations are recognized directly as exceptions and errors that are thrown without the need

for specialized configuration. This shift emphasizes the JDK’s commitment to enforcing

a long-established principle: ’Packages beginning with ‘java’ or ‘javax’ are designated as

public APIs, while all other packages are internal private packages by default,’ which is an

important step in enforcing module integrity and encapsulation in Java [22].

There are several strategies to address the underexposure problem and the program’s depen-

dence on internal APIs during porting. The most direct and durable solution is to replace

the internal APIs with the supported APIs. If this is not feasible, the next best option

12

is to declare these dependencies during the runtime configuration of the module system.

Developers can achieve this by using specific JVM options to export packages:

• Using command line: --add-exports <module>/<package>=<readingmodule> to ex-

port <package> from <module> to <readingmodule>

Meanwhile, there are two options for developers to open specific packages:

• Using command line: --add-opens <module>/<package>=<readingmodule> to open

<package> from <module> to <readingmodule>

• Using command line: --illegal-access=(permit | warn | debug) to enable access

to packages present in JDK 8 but encapsulated in JDK 9, facilitating static and deep

reflective access, which give the permissions to inspect and modify a class’s internal

elements, such as private and protected fields, methods, and constructors that are

normally shielded by strict encapsulation rules. The latter can be used through the

platform’s reflection API calls to allow unauthorized code into the JDK’s internals to

run as in previous JDK versions. Note that this option is only applicable from Java 9

through Java 16.

In short, Java has adopted a policy of loosening strong encapsulation to help programs

transition from Java 8 to Java 9’s modular system. Nevertheless, on the one hand, this

policy behavior itself, especially the three options provided above, can break the strong

encapsulation that JPMS was initially designed for. On the other hand, the enforcement

of strong encapsulation has gradually strengthened over time with JDK version upgrades,

especially considering that the privilege of --illegal-access was denied by default starting

with JDK 16 and completely removed in JDK 17. As a result, if such under-exposure is

not addressed on time, previous BSE warnings will turn into factual errors or exceptions

13

during future JDK version porting. At the same time, this trend highlights the increasing

stringency of the JDK’s work on strong encapsulation, emphasizing the need to address such

issues promptly to avoid significant bugs.

14

Chapter 3

Design Principles for Detecting Abuse

Instances

3.1 Module Abuse Instance Construction

Our earlier research on the GitHub issues reported on BSE [33] revealed that certain types

of abuse instances might occur between the module dependencies implemented in some Java

projects and the module dependencies described in the JDK’s original module-info file.

Those instances arising from BSE problems occur when either (1) an external class attempts

to access a package in a module that has not opened or exported that package or (2) a

module that has opened or exported a package is accessed incorrectly by an external class,

or the class tries to access non-public members within the package. These abuses can affect

various architectural attributes:

A1: Encapsulation and Maintenance – Failure to open access to required functionality

in other modules may result in needing to modify the original module files to open these

packages, thus increasing the complexity and maintainability of these modules. In addition,

15

without modifying the original module files, developers may gain access to the required

functionality by breaking strong encapsulation.

A2: Adaptability – Lack of access to required functionality may force developers to use

workarounds, such as exposure extra packages to outside and rewriting custom functionali-

ties, which increases the system’s complexity and reduces the system’s adaptability for any

future functional adjustments.

A3: Security – Inadequate exposure of modules may lead developers to obtain unexposed

packages through illegal access, which may cause associated illegal access errors and security

issues.

A4: Compatibility – Modules whose required functionality fails to open access may cause

other modules that depend on the module to fail to compile or run, causing dependency

failures. Module version changes can also cause access changes, which may lead to software

depending on this module having a JDK version compatibility problem.

Considering that BSE problems can be caused by unauthorized external access to packages

inside the module or under-exposure problems caused by internal module declarations, the

detection of BSE problems will focus on checking for abuse instances under the opens and

exports directives. To cover those module abuse instances caused by the BSE problem

as comprehensively as possible, I examine the misuse that developers may make using two

module directives, exports and opens, which can lead to BSE problems. In the rest of this

section, I will focus on the eight abuse scenarios that can arise in BSE problems and the

functions needed to specify them.

Constructing the abuse model requires retrieving the module dependencies and associated

opens and exports directive declarations that the JDK implements in practice. Therefore, I

scanned all the module-info.java files included in the JDK 17 source code, which is detailed

in 3.2.1, and found four variations on the exports and opens directives in JDK implemented

16

module declarations, which have been listed in Table 3.1. In addition, it should be noted that

each package in JDK 17 declares only one of the directives listed in Table 3.1, except for three

packages: the javax.swing.plaf.basic package from the java.desktop module, which

declares both the exports and opens...to directives, and the package sun.reflect and

sun.misc from module jdk.unsupported declared both the exports and opens directives.

Considering the need to cover all potential types of abuse instances comprehensively, we

need to account for situations with a single directive and the particular module declaration

scenarios provided by the three packages mentioned above in the following phase of abuse

model construction.

Table 3.1: Functions describing exports and opens directive dependencies based on JDK
implementation and the way that source code invoke members

Function Description

Exp(M,P) Module M exports package P .

ExpTo(M1, P1, {M2,M3, . . .}) Module M1 exports package P1 to the set of
modules {M2,M3, . . . }.

Opens(M,P) Module M opens package P .

OpensTo(M1, P, {M2,M3, . . .}) Module M1 opens package p to the set of
modules {M2, M3, . . . }.

CompInv(P1,m, P2) Source code in package P1 invoke member
m in package P2’s class via compile-time
invocation.

ReflInv(P1 ,m,P2) Source code in package P1 invoke member
m in package P2’s class via reflection.

To describe how an external call to an open or exported package in a module can be made,

I also defined two functions in Table 3.1 that show the way to invoke an exported package,

i.e., the reflection invoke and the compile-time invoke, as explained in section 2.1.1.

By leveraging the functions in Table 3.1, I introduce the following eight types of BSE abuse

instances under six implemented situations: exports, exports...to, opens, opens...to, exports

& opens...to, and exports & opens. Based on the given situations, Section 3.2 detects the

17

following abuse instances:

Opens: The abuse of opens directive happens when a module M only declares that it opens

a package Pi to all other modules, while outside package Po invoke any type of members m

in package Pi via compile-time invocation. Therefore, this abuse type leads to compile-time

errors, and one way to fix the error requires developers to modify their programs’ module

dependency, which is not guaranteed to work under all versions of the JDK, thus affecting

attribute A4; besides, more importantly, modifying the module file will affect A1 as well as

it may increase the maintenance difficulty.

Opens(M,Pi) ∧ CompInv(Po,m, Pi) (3.1)

Exports: An abuse instance of exports directive happens when a module M only declares

that it exports a package Pi to all other modules, while outside package Po invokes non-public

type member m in package Pi via compile-time invocation or reflection. This type of abuse

involves illegally accessing non-public members, so it mostly affects A3 but also affects A1,

as illegal access to non-public members breaks the encapsulation.

Exports(M,Pi) ∧ ∃m ∈ NonPublicMembers(Pi) :

(CompInv(Po,m, Pi) ∨ReflInv(Po,m, Pi)) (3.2)

Opens To: An abuse of opens...to directive happens when a module M1 only declares

that it opens a package P1 to module M2, while (1) package P2 from module M2 invoke any

type member m in package P1 via compile-time invocation.

OpensTo(M1, P1,M2) ∧ ∃P2 ∈ M2 : CompInv(P2,m, P1) (3.3)

18

Or (2) package P3 from moduleM3 invoke any type memberm in package P1 via compile-time

invocation or reflection.

OpensTo(M1, P1,M2) ∧ ∃P3 ∈ M3 :

(CompInv(P3,m, P1) ∨ReflInv(P3,m, P3)) (3.4)

Situation (1) mainly leads to compile errors and extra fixes, thus affecting A1 and A4; for

situation (2), this type of abuse will affect A3 since it involves illegal access and will also

affect A2 since it requires exposing the current package to extra target modules.

Exports To: An abuse of exports...to directive happens when a module M1 only declares

that it exports a package P1 to module M2, while (1) package P2 from module M2 invoke

non-public type member m in package P1 via compile-time invocation or reflection.

ExportsTo(M1, P1,M2) ∧ ∃P2 ∈ M2 ∧ ∃m ∈ NonPublicMembers (P1) :

(CompInv(P2,m, P1) ∨ReflInv(P2,m, P1)) (3.5)

Or (2) package P3 from moduleM3 invoke any type memberm in package P1 via compile-time

invocation or reflection.

ExportsTo(M1, P1,M2) ∧ ∃P3 ∈ M3 :

(CompInv(P3,m, P1) ∨ReflInv(P3,m, P1))) (3.6)

Situation (1) affects A3 since it involves illegal access and affects A1 in terms of increasing

maintenance difficulty. For situation (2), it is similar to the abuse situation (2) of opens...to

directive, which affects A2 and A3.

19

Exports & Opens: An abuse of exports & opens directive happens when a module M

declares that it exports and opens a package Pi to all other modules, while outside package Po

invoke non-public type member m in package Pi via compile-time invocation. Consequently,

this abuse affects—similar to abuse of exports type—affects A1 and A3 because it leads to

encapsulation breaking and illegal access to internal members.

Exports(M,Pi) ∧Opens (M,Pi) ∧ ∃m ∈ NonPublicMembers(Pi) :

CompInv(Po,m, Pi) (3.7)

Exports & Opens...to: An abuse of exports & opens...to directive happens when a

module M1 declares that it exports a package P1 to all other modules, and opens P1 to

module M2, while package P3 from module M3 (1) reflectively invoke any type member m1

in package P1, or (2) invoke non-public type member m2 in package P1 via compile-time.

This type of abuse will affect A3 as it may involve accessing non-public members and making

the module open packages to extra target modules, affecting A2 as well.

Exports(MP1) ∧OpensTo(M1, P1,M2) ∧ ∃P3 ∈ M3 :

(ReflInv(P3,m1, P1) ∨ ∃m2 ∈ NonPublicMembers(P1) : CompInv(P3,m, P1))

(3.8)

3.2 BEAD Detection Approach and Implementation

In the previous section, I introduced various types of BSE abuse situations. This section

describes how I leverage these definitions to design and implement BEAD. Figure 3.1 depicts

20

a high-level overview of BEAD, and BEAD is fully implemented in Java.

Specifically, BEAD consists of four steps, including JDK info scanning, JDK info combining,

invocation analysis, and abuse instance static analysis. The rest of this section describes each

step in depth.

Figure 3.1: A high-level overview of BEAD

3.2.1 Step 1: JDK Info Scanning

The first step is to scan the following aspects of the selected version of JDK: all mod-

ule declarations in all module-info.class files—and all packages in the JDK source code,

classes in each package, and members in each class and their corresponding types (e.g.,

public, private, protected). BEAD’s scanning of module declarations involves scanning all

module-info.class files under the JDK source code with javap, the JDK’s decompiler tool.

Once the scan is complete, an additional Java script is used to extract all declarations of the

exports and opens directives from the scan.

21

BEAD uses a parser tool called JavaParser [23] to scan for packages, classes, methods, and

corresponding types. It scans the JDK source code, extracts the information of all packages,

classes, methods, and corresponding types, and provides a list of information output.

3.2.2 Step 2: JDK Info Combining

The information obtained in the above steps is needed to obtain the full declaration of the

exports and opens directives for a JDK module, including information about the packages,

classes, and methods it contains. Therefore, BEAD has set up a data structure called

JDKModule to record the inheritance information from the module to the method level.

Figure 3.2 shows the specific hierarchical information of JDKModule. The top-level stores

the extracted modules from the JDK. The next level stores information at the package

level, which includes (1) Package: the package name under the module that declares

exports(to) or opens(to); (2) AccessRules: specific directives for the package in the

module-info.java file; (3) AllowedModules: target packages specified after the to in

directives exports...to or opens...to. The next level of the package hierarchy stores

information about each class under this package, and each class contains the signatures of

each extracted method and its corresponding type.

The extraction and combination of the JDKModule data is done inside BEAD and output

as a text file with the same structured format as depicted in Figure 3.2.

22

Figure 3.2: JDKModule structure example

23

3.2.3 Step 3: Invocation Analysis

Consider the definition in section 2.1.1; detecting BSE abuse instances requires analyzing

both reflection and compile-time invoke to identify any instance of the eight abuse types

described in section 3.1. This step takes a jar file as input and relies on static analysis to

implement call analysis. More specifically, BEAD’s implementation uses the Soot framework

[48] to analyze the input Java application for both reflection and compile-time invocation.

The implementation of Java Reflection Analysis is inspired by Ghorbani et al.’s previous

work on automatically detecting and repairing Java architectural abuses [28], to extract

reflection invocations that occur when non-constant strings or inputs are used as the target

method of a reflection call. The routine of reflection invocation analysis is presented in

Algorithm 1.

Within each file path iteration, BEAD loads the input classes and analyzes each method

in the loaded classes. For concrete methods, it retrieves the method body and analyzes

each statement to identify if it is a reflection invocation. Once the reflection invocation is

identified, BEAD will process the invoked method to obtain the identified method name,

then update the method and its count into the stored map. The invocation map will be used

to analyze abuse instances in section 3.2.4.

24

Algorithm 1: Reflection Invocation Analysis
input : A list of class file paths

output: Counts for Full Method Names

1 let s denote the set of class file paths and let Cfull denote the map to store counts of full

method names;

2 while s is not empty do

3 load and analyze class from s;

4 for each method in the class do

5 if method is concrete then

6 retrieve and analyze the method body;

7 for each statement in the method body do

8 if statement involves a reflection invocation then

9 if reflection call is identified then

10 identify details of the reflection call;;

11 update Cfull based on the method and class name availability;

12 end

13 end

14 end

15 end

16 end

17 remove class file from s;

18 end

19 output stored methods in Cfull;

The analysis of compile-time invocation for input Java programs is also implemented on the

Soot framework. Using the call graph among methods generated by Soot, BEAD reads the

nodes of these calls and extracts all the compile-time invocations towards JDK’s internal

classes. Algorithm 2 describes the specific algorithm routines.

25

Algorithm 2: Compile-Time Invocation Analysis
input : A list of class file paths

output: A map of compile-time method invocations to JDK classes

1 let s denote the set of class file paths and let C denote the map to store the compile-time

call edge;

2 foreach class path in the input list do

3 load necessary classes from the class path;

4 end

5 determine entry points for analysis;

6 run analysis packs to generate the call graph;

7 foreach edge in the call graph do

8 if source and target methods exist then

9 if target method is static and declared in a JDK class then

10 if source method is not declared in a JDK class then

11 record the compile-time call edge from the source method to the target

method;

12 end

13 end

14 end

15 end

16 output stored compile-time call edges in C;

Within each file path iteration, BEAD loads the input classes and determines the entry

points to construct the call graph. For each edge in the generated call graph, BEAD

first examines both the source and target methods that exist, then checks whether it is a

compile-time invocation to a method from JDK by checking if the target method is static.

After finishing the target method check, BEAD performs an extra check to filter out JDK

internal compile-time invocation to those target methods. Finally, BEAD outputs the stored

26

compile-time call edge map for abuse instance analysis in section 3.2.4.

3.2.4 Step 4: Abuse Instance Analysis

By incorporating the combined JDKModule data obtained from step 3.2.2 and the analyzed

reflection and compile-time invocation results generated from step 3.2.3 for the input Java

program, BEAD detects BSE abuse instances described in section 3.1 and reports any

potential BSE abuse instances to provide references for the further repair.

27

Chapter 4

Case Study: Evaluation of BEAD

To assess the effectiveness of BEAD, I study the following research questions.

• RQ1: To what extent does JDK declare exports and opens directives?

• RQ2: How frequently do abuse instances occur under subject applications?

• RQ3: What are the JDK APIs detected by BEAD as abused?

• RQ4: How does BEAD compare to the JDK’s mechanisms for detecting abuse in-

stances?

• RQ5: What’s the efficiency of BEAD?

To answer those research questions, I conducted a case study and used JDK 17 as the

module declaration reference for detecting BSE-related abuse instances. It should be noted

that I chose JDK 17 as the module description reference because JDK 17 removes one of

the launch options that can be used to access internal APIs in previous JDK versions, i.e.

--illegal-access, which means that source code implemented before JDK 17 cannot access

28

internal APIs via the --illegal-access option when running with JDK 17, as explained

in Section 2.2.

The case study is performed with five Java open-source projects on GitHub [3], a large and

widely used open-source repository of software projects. The repository information of those

five projects is listed in Table 4.1.

Table 4.1: Subject Applications

No. Application Name Rel. Version # Stars # Forks

1 arthas-core 3.6.7 34.7k 7.3k

2 error-prone-check-api 2.5.1 6.7k 724

3 google-java-format 1.22.0 5.4k 843

4 cglib 3.3.0 4.7k 885

5 darklaf-core 2.6.1 416 39

4.1 RQ1: JDK Module Interfaces Design

To better understand and detect potential abuse due to the BSE problem, Step 3.2.1 scanned

all the declarations related to opens(to) and exports(to) in the JDK 17 module. The scanning

revealed a total of 372 packages in JDK 17 that were found to be declared with the opens(to)

and exports(to) directives. The details are distributed as follows:

• 228 packages declared with exports directive

• 142 packages declared with exports...to directive

• 2 packages declared with opens directive

• 3 packages declared with opens to directive

29

Besides, as mentioned in Section 3.1, there are three packages whose declarations involve

more than two directives. Those packages are (1) package javax.swing.plaf.basic from

module java.desktop declared both exports and opens to directives; (2) package sun.misc

and sun.reflect from module jdk.unsupported declared both exports and opens directives

at the same time. These findings indicate that JDK rarely opens its internal packages to the

external or specified modules when it actually implements APIs and related module depen-

dencies, which is consistent with the JPMS principle of maintaining greater encapsulation

and reducing related security vulnerabilities by limiting reflection.

4.2 RQ2: Result Analysis Of BEAD for

Detecting BSE Abuse Instances

Table 4.2: Identified Abuse Instances of Subject Applications

Application # Total # Reflection # Compile-Time Abused Type Of Expose Packages

Name Abuse Inst. Abuse Inst. Abuse Inst. O O.T E E.T E & O.T E & O

arthas-core 4 1 3 - - 1 3 - -

error-prone-check-api 119 2 117 - - - 119 - -

google-java-format 44 0 44 - - - 44 - -

cglib 1 1 0 - - 1 - - -

darklaf-core 19 1 18 - - 1 18 - -

(O: opens, O.T: Opens To, E: Exports, E.T: Exports To)

Table 4.2 shows, for each subject application, the total number of abuse instances BEAD

found and separates them by their type. As depicted in Table 4.2, most of the abuse instances

occurred during the compile-time invocations, which indicates that unauthorized access to

internal packages through compile-time invocations is more common in Java 9+ applications,

thus resulting in architecture rigidity and potential security vulnerabilities.

30

On the other hand, Table 4.2 indicates that most of the abuse instances are of types ex-

ports and exports...to. Among those detected abuse instances, the high frequency of type

exports...to demonstrates that most instances of abuse occur when unspecified authorized

modules access the JDK’s internal APIs, which were designed to be used only for internal

self-invocations inside the JDK. Furthermore, Table 4.2 also shows that multiple instances

are abused with the exports directive, which means the existence of external packages access-

ing non-public members declared by the JDK’s internal APIs. Both types of abuse increase

the risk of encountering illegal access-related exceptions and errors at the runtime, thus

increasing the maintenance difficulty of these Java applications.

Additionally, Table 4.2 indicates that no instances of abuse involving the directives opens,

opens to, exports & opens to, and exports & opens have been detected. As detailed in Section

4.1, the occurrence of these four directives in JDK packages is significantly lower than that

of the other two, which reduces the possibility of detecting abuse instances for these four

directives and even unable to detect those four directives. Despite their low prevalence,

BEAD covers all six directive situations because they have potential risks to appear during

the future usage of JPMS.

Overall, BEAD has detected a total of 187 abuse instances under selected subject applica-

tions. Among them, 182 instances are detected during the compile-time, and 5 instances are

detected under reflections. To evaluate the result, I performed an extra manual examination

for source codes from each subject application and confirmed that all 187 abuse instances

do exist from the code in each subject application, which shows that the BEAD is capable

of correctly detecting abuse instances.

31

4.3 RQ3: Detected JDK Abuse Instances and

Commonly-Abused Packages

4.3.1 Abuse Instances of Reflection

Table 4.3: Abused Instance via. Reflection Invocation in Subject Applications

Application Name Abused API

arthas-core
java.lang.ClassLoader.defineClass

(String name, byte[] b, int off, int len)

error-prone-check-api
com.sun.tools.javac.comp.Resolve.findIdent

com.sun.tools.javac.util.Log.error

google-java-format N/A

cglib
java.lang.ClassLoader.defineClass

(String name, byte[] b, int off, int len, ProtectionDomain protectionDomain)

darklaf-core
javax.swing.JRootPane.setUseTrueDoubleBuffering

(boolean useTrueDoubleBuffering)

Table 4.3 shows the detected abuse instances under the reflection invocation analysis by Step

3.2.3. Based on these five different abuse instances of reflection, I investigated these APIs

and the intended functionality sought by developers.

• Method java.lang.ClassLoader.defineClass(String name,byte[] b,int off,

int len) and java.lang.ClassLoader.defineClass(String name,byte[] b,

int off,int len,ProtectionDomain protectionDomain): Those two APIs are used

in ClassLoader to convert an array of bytes into an instance of class Class, while the

latter provides an option ProtectionDomain, a class that encapsulates the character-

istics of a domain for granting a set of permissions to a class based on a policy at

execution time.

32

• Method com.sun.tools.javac.comp.Resolve.findIdent: This is an internal API

from the class Resolve, a helper class for name resolution. This method finds an

unqualified identifier that matches a specific type (variable, type, or package) in the

current compilation environment. The access level of this method is set to package-

private, i.e., it can only be accessed by other classes in the same package.

• Method com.sun.tools.javac.util.Log.error: An internal API from the class Log

inherited from class com.sun.tools.javac.util.AbstractLog, which is used to re-

port a localized error message.

• Method javax.swing.JRootPane.setUseTrueDoubleBuffering(boolean

useTrueDoubleBuffering) method: An internal API stored in class JRootPane, a

container to hold all the components of the graphical user interface (GUI), including

the title bar, menu bar, and content areas. The purpose of this method is to configure

if the current GUI uses true double buffering to minimize or eliminate flickering when

GUI elements are repainted and to enhance the visual appearance of the user interface.

The access level of this method is set to package-private as well.

The above abuse instances illustrate that the internal APIs involved by those detected

abuses may concern not only high-risk tasks, such as creating an anonymous class with-

out standard verification (java.lang.ClassLoader.defineClass) but also low-level oper-

ations, such as accessing the compiler (com.sun.tools.javac.comp.Resolve.findIdent

and com.sun.tools.javac.util.Log.error). To a broader impact, those detected abuse

instances indicate that those detected abuse instances may also bring potential security vul-

nerability, compromise program stability, and increase related maintenance costs beyond

breaking the strong encapsulation provided by JPMS.

On the other hand, it is worth noting that some instances have already been reported

in the corresponding subject application’s GitHub repository issues. For example, the

33

abuse of java.lang.ClassLoader.defineClass by cglib has been reported to cause an

InaccessibleObjectException when running the program [6], which has significantly im-

pacted the normal usage for cglib users. Unfortunately, this registered GitHub issue still

remains the status as open, indicating that the cglib developers have not yet found a suit-

able fix solution, and other cglib users might also be unable to effectively run cglib due

to this abuse.

4.3.2 Abuse Instances of Compile-Time Invocation

Regarding the detected abuse instances under the compile-time invocation, I analyzed all 184

instances of compile-time invocation-related abuse and investigated their contained modules

and the intended functionality. Table 4.4 listed the five most frequently abused packages

and their corresponding counts.

Table 4.4: Top 5 Abused Packages Under Compile-Time Invocation

Package Name # Abuse Inst. Proportion(%)

com.sun.tools.javac.util 46 25.27%

com.sun.tools.javac.code 37 20.33%

com.sun.tools.javac.parser 31 17.03%

sun.swing 18 9.89%

com.sun.tools.javac.comp 12 6.59%

As depicted in Table 4.4, four packages are all sub-packages under the same package,

com.sun.tools.javac, and belong to the module jdk.compiler. Among them, com.sun.

tools.javac.util provides general tools and data structures, com.sun.tools.javac.code

manages the type system and symbol table, com.sun.tools.javac.parser is responsible

for parsing source code into abstract syntax trees, and com.sun.tools.javac.comp per-

34

forms semantic analysis and other critical steps during the compilation process. These four

packages constitute the main functionalities of the Java compiler javac and are declared

with exports...to under the corresponding module-info.java file. In addition, Table 4.4

illustrates a concern about the wide abuse of package com.sun.tools.javac in existing

Java programs. This suggests that developers need to be aware of the potential risk that

the com.sun.tools.javac package could break the strong encapsulation provided by JPMS

but also emphasizes the urgency of re-modifying the accessibility of the Javac’s module or

finding an alternative API with similar functionality. Otherwise, external applications that

rely on the functionality of Javac may have to force abusing those packages in their im-

plementations, which leads to a break in the module’s strong encapsulation and potentially

causes more severe maintenance issues, such as exceptions or errors.

4.4 RQ4: BEAD Against JDK Compiler’s Abuse De-

tection

To better assess the effectiveness of BEAD for detecting abusive instances, we need compare

it with the current level of abuse detection available from the JDK compiler, javac. For the

assessment, I’ve set up nine types of information to represent the information contained in

an abuse instance as follows:

• Source Module: The module information of the abuse source.

• Source Package: The package information of the abuse source.

• Source Class: The class information of the abuse source.

• Source Statement: The source of the code statement that specifically causes the

abuse.

35

• Abuse Reason: The brief explanatory information on the causes of abuse.

• Target Module: The specific JDK module being abused.

• Target Package: The specific package being abused.

• Target Class: The specific class being abused.

• Target Function: The specific function (or method) being abused.

4.4.1 Javac’s Detection BSE Detection at Compile Time

Since javac can only handle compile-time tasks, when an external package tries to access a

package that has not been exported, it raises a compile error and is caught by javac. Table

4.5 shows the details of the information that javac can detect for different abuse types of

expose packages.

Table 4.5: Abuse Information Provided by Javac at Compile-Time

Abused Type Abused Information

Of Expose Packages S.M S.P S.C S.T A.R T.M T.P T.C T.F

Opens ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Opens...To ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Exports ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Exports...To ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Exports & Opens...To ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Exports & Opens ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(S.M: source module, S.P: source package, S.C: source class, S.T: source statement, A.R: abuse reason,

T.M: target module, T.P: target package, T.C: target class, T.F: target function)

36

As described in Table 4.5, although javac can catch compilation errors caused by abusing

packages, the information provided by javac is quite limited. Figure 4.1 displays an example

of abuse error messages returned by javac. It can be seen that javac only provides information

about the abused package, involved target module, and very limited explanations for the

abuse reason.

import com.sun.java.swing.plaf.windows.WindowsLookAndFeel;

^

(package com.sun.java.swing.plaf.windows is declared in

↪→ module java.desktop , which does not export it)

Figure 4.1: Compile Error message for Un-exported Packages

Besides, it should be noted that since the only two packages declared as opens in JDK 17

are also declared with the exports directive, javac is unable to detect opens type abuse

because they do not cause compile errors at compile time.

Detected abuse under module jdk.compiler

Involved Source Method: <com.google.errorprone.ErrorProneAnalyzer:

↪→ void finished(com.sun.source.util.TaskEvent)>; Involved Target

↪→ Method: instance(com.sun.tools.javac.util.Context) in target

↪→ class: com.sun.tools.javac.main.JavaCompiler from package com.

↪→ sun.tools.javac.main

Abuse Reason: The project tries to invoke target method instance(com

↪→ .sun.tools.javac.util.Context) at compile time , but com.sun.

↪→ tools.javac.main.JavaCompiler only exports to [jdk.javadoc ,

↪→ jdk.jshell]

Figure 4.2: Example Output of BEAD Abuse Detection Under Compile Time

37

Figure 4.2 shows an example of an abuse report that has been detected by BEAD during

compile time. Compared to javac, BEAD offers more comprehensive and detailed detection

of abuse occurring at compile-time invocation, and Table 4.6 illustrates the specific types of

abuse information that BEAD can detect and report compile-time invocation.

Table 4.6: Abuse Information Provided by BEAD at Compile-Time

Abused Type Abused Information

Of Expose Packages S.M S.P S.C S.T A.R T.M T.P T.C T.F

Opens ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Opens...To ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports...To ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports & Opens...To ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports & Opens ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(S.M: source module, S.P: source package, S.C: source class, S.T: source statement, A.R: abuse reason,

T.M: target module, T.P: target package, T.C: target class, T.F: target function)

From Table 4.5 and 4.6, it is evident that, on the one hand, BEAD provides additional

abuse detection for scenarios involving the “opens” and “exports & opens” directives be-

yond the abuse types that javac can handle. On the other hand, compared to the limited

information on abuse instances provided by javac, BEAD can offer more detailed reports on

abuse instances occurring at compile-time, which includes the source package, class, specific

code statement causing the abuse, and the target function being abused. Such detailed in-

formation provided by BEAD can more effectively help developers pinpoint the source and

target of the abuse, thus avoiding unnecessary time spent on debugging to locate which code

caused the abuse.

38

4.4.2 Detection of Reflection-Oriented BSE Abuse

Regarding reflection invocation, since the JDK compiler primarily handles compile-time

tasks, the access check of reflections occurs at runtime. The detection of abuse and associated

access checks during runtime are handled by the Java Virtual Machine (JVM) [7], instead

of javac.

By investigating the illegal access warning messages and specific error or exception reports

provided by the JVM, I found that the JVM has already effectively captured potential abuse

using reflection. Table 4.7 presents the types of abuse the JVM can detect, along with the

details and categories of information it can return.

Table 4.7: Abuse Information Provided by JVM via. Reflection

Abused Type Abused Information

Of Expose Packages S.M S.P S.C S.T A.R T.M T.P T.C T.F

Opens ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Opens...To ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports...To ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports & Opens...To ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports & Opens ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(S.M: source module, S.P: source package, S.C: source class, S.T: source statement, A.R: abuse reason,

T.M: target module, T.P: target package, T.C: target class, T.F: target function)

As depicted in Table 4.7, the JVM not only has the capability to detect each type of abuse

but also provides comprehensive enough information to help developers identify the specific

cause of the abuse. Additionally, the JVM returns different messages on vary scenarios. For

instance, in JDK 17, the JVM returns error or exception (e.g., IllegalAccessException)

39

messages and corresponding stack traces to report abuse instances of accessing non-public

members within an unopened package.

Moreover, the JVM returns the illegal access-related warnings, instead of error or exception

reports, for abuse detection of Java programs running between JDK 9 and 16, especially those

programs that adopt the --illegal-access=permit option. Figure 4.3 shows an example

of an illegal reflective access warning message when running cglib [5]. From Figure 4.3, the

JVM returns those warnings, including details about the source package, source class, target

package, target class, and target function, during runtime. In contrast, BEAD provides

equivalent effective details of abuse information without running the program as shown in

Figure 4.4, which addresses potential abuse instances at an early stage.

WARNING: Illegal reflective access by net.sf.cglib.core.ReflectUtils

↪→ \$1 (file:/xx/xx/cglib -3.3.0. jar) to method java.lang.

↪→ ClassLoader.defineClass ()

Figure 4.3: JVM Abuse Warning Message Example

Detected abuse under module java.base

Source method: <net.sf.cglib.core.ReflectUtils$1: java.lang.Object

↪→ run()> from class: net.sf.cglib.core.ReflectUtils$1

Involved Method: java.lang.ClassLoader.defineClass in target class:

↪→ ClassLoader from package java.lang

Abuse Reason: The project tries to reflectively invoke this method ,

↪→ but java.lang.ClassLoader.defineClass is protected

Figure 4.4: BEAD Reflection Abuse Report Example

Table 4.8 illustrates the detection of abuse types and the extraction of detailed information

by BEAD in terms of reflection. Unlike the JVM, BEAD cannot extract the information

40

about the module to which the source package belongs, as Soot cannot analyze the pack-

age’s modules. Nevertheless, BEAD still provides detailed abuse information and specifics,

enabling developers to effectively identify the source and cause of the abuse.

Table 4.8: Abuse Information Provided by BEAD via. Reflection

Abused Type Abused Information

Of Expose Packages S.M S.P S.C S.T A.R T.M T.P T.C T.F

Opens ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Opens...To ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports...To ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports & Opens...To ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exports & Opens ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(S.M: source module, S.P: source package, S.C: source class, S.T: source statement, A.R: abuse reason,

T.M: target module, T.P: target package, T.C: target class, T.F: target function)

Overall, compared to the original detection mechanisms of the JVM, BEAD provides a

detailed and comprehensive report on the abuse of JDK packages by Java programs. Another

advantage of BEAD is its ability to detect abuse instances without running the program.

Therefore, even though the JVM’s detection of abuse related to reflection invocation is

quite comprehensive, BEAD, through its adoption of static analysis techniques, can identify

potential abuses of JDK packages at an early stage. This early detection can significantly

reduce the maintenance burden associated with frequent debugging in later stages.

Additionally, BEAD focuses specifically on analyzing the reasons for the abuse, aiming to

help Java developers more accurately locate the causes of the abuse, thus, in turn, helping

mitigate the risks associated with the abusing JDK internal APIs as much as possible.

41

4.5 RQ5: Efficiency of BEAD

As described in Section 3.2, BEADmainly builds on Soot [48]. As a result, to assessBEAD’s

efficiency, I answer the RQ5 in terms of Soot’s execution time, as well as BEAD’s execution

time of inconsistency checking. I ran all the evaluation experiments under the Windows

operation system (3.60 GHz AMD Ryzen 7 3700 8-Core, 32 GB, Windows 11 22H2).

Table 4.9: Result of Execution Time

Component Avg. Execution Time (ms)

Reflection Invocation Analysis 6126

Compile-Time Invocation Analysis 7746

Reflection Abuse Analysis 7

Compile-Time Abuse Analysis 72

Total 13951

Table 4.9 shows the average execution time of BEAD for five subject applications. For

invocation analysis, the BEAD takes about 6 seconds to analyze reflection invocation and

about 7 seconds to analyze compile-time invocation. For the abuse detection phase, it takes

about 0.07 seconds and 0.7 seconds to check the abuse instances via. reflection and compile-

time invocation. It should be noted that the reason why the invocation analysis process takes

the majority of the execution time is that Soot’s analysis needs to check all the paths and

load the relevant classes that depend strongly on the size of the analyzed programs. Still,

on average, BEAD takes about 13 seconds to execute the invocation analysis and abuse

detection process, which is reasonably efficient for the detection work.

42

Chapter 5

Discussion

5.1 Implications

In this study, I formally define the eight types of BSE abuse instances and propose BEAD to

detect such abuse instances. In this section, I want to emphasize the importance of BEAD

and highlight the need to design more reasonable module interfaces and develop tools for

future repair work.

For practitioners: On the one hand, the introduction of BEAD can help program de-

velopers detect potential abuse of JDK packages in their source code before runtime, thus

preventing them from adopting workarounds that would break the strong encapsulation of

Java modules and leave technical debt that may increase maintenance complexity. BEAD

can also help the client program developers check whether their dependencies have potential

abuse to avoid the current client program abuse because those dependencies are abusing

internal APIs, which may lead to severe security vulnerabilities. In addition, section 4.3

lists the commonly abused APIs in the BSE abuse instances detected by BEAD, which can

be used for reference by Java platform maintainers as to which APIs are more likely to be

43

abused, and in turn, help them to adjust those APIs architecturally.

On the other hand, the BSE abuse instances detected by BEAD, as listed in Section 4.2,

illustrate the extent to which the BSE problem exists and proliferates in JDK 9+ open-

source programs. In addition, Section 4.3 lists the commonly abused APIs in the BSE

abuse instances detected by BEAD, which emphasizes the urgency of adjusting the module

dependencies of these APIs to prevent more possible severe errors and exceptions occurring

in the future. Section 4.4 reveals the current limitations of current JDK in terms of abuse

instance detection mechanisms, especially for the detection involving reflection, thus further

emphasizing the significance of BEAD’s work in helping developers to identify potential

abuses in the source code of their programs more accurately, so that developers can fix their

code with respect to the specific abuse cause.

For researchers: Our previous study of the BSE problem showed evidence that most BSE

problems (including illegal access warnings, errors, and exceptions) occur during the runtime

[33]. The introduction of BEAD can effectively help researchers achieve early detection of

program abuse and serve as a reference for future studies that may automate repairs of

BSE. Considering the importance of robust encapsulation brought by JPMS for the Java

development community, automated BSE repair can significantly aid in the adoption of

JPMS and facilitate the overall migration process. Moreover, automated repair of BSE can

reduce the risk of functionality disruption of many downstream projects due to overly strict

encapsulation.

In addition, determining effective strategies for modularizing Java projects is also a significant

challenge for the maintenance work of JPMS. The reports of misuse instances provided by

BEAD will, to some extent, assist researchers in determining the best arrangement of classes

within Java modules [31] and designing proper module interfaces, which helps to maintain

a fitting balance between allowing an appropriate degree of internal access and maintaining

reliability, security, and maintainability.

44

5.2 Threats to Validity

Internal Threats. The main internal threat to validity stems from the potential inaccu-

racies of static analysis tools used during the invocation step, specifically the risk of false

positives and negatives. Consequently, these inaccuracies could lead BEAD to incorrectly

report abuse instances or overlook some important instances in the analysis and detection

phase. This may result in certain service errors or unauthorized accesses going undetected.

Since BEAD relies on Soot’s result for the inconsistency analysis, it inherits all the limita-

tions of Soot, which in turn impacts its ability to detect abuse instances accurately, based

on the precision of Soot. However, Soot is a widely used [34] [35] and actively maintained

framework for Java programs’ static analysis work [4]. Therefore, to mitigate the risk of

false positives and negatives, I further manually review the registered GitHub issues of sub-

ject applications and consult the database gathered from previous BSE study [33] to verify

each identified abuse instance. This strategy reduces the possibility that inaccuracies in the

underlying static analysis framework negatively affect the reliability of BEAD.

External Threats. One threat to external validity is that the current invocation analysis

limits the target method at the JDK level. As a result, BEAD is currently unable to detect

abuse instances not directed at the JDK itself (e.g., abuse instances of modules in a Java

application or non-JDK platform). Nevertheless, the concepts and strategies for detection

in this work can be extended relatively easily to Java modules outside of the JDK. More

specifically, the target modules of a BSE type in our work can be replaced with non-JDK

modules with minimal or no change to the defined abuse types or the approach design.

Another external threat is the JDK version used during the evaluation phase. In this study,

I only used JDK 17 as the reference for the design of JDK module interfaces. Considering

the fact that the JDK designers may modify JPMS designs and their corresponding imple-

mentations in different versions, this may cause differences in the results of detecting abuse

45

instances. Such a future study is out of the scope of this work, but future work can study

abuse instances detection under different JDK 9+ versions and compare them in future work

to mitigate the risk of detection result validity due to JDK version differences.

BEAD’s evaluation is limited to the selection and quantity of Java subject applications used

in the evaluation dataset. To minimize this threat, I randomly selected open-source Java

applications that have already reported BSE problems based on our previous study [33].

Additionally, to address the quantity threat, future research is recommended to expand the

scope of BEAD’s evaluation by including more subject applications.

46

Chapter 6

Related Work

JPMS has offered a tool to transform from object-oriented design into component-based

design. However, the transformation process is challenging. To simplify this process, Ham-

mad et al. proposed the OO2CB tool [31] to introduce a simplified approach by promoting

least privilege modularity. By introducing the implementations for automatic detection and

corrections, Darcy’s [28] work aimed to fix the redundant dependency inconsistent problem,

as well as to improve the integrity of JPMS systems. To the sensitive information inside the

module, Dann et al. implemented the ModGuard [26], which can pre-secure the sensitive in-

formation through dependency analysis to minimize unauthorized access to the data. Lastly,

for understanding and managing architectural changes, Mondal et al. [39] proposed the tech-

nique of semantic partitioning changes to further improve the maintenance and review of

JPMS projects.

On the other hand, studies on the Health of Java Software ecosystems are steadily progress-

ing, which involves the understanding of Java libraries, dependency management, and the

complexities of Java-based ecosystems. These studies have now spread to several domains:

(1) the dependency conflict problem [50] [51] [52], (2) language features [54], (3) library

47

migration [30] [32] [49], and (4) the compilation process [38]. They explore the security risks

[37] [49] [53] and reasons behind developer actions [32] [54] in these domains to introduce

automated tools [50] [51] [53], frameworks [38], empirical solutions [52], and practical in-

sights [30] [37] [49] that can better improve the Java development community and related

ecosystem challenges.

48

Chapter 7

Conclusion

In this thesis, I formally define 8 types of abuse instances related to the BSE problem and

introduce BEAD, an automatic detection tool leveraging static analysis to detect encap-

sulation abuse instances due to the BSE problem. In particular, BEAD scans the specific

version of the JDK and extracts the information of module declaration details, inside pack-

ages, classes, and methods from the input JDK. BEAD also takes the jar file of the Java

program as input, analyzes both the reflection and compile-time invocations to extract po-

tential abuse information, including source & target packages, classes, functions, and specific

abuse actions. Within retrieved information, BEAD checks inconsistencies between JDK-

implemented module details and invocation details from subject applications and reports

detected abuse instances to developers from subject applications. The result of the case

study indicates a pervasive existence of abuse instances related to the BSE problem among

open-source Java 9+ applications. Possible future directions of this study include (1) en-

hancing the detection capabilities of BEAD to cover non-JDK modules and applications, (2)

adding more testing results under different JDK 9+ versions except JDK 17, (3) expanding

the scope of the detection database by adding more open-source Java 9+ applications.

49

Bibliography

[1] Oracle Corporation. API specification for the Java Platform, Standard Edition:
Class ServiceLoader. https://docs.oracle.com/javase/7/docs/api/java/util/

ServiceLoader.html.

[2] Project Jigsaw. http://openjdk.java.net/projects/jigsaw/, 2017.

[3] GitHub. https://github.com, 2018.

[4] Soot GitHub Issue. https://github.com/Sable/soot/issues, 2018.

[5] jdk11 version warning. https://github.com/cglib/cglib/issues/184, 2020.

[6] Java 16 and 17 compatibility. https://github.com/cglib/cglib/issues/191, 2021.

[7] Java Virtual Machine Specification, Java SE 21 Edition. https://docs.oracle.com/

javase/specs/jvms/se21/html/jvms-5.html#jvms-5.4.4, 2023.

[8] google-java-format. https://github.com/google/google-java-format, 2024[Ac-
cessed 04-22-2024].

[9] google-java-format (and removeunusedimports) broken on jdk 16+ (has workaround)
#834. https://github.com/diffplug/spotless/issues/834, 2024[Accessed 04-22-
2024].

[10] javaguide. https://google.github.io/styleguide/javaguide.html, 2024[Accessed
04-22-2024].

[11] junit5/gradle.properties. https://github.com/junit-team/junit5/blob/

46d0f80db0d6fc5faced28e9827683a09e7f8fb9/gradle.properties#L13, 2024[Ac-
cessed 04-22-2024].

[12] removeunusedimports fails on java 17 #871. https://github.com/diffplug/

spotless/issues/871, 2024[Accessed 04-22-2024].

[13] Spotless: Keep your code spotless. https://github.com/diffplug/spotless,
2024[Accessed 04-22-2024].

[14] Junit5. https://github.com/junit-team/junit5, 2024[Accessed 04-24-2024].

50

https://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
http://openjdk.java.net/projects/jigsaw/
https://github.com
https://github.com/Sable/soot/issues
https://github.com/cglib/cglib/issues/184
https://github.com/cglib/cglib/issues/191
https://docs.oracle.com/javase/specs/jvms/se21/html/jvms-5.html#jvms-5.4.4
https://docs.oracle.com/javase/specs/jvms/se21/html/jvms-5.html#jvms-5.4.4
https://github.com/google/google-java-format
https://github.com/diffplug/spotless/issues/834
https://google.github.io/styleguide/javaguide.html
https://github.com/junit-team/junit5/blob/46d0f80db0d6fc5faced28e9827683a09e7f8fb9/gradle.properties#L13
https://github.com/junit-team/junit5/blob/46d0f80db0d6fc5faced28e9827683a09e7f8fb9/gradle.properties#L13
https://github.com/diffplug/spotless/issues/871
https://github.com/diffplug/spotless/issues/871
https://github.com/diffplug/spotless
https://github.com/junit-team/junit5

[15] Code on the class path - the unnamed module. https://dev.java/learn/modules/

unnamed-module/, 2024[Accessed 04-28-2024].

[16] Java 9 migration guide: The seven most common challenges. https://nipafx.dev/

java-9-migration-guide/, 2024[Accessed 04-28-2024].

[17] Java platform, standard edition tools reference. https://docs.oracle.com/javase/

9/tools/java.htm#JSWOR624, 2024[Accessed 04-28-2024].

[18] Java platform, standard edition tools reference. https://docs.oracle.com/javase/

10/tools/java.htm#JSWOR624, 2024[Accessed 04-28-2024].

[19] Java platform, standard edition tools reference. https://docs.oracle.com/en/java/
javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE,
2024[Accessed 04-28-2024].

[20] Java platform, standard edition tools reference. https://docs.oracle.com/en/java/
javase/16/docs/specs/man/java.html, 2024[Accessed 04-28-2024].

[21] Java platform, standard edition tools reference. https://docs.oracle.com/en/java/
javase/17/docs/specs/man/java.html, 2024[Accessed 04-28-2024].

[22] A peek into java 17: Encapsulating the java runtime in-
ternals. https://blogs.oracle.com/javamagazine/post/

a-peek-into-java-17-continuing-the-drive-to-encapsulate\

-the-java-runtime-internals, 2024[Accessed 04-28-2024].

[23] Javaparser. https://github.com/javaparser/javaparser, 2024[Accessed 05-06-
2024].

[24] A. Buckley and M. Reinhold. JEP 396: Strongly Encapsulate JDK Internals by Default
— openjdk.org. https://openjdk.org/jeps/396, (Accessed on 04-28-2024), 2023.

[25] A. Buckley and M. Reinhold. JEP 403: Strongly Encapsulate JDK Internals — open-
jdk.org. https://openjdk.org/jeps/403 (Accessed on 04-28-2024), 2023.

[26] A. Dann, B. Hermann, and E. Bodden. Modguard: Identifying integrity & confidential-
ity violations in java modules. IEEE Transactions on Software Engineering, 47(8):1656–
1667, 2019.

[27] P. Deitel. Understanding Java 9 Modules. https://www.oracle.com/corporate/

features/understanding-java-9-modules.html, (Accessed on 04-28-2024), 2017.

[28] N. Ghorbani, T. Singh, J. Garcia, and S. Malek. Darcy: Automatic architectural in-
consistency resolution in java. IEEE Transactions on Software Engineering, 2024.

[29] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith. The
Java® Language Specification — docs.oracle.com. https://docs.oracle.com/
javase/specs/jls/se9/html/index.html, (Accessed on 04-24-2023), 2017.

51

https://dev.java/learn/modules/unnamed-module/
https://dev.java/learn/modules/unnamed-module/
https://nipafx.dev/java-9-migration-guide/
https://nipafx.dev/java-9-migration-guide/
https://docs.oracle.com/javase/9/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/9/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/10/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/10/tools/java.htm#JSWOR624
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE
https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate\-the-java-runtime-internals
https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate\-the-java-runtime-internals
https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate\-the-java-runtime-internals
https://github.com/javaparser/javaparser
https://openjdk.org/jeps/396
https://openjdk.org/jeps/403
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html

[30] H. Gu, H. He, and M. Zhou. Self-admitted library migrations in java, javascript, and
python packaging ecosystems: A comparative study. In 2023 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), pages 627–638.
IEEE, 2023.

[31] M. M. Hammad, I. Abueisa, and S. Malek. Tool-assisted componentization of java
applications. In 2022 IEEE 19th International Conference on Software Architecture
(ICSA), pages 36–46. IEEE, 2022.

[32] H. He, R. He, H. Gu, and M. Zhou. A large-scale empirical study on java library migra-
tions: prevalence, trends, and rationales. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 478–490, 2021.

[33] Y. He, Y. Chen, J. Ayala, Y. Zhou, Q. Wang, and J. Garcia. Breaking strong encapsu-
lation: A comprehensive study of java module abuse. 2024.

[34] L. Hendren. Uses of the Soot Framework. http://www.sable.mcgill.ca/~hendren/

sootusers/, 2018.

[35] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework for java program
analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop (CETUS
2011), volume 15, page 35, 2011.

[36] S. Mak and P. Bakker. Java 9 Modularity: Patterns and Practices for Developing
Maintainable Applications. ” O’Reilly Media, Inc.”, 2017.

[37] F. Massacci and I. Pashchenko. Technical leverage in a software ecosystem: Development
opportunities and security risks. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1386–1397. IEEE, 2021.

[38] M. R. H. Misu, R. Achar, and C. V. Lopes. Sourcererjbf: A java build framework for
large-scale compilation. ACM Transactions on Software Engineering and Methodology,
2023.

[39] A. K. Mondal, C. K. Roy, K. A. Schneider, B. Roy, and S. S. Nath. Semantic slicing
of architectural change commits: Towards semantic design review. In Proceedings of
the 15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 1–6, 2021.

[40] N. Parlog. Project Jigsaw is Really Coming in Java 9 — infoq.com. https:

//www.infoq.com/articles/Project-Jigsaw-Coming-in-Java-9/, (Accessed on 04-
22-2024), 2015.

[41] N. Parlog. The Java Module System. Simon and Schuster, 2019.

[42] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT SEN, 1992.

52

http://www.sable.mcgill.ca/~hendren/sootusers/
http://www.sable.mcgill.ca/~hendren/sootusers/
https://www.infoq.com/articles/Project-Jigsaw-Coming-in-Java-9/
https://www.infoq.com/articles/Project-Jigsaw-Coming-in-Java-9/

[43] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[44] R. Pressler and A. Buckley. JEP draft: Integrity and Strong Encapsulation — open-
jdk.org. https://openjdk.org/jeps/8305968, (Accessed on 04-22-2024), 2023.

[45] M. Shaw and D. Garlan. Software architecture: perspectives on an emerging discipline,
volume 1. Prentice Hall Englewood Cliffs, 1996.

[46] R. Taylor, N. Medvidovic, and D. E.M. Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons, 2009.

[47] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture: foundations,
theory, and practice. Wiley Publishing, 2009.

[48] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot: A
Java bytecode optimization framework. In CASCON First Decade High Impact Papers,
pages 214–224. IBM Corp., 2010.

[49] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu. An empirical
study of usages, updates and risks of third-party libraries in java projects. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages 35–
45. IEEE, 2020.

[50] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu, and S.-C. Cheung.
Do the dependency conflicts in my project matter? In Proceedings of the 2018 26th
ACM joint meeting on european software engineering conference and symposium on the
foundations of software engineering, pages 319–330, 2018.

[51] Y. Wang, R. Wu, C. Wang, M. Wen, Y. Liu, S.-C. Cheung, H. Yu, C. Xu, and Z. Zhu.
Will dependency conflicts affect my program’s semantics? IEEE Transactions on Soft-
ware Engineering, 48(7):2295–2316, 2021.

[52] Y. Wang, C. Xing, J. Sun, S. Zhang, S. Xuanyuan, and L. Zhang. Solving the depen-
dency conflict of java components: A comparative empirical analysis. In 2020 IEEE 6th
Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Confer-
ence on High Performance and Smart Computing,(HPSC) and IEEE Intl Conference
on Intelligent Data and Security (IDS), pages 109–114. IEEE, 2020.

[53] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, J. Wu, J. Sun, and Y. Liu. Software
composition analysis for vulnerability detection: An empirical study on java projects.
In Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 960–972, 2023.

[54] M. Zheng, J. Yang, M. Wen, H. Zhu, Y. Liu, and H. Jin. Why do developers remove
lambda expressions in java? In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 67–78. IEEE, 2021.

53

https://openjdk.org/jeps/8305968

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Motivation
	Organization of the Thesis

	Java Platform Module System and BSE Problem
	Overview of Java Platform Module System
	Module and Module Directives
	Unnamed Module

	Overview of Breaking Strong Encapsulation (BSE) problem

	Design Principles for Detecting Abuse Instances
	Module Abuse Instance Construction
	BEAD Detection Approach and Implementation
	Step 1: JDK Info Scanning
	Step 2: JDK Info Combining
	Step 3: Invocation Analysis
	Step 4: Abuse Instance Analysis

	Case Study: Evaluation of BEAD
	RQ1: JDK Module Interfaces Design
	RQ2: Result Analysis Of BEAD for Detecting BSE Abuse Instances
	RQ3: Detected JDK Abuse Instances and Commonly-Abused Packages
	Abuse Instances of Reflection
	Abuse Instances of Compile-Time Invocation

	RQ4: BEAD Against JDK Compiler's Abuse Detection
	Javac's Detection BSE Detection at Compile Time
	Detection of Reflection-Oriented BSE Abuse

	RQ5: Efficiency of BEAD

	Discussion
	Implications
	Threats to Validity

	Related Work
	Conclusion
	Bibliography

