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Reproductive clonality of pathogens: A perspective
on pathogenic viruses, bacteria, fungi, and
parasitic protozoa
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We propose that clonal evolution in micropathogens be defined
as restrained recombination on an evolutionary scale, with genetic
exchange scarce enough to not break the prevalent pattern of
clonal population structure, a definition already widely used for
all kinds of pathogens, although not clearly formulated by many
scientists and rejected by others. The two main manifestations of
clonal evolution are strong linkage disequilibrium (LD) and wide-
spread genetic clustering (“near-clading”). We hypothesize that
this pattern is not mainly due to natural selection, but originates
chiefly from in-built genetic properties of pathogens, which could
be ancestral and could function as alternative allelic systems to
recombination genes (“clonality/sexuality machinery”) to escape
recombinational load. The clonal framework of species of pathogens
should be ascertained before any analysis of biomedical pheno-
types (phylogenetic character mapping). In our opinion, this model
provides a conceptual framework for the population genetics of
any micropathogen.

molecular epidemiology | infectious disease | selfing

In the last two decades, the population genetics and evolution of
pathogens have received much deserved attention. Impressive

progress has been achieved through the development of whole-
genome sequencing (WGS), bioinformatics, and other powerful
molecular technologies. This progress has made it possible to
explore, in depth, the central question of genetic exchange in
pathogens, the issue of clonality vs. sexuality, which emerged
in the 1980s, both in parasitic protozoa (the “clonal theory of
parasitic protozoa”) (1–3) and in bacteria (4–6). We seek to up-
date the terms and interpretations of the controversy. Compart-
mentalization among researchers working on different pathogens
has resulted in misinterpretations, semantic confusion, and dif-
ferent methods of analysis that often reflect idiosyncratic prac-
tices among different scientific communities, rather than distinctive
evolutionary features.
We analyze population genetic data for bacteria (48 species)

(4–82), fungi and yeasts (9 species) (83–93), parasitic protozoa
(21 species) (1–3, 94–162), and viruses (11 species or categories)
(163–188) (Table S1). There are striking evolutionary similarities
among different kinds of pathogens, which are obscured by
compartmentalization. We propose ways of consolidating the
different approaches and of exploring whether similar evolu-
tionary strategies represent ancestral characters or convergent
evolution. We summarize the implications for applied research
(including taxonomy, molecular epidemiology, medical characters,
and experimental evolution).

Definition of Clonal Evolution: Restricted Genetic
Recombination
In our early papers dealing with the clonality/sexuality issue in
parasitic protozoa and fungi (1–3), we advanced an unambiguous
definition of clonality/clonal evolution. It did not refer to the cy-
tological mechanism of reproduction, but rather to the population

structure that results from an absence or restriction of genetic
recombination. Clonal population structure was defined in terms
of genetic clonality, not cytological or physiological clonality.
Moreover, we insisted that clonality does not mean total absence
of recombination, but that it is too rare to break the prevalent
pattern of clonal population structure (123, 189–194). A similar
view was advanced for bacteria (4–6).
This definition is widely accepted in papers dealing with the

population structure of pathogens: to wit, papers dealing with
(i) general population genetics (195–197); (ii) all kinds of patho-
gens (89, 198); (iii) bacterial species (7, 12, 13, 30, 35, 72, 199–204),
including Borrelia (18), Burckolderia pseudomallei (19, 20),
Campylobacter jejuni (21), Escherichia coli (26, 27), Legionella
pneumophila (36, 38), Mycobacterium tuberculosis (45, 48), Neisseria
meningitidis (51, 54, 62), Pseudomonas aeruginosa (63, 65), Pseu-
domonas syringae (66), Salmonella typhi (68), Staphylococcus aureus
(68, 70), Streptococcus epidermitis (70), Streptococcus pneumoniae
(77), Xanthomonas campestris (81), and Yersinia pseudotuberculosis
(82); (iv) fungi (83, 88, 205); (v) parasitic protozoa, including
various apicomplexa species (95), Cryptosporidium parvum (97),
Giardia species (98, 99, 101), Leishmania chagasi (113), Perkinsus
marinus (119), Plasmodium falciparum (121, 124, 130), Toxoplasma
gondii (83, 136, 139–142), Trypanosoma brucei gambiense (146), and
Trypanosoma cruzi (149, 154, 155); and (vi) viruses (172, 178, 206).
The cited papers consider restrained recombination as the

main criterion for clonality, without necessarily implying that the
species under study are clonal. Often, clonality, lack or scarcity of
recombination, and asexuality are appraised to be interchangeable
notions (12, 30, 60, 63, 65, 71, 83, 87, 89, 91, 96, 98, 99, 130,
195–198, 207, 208). We have argued a related notion (i.e., a con-
sequence of restrained recombination) (193, 194), namely that
clonality obtains wherever the offspring cells show multilocus
genotypes (MLGs) that are identical or nearly so (as ascertained
using genetic tools of adequate resolution) to those of the parental
cells (112, 195, 197, 208–210).

Clonality vs. Selfing/Homogamy
We have repeatedly considered selfing/strong homogamy as par-
ticular cases of clonality (2, 3, 123, 161, 190, 193, 194) and not as
distinct evolutionary processes, a consideration shared by authors
dealing with fungi (88, 205, 211) and parasitic protozoa (95, 96,
99, 109, 119, 121, 124, 130, 133, 135, 137, 139, 142, 148). Other
authors, mainly working with Leishmania species (107, 111, 115,
116, 212) but also with T. cruzi (153) and fungi (87, 197), assert,
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however, that clonality should be distinguished from selfing/
inbreeding and that clonality should be limited to “strict” clonality,
that is, mitotic propagation. This restricted meaning is a matter of
definition. Our opinion is that the broader definition of clonality,
proposed by us and shared by most authors, which includes selfing/
homogamy, should be privileged for several reasons: (i) The
evolutionary consequences of strict clonality and strong selfing/
homogamy are similar, in that they lead to linkage disequilibrium
(LD) and the propagation of unchanged MLGs; (ii) restrained
recombination is the important consideration in applied research,
such as molecular epidemiology (strain tracking and typing) and
tracing of genes of interest; (iii) although homogamy/selfing
occurs in bacteria (51, 58, 199, 200, 213) and probably in viruses,
most authors do not distinguish it from clonality; indeed, in the
case of haploid organisms, the distinction is not relevant; (iv) most
importantly, the population genetic means for distinguishing
strict clonality from selfing/homogamy are questionable, because
they rely on segregation tests designed mainly for diploid met-
azoa (107, 111, 115, 116, 148, 195, 197, 208, 209, 212, 214, 215).
The common observation is a deficit of heterozygotes, although
it is argued that strict clonality (mitotic propagation) should lead
to an excess, not a deficit of heterozygosity.
The following considerations are relevant to point iv: (a) Several

causes, in addition to selfing/homogamy, can lead to heterozygote
deficit, including genome-wide mitotic gene conversion (153, 211),
null alleles, allelic dropout, homoplasy (of major consequence
when microsatellites are concerned) (108, 137, 139, 216, 217),
natural selection, and the Wahlund effect. The probability of
these factors should not be evaluated separately (107, 111, 115,
116, 148, 212), because they are not mutually exclusive. (b) Deficit
of heterozygotes, inferred from microsatellite analysis, clashes
with single-nucleotide polymorphism (SNP) data for Leishmania
mexicana and Leishmania braziliensis (106) and T. cruzi (160),
where an excess of heterozygotes is recorded. However, selfing/
inbreeding should also lead to a heterozygote deficit for loci
showing SNPs. (c) InGiardia intestinalis/duodenalis, heterozygote
deficit has been considered an indication of ancient clonal evolution
by purifying selection/gene conversion, whereas heterozygote excess
is evidence for a recent sexual event/hybridization (98). (d) Experi-
ments in Daphnia pulex, which is strictly asexual, have shown that a
loss of heterozygosity by mitotic recombination is 1,000 times more
frequent than an accumulation of divergent mutations (218). (e)
Most important is the assumption of diploidy. In Leishmania,
genomic studies strongly suggest that these organisms are highly
aneuploid (106, 109, 117), which is also suggested by recombination
experiments (219). Aneuploidy is inferred or strongly suspected in
Candida albicans (211), Phytophtora andina (91), G. intestinalis
(100, 103), Trypanosoma congolense (148), and T. cruzi (150, 151,
155). For the reasons given (a–e), conclusions about selfing/
homogamy in parasites are questionable and should thus simply
be considered as particular cases of clonality.

Clonality vs. Genetic Monomorphism
Sometimes “clonal” is understood, at least implicitly, as “genetically
monomorphic” (10, 17, 45, 89, 119, 177, 196, 198, 220). This
inference should be avoided because it is confusing when the issue
at hand relates to the extent of recombination. Sexual species can
be extremely monomorphic, due to recent origin and/or founder
effects. Moreover, highly clonal pathogens, such as T. cruzi, exhibit
considerable genetic polymorphism (1). In the absence of genetic
polymorphism, no population genetic test or phylogenetic analysis
is feasible, and it is unknown whether the species undergoes
genetic recombination or not.

Main Features of Clonal Evolution
The main features of clonal evolution follow from its defini-
tion as “strongly restrained recombination.” Most obvious is the
propagation of persistent multilocus associations, which are stable

in space and time and most significant in cases of widespread
clones over several continents and many years. This is observed
(i) in bacteria, Bartonella bacilliformis (15), Bartonella quintana (17),
L. pneumophila (38), M. tuberculosis (44), N. meningitidis (49, 51,
58, 62), P. aeruginosa (63–65), P. syringae (66), S. pneumoniae (77),
Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus (80), and
X. campestris (81); (ii) in fungi, Candida dubliniensis (87); and (iii)
in parasitic protozoa, T. cruzi (1), Leishmania donovani complex
(2), and T. gondii (139, 141, 142). These widespread clones are
“superspreaders,” or “successful clonal genotypes,” highly relevant
for epidemiological surveillance and molecular epidemiology.
Epidemiologically and evolutionarily highly relevant, but less

intuitive, is the widespread occurrence of distinct clusters of gen-
otypes (202), with an overdispersion of genetic distances between
isolates (72), which are stable in space and time (sometimes, over
several years and continents) and not imputable (or not only) to
isolation by distance/time (Wahlund effect). Many bacteria show
many examples of such population structure: Bacillus anthracis (10),
Bacillus cereus (11), Bartonella henselae (16), Borrelia burgdorferi
(18), Campylobacter coli (21), Enterococcus faecium (22, 23),
E. coli (6, 25–27, 29, 31–33), L. pneumophila (37), Listeria
monocytogenes (40, 41), Listeria ivanoii (40),Mycobacterium bovis
(42), M. tuberculosis (42–45), N. meningitidis (46, 51–56, 58–62),
P. aeruginosa (63–65), P. syringae (66); Salmonella enterica (67),
S. aureus (23, 69, 70), S. pneumoniae (73, 74, 76, 78), Streptococcus
mitis, Streptococcus oralis, Streptococcus pseudopneumoniae (73),
Streptococcus pyogenes (79), V. vulnificus (80), X. campestris (81),
Yersinia pestis (43), and Y. pseudotuberculosis (82). In fungi, such
population structure is found in C. albicans (84, 86), Cryptococcus
gattii (88), Cryptococcus neoformans (89), and Fusarium oxysporum
(90). In parasitic protozoa, similar widespread population structure
has been reported for G. intestinalis (99, 100, 104), L. donovani
(108, 110, 111, 113, 216), Leishmania tropica (118), T. gondii (95,
134, 136, 139–141), Trypanosoma brucei (143–145), and T. cruzi
(149, 151–154, 157, 160, 161, 194). In P. falciparum, clustering is
apparent, although unstable in time (124). Widespread and stable
clustering is found in viruses, particularly in RNA viruses, when
taking into account the extremely rapid turnover of their geno-
types. Structuring is clear in (i) RNA viruses: Chikungunya virus
(169), coronaviruses (171), dengue virus (172–174), Ebola virus
(175), Enterovirus echovirus (176), hepatitis C virus (177, 179),
hepatitis E virus (180), HIV (170, 181), rabies virus (185, 186),
and West Nile virus (187, 188); and (ii) DNA viruses: hepatitis B
virus (164), Varicella zoster virus (168), and variola virus (167).
Three pertinent remarks about clustering in pathogens are that

(i) in some cases, it concerns “microclustering,” revealed by highly
resolutive markers within species that appear poorly polymorphic
with less resolutive markers (10, 42, 43) or within larger clusters
(154, 157); (ii) it is observed in species, such as N. meningitidis
(52, 58) or S. pneumoniae (13), in which genetic recombination is
considered frequent; and (iii) because clustering is omnipresent
in all kinds of pathogens, including viruses, bacteria, fungi, and
parasitic protozoa, it is misleading to describe new species only on
the basis of the clustering/phylogenetic background, as this would
lead to a cumbersome inflation of the number of named “species.”

Criteria to Identify Clonality/Restrained Recombination
Clear criteria for defining clonal population structure are sorely
needed. Examples negating clonality use subjective expressions such
as “strong influence of recombination” (15), “highly recombining”
(20), “far from being a clonal species” (36), “extensive genetic ex-
change” (58), and others. We propose to put the cursor of clonality
where two main, complementary, linked, criteria are the case:
(i) strong LD and (ii) clear phylogenetic signal.

i) LD, or nonrandom association of genotypes at different loci,
was circumstantial evidence for clonality in early papers (1–6).
It is considered unreliable to explore the mating system of
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pathogens in several papers (12, 195, 208, 209, 212, 214, 215).
Apart from the classical biases that could lead to LD (Wahlund
effect) (3), the reason invoked is a lack of resolution (147).
Sometimes, the clonality hypothesis, based on LD analysis, is
considered spurious due to a lack of resolution of the genetic
markers used (111, 212). However, a lack of resolution favors
the null hypothesis of panmixia, by increasing the risk of type
II error. Segregation tests that explore allele distribution at
given loci are often preferred to LD analysis, although, with
eukaryotic pathogens, the results of such tests are questionable
(section on Clonality vs. Selfing/Homogamy).

Criticisms against LD statistics are exaggerated. First, when
the consensus definition of clonality is accepted (strongly re-
stricted genetic recombination), LD is the adequate statistic to
explore it, because it has been precisely designed to ascertain
recombination or a lack thereof; segregation tests are useless
for this purpose. Second, evidencing the presence and stability
in space and time of multilocus associations is the very goal of
molecular epidemiology (strain tracking) (193). LD tests are
adequate tools; segregation tests are not. Third, if a suitable
range of markers is used, LD becomes extremely powerful to
provide evidence of departures from panmictic expectations
and restrained recombination (2, 3). Fourth, LD analysis can
be used whatever the ploidy is of the organism, even if it is
unknown, and even without identifying individual alleles (190).
Therefore, LD is more robust than segregation analysis, be-
cause it requires fewer working hypotheses.
Several authors consider LD reliable for exploring the pop-

ulation structure of pathogens and other organisms (37, 48, 53,
59, 62, 66, 70, 81, 136, 201, 205, 207, 213, 221). A widely used
measure of LD is the “index of association” (IA) test (203). In
previous investigations, we proposed the use of tests (2, 3) that
yield equivalent results as IA statistics (123). Other LD tests are
the g test (2, 3) or correlation between independent sets of
genetic markers and the composite genetic equilibrium test
(205), an adaptation of the IA test for diploid organisms.

ii) Strong phylogenetic signal. To evaluate the strength and per-
sistence, in space and time, of clonal evolution, LD analysis
should be complemented by a strong phylogenetic signal, which
provides evidence of clonal population structure. Tests, such as
BAPS (73), CLONALFRAME (11), and STRUCTURE (67),
are able to detect clear structuring and provide phylogenetic
signal. Standard phylogenetic tests can also be used.
Whatever the tests used, evidence for strong phylogenetic signal

should not rely on strict cladistic expectations, because some re-
combination is likely present in most species of pathogens. Rather,
the evidence should be based on a flexible application of the
congruence principle (222), which asserts that additional evidence
will lead to convergent conclusions, whenever the working hy-
pothesis is valid. Approaches based on the congruence principle
can be, for example, based on our g test (2, 3). If two or more
different sets of genetic markers yield converging phylogenies, they
reveal a clear phylogenetic signal. This has been observed in (i)
bacteria: B. bacilliformis (15), B. henselae (16), E. coli (25, 31), L.
monocytogenes (41), M. bovis (42), M. tuberculosis (45, 48),
N. meningitidis (52, 55), P. aeruginosa (63, 64), S. aureus (70), and
S. pneumoniae (75); (ii) fungi: C. albicans (84, 86) and F. oxysporum
(90); (iii) parasitic protozoa: L. donovani (109, 110, 114), T. gondii
(136), and T. cruzi (3, 151, 152, 158, 159); and (iv) viruses:
Echovirus (176).
Sometimes, discriminating markers reinforce the phylogenies.

For N. meningitidis (54), S. pneumoniae (78), and B. pseudomallei
(20), bacteria assumed to frequently recombine, WGS established
clear deep phylogenies, which was not possible with multilocus
sequence typing (MLST).
The “extended g test” we proposed (190) looks for congruence

between different loci for the same marker. Looking for congru-

ence between different loci by MLST is analogous to the extended
g test. However, expecting exactly the same evolutionary history at
all loci (60) is an excessive demand for pathogens, because some
recombination occurs in most, if not all, species. If the phylogeny
gets reinforced as additional loci are considered, it is a manifes-
tation of a strong phylogenetic signal and, hence, of clonal evo-
lution. According to the “semiclonal model” (60), recombination
should not erase the impact of clonality in the short term (years
or decades), but it would in the long term. It is analogous to the
“epidemic clonality model” (203). A clear phylogenetic signal,
revealed by plotting together the data from different MLST loci, is,
therefore, not compatible with this model. For example, by con-
catenating the sequences from different MLST loci, one “buffers”
the effects of limited recombination (81, 223). More than “masking”
recombination (142), this approach reveals a hidden phyloge-
netic signal. Another approach, based on the congruence prin-
ciple, is the use of various tests and software on the same dataset
(20, 26, 81, 82). If there is a clear phylogenetic signal, the results
should converge.
When bacteria are concerned, a phylogenetic signal should

first be sought in the core genome, rather than in the dispensable
genome (28). This process evidences a “clonal backbone” (66),
“vertically inherited DNA” (31), or “genomic signature” (213).
Genes under selective pressure may distort the phylogeny of
clonal descent (201). Whatever the organism, phylogenies should
be explored using genes that are not subject to strong selection.

Sampling Strategies
Appropriate sampling is crucial for exploring population structure.
Some authors recommend starting with the smallest possible scale
of time and space, such as, for example, individual organs (196,
199, 214), to avoid, as much as possible, the Wahlund bias.
Sampling at the smallest scale possible is a wise strategy when
focusing on the precise mating system of a species. However,
when exploring population structures in the long term, we rec-
ommend also using the opposite strategy, i.e., taking a birds-eye
view of genetic variability over years and continents, from dif-
ferent hosts and ecosystems (190). This complementary strategy
yields a robust picture of a species population structure in the
long run. Consistent patterns observed in different places and
years apart are a strong indication of stable intraspecific genetic
variability. Retrospective studies of old publications and/or an-
cient collections of strains are useful. For example, recent studies
(25, 27, 32) have corroborated the evidence from ancient studies
of E. coli (4, 6), indicating a strong stability of the genetic clustering
for this species. The same comment applies to N. meningitidis (52,
55, 59, 62) and T. cruzi (1, 149, 159, 161, 191). Also, the population
structure of L. tropica in Asia has been stable for at least 55 y
(118). Studies of P. aeruginosa over 125 y have shown the per-
sistence over many years of worldwide clones (63). Chikungunya
virus phylogroups and subgroups show strains that have been
sampled over many years (169). “Clade” distribution of dengue
virus in Vietnam appeared to be stable from 2003 to 2008 (173).
Another point is the number of isolates that should be obtained

from a given host at a given time. A simulation study (224) sug-
gests that sampling only one isolate per host in a clonal species
would mimic recombination, whereas the contrary would obtain
in a recombinant species. This claim has not been confirmed by a
study on C. albicans (85), which involved 5–10 isolates per pa-
tient. Plotting together the results from all isolates led to low-
ering the level of LD. A microsatellite study on T. cruzi (155) has
shown that original, noncloned isolates yielded the same results
(heterozygosity, LD) as individually cloned stocks obtained from
the same isolates.
A widely used sampling strategy is to apply population genetic

tests, first on the whole sample and then within each of the
genetic clusters that subdivide it (88, 115, 148, 157). The working
hypothesis is that gene flow is inhibited between the clusters, but
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not, or less, within each of them. This strategy is informative, but
has a risk of type II error. Apparent lack of departure from
panmixia could be due to lack of sufficient genetic information.
With this strategy, evolutionary levels are shifted. Consequently,
genetic markers with a “faster molecular clock” and higher
evolutionary/mutation rate should be used. MLST of individual
sequence types (ST) in apparently monomorphic bacterial spe-
cies using increasingly finer genetic markers (WGS/SNP) reveals
additional microclusters within them (10, 43).

Semantics
The literature of pathogen population genetics abounds with a
heterogeneous (and confusing) nomenclature that does not evi-
dence different evolutionary entities, but rather the idiosyncra-
sies of different communities of researchers working on different
pathogens. Some standardization is desirable, because similar
names should be given to similar evolutionary entities, whatever
the organism. Stable genetic subdivisions that manifest clonal
evolution most probably represent similar evolutionary entities,
whatever the species of pathogen. However, such entities have re-
ceived various names, including (i) bacteria: clades (11, 21, 25, 29,
32, 52, 66, 67, 74, 76), clonal complexes (21, 23, 35, 51, 55, 61, 63–
65), clonal lineages (204), clusters (10, 14, 37, 73, 77, 80, 81), genetic
groups (81), genoclouds (24), groups (10, 31, 33, 44, 67), and
lineages (7, 41, 43, 53, 67, 78, 200); (ii) fungi: clades (86), clonal
lineages (91), and clusters (90); (iii) parasitic protozoa: assemb-
lages (99–101, 104), clades (113, 125, 126), clonal lineages (95,
136, 139, 140), clusters (111, 143), discrete typing units (DTUs)
(149, 151, 152, 156, 160, 161, 191), groups (127), and types (141);
and (iv) viruses: clades (173, 176, 179, 180, 185–188), clusters
(176), genogroups (176), genotypes (164, 174, 177, 179, 180),
major genotypes (178), major lineages (187), and phylogenetic
groups (171). In addition to this semantic confusion, some spe-
cies described in Leishmania (102, 216), Plasmodium (125, 126,
129), and Pneumocystis (92, 93) likely amount to only genetic
subdivisions resulting from clonal evolution/restrained re-
combination. Caution is also warranted in relation to identify-
ing new Plasmodium species exclusively on the basis of
phylogenetic grounds (132).
It is a major challenge to unify a nomenclature reflecting dif-

ferent views, traditions, opinions, and schools of thought of various
“groups” of researchers, who tackle similar problems. The term
clade should be dismissed for referring to the genetic subdivisions
discussed in this article. A clade has only one ancestor and evolves
separately from other clades. However, clonal evolution coexists
with some horizontal transfer/genetic exchange in all pathogens.
Genetic subdivisions are the result of clonal evolution, “purifying”
selection, and some genetic exchange, processes that have variable
consequences in different species. “Near-clades” could be appro-
priate for species in which a strong phylogenetic signal has been
shown, but in which genetic recombination most probably occurs.
Clonal genotypes characterized by given genetic markers,

whether MLST, SNPs, or multilocus enzyme electrophoresis, are
misleadingly called “clones” (55, 64, 65, 69, 108). Using markers
with greater resolution might reveal additional variability within
clonal genotypes (10, 80, 142). The term “clonet,” coined by us
(194), is appropriate to describe genotypes characterized by a
given genetic marker in a predominantly clonal species. It is in-
appropriate to consider microsatellite genotypes as real clones
(208). Using more microsatellite loci or even more discriminating
markers (e.g., variable surface antigen genes) might uncover ad-
ditional variability within them. Long ago, we asserted (158) that
only WGS would provide definitive evidence of real clones. This
desideratum has now acquired currency (23, 28, 74, 201, 225, 226).

Evolutionary Significance of Clonal Evolution
Near-clades plus restrained recombination: Are they natural
selection or in-built genetic mechanisms?

The occurrence of near-clades is widespread in many pathogens,
including some considered as frequently recombining (21–23, 40,
55, 63, 78). Stable near-clades are observed as well in viral species
(164, 165, 167–177, 179–181, 185–188), when taking into ac-
count the rapid turnover of viral genomes. In many species,
recombination is severely restricted, leading to the propagation
of stable multilocus associations (clones), which could be (i) the
result of drastic natural selection acting on an otherwise quasi-
freely recombining species or (ii) specific genetic mechanisms that
inhibit recombination.
A major role for natural selection has been claimed to explain

the persistence of clonal complexes and hypervirulent lineages
in N. meningitidis (9, 51, 53, 55, 58, 62). Allegedly, natural se-
lection is the factor shaping these persistent complexes and lineages
over long time spans, wide geographical ranges, and diversified
ecosystems in an otherwise close-to-panmictic species. This ac-
count is unlikely. Indeed, other authors have considered that the
evolutionary pattern of N. meningitidis is compatible with neutral
evolution (47, 54). If selection were the main factor explaining
predominant clonal evolution, this would require the elimination
in each generation of most possible MLGs, which would become
a considerable genetic load (190). The clonal model that we pro-
pose (2, 3, 194) infers upstream inhibition of recombination (by
in-built genetic mechanisms), rather than downstream elimina-
tion by “purifying selection,” even though selection might play
a role. We propose that pathogens have evolved inhibited re-
combination as an evolutionary strategy, mainly to avoid the re-
combinational load (disrupting favorable multilocus associations)
(227, 228). The genetic systems that restrain recombination could
be alternate allelic variants to genetic mechanisms favoring
recombination, like a “clonality/sexuality repertoire toolkit,”
by analogy with the meiosis toolkit observed in Giardia and
Trichomonas vaginalis (207). Systems that restrain recombination
amplify the effects of natural selection (coadapted multigenic
complexes) (222). Retaining sex (83) might yield fitness benefits.
In-built mechanisms for restraining recombination do exist in

bacteria, in which the frequency of recombination is often in-
versely proportional to the genetic distance between genotypes
(11, 14, 61, 200). There may be a threshold of genetic divergence
beyond which a species would tend to clonality (72). “Illegitimate”
recombination between DNA sequences that are excessively dif-
ferent could be hampered by mechanical obstacles (21, 36, 229).
In N. meningitidis, restriction systems would be more similar
between similar genotypes than between distant ones, favoring
homogamy (51, 54, 58, 62). In S. enterica, differences in mis-
match repair systems could inhibit recombination between gen-
otypes that are too different (67). In-built genetic mechanisms
for restrained recombination have been inferred in viruses (172,
206). Recombination happens more readily between more similar
genotypes in adenoviruses (163) and picornaviruses (183). The
“complexity hypothesis” states that recombination is inhibited for
genes involved in complex, conserved processes (213). Experi-
ments provide support for this hypothesis in viruses (166). Genetic
mechanisms for recombination inhibition may also exist in fungi
and parasitic protozoa, in which clonal evolution is widespread.
Recombination seems easier between closely related genotypes
pertaining to the same near-clade in both fungi (88) and parasitic
protozoa (102, 104, 150). As in bacteria (51, 54, 58, 62) and
viruses (163, 183), there may not be a clear-cut border between
sexuality and clonality in some cases, but rather a progressive
development of restrained recombination (“progressive clonality”)
(190). Are such hypothetical “clonality/sexuality genetic mecha-
nisms” ancestral in pathogens or did they evolve independently
in different groups of pathogens?

Recombination: What Is It Good for?
An evolutionary explanation of recombination is that it generates
new multilocus combinations, some of which increase adaptation.
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This hypothesis is retained for some viruses (166, 184, 186) and
bacteria (30, 66). Other authors propose that recombination is
a by-product of other processes, both in viruses (172) and in
bacteria (213). The main role of recombination would be DNA
repair (58, 195, 228). It has been even proposed that DNA repair
could be the ancestral mechanism of the general process of
sexuality (228). In Giardia, the meiosis machinery would be ho-
mologous to DNA repair bacterial genes (228). Recombination
in viruses and bacteria might be ancestral for sexuality in eukar-
yotes (198, 228). By analogy, we suggest that genetic mechanisms
to restrain recombination or, more generally, to keep a balance
between clonality and recombination, could be ancestral from
viruses to bacteria and to eukaryotic pathogens. Rather than a
sexuality machinery (207), pathogens would be equipped with a
“clonality/sexuality machinery” that would allow them to play on
a double keyboard to face evolutionary challenges.
Clonal evolution complemented with occasional recombination

is advantageous to many pathogen cases by stabilizing favorable
multilocus associations. In T. cruzi, it is remarkable that hybrid
genotypes stabilized by clonal evolution have become super-
spreaders in humans in the southern range of Chagas disease
(102, 152, 156, 161, 194). A similar state of affairs may be the case
in Giardia (98), Leishmania (102, 111, 194, 216), Perkinsus (119),
Toxoplasma (134, 136, 139, 207), C. neoformans (89), P. andina
(91), and S. aureus (70). The limited impact of recombination in
a clonal species attenuates the drawbacks of long-term clonality
(Müller’s ratchet) (207).

Implications for Applied Research
The model of clonal evolution provides a backbone for applied
research dealing with pathogens (molecular epidemiology, clinical
studies, vaccine and drug design, and experimental evolution).
The search for the phylogenetic signal and the design of a
clear phylogenetic framework should precede investigation of
the epidemiological/biomedical properties of the species under
study, in a phylogenetic character-mapping (PCM) process (222,
230). “Placing evolutionary changes in their clonal context pro-
vides the power to relate phenotype to genotype” (ref. 46, p. 1).
“Phylogenies provide the ability to predict phenotypic and ge-
notypic traits” (ref. 217, p. 1010).
Flexible phylogenetic analysis based on genes that do not un-

dergo strong selection constitutes an objective and reliable criterion,
highly standardizable and applicable to any organism. This is not
the case for ecological parameters (14), which are subjective and
could be innumerable. Integrated approaches based on many
characters (transcriptome plus proteome plus metabolome plus
functional studies) (23) are difficult to interpret in phylogenetic
terms. We advocate a hierarchical approach, with population
genetics/phylogenetic analysis coming first.

Some Illustrative Cases
N. meningitidis. This bacterium has been considered the paradigm
of “semiclonal evolution” (60) or “epidemic clonality” (203).
Recombination would erase the impact of clonality in the long
run. This claim is contradicted by evidence of a clear phyloge-
netic signal (52, 54). Moreover, the “hyperinvasive lineages,”
confirmed by several kinds of genetic markers (55, 62), show
remarkable stability over years and continents (51, 53, 55, 58, 62,
201) and a strong association with virulence phenotypes (61) and
antigen polymorphism (53, 58–60). According to the criteria
we are advancing, N. meningitidis should be considered definitely
clonal, despite indications of frequent recombination (13).

E. coli. The same is even more the case for E. coli, which, because
of the retrospective analysis of pioneering studies (4, 6), has been
shown to exhibit a striking persistence of near-clading features,
corroborated by several kinds of genetic markers (25). Near-
clades have been identified in environmental strains, questioning

the limits of the species (29, 32). It is remarkable that biological
phenotypes show a strong correlation with the genetic sub-
divisions evidenced by genetic markers (231). N. meningitidis
and E. coli are both clonal, but the impact of recombination is
stronger in the former (13).

T. cruzi. The agent of Chagas disease shares many evolutionary
features with E. coli. Whatever the ecosystem considered, T. cruzi
populations always display strong LD (1–3, 158, 194), involving
different genetic markers (151, 158, 159). Its subdivision into six
stable near-clades or DTUs (191) has been corroborated (149,
152, 160, 161). Additional subdivisions can be evidenced by
high-resolution markers (154, 157). It is not the case that re-
combination is “of little consequence” (156) in this parasite. On
the contrary, it is most probable that it plays an important role on
an evolutionary scale (194). However, it is not frequent enough
to break the prevalent pattern of clonal evolution (1–3, 158, 194).
Experimental recombination has been obtained (150), and genetic
exchange in nature has been inferred in localized cycles (157),
which illustrates two important facets of the clonal model:
(i) Successful recombination experiments say nothing about the
frequency of these events in nature, but show that the potenti-
ality for genetic exchange is present; and (ii) the clonal model is
compatible with limited genetic exchanges.
The evidence gathered to infer selfing/homogamy in the case

of Leishmania, mainly heterozygote deficit, is present in T. cruzi
and consistent with widespread clonality (155). Heterozygote
deficit has been attributed to genome-wide mitotic gene con-
version (153). It can be recalled that SNP characterization (160),
contrary to microsatellites (155), shows an excess of hetero-
zygotes in T. cruzi. Finally, although less definitive evidence is
available, like for Leishmania, aneupolyploidy can be suspected
in T. cruzi (151, 155), which casts doubt on tests based on the
hypothesis of diploidy.

Leishmania. In Leishmania, selfing/homogamy and strict clonality
have been considered antithetical (107, 111, 115, 116, 212). We
have explained here and in former studies (123, 193, 194) that
selfing/homogamy is a particular case of clonality, not contrary
to it. Moreover, convergent evidence for widespread aneuploidy
(106, 109, 117) challenges the tests seeking to distinguish between
selfing/homogamy and strict clonality, all based on the hypothesis
of diploidy. We rank Leishmania species as predominantly clonal
organisms (2, 3, 190, 192–194), a view shared by others (106, 109,
112, 118).
The observation of both heterozygote deficit and lack of LD

in Leishmania guyanensis (116) is puzzling, because the two
features should be incompatible. If genetic exchange is frequent
in the populations surveyed, as proposed (116), lack of LD
suggests high rates of recombination, not selfing. However, high
recombination should lead to Hardy–Weinberg equilibrium at
individual loci, not heterozygote deficit, whereas strong selfing
should generate LD. A possible explanation is that the apparent
low LD is due to the saturation of the marker, with a fast mo-
lecular clock generating too much variability, a frequent situation
with microsatellites (“loci mutationally saturated”) (108, 216, 217).
This saturation could mimic sexuality/recombination (137): Even
if the species is clonal, all, or almost all, isolates might exhibit
a distinct MLG (220). As noted, it can be suspected that some
or most of the many species of Leishmania (102, 216) are the
evolutionary equivalents of near-clades described in species such
as T. cruzi (161) or G. intestinalis (101, 104).

P. falciparum and T. gondii. These two apicomplexan parasites
were traditionally considered as obligatorily sexual. We proposed
that both P. falciparum (2, 3, 123, 232) and T. gondii (3) undergo
clonality in some cycles. In T. gondii, this hypothesis has been
confirmed by studies showing the existence of near-clades (133–
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142, 233), which have a hybrid origin further stabilized by clonal
propagation. The impact of clonality and recombination is dif-
ferent between cycles; recombination is more frequent in South
America (135, 137). In the Toxoplasma literature, selfing/homogamy
is not distinguished from clonality.
In P. falciparum, the “panmictic hypothesis” (234) is now con-

sidered as “oversimplified” (83) and has been challenged by
studies showing clonality in particular populations (120, 121, 130).
The hypothesis that apparent clonality in P. falciparum could
be explained by little opportunity for mating in low transmission
cycles (120) has not been confirmed. Clonality is also recorded in
high transmission cycles (121, 124). In contrast to other pathogen
species, P. falciparum does not show a clear structuration into
near-clades. Some structuring has been shown in Peruvian pop-
ulations (124), but these subdivisions seem to be unstable, al-
though they introduce a notable stratification of the parasites. It
remains to be explored whether the groups and new species
described in Plasmodium parasites mainly on the basis of phy-
logenetic criteria (122, 125–128, 131, 132) could be better con-
sidered as evolutionary equivalents to the near-clades of other
species of pathogens.

Conclusion and Perspectives
We have advanced a clonal evolution model, based on a simple
definition (restrained recombination on an evolutionary scale)

and relying on clear criteria, namely strong LD and a distinct
phylogenetic signal. It remains to be ascertained, by compara-
tive studies, whether the evolutionary strategies discussed are
also found in free-living microbes.
Our knowledge of the population genetics and evolution of

pathogens will further advance through the use of powerful new
technologies, including WGS, and innovative and effective com-
puter programs for the analysis of data produced using these
technologies. MLST has made a considerable contribution to this
field of research (60). WGS, with a much higher resolution than
that of MLST (68), is becoming a commonly used tool; and the
sequencing of hundreds of strains might be within reach in the
near future (217). WGS permits the definition of SNP markers
(217, 225), provided that the phylogenetic discovery bias (also
called ascertainment bias) is avoided (43, 199, 204, 217). WGS
will make it possible to dissect the recombination/hybridization
phenomena, which seem to be a major evolutionary strategy of
many species of pathogens (91, 98, 163). WGS may soon become
a standard approach for studying the molecular epidemiology of
viruses (170), which are easy and rapid to sequence because of
their small genomes. Finally, WGS might make it possible to
ascertain whether the many cases of near-clading that we have
discussed here correspond to similar evolutionary entities and
also to disentangle the confusing terminology that hampers the
development of the population genetics of pathogens.
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