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RESEARCH ARTICLE Open Access

The application of a neural network to
predict hypotension and vasopressor
requirements non-invasively in obstetric
patients having spinal anesthesia for
elective cesarean section (C/S)
Irwin Gratz1*, Martin Baruch2, Magdy Takla1, Julia Seaman3, Isabel Allen4, Brian McEniry1 and Edward Deal1

Abstract

Background: Neural networks are increasingly used to assess physiological processes or pathologies, as well as to
predict the increased likelihood of an impending medical crisis, such as hypotension.

Method: We compared the capabilities of a single hidden layer neural network of 12 nodes to those of a discrete-
feature discrimination approach with the goal being to predict the likelihood of a given patient developing
significant hypotension under spinal anesthesia when undergoing a Cesarean section (C/S). Physiological input
information was derived from a non-invasive blood pressure device (Caretaker [CT]) that utilizes a finger cuff to
measure blood pressure and other hemodynamic parameters via pulse contour analysis. Receiver-operator-curve/
area-under-curve analyses were used to compare performance.

Results: The results presented here suggest that a neural network approach (Area Under Curve [AUC] = 0.89 [p <
0.001]), at least at the implementation level of a clinically relevant prediction algorithm, may be superior to a
discrete feature quantification approach (AUC = 0.87 [p < 0.001]), providing implicit access to a plurality of features
and combinations thereof. In addition, the expansion of the approach to include the submission of other
physiological data signals, such as heart rate variability, to the network can be readily envisioned.

Conclusion: This pilot study has demonstrated that increased coherence in Arterial Stiffness (AS) variability
obtained from the pulse wave analysis of a continuous non-invasive blood pressure device appears to be an
effective predictor of hypotension after spinal anesthesia in the obstetrics population undergoing C/S.
This allowed us to predict specific dosing thresholds of phenylephrine required to maintain systolic blood pressure
above 90 mmHg.

Keywords: Arterial stiffness, Cesarean section, Finger cuff, Hypotension, Neural network, Non-invasive, Predictive
algorithm
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Background
Intraoperative hypotension has been reported to occur
in between 5 to 99% of cases depending on the specific
surgical population and it is associated with complica-
tions that can harm patients [1]. A particularly vulner-
able population are obstetric patients undergoing spinal
anesthesia for Cesarean sections (C/S).
Spinal anesthesia in this population is associated with

hypotension incidence as high as 70% and hypotension
remains a common and clinically-important problem
that is associated with morbidity for both mother and
child. Even brief episodes of hypotension can result in
lower fetal Apgar scores and acidosis [2–4].
Detection and management of maternal hemodynamic

instability during C/S remains a primary clinical and re-
search focus as early recognition can enhance clinical
decision making [5]. The latest developments in moni-
toring of arterial waveforms invasively allow for the pre-
diction of hypotension to possibly improve patient
outcomes [6, 7]. However, prediction of hypotension
based on a noninvasive technique would expand our
monitoring and diagnostic capabilities. For the purpose
of the study, hypotension in this population was defined
as a systolic blood pressure < 90mmHg, this blood pres-
sure was chosen because it is our institution’s current
standard for the C/S population. Furthermore, it aligns
with other investigators, the consideration being that
spinal sympathectomy primarily affects systolic blood
pressure [8]. Additionally, systolic and diastolic blood
pressures are the two most often reported parameters
used in both clinical practice and clinical research studies
as they are proven markers of cardiovascular disease [9].
We evaluated the CareTaker® (CT) continuous nonin-

vasive blood pressure device (Caretaker Medical LLC,
Charlottesville, Virginia) which has been described in de-
tail elsewhere [10, 11]. Briefly, the CT is a physiological
sensing system that communicates physiological data
wirelessly via Bluetooth. The device uses a low pressure
(35–45mmHg), pump-inflated, cuff surrounding the
middle phalange of the middle finger that pneumatically
couples arterial pulsations via a pressure line to a
custom-designed piezo-electric pressure sensor for de-
tection and analysis.
The use of pulse analysis of the arterial pressure pulse

offers a potential tool to investigate physiological markers
for the prediction of hypotension, without impacting clin-
ical workflow. A plausible physiological candidate for pre-
dicting the likelihood of hypotension in C/S patients
undergoing spinal anesthesia is arterial stiffness (AS),
which has been investigated in the separate contexts of
hypotension and pregnancy, and can be assessed using
pulse contour analysis [12]. Recent work on the prediction
of imminent hypotension has focused on identifying
changes in the variability of physiological signals, among

them AS [13, 14]. Variability changes are due to compen-
satory mechanisms in the cardiovascular system as it at-
tempts to maintain stability [10, 15]. In the context of
pregnancy, significant longitudinal changes in AS have
been documented [13]. It is therefore reasonable to inves-
tigate whether underlying compromised physiological
compensatory reserve can be predicted prior to spinal
anesthesia induction.
The CT is FDA-cleared for the measurement of heart

rate, continuous noninvasive blood pressure, and respir-
ation. Blood pressure monitoring is accomplished via a
pulse contour analysis algorithm called Pulse Decompos-
ition Analysis (PDA), which analyzes the component
pulses, specifically the left ventricular ejection pulse (P1)
and its reflections, the renal reflection pulse (P2) and the
iliac reflection pulse (P3), that constitute the arterial
pressure pulse [16]. Part of the PDA framework is the
AS parameter which quantifies the spectral content of
the arterial pressure pulse that is due to the component
pulses [10]. The spectral content in turn is related to ar-
terial stiffness as it is the mechanical filtering of the ar-
terial wall that determines to what extent the structure
of the component pulses is resolved. As determined in
other studies, this filtering limits the upper observable
frequency components in the peripheral arterial pressure
pulse to approximately 20 Hz [17]. Preliminary validation
tests indicate that the AS parameter tracks expected
trends after the introduction of vaso-active agents as
well as age-related population trends [10].
The aim of the present study was to develop a pre-

operative model that could predict the development of
severe post spinal hypotension noninvasively using AS as
a hemodynamic marker.

Methods
This study was approved by the Institutional Review
Board of Cooper University Hospital (IRB #17–119) and
all patients provided written informed consent. The
study population was a subset of a larger study which
compared the agreement of blood pressures obtained
from the CT non-invasive blood pressure measurement
device to those from intermittent oscillometric cuff infla-
tions during abdominal and obstetric surgeries.
Forty nine patients (> 34 weeks gestation) with an

American Society of Anesthesiologists status II who
were undergoing elective C/S under spinal anesthesia
were enrolled in this study. All patients had an intraven-
ous catheter started in the preoperative preparation
room. Lactated Ringer’s solution was slowly infused to
keep the vein open.
Measurements were started in the preoperative prep-

aration room approximately 90 min prior to initiation of
spinal anesthesia and continued throughout the entire
procedure. The CT device provides physiological data,
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including systole, diastole, mean arterial pressure
(MAP), heart rate and the AS parameter, on a beat-by
beat basis. The data is transmitted wirelessly from the
central, wrist-worn, processing unit to a nearby
Android-based tablet (Samsung Galaxy Tab. A, Samsung
Group, Seoul, South Korea) that is part of the FDA-
cleared CT system.

Anesthesia procedure
For the purposes of this study hypotension is defined as
systolic blood pressure < 90mmHg. In this prediction
study, a 30-min data window after the start of data col-
lection was used for analysis, starting approximately 90
min prior to induction. All patients underwent spinal
anesthesia with a 24-gauge spinal needle in sitting pos-
ition based on the classic midline method with the ad-
ministration of 10.5 mg bupivacaine solution 0.5%. We
quickly (within 3 min) placed patients in the supine pos-
ition after the injection and this practice should have
limited the development of hypotension immediately
after the spinal injection. Intra-operatively, systolic blood
pressure was maintained above 90mmHg with boluses
of phenylephrine (100 mcg). Boluses were repeated at 5
min intervals until a systolic blood pressure of > 90
mmHg was achieved as per our standard protocol. The
blood pressure and heart rate were measured, separate
from the beat-by-beat CT-based measurements, using an
upper arm cuff (Critikon Soft-Cuf, model SFT-A2-2A,
GE Healthcare, Chicago, Illinois, USA) initially every 2
min for 10 min, and every 5 min thereafter. All patients
were pre-hydrated with 1000 ml of lactated Ringers just
prior to the spinal injection. The anesthesia level was de-
termined in all patients and was between thoracic levels
4 to 6 as measured by a pin prick. All patients were
placed in the left lateral position to ensure avoidance of
compression of the vena cava by the gravid uterus.

Arterial stiffness assessment
The AS parameter that is part of the pulse analysis PDA
framework has been described in detail elsewhere [10].
Briefly, the parameter quantifies the spectral content of
the arterial pressure pulse envelope and is driven pri-
marily by the resolution of the section of overlap of the
renal pulse (P2), and the iliac pulse (P3). This section in-
corporates the pulse region that was examined by others
and was found to correlate with expected age- and drug-
related changes in arterial stiffness [18].
Visual examination of AS data of patients scheduled to

undergo spinal anesthesia as part of a C/S procedure sug-
gested that subjects who later required higher phenyleph-
rine dosages to stabilize their persistent hypotension
exhibited larger variability in the 30-min time-window 90
min prior to induction. Specifically, these patients would
exhibit AS modulations, sometimes distinctly oscillatory,

with time scales on the order of 3min. From these obser-
vations arose the hypothesis that the likelihood of post-
induction severe hypotension, defined by the need for the
administration of significant dosages of phenylephrine, al-
beit at an as yet underdetermined threshold, could be pre-
dicted by a measure of the amplitude or duration of the
observed modulations in the AS data. The benefit of
choosing this indication of hypotension, as opposed to for
example the time duration for which systole < 90mmHg,
is that, even on cursory examination, it provided less am-
biguity than the interpretation of blood pressure readings
near a threshold, which clinicians based on their extensive
experience do routinely, would have introduced.

Signal pre-processing
As was stated above, the AS data is provided by the CT
system on a beat-by-beat basis, i.e. at a non-uniform
heart rate. For most signal-processing approaches, non-
uniformly spaced data presents a significant challenge.
This includes correlation schemes which involve the
digital mapping of data sections onto other data sections,
with highly unpredictable results if data time intervals
are not equal. The data were therefore linearized at a
frequency to preserve the spectral content of the inter-
beat variations, which in this cohort, at heart rates be-
tween 70 and 103 bpm, resides in the 1–2 Hz frequency
band. To assure oversampling at a factor of 5, as op-
posed to the Nyquist limit of 2, times the highest fre-
quency embedded, a linearization frequency of 10 Hz
was chosen and implemented using spline resampling.
Figure 1b, which displays an example of the time evolu-
tion of the AS response of patient 07, also displays a
highly enlarged, about 9 s, data section for comparison
of the original and the resampled data trace, which with-
out the enlargement would be indistinguishable.
Since inspection of the observed modulations revealed

limited coherency and because of the very low frequency
regime involved, spectral analysis approaches were not
considered. Instead the data were analyzed using auto-
correlation spectra that provide information on signal
coherence. Cross- and auto-correlation-based analyses
have been used for pattern recognition in the context of
physiological signals such as, for example, blood pres-
sure, heart rate variability, and respiration [19–21]. Spe-
cifically, for a signal that is self-coherent on some time
scale, the autocorrelation will exhibit correlation coeffi-
cients of significant amplitude and the coefficients will
change sign, i.e. exhibit zero-crossings, with different
lag-times as the signal’s time components constructively
and destructively interfere with each other.
For each patient, the autocorrelation spectrum was cal-

culated for a 2000 s window, or about 33min of 10Hz
resampled AS data, corresponding to 20,000 data points.
This yields a same-sized autocorrelation spectrum with
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time lags from 0 to 2000 s at the resampled resolution.
Visual inspection was used to select the specific analysis
window for each patient so as to avoid data in the patient
session that was clearly motion artifact-contaminated due
to the patient settling in, which usually occurred in the
first 5 min of recorded data.

Single-feature extraction and classification assessment
The observed modulations were quantified by integrat-
ing over the absolute-value of the lag times of the auto-
correlation spectra from 100 s to the maximum time lag
of 2000 s, the goal being to isolate the observed longer-
time scale modulations from shorter-range lag times.
Analyses were performed in Matlab 2017b (MathWorks,
Natick, MA, USA).
Using the value obtained from the absolute AS auto-

correlation area integration for each patient as a metric,
ROC analyses were used to assess whether the metric
could classify those patients that developed severe
hypotension, characterized by requiring higher dosages
of phenylephrine, from those who developed no or less
severe hypotension, as indicated by lower dosages or the
absence of any drug administration. The cumulative
phenylephrine dosage administered to the respective pa-
tient was considered, irrespective of stepped administra-
tions. Classification accuracy was assessed for different
phenylephrine dosage thresholds.

Neural network classification assessment
In a separate analysis approach, a single hidden layer
neural network (NN) of 12 nodes, using back-
propagation and gradient descent, was tasked with the
same classification for the different phenylephrine
thresholds. The basic configuration of the fully intercon-
nected feed-forward NN used here and the basic equa-
tions describing its functionality are as follows:

The input data elements xk are individually weighted,
summed, and the summation is the input to a sigmoidal
activation function before the output is submitted to
hidden nodes vj, whose outputs in turn are weighted,
summed and presented to another activation function
before submission to the output nodes yi. Additional
hidden layers, with the commensurate interconnections,
weighting and summing activating of each layer’s out-
puts etc., can be inserted to analyze performance as a
function of input signal combinations.
The motivation here was to assess the classification

capability of a “black box” approach that would have

Fig. 1 a. Time evolution of the AS response of patient 04, 60 min prior to induction, who subsequently required minimal phenylephrine
intervention, 200 ml. b. Time evolution of the AS response of patient 07, 60 min prior to induction, who subsequently required significant
phenylephrine intervention, 1400ml. The graph of patient 07 also shows an inset with an expansion and overlay of about 15 s of the original
beat-by-beat AS data as well as the AS data re-sampled at 10 Hz
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access, in contrast to the single-metric approach de-
scribed above, to any number and combination of distin-
guishing features hidden in the data. If a significant
number of such features were to exist, the classification
performance of the NN would be expected to signifi-
cantly exceed that of the single-metric approach. Classi-
fication performance was assessed using distributions
and means of classification runs, the number of which was
determined based on error and classification accuracy
convergence. The choice of nodes, as well as the single-
layer configuration, was arrived at by an analysis of the
error as well as the classification accuracy of differently
sized networks at different phenylephrine thresholds in
order to address the potential of over-fitting.
The sample size required to estimate an area under

the curve (AUC) of 0.85 ± 0.025 was calculated to be at
least 33 patients, assuming a Type 1 error of 0.01, a
power of 0.95, and the same number of mild and severe
hypotension cases, i.e. an allocation ratio of 1 [22].

Prediction attempt based on comorbidities and pre-Op
systole
The possibility of predicting severe hypotension based on
baseline patient conditions, comorbidities or pre-op sys-
tolic blood pressure cuff measurements was investigated.

Results
Forty-nine patients were monitored as part of the study,
with data from 45 patients included in the analysis.
Table 1 lists patient population characteristics as well
distributions of patient conditions and comorbidities.
The following four patients were excluded from the ori-
ginal 49: One patient did not receive a spinal injection,
the pre-injection data session from one patient was too
short and two other data sessions were too compro-
mised due to motion artifacts. For the 45 patients con-
sidered, which includes 4 patients who did not require
the administration of phenylephrine, the mean dosage
was 462 mcg, standard deviation (SD) 299 mcg, to treat
hypotension post induction. No other vasopressor was
used.
Figure 1a displays an example of the time evolution of

the AS response, linearized and resampled to a rate of
10 Hz, of Patient 04, 90 min prior to induction, who sub-
sequently required minimal phenylephrine intervention,
200 mcg, while Fig. 1b displays comparable results for
Patient 07 who required 1400 mcg to stabilize her
hypotension.
Examination of the AS autocorrelation spectrum of

Patient 04, Fig. 2 (trace A), suggests minimal coher-
ence in the AS signal as the excursions of the coher-
ence amplitude from zero are very small. The
autocorrelation spectrum for Patient 07, Fig. 2 (trace
B, offset from trace A for clarity), displays a more

coherent response. Here the positive and negative
correlation coefficients display oscillatory and signifi-
cant amplitudes, suggesting that significant coherent
signal components are present with distinct phase
relationships.
In order to parameterize the observed coherence re-

sponse, an integration over the absolute value of each
patient’s coherence spectrum, starting from a time lag of
100 s, was performed, as previously described. Figure 3
displays the result of performing the absolute autocorrel-
ation value integration, for each patient, and graphing
the results as a function of the total phenylephrine dos-
age administered to the respective patient.

Table 1 Patient characteristics

Age (years)

Mean (SD) 31.7 (4.72)

Range 21–44

Height (cm)

Mean (SD) 160.9 (6.83)

Range 149.9–180.3

Weight (kg)

Mean (SD) 98.7 (20.48)

Range 62.6–136.5

BMI (kg/m2)

Mean (SD) 37.8 (7.76)

Range 23.7–55.2

Pre-op systole (mmHg)

Mean (SD) 128.9 (19.14)

Range 74–194

Systole at induction (mmHg)

Mean (SD) 131.2 (18.18)

Range 96–202

Systole at + 10min (mmHg)

Mean (SD) 115.4 (21.18)

Range 66–215

Minimum systole (mmHg)

Mean (SD) 98.13 (14.89)

Range 61–137

Minutes until minimum systole

Mean (SD) 12.68 (8.48)

Range 2–39

Medical history

Prior C/S (Y/N), n 9/36

Hypertension (Y/N), n 6/39

Diabetes mellitus (Y/N), n 6/39

Chronic obstructive pulmonary disease (Y/N), n 0/39

Atrial fibrillation (Y/N), n 0/39
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Fig. 2 Black trace (a): Normalized AS autocorrelation spectrum of patient 04 (Fig. 1a, 200 mcg) suggests minimal coherence in the AS signal due
to highly unequal and low-amplitude positive and negative correlations. Gray trace (b): Normalized AS autocorrelation spectrum of patient 07
(Fig. 1b, 1400 mcg) suggests high coherence in the AS signal. Spectra are offset from each other for clarity

Fig. 3 Graph of the result of the absolute autocorrelation value integration, for each patient, as a function of the total phenylephrine dosage
administered to the respective patient
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A ROC analysis was performed to assess the ability of
the absolute AS autocorrelation area metric, obtained
90min pre-induction, to predict the likelihood of a given
patient developing severe hypotension post-induction. In
order to establish the optimal discrimination threshold,
the Youden index, which is defined as sensitivity + speci-
ficity − 1 and provides a summary measure of a discrim-
inatory test, was used. The AUC and resulting
sensitivity/specificity were determined for different dos-
age thresholds of the data and are presented in Fig. 4,
which presents the results for the Youden index (open
circles) and AUC (solid squares) as a function of phenyl-
ephrine dosage threshold. The local maxima in the You-
den index and AUC analysis suggest that 400 mcg is an
optimal ROC threshold. The resulting ROC, with an
AUC = 0.87 (p < 0.001), is presented in Fig. 5 (light gray
curve). Specificity and sensitivity were calculated from
the Youden index corresponding to that threshold and,
respectively, are 0.68 and 0.93.
In order to validate these results and obtain a more

comprehensive assessment of the classification potential
of the feature set characterizing the AS autocorrelation
spectra with regard to predicting severe hypotension, the
spectra were submitted for classification to a 12-node
single hidden layer NN. A detailed analysis, described

below, was performed to assess the optimum number of
nodes as well as the number of layers.
The following hyper parameters were used: the batch

sized equaled the sample size, i.e. Fourty-five patient
data sets; a learning rate of 0.01 was chosen since speed
optimization was not a concern; a log-sigmoid transfer
function was used for node activation. An analysis was
performed to address the potential of over-fitting by
assessing the classification accuracy and the classification
error as a function of the number of network nodes and
network layers.
Since training of a given NN amounted to gradient

searches in very high dimensional spaces, some searches
would terminate in local minima, with commensurately
poor classification as reflected in low AUC values and
significant classification errors. Other training runs
would avoid local minima and yield good, in rare cases
perfect, classification. Five hundred training runs were
performed for each dosage threshold with randomized
initialization of network weights. For each run, training
data sets, validation data sets and test data sets were ran-
domly chosen based on the ratios, respectively, of 0.7,
0.15, and 0.15. The optimum number of training runs
was determined by extending their number until the
standard deviation in the errors of a series of runs was

Fig. 4 Youden index (open circles) and AUC values (solid squares) as a function of phenylephrine dosage threshold for the single-feature analysis
using the absolute autocorrelation value integration as a metric
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approximately 1/10 the maximum range of errors ob-
served at a fixed phenylephrine dosage. Each run was
terminated once the validation score did not improve for
6 epochs. The error definition used here is the mean ab-
solute classification error, where the classification error,
with a continuous range from − 1 to 1, represents the
difference between the NN output and the target des-
ignation, i.e. whether a given patient’s total phenyl-
ephrine dosage is below (target = 0) or above (target =
1) the discrimination threshold. The absolute error
range is continuous between 0 and 1, in contrast to
the binary target designation, as the NN classification
estimate is continuous.
In the context of assessing the categorization capability

of the NN the optimum number of nodes and layers was
determined, based on categorization error and mean
AUC. Figure 6 presents three-dimensional graphs of the
error (A) and AUC (B) evolution as a function of the
number of nodes of a single hidden layer NN as well as
the phenylephrine dosage. The network node axis is
logarithmic to better reveal the dependence of the classi-
fication error and classification accuracy (AUC) for
single-digit network nodes. The surface plots clarify that
the classification error and the classification accuracy,
after initially respectively decreasing/increasing with an
increasing number of nodes, level off at approximately
12 nodes. This indicates that further increases in the

number of nodes would only increase computational
load but not enhance discrimination capability, provid-
ing the motivation for limiting the node number to 12.
The results of assessing the effect of including more

NN layers on categorization performance are presented
in Figs. 7 & 8, which present, respectively, the difference
between the performance of a two-layer and a three-
layer 12-node NN and that of the single-layer 12-node
NN shown in Fig. 6. Specifically, Figs. 7 & 8 present the
subtraction of the categorization error (A) and of the
mean AUC (B) of the respective 2-layer/3-layer NN from
that of the single-layer NN. Consequently, if the per-
formance were identical, all 4 graphs would present a
plane positioned at z = 0, which is approximately the
case, for the performance of both the 2-layer and the 3-
layer networks, in the range of nodes > 12. For the
range < 12 nodes the performance of the higher layer
number networks is poorer. This is indicated by the lar-
ger errors, i.e. for both Fig. 7A and Fig. 8A the difference
in error in the range < 12 nodes is negative, meaning the
subtracting higher-level network error is larger than the
single-layer network’s corresponding error, and by the
positive AUC difference ranges displayed in Fig. 7B and
Fig 8B, meaning the subtracting higher-level network
AUC is smaller than that of the single-layer network, in-
dicating the higher/better discrimination capability of
the single-layer network.

Fig. 5 Light gray trace: ROC analysis based on phenylephrine dosage <=400 mcg or > 400 mcg. AUC = 0.87 for autocorrelation area. Solid black
line: ROC analysis based on average of 500 runs of 12 node NN based on phenylephrine dosage <=450 mcg or > 450 mcg, AUC = 0.89
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The general leveling-off response characteristic for the
number of nodes > 12 is observed for all phenylephrine
dosage levels, however, a distinct minimum/maximum
in the classification error/classification accuracy (AUC)
is observed for 450 mcg, where these quantities level off
at, respectively, 0.28 and 0.89 for the single-layer net-
work. For this threshold, AUC = 0.89 (p < 0.001) with
specificity and sensitivity, respectively, equal to 0.91 and

0.84. The resulting ROC is presented in Fig. 5, solid
black curve.
An attempt was made to predict hypotension based on

patient baseline information and cuff-based pre-op sys-
tolic blood pressure. The results of correlating these pa-
rameters with phenylephrine dosage administered are
presented in Table 2. None achieved statistical signifi-
cance, precluding any effort to build a predictive model.

Fig. 6 Evolution of absolute error (a) and mean AUC (b) as a function of the number of nodes of the single-layer network as well as the
phenylephrine dosage. The network node axis is logarithmic to better reveal the dependence of the classification error and classification accuracy
(AUC) for single-digit network nodes
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Discussion
The significant findings of this study are: (1) it appears to be
possible to assess the likelihood of significant post-spinal
hypotension through the evaluation of coherencies in AS
autocorrelation spectra and (2) this significant hemodynamic
information can be obtained from non-invasive and readily
obtained arterial pressure pulse information.

The results presented here add to the previous re-
search in that multiple studies have identified changes in
AS in comparisons of pregnant versus normal women as
well as over the course of pregnancy. A prior study by
Osman determined that arterial stiffness changes sinus-
oidally during pregnancy with an overall mean pulse
wave velocity (PWV), the Gold Standard surrogate

Fig. 7 Evolution of the difference of the absolute error (a) and mean AUC (b) between the single-layer network and the two-layer network as a
function of the number of nodes of the network as well as the phenylephrine dosage. Note that the error difference (A) is negative for nodes<
12, indicating that the two-layer error is larger. For nodes< 12 the AUC is smaller for the two-layer network, as indicated by the positive AUC
difference. For larger node numbers there is no difference in classification performance
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parameter, of 7.81 m/s significantly lower than the mea-
sured 10.0 m/s in non-pregnant women [13]. Different
mechanisms have been proposed to explain the changes
in PWV throughout pregnancy. While the initial drop

may be due to changes of vaso-active substances such as
nitric oxide (NO) [23, 24], progesterone, relaxin, the
changes may also be related to volume expansion [25],
while the inhibition of NO, an increase in cardiac output

Fig. 8 Evolution of the difference of the absolute error (a) and mean AUC (b) between the single-layer network and the three-layer network as a
function of the number of nodes of the network as well as the phenylephrine dosage. Note that the error difference (A) is negative for nodes<
12, indicating that the three-layer error is larger. For nodes< 12 the AUC is smaller for the three-layer network, as indicated by the positive AUC
difference. For larger node numbers there is no difference in classification performance
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or increased circulatory volume [26] could be respon-
sible for the increase that is observed from mid-
trimester to term [27].
A question in the context of these findings, which

were obtained during normal gestational evolution, is
whether these changes in AS, and probably other
hemodynamic parameters, indicate that certain pregnant
women are more prone to developing hemodynamic in-
stabilities in response to a significant stressor, such as
spinal anesthesia? Our results suggest that increased co-
herence in AS may be such a marker. If increased coher-
ence is interpreted as decreased spontaneous variability,
the concept of a predictive model of this specific case of
hypotension becomes more plausible. Variabilities in
different physiological parameters, heart rate variability
for example, have been shown to decrease prior to
hemodynamic crises, such as a hypotensive event, as
compensatory mechanisms in the cardiovascular system
try to maintain stability [28].
Comparing the classification performance of a discrete

parameterization of a physiological data set such as the
autocorrelation spectra used here with that of a general-
ized pattern recognition approach such as NNs is useful
because the generalized approach can provide an assess-
ment of the totality of available features that would aid
successful classification. This is likely why the NN ap-
proach was more successful at classification than the
discrete approach, although the small degree of improve-
ment is also indicative, as is discussed below. The NN uti-
lized a set of distinguishing features in its optimization of
classification, as opposed to a single measure. As an ex-
ample, we investigated utilizing the first crossing of the
autocorrelation spectrum as a basis of classification. How-
ever, as a single-variable classification attempt the ap-
proach yielded only an AUC = 0.6. Other features to add
to the discrete model could include, for example, distinct
frequency components in autocorrelation spectrum. The
NN likely identified a combination of these multiple fea-
tures and others.
However, given that the discrete feature classification

approach yielded comparable performance results with
those of the NN suggests that the feature that the abso-
lute value integration was designed to quantify, primarily

the amplitude of the AS modulations, represents a sig-
nificant portion of the classification potential available in
the AS autocorrelation spectra. In fact, and this point
was examined as part of the validation analysis for the
number of nodes and layers used in the NN, the lack of
significant improvement in the classification perform-
ance of the NN over that of the discrete feature suggests
a dearth of additional available features overall. Specific-
ally, increasing the number of nodes past the threshold
value of 12 did not improve performance, i.e. both classi-
fication error and accuracy remained flat and signifi-
cantly different from what would indicate perfect
classification, addressing over-fitting concerns.
The same consideration applies to the results of

expanding the NN to include multiple layers, which po-
tentially provides access to more refined categorization
opportunities in the combinations of inputs. The fact
that these network expansions yielded no improvement
in categorization capability again suggests that hidden
features that could be used to improve performance are
not present in the input AS autocorrelation spectra.
These considerations in turn suggest that the addition

of complementary data sources, such as for example
heart rate variability spectra, will be required to signifi-
cantly enhance the classification capability of either the
NN or the discrete approach.
The results presented here suggest that the NN ap-

proach, at least at the implementation level of a clinically
relevant prediction algorithm, is somewhat superior to
the discrete feature approach, providing implicit access
to a plurality of features and, presumably, combinations
thereof. In addition, the expansion of the approach to in-
clude the submission of other physiological data signals
to the network can be readily envisioned and has been
implemented in the context of general hypotension pre-
diction by others [7]. In the context of gaining under-
standing of the underlying physiological mechanisms,
however, discrete feature identification will continue to
be relevant for reasons we present below.
The results presented here fit into the larger picture of

the evolving and increasingly successful attempt to predict
impending hypotension in critical clinical settings from ar-
terial waveforms [6, 7]. However, these recent studies have
focused on using the discrimination capability of NNs pri-
marily because traditionally hemodynamic parameters
such as heart rate variability [29, 30], stroke volume vari-
ability [31], arterial stiffness [32] or pulsatility indices [33]
have been usually obtained as static single measurements
that do not lend themselves to continuous, discrete moni-
toring. Nonetheless, it is very plausible that the NNs
utilize the listed hemodynamic parameters in their
categorization assessment through their effect on the ar-
terial pulse, but the dependence is hidden. Problems arise
when the NN approach fails in the absence of a more

Table 2 Correlations of patient baseline information with
phenylephrine dosage

Parameter Correlation (p-value)

Pre-op Systole −0.17 (0.26)

Prior C/S −0.17 (0.27)

Hypertension −0.13 (0.39)

Diabetes Mellitus 0.05 (0.75)

Chronic obstructive pulmonary disease No positive patients

Atrial Fibrillation No positive patients
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concrete underlying physiological model, because trouble-
shooting a NN is not an option, only to include more data
and hope that a re-learned NN will perform better. Our
work suggests that there may be a useful intersection be-
tween discrete assessments, particularly as the extraction
of traditional hemodynamic parameters as beat-by-beat
pulse features matures, and the general and considerable
capabilities of the NN.
From the clinical point of view the incremental value

of the proposed approach, be it based on discrete fea-
ture- or NN-based discrimination, is promising. Know-
ledge of pre-op blood pressures, specific patient
conditions and/or comorbidities, which in general may
or may not be completely available, in the cohort studied
had no predictive value regarding post-induction
hypotension, the blood pressure results specifically being
in line with the results of others [6]. On the one hand a
number of potential separate tests could be performed
pre-op to assess certain hemodynamic parameters, but
this approach is limited if even feasible. On the other
hand is the proposed approach, with its simplicity par-
ticularly in the context of clinical workflow, since the ar-
terial pulse information is collected continuously from
the finger cuff-based sensing system, providing a data
stream of high hemodynamic information content, irre-
spective of availability of patient history.
The focus of our preliminary study was to develop a

predictive model of vasopressor requirements in this
specific obstetric population. The ability to predict with
advanced warning adverse events (hypotension) in this
vulnerable population is an important step in patient
care. If specific pre-operative interventions (e.g. add-
itional intravenous fluid) in patients predicted to need
substantial vasopressor administration can minimize the
need for pharmacologic intervention, it would be of sig-
nificant clinical value. A recent review article has shown
that vasopressor interventions can adversely affect the
fetal acid base status [34].
The population of pregnant patients undergoing C/S

was chosen primarily because of the high frequency of
adverse events requiring vasopressor support in this vul-
nerable population (92%). This allowed us to predict
specific dosing thresholds of phenylephrine required In
future work, we also want to assess the ability of our ap-
proach to predict hypotension in other surgical proce-
dures where hypotension is a rarer event.
In the context of different clinical applications the sen-

sitivity versus specificity aspects of the presented ana-
lyses should be considered. While the NN-based analysis
demonstrated slightly better overall discrimination cap-
ability, closer examination of the corner regions of Fig. 5
suggests that the discrete feature approach may provide
advantages were specificity is more critical. Increased
perfection of a discrimination test is characterized in the

ROC curve by an increasingly steep rise as a function of
the false positive rate (1-specificity), and it is in that re-
gion of the ROC curves shown in Fig. 5 that the discrete
feature approach appears to outperform the NN discrim-
ination. In clinical applications where hypotension is a
rarer event, the evolution of that aspect of the two dis-
crimination analysis approaches will be or great interest
as more data becomes available.
Further refinements and improvements to the predict-

ive approach are possible as the CT system also provides
access to heart rate variability, respiration signals and
other hemodynamic parameters, such as cardiac output.
The size of the patient population and the classifica-

tion performance of the parallel approaches support the
statistical significance of the presented results, suggest-
ing that it is unlikely that the analysis was optimized for
this set of patient data, discounting the zero-effect hy-
pothesis. Further studies will investigate the performance
of the approach with scaling and additional physiological
variables.

Conclusions
This pilot study has demonstrated that increased coher-
ence in AS variability obtained from the pulse wave ana-
lysis of a continuous non-invasive blood pressure device
appears to be an effective predictor of hypotension after
spinal anesthesia in the obstetrics population undergoing
C/S. Autocorrelation spectra were found to be valid bio-
markers for this analysis, and it was possible to correlate
spectra coherence with specific clinical dosing outcomes.
These are significant findings since post-spinal hypotension
is a common clinical scenario that has the potential to
affect the mother and baby. Next steps are to examine if
specific interventions can be used preoperatively to
minimize the need for intra-operative vasopressors.
We also want to assess the ability of our approach to
predict hypotension in other surgical procedures
where hypotension is a rarer event.
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