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Abstract

Background: The central nervous system (CNS) develops from a heterogeneous pool of neural stem and progenitor cells
(NSPC), the underlying differences among which are poorly understood. The study of NSPC would be greatly facilitated by
the identification of additional proteins that mediate their function and that would distinguish amongst different progenitor
populations.

Methodology/Principal Findings: To identify membrane and membrane-associated proteins expressed by NSPC, we used a
proteomics approach to profile NSPC cultured as neurospheres (NS) isolated from the murine cortex during a period of
neurogenesis (embryonic day 11.5, E11.5), as compared to NSPC isolated at a peak of gliogenesis (postnatal day 1, P0) and
to differentiated E11.5 NS. 54 proteins were identified with high expression in E11.5 NS, including the TrkC receptor, several
heterotrimeric G proteins, and the Neogenin receptor. 24 proteins were identified with similar expression in E11.5 and P0 NS
over differentiated E11.5 NS, and 13 proteins were identified with high expression specifically in P0 NS compared to E11.5
NS. To illustrate the potential relevance of these identified proteins to neural stem cell biology, the function of Neogenin
was further studied. Using Fluorescence Activated Cell Sorting (FACS) analysis, expression of Neogenin was associated with
a self-renewing population present in both E11.5 and adult subventricular zone (SVZ) NS but not in P0 NS. E11.5 NS
expressed a putative Neogenin ligand, RGMa, and underwent apoptosis when exposed to a ligand-blocking antibody.

Conclusions/Significance: There are fundamental differences between the continuously self-renewing and more limited
progenitors of the developing cortex. We identified a subset of differentially expressed proteins that serve not only as a set
of functionally important proteins, but as a useful set of markers for the subsequent analysis of NSPC. Neogenin is
associated with the continuously self-renewing and neurogenic cells present in E11.5 cortical and adult SVZ NS, and the
Neogenin/RGMa receptor/ligand pair may regulate cell survival during development.
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Introduction

The central nervous system (CNS) develops from a population

of neural stem and progenitor cells (NSPC) in a spatially and

temporally defined manner, with prenatal neurogenesis followed

by a wave of postnatal gliogenesis, to generate the appropriate

architecture, and types and number of cells of which the mature

CNS is compromised [1,2]. As cortical development proceeds,

NSPC shift from being highly proliferative and self-renewing to

being relatively quiescent, reducing their overall number either

through a series of non-renewing symmetrical cell divisions,

developmental programmed cell death, or perhaps even migration

[3,4,5]. Mounting evidence suggests that NSPC isolated from

spatially and temporally distinct regions are fundamentally

different in terms of self-renewal capacity, potential and propensity

to generate certain cell types [6,7,8,9]; however, the study of these

populations of NSPC is hampered by the limited number of

identified molecules that define these subpopulations of cells.
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Gene expression analysis has identified transcriptional differ-

ences that exist amongst various populations of NSPC and several

candidate stem and progenitor genes have been identified

[10,11,12,13,14]. Proteomics approaches have the advantage of

examining expression differences that may not be under

transcriptional control [15,16], and several studies have been

undertaken to profile neural stem cell protein expression, including

analysis of a neural stem cell line [17], differentiating adult

hippocampal and subventricular zone (SVZ) neural stem cells

[18,19,20], differentiating porcine neural stem cells [21], and a

comparison of adult SVZ and olfactory bulb progenitors [22].

To identify proteins that may define subpopulations of NSPC, we

chose to compare membrane and membrane-associated protein

expression profiles of cortical neurospheres (NS) generated during a

highly neurogenic period (embryonic day 11.5, E11.5) and during a

gliogenic period (postnatal day 1, P0). The potential and longevity of

these NS cultures was characterized, with E11.5 NS reflective of a

more stem cell-like population, and the P0 NS, of a more restricted

progenitor. Using protein expression analysis, we identified differ-

ences in membrane and membrane-associated proteins expressed by

these populations of NS, including the receptor, Neogenin, which

may have different functions as development proceeds and which

may be a marker for an early embryonic cortical NSPC. These

experiments demonstrate fundamental differences between embry-

onic and postnatal cortical NSPC, and provides a list of candidate

membrane and membrane-associated proteins expressed by NSPC.

Results

E11.5 Cortical NS Contain Persistently Self-Renewing,
Neurogenic NSPCs while P0 Cortical NS Contain
Progenitors with a Limited Capacity for Self-Renewal and
Neurogenesis

To validate the cell source for the subsequent proteomics

experiments, NS cultures from E11.5 and P0 cortex were

characterized according to proliferation, multipotentiality and

longevity in culture. To examine the proliferation of E11.5 and P0

NS cultures with time, low density cultures (1,000 cells/ml) were

generated from three separate in vitro time points: acutely isolated

tissue, and following 7 d, 14 d, and 21 d of growth at high density

(50,000 cells/ml), as outlined in Figure S1. While the NS derived

from E11.5 and from P0 were similar in number, size and overall

appearance at D1 (Figure 1A, D), by D14, P0 NS were considerably

smaller and fewer in number (Figure 1C, F). The ability of P0 cultures

to generate NS diminished with time, from 15% at D1 to 2% by D21.

Low density E11.5 cultures (Figure 1G) continued to produce similar

percentages of NS however, ranging from 22% at D1 to 37% at D21.

These differences between E11.5 and P0 were significant by D7 and

continued to be significant to D21. The slight reduction in NS

production at D14 for E11.5 NS (which is not statistically significant),

is likely a function of in vitro variability, as the E11.5 NS cultures

continue to proliferate well beyond D21 (data not shown).

To determine if there were also differences in the ability to

generate the three main cell types of the CNS, differentiated NS

were scored for immunoreactivity for markers of neurons (Tuj1),

oligodendrocytes (O4) and astrocytes (GFAP). E11.5 cultures from

D1, D7 and D14 predominately and consistently produced

tripotent NS containing all three major cell types of the CNS

upon differentiation (Figure 2G), ranging from 93% at D1 to 96%

by D14, with a small percentage of NS containing only

oligodendrocytes and astrocytes or neurons and astrocytes.

However, P0 cultures lost the ability to generate tripotent NS,

with an approximately 50% reduction from D1 to D14 (Figure 2H)

and a subsequent significant increase in the production of NS

containing cells of the glial lineage: oligodendrocytes and

astrocytes (from 12% to 31%), or astrocytes alone (from 0% to

20%). Production of neuron- and astrocyte-containing P0 NS

remained below 4%. Significant differences in the generation of di-

and multipotent NS existed between E11.5 and P0 NS cultures,

including an increase in P0 NS containing only oligodendrocytes

and astrocytes at Day 7 (p,0.05), and decreases in tripotent P0 NS

at Day 7 (p,0.05) and at Day 14 (p,0.01).

To further reveal differences in the neurogenic and gliogenic

capacity of the embryonic and postnatal cultures, the percent of each

cell type produced upon differentiation was determined. Low density

E11.5 D1, D7 and D14 cultures produced all three neural cell

lineages, with no significant differences in the percent of cell type

produced over time (Figure 2I, J, K). In P0 cultures, however, there

was a significant decrease in the production of neurons from 9% on

D1 to 4% by D14 (Figure 2I), and a concomitant increase in the

generation of astrocytes, from 75% at D1 to 86% by D14 (Figure 2J).

The production of oligodendrocytes from both cultures ranged from

17% to 10% of the total cells and despite this apparent decreasing

trend, the data did not reach statistical significance (Figure 2K).

Representative fluorescence images of neurons generated in these

cultures are in Figure 2A–F. Thus, taken in sum, our data indicate

that E11.5 NS contain a self-renewing population of multipotent

stem-like cells, while the P0 NS contains progenitors with diminished

self-renewal and neurogenic capacity.

Protein Expression Profiles by 2DGE Reveal Differentially
Expressed Proteins between Embryonic and Postnatal NS

To identify proteins that define neurogenic E11.5 NS,

membrane enriched fractions from three groups of cells were

Figure 1. E11.5 NS cultures are highly proliferative while P0
cultures show reduced proliferation. Representative phase contrast
images of NS generated from E11.5 (A–C) and from P0 (D–F) cultures,
started on D1 (A, D), D7 (B, E) and on D14 (C, F). Scale bar, 50 mm. G.) NS
produced as a percentage of the original plating density from E11.5 and
P0 cultures as a function of culture start day. The data represent n = 5
independent experiments. Results are presented as the mean % NS
produced +/2 standard error of the mean (SEM). * p#0.05 * * p#0.01
doi:10.1371/journal.pone.0009121.g001
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compared by 2DGE (Figure 3A): E11.5 NS, E11.5 differentiated

NS, and P0 NS. A membrane-enriched sub-cellular fraction was

chosen to enable detection of proteins that, upon further

examination, may prove useful as stem/progenitor cell markers.

The first of two comparisons was between undifferentiated and

differentiated E11.5 NS cultures, to yield those proteins expressed

by proliferative, neurogenic cells, over those proteins more highly

expressed in differentiated, postmitotic cells. The second compar-

ison was between undifferentiated E11.5 NS and P0 NS to identify

those proteins specifically expressed in a neurogenic population of

cells over a more restricted population (P0 NS), thereby taking into

account those proteins related strictly to proliferation. Protein

Figure 2. Potency and production of the three main neural cell lineages from E11.5 and P0 NS upon differentiation. Representative
fluorescent images of neurons from differentiated E11.5 NS are shown in A–C and P0 NS in D–F (neurons in green in all panels, nuclei in red in panels
B, C, D, E, and astrocytes in red in panels A and C). E11.5 (G) and P0 (H) individual differentiated NS derived from D1, D7 and D14 cultures were scored
for presence of Tuj1-, O4-, and GFAP-immunoreactive cells: ‘A’, astrocytes only; ‘N/A’ - both neurons and astrocytes; ‘O/A’ – both oligodendrocytes
and astrocytes; ‘N/O/A’ – presence of all three cell types. Significant differences in the generation of di- and multi-potent NS existed between E11.5
(G) and P0 (H) NS cultures, including an increase in P0 NS containing only O/A at Day 7 (p,0.05), and decreases in tripotent P0 NS at Day 7 (p,0.05)
and at Day 14 (p,0.01). Results are presented as the % of total NS +/2 SEM. The percent of neurons (I), astrocytes (J), and oligodendrocytes (K)
produced by E11.5 (shaded symbols) and P0 NS (open symbols) as a function of time in culture was evaluated by scoring random fields. Results are
presented as the mean % of total cells +/2 SEM. Note different y-axis scale for I, J, and K. * p#0.05 * * p#0.01
doi:10.1371/journal.pone.0009121.g002
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spots with a greater than 2-fold difference in intensity were excised,

digested and the proteins identified using mLC-MS/MS. This

workflow is illustrated in Figure S2 and a typical ion chromatogram

and MS/MS spectrum are illustrated in Figure S3. While not all

differentially expressed proteins were identified (primarily as a result

of poor quality MS/MS data and/or low confidence MS/MS

scores), 54 proteins were identified with high expression in the

proliferative, neurogenic E11.5 NS over both differentiated E11.5

NS and the restricted P0 NS, 24 proteins were comparably

expressed in E11.5 and P0 NS over differentiated E11.5 NS, and 13

proteins were highly expressed specifically in P0 NS compared to

E11.5 NS (Figure 3B). A partial list of those proteins highly

expressed in E11.5 NS and in P0 NS can be found in Table 1. An

additional set of proteins were highly expressed in both E11.5 and

P0 NS populations over differentiated E11.5 NS cultures and may

reflect common functions in proliferating cells (Table S1). A fully

annotated list of all proteins, including identified peptides and

bioinformatic identification scores, can be found in Table S2. As

Figure 3C illustrates, of the 91 proteins identified, approximately

31% were membrane or membrane-associated proteins. To verify

the expression pattern of proteins observed in 2DGE, expression

levels for the proteins TrkC, RACK1 and HSP90, were analyzed by

Western blot analysis (Figure S4).

Neogenin, a Single Transmembrane Receptor, Is Highly
Expressed in E11.5 NS but Is Not Transcriptionally
Regulated

Neogenin was highly expressed in E11.5 NS, as confirmed by

western blot analysis of membrane-enriched fractions from E11.5

NS, E11.5 Differentiated NS and P0 NS (Figure 4A). Semi-

quantitative PCR demonstrates that these differences in expression

are not reflected by differences in transcript level (Figure 4B),

despite one report of transcript expression differences during

development [23].

To characterize the Neogenin-expressing cells, E11.5 and P0

NS were examined by immunocytochemistry for co-expression of

Nestin, a putative marker for neural stem and progenitor cells, and

Neogenin (Figure S5A, B). Neogenin was expressed in 54% of the

total cells in dissociated E11.5 NS, and by 43% of dissociated P0

NS (Figure S5B). However, in E11.5 NS, Neogenin and Nestin co-

expression occurred in 40% of the cells, while co-expression

occurred in only 26% of the cells in P0 (Figure S5B). These data

suggest that Neogenin expression is more highly associated with

progenitors in the E11.5-derived NS.

Neogenin Expression Is Associated with Long-Term NS-
Forming Cells in E11.5 and Adult SVZ NS

Using an antibody to the extracellular portion of Neogenin that

does not block ligand binding [24] and fluorescence activated cell

sorting (FACS), dissociated E11.5, P0 and adult SVZ NS were

sorted according to their Neogenin expression, resulting in a

Neogenin-high and a Neogenin-low/negative population

(Figure 5A, B). To determine if Neogenin expression is associated

with longevity in culture, these sorted populations were grown in

culture and assessed for ability to generate NS. While there was no

growth advantage associated with Neogenin expression for P0 cells

(Figure 5C), E11.5 (Figure 5D) and adult SVZ (Figure 5E)

Neogenin-high cells consistently produced a higher percentage of

NS than the Neogenin-low and unsorted cells. NS production

shown in Figure 5 is from cells isolated from a FACS experiment,

while the NS production shown in Figure 1 is from cells that were

not manipulated by FACS analysis, a methodology that presents a

cellular stress which, in our hands, requires more recovery time in

vitro following sorting. As a result, the NS cultures in these two

distinct experiments were grown at different densities and are not

directly comparable. Importantly, E11.5 and P0 cultures were

treated and grown in precisely the same manner within each

experiment, enabling direct comparison between embryonic and

postnatal cultures within that particular experiment.

Ligand Blocking of Neogenin Receptor Leads to
Apoptosis in E11.5 NS

Based on previous work that suggests Neogenin may function as

a dependence receptor, as well as by the identification of an active

Caspase3 cleavage site in the intracellular region of the protein

[25,26], the effects of ligand-blocking by an anti-Neogenin

antibody were determined in E11.5 and P0 NS. There was a

greater than 2-fold increase in the number of trypan-blue positive

cells in E11.5 NS as compared to P0 NS following incubation with

the blocking antibody, using a non-ligand blocking Neogenin

antibody as a control (Figure S6). To examine if the cells were

undergoing apoptotic death, the levels of activated Caspase3/7

were determined. Following 24h of exposure to 5 mg/ml of a

ligand-blocking Neogenin antibody, there were increased levels of

activated Caspase3/7 in the E11.5 NS but no significant increases

in P0 NS, over the controls (IgG and PBS) (Figure 5F).

Figure 3. Summary of differential protein expression by 2D gel
electrophoresis in a membrane-enriched preparation of E11.5
and P0 NS. SyproRuby-stained representative 2D gels (A) of
membrane-enriched fractions from E11.5 NS, P0 NS, and E11.5
differentiated NS. The Venn diagram (B) summarizes the number of
identified proteins with differential expression between E11.5 NS and
P0 NS. Overlap between the two sets indicates those proteins expressed
by both E11.5 and P0, yet increased over E11.5 differentiated NS. The
predicted sub-cellular locations of these proteins according to 1 WoLF
PSORT (wolfpsort.org) are listed in (C).
doi:10.1371/journal.pone.0009121.g003

Neural Stem Cell Proteomics

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e9121



RGMa, a Putative Neogenin Ligand, Is Expressed by
Cortical NS

RGMa, a GPI-linked protein, has been previously identified as a

high affinity ligand for the Neogenin receptor [27]. To determine if

RGMa is expressed in these cultures, message and protein levels

were examined by semi-quantitative PCR and western blot analysis.

RGMa protein and message were expressed equally in both

undifferentiated and differentiated E11.5 and P0 NS (Figure 6A, B).

To confirm that RGMa was not being released extracellularly,

concentrated cell culture medium from E11.5 and P0 NS was

examined by western blot analysis (Figure 6C), with no detectable

RGMa in the medium from cells expressing endogenous RGMa. In

contrast, exogenous expression of RGMa in 293T cells was

identified in the culture medium. In vitro, therefore, RGMa appears

to be expressed cell autonomously by E11.5 and P0 NS.

By immunocytochemistry, approximately 41% of the dissociated

cells in E11.5 NS expressed RGMa while only 22% of the cells from P0

NS expressed RGMa (Figure 6D). In E11.5 NS, RGMa expression

appeared to be at the membrane, diffuse and ubiquitous, while in P0

NS, fewer cells expressed RGMa, and the staining appeared

cytoplasmic (Figure 6D). In addition, essentially all RGMa positive

cells in E11.5 NS expressed Nestin, while there was essentially no co-

expression of RGMa and Nestin in P0 NS (Figure 6E). In separate

Table 1. Partial list of proteins with higher expression in E11.5 NS compared to P0 NS, as well as those proteins with higher
expression in P0 NS as compared to E11.5 NS. Proteins were identified by mLC-MS/MS. Detailed information regarding protein
identification can be found in Table S2.

Protein Name Gene Symbol UniProtKB/TrEMBL Number

Higher Expression In E11.5 NS

Voltage-dependent anion channel 2 Vdac2 Q99L98

Neogenin Neo1 P97798

Seizure related gene 6 Sez6 Q7TSK2

Sodium-calcium exchanger Slc8a1 O35157

Neurotrophic tyrosine kinase receptor TrkC Q6VNS1

TGF-beta receptor type III Tgfbr3 O88393

Guanine nucleotide-binding protein Gnao1 P18872

Guanine nucleotide-binding protein Gna12/Gna13 P27600

GTP-binding protein REM 1 Rem1 O35929

Guanine nucleotide binding protein Gnb2-rs1 Q5NCC6

Guanine nucleotide-binding protein Gnb2l1 Q9CSQ0

Similar to interleukin 17 receptor E Il17re Q6AZ51

Hypothetical protein C6B12.02c SPAC6B12.02c O14207

Receptor tyrosine-protein kinase Erbb2 Q6ZPE0

Alpha 3 catenin Ctnna3 Q8C0N3

FK506 binding protein 9 Fkbp9 Q80ZZ6

Higher Expression In P0 NS

Cyclic nucleotide gated channel alpha 2 Cnga2 Q80XH6

Selectin P SELP Q5TI45

ATPase, H+ transporting Atp6v0d1 Q921S5

Arsenical pump-driving ATPase Asna1 O54984

(smad8/smad9) Mothers against decapentaplegic homolog 9 Smad9 Q9JIW5

Down-regulated by Ctnnb1, a Drctnnb1a Q6P9N1

Tumor rejection antigen gp96 Tra1 Q8CCY5

Early endosome antigen 1 Eea1 Q8BL66

doi:10.1371/journal.pone.0009121.t001

Figure 4. Neogenin is highly expressed in E11.5 NS. Neogenin
protein was expressed at high levels in the membrane enriched fraction
of E11.5 NS over P0 NS, and decreased upon differentiation (A), while
mRNA levels appeared to be expressed at equal levels (B). Equal
amounts of protein and of RNA were loaded into each well, with
GAPDH used as a control for the semi-quantitative PCR.
doi:10.1371/journal.pone.0009121.g004

Neural Stem Cell Proteomics
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experiments, RGMa and Neogenin were predominantly co-expressed

by the same cells in E11.5 (40% of total cells), while only 4% of the P0

cells co-expressed RGMa and Neogenin (Figure 6F).

Discussion

In these experiments, embryonic (E11.5) and postnatal (P0)

murine cortex-derived NS were used as a source of NSPC for the

analysis of membrane and membrane-associated proteins. These

cultures were characterized to reveal that E11.5 NS contain cells that

were highly neurogenic and proliferative as compared to P0 NS. We

identified membrane and membrane-associated proteins highly

expressed by E11.5 NS, as compared to P0 NS and differentiated

E11.5 NS. To demonstrate the relevance of these proteins to stem

cell biology, Neogenin, one of the proteins highly expressed by E11.5

NS, was further studied, and while additional experiments are

warranted, the protein may play a role in NSPC survival.

E11.5 NS Contain a Persistently Self-Renewing Stem/
Progenitor Cell while P0 NS Are More Restricted

While the NS culture model has its limitations, the use of acutely

isolated cortical tissue has its own limitations, specifically that the

tissue itself will be a heterogeneous mix of cells (including

Figure 5. Neogenin expression is associated with a highly proliferative cell population in E11.5 NS, while receptor-ligand blocking
results in cell death. Mature secondary NS from both P0 (B) and E11.5 (A) cortex were dissociated and sorted according to levels of Neogenin
expression. Cells were grown at 5,000 cells/ml (Passage 1–2 in C, D), followed by passages at 1,000 cells/ml (Passage 3–5 in C, D). FACS experiments
were replicated with a second culture with similar results. Mature tertiary adult SVZ NS were sorted according to levels of Neogenin expression, and
cultured for 14 d (E). Experiments were performed in triplicate. Results are presented as the % NS generated +/2 standard deviation. Addition of
ligand-blocking antibody resulted in increased activated Caspase3/7 in E11.5 NS (F). Anti-Neogenin antibody was added at a concentration of 5 mg/ml
and cells were exposed to antibody for 24 h. Results are presented as the percent of control activated Caspase3/7, using hydrogen peroxide as a
positive control treatment, and PBS and mouse IgG as negative control treatments. *p#0.05.
doi:10.1371/journal.pone.0009121.g005

Neural Stem Cell Proteomics
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Figure 6. RGMa, a putative Neogenin ligand, is expressed in E11.5 and P0 NS, but is co-expressed with a subset of Nestin-positive
and Neogenin-positive cells only in E11.5 NS. RGMa protein expression appeared to be similar across E11.5 and P0 NS and E11.5 differentiated
NS (A), as is RGMa mRNA (B). Western blot analysis of concentrated E11.5 and P0 NS conditioned medium (CM) demonstrate NS do not release
endogenous RGMa in vitro (C). Medium from RGMa-transfected 293T cells, however, contained released RGMa. Presence of RGMa by
immunocytochemistry (red, D) illustrates differences in expression patterns in vitro. RGMa is co-expressed with the putative stem cell marker,
Nestin, in only a subset of cells from E11.5 NS (E). Neogenin and RGMa were co-expressed in E11.5 NS but not in P0, as illustrated in F.
doi:10.1371/journal.pone.0009121.g006

Neural Stem Cell Proteomics
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postmitotic cells) and it is difficult to precisely ascertain the

proliferation and potential of this heterogeneous population of

cells. The NS culture model attempts to reduce this heterogeneity,

as most if not all postmitotic cells are eliminated in the initial

passage. We chose the NS culture model, in part because we were

able to address the issue of obtaining sufficient starting material,

but also because we were able to comprehensively and directly test

the proliferative abilities and the potential of the cultures which

were being further interrogated by protein expression. The NS-

generating cells isolated from E11.5 cortex were able to self-renew,

to produce the major cell lineages of the CNS, and to do both with

longevity in vitro. However, NS-generating cells isolated from the

early postnatal cortex demonstrated a reduction in the ability to

generate tripotent NS with time, with a subsequent increase in

astrogliogenesis over neurogenesis, and a reduced ability to self-

renew. As illustrated in Figure 2, the differences that become

apparent at D14 P0 cultures are a reflection of the diminished self-

renewal and neurogenic capacity of the P0 NSPCs; E11.5 NS in

contrast, contain a self-renewing population of multipotent stem-

like cells. This is in agreement with previous work demonstrating

lineage restriction and reduced self-renewal as cortical develop-

ment proceeds. Neural stem cells isolated at the peak of

neurogenesis (occurring primarily during embryogenesis) and

gliogenesis (occurring primarily postnatally) mirror the in vivo

pattern of cell specification upon differentiation [7]. Cortical

progenitor cells derived later in development lack the capacity to

generate earlier born cell types, by progression through states of

competence, whereby the ability and nature of the response to

extrinsic factors, and to generate certain cell types, changes with

time [5,7,8,28]. Using an enriched population of cortical neural

progenitor cells isolated from E10.5 and E17 and adult cortex,

Abramova et al. found age specific changes in transcript

expression, suggesting that NSPCs with different temporal

identities are distinct [10]. Other studies have supported our

finding of key differences between neurogenic, more highly self-

renewing cells and gliogenic progenitors, regardless of the source.

For example, Naka et al. utilized expression microarrays to

discover that the transcription factors COUP-TF I and II are

important regulators the transition from a self-renewing, neuro-

genic state to a restricted gliogenic state in embryonic stem cell-

derived neural progenitors [29]. Although self-renewal is difficult

to precisely determine, for our purposes here we refer to the ability

of the cells to continue to proliferate in vitro and to generate the

main cell types of the CNS. As NS are passaged to single-cells, the

ability of the culture to meet these criteria hinges on cells being

continually produced that are similar (if not identical) to those

present in the initial culture with respect to their proliferative

abilities and potential. We do acknowledge however, the likelihood

that cells evolve in their characteristics over time in vitro as they do

in vivo. Culture effects cannot be ruled out in these experiments,

but the fact that E11.5 and P0 NS isolated and grown in precisely

the same manner in vitro demonstrate significant differences in

longevity, potential and protein expression, argues against this

being purely a culture artifact. Taken together, the use of E11.5

and P0 NS was a suitable choice to identify proteins associated

with NSPC, enabling both the generation of sufficient numbers of

cells for the subsequent proteomics experiments while still

reflecting biologically distinct and relevant characteristics of

NSPC.

Using Protein Expression Analysis to Interrogate Neural
Stem and Progenitor Cells

To further characterize the proliferative and neurogenic cells in

the E11.5 NS, highly expressed membrane and membrane-

associated proteins specific to this population were identified, over

both differentiated E11.5 NS and the more restricted P0 NS. Of

those identified, 54 were highly expressed in E11.5 NS over both

differentiated E11.5 NS and P0 NS, 24 proteins were comparably

expressed in E11.5 and P0 NS over differentiated E11.5 NS, and

13 proteins were highly expressed specifically in P0 NS compared

to E11.5 NS. The analysis of hydrophobic membrane proteins

continues to present significant challenges to the field of

proteomics. No one separation technique has emerged to meet

all needs, with both liquid- and gel- based separation techniques

presenting specific issues relating to solubility of membrane

proteins. In our gel-based approach, we maximized membrane

protein representation by utilizing the zwitterionic sulfobetaine

detergent, amidosulfobetaine-14 (ASB14), to solubilize the mem-

brane-enriched pellet, a detergent which is also compatible with

isoelectric focusing, in addition to overnight isoelectric strip

rehydration. In the membrane-enriched fraction, 31% of the

identified proteins were classified as membrane or membrane-

associated. The remaining identified proteins likely reside in other

compartments or in the membranes of other organelles; however,

as published sub-proteomics analyses increase, proteins hitherto

thought to have predictable sub-cellular locations are increasingly

being found in other compartments. Heat shock protein 90

(HSP90) for instance, which has increased expression in E11.5 NS,

has been observed in the cytoplasm and the outer membrane, with

distinct location-specific functions, and is currently a clinically

relevant target in tumour metastasis [30,31].

Several heterotrimeric G proteins were also highly expressed in

E11.5 NS, including guanine nucleotide-binding protein G (o)

(alpha subunit 1), guanine nucleotide-binding protein (alpha-12,

alpha-13 subunit), and Receptor for Activated C Kinase 1

(RACK1). While the precise function of these proteins in this

developmental context is not clear, G proteins are crucial in

asymmetric cell division in normal development during neuroblast

divisions of D. melanogaster [32], and in the initial embryonic

divisions of C. elegans [33], with similar roles for G protein bc-

subunits in mouse cortical progenitors [34] and human neural

progenitors [35], suggesting that further study in the context of

neural development is warranted.

The tyrosine kinase receptor, TrkC, was, surprisingly, highly

expressed in E11.5 NS. The TrkC receptor, and its preferred

ligand neurotrophin-3 (NT-3), has been shown to regulate

neuronal differentiation and survival [36,37], and as such, would

be predicted to be expressed to a greater extent in differentiating

NS cultures. However, TrkC may be functioning in NSPC

survival, as recent work on human ES cells has demonstrated

possible roles for NT-3 as a survival factor, mediated through the

TrkC receptor and the PI-3K signaling cascade [38,39].

Neogenin As a Possible Dependence Receptor during
Development

Neogenin was highly expressed in a population of NSPC from

E11.5 NS, as compared to the more restricted P0 NS, with overall

expression of Neogenin decreasing upon differentiation. To

demonstrate the biological relevance of the proteins identified in

this study, Neogenin was studied in further detail to examine its

role in NSPC biology.

Neogenin has been shown previously to have developmentally

distinct functions and has been diversely described as an axonal

guidance receptor, as a stabilizer of the mammary gland

progenitor cell niche, and in the formation of the neural tube at

the earliest points in development [26,40,41,42,43,44]. The

expression of Neogenin by a proliferative and neurogenic

population, as shown in these experiments, is supported by studies
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in the mouse cortex, whereby Neogenin expression was observed

in radial glia, neuroblasts, olfactory neuronal progenitors, and

epithelial cells at E12-E14, as well as by Nestin- and GFAP-

positive cells within the SVZ surrounding the lateral ventricles in

the adult [24,45]. However, Neogenin is also expressed in cells

outside of the proliferative neurogenic niche, as well as in more

differentiated cell populations, including Tuj1-positive cells within

the intermediate zone of the cortex, newly born (immature)

migrating interneurons, PCNA-negative cells in the neuroepithe-

lium at E12.5, and cells within the adult CNS [45]. In this study,

Neogenin was predominantly co-expressed with Nestin, a NSPC

marker, in E11.5 NS but not in P0 NS. Previous work has shown

that enrichment for cells with high levels of Neogenin protein from

E14.5 telencephalic lobes resulted in a proliferative and neuro-

genic culture, as compared to Neogenin-low or negative

populations [24]. In the current study, a similar proliferative,

neurogenic Neogenin-high population was isolated from E11.5

and adult SVZ NS, but not from the more restricted P0 NS. Thus,

within specific set of cells - those derived from E11.5 cortical or

adult SVZ NS - Neogenin may serve as a prospective marker to

enrich for and study long-term self-renewing neural stem cells.

However, Neogenin cannot universally do so, given that in P0 NS

the protein is likely expressed by a very different population of

cells, and perhaps functioning differently. While we cannot offer

the precise identity of the double positive Neogenin/Nestin cell at

this point, we have demonstrated that Neogenin is highly

expressed by E11.5 NS and that the Neogenin positive cell,

isolated from adult SVZ NS and the proliferative, highly

neurogenic E11.5 NS is associated with longevity in culture and

the ability to continue to produce NS. Neogenin as well as other

proteins identified in this study may also serve as markers of

NSPC, perhaps most successfully in a combinatorial approach,

and will facilitate future studies aimed at understanding subpop-

ulations of NSPC.

The putative GPI-anchored ligand for Neogenin, RGMa, was

also expressed by E11.5 and P0 NS cultures. RGMa is a member

of a family of Repulsive Guidance proteins, originally isolated as a

chemorepulsive molecule [46,47]. Though RGMa has been

described as guidance molecule in the developing retina, the

retinal ganglion cell projections are surprisingly normal in RGMa

mutant mice; the presence of cephalic neural tube closure defects

however, suggests an alternative function for RGMa during

development [48].

Despite what is known, the question remains as to the precise role

of the Neogenin and RGMa receptor-ligand pair in neural stem cell

biology. Previous reports support the development-dependent

function of these proteins. At the 2 cell stage in development in

Xenopus, RGMa1 appears to induce cell death through the Neogenin

receptor, while in the developing chick, RGMa modulates the pro-

apoptosis activity of Neogenin, to promote neuronal differentiation

and cell survival [25,26,49]. These functions appear to be replaced

with roles in axonal guidance later in development. In light of these

reports, the current study raises an important question regarding the

developmental function of Neogenin and RGMa. In E11.5 NS,

RGMa was expressed in Neogenin- and Nestin-positive cells, while

in P0 NS, there was an overall decrease in the expression of these

proteins and, importantly, Neogenin and RGMa were expressed in

separate cells and no longer associated with co-expression of Nestin.

Recent work has led to an emerging theory that Neogenin and

RGMa may be functioning as a dependence receptor [26,50]. In the

current experiments, there were no significant consequences of

ligand blocking in P0 NS, while application of the same ligand-

blocking antibody led to increased activated Caspase3/7 in E11.5

NS.

Taken together, these data suggest that Neogenin and RGMa

may have different functions during embryonic and postnatal

development in NSPC in vitro. While there is limited evidence for

this at the transcript level [23], it is intriguing to speculate there

may be preferential translation of the Caspase-3-site-deficient

isoform of Neogenin later in development [51]. Neogenin and

RGMa may promote survival of NSPCs during embryogenesis,

perhaps in modulating the number of neural stem and progenitor

cells and may assume another role postnatally, perhaps primarily

related to axonal pathfinding and guidance. This does stress that

the usefulness of Neogenin as a stem/progenitor cell marker is

likely to be enhanced when used in a combinatorial manner with

other stem cell markers.

In summary, while the embryonic and early postnatal cortex

contains a heterogeneous pool of progenitors as reflected in the NS

culture model, characterization of these cultures according to their

ability to proliferate, to generate the major cell types of the CNS

and to do so with longevity, has revealed important differences

between NS generated at E11.5 and at P0. These studies have

identified membrane and membrane-associated proteins highly

expressed by proliferative and neurogenic E11.5 NS, as compared

to more restricted P0 NS. The identified proteins are likely

candidates for further interrogation, as demonstrated by the

studies on the function of Neogenin, and has provided some

important insight into the broad protein signature of NSPC. These

proteins may also serve as markers of NSPC, perhaps most

successfully in a combinatorial approach, as has been recently

demonstrated [52], which will facilitate future studies aimed at

understanding subpopulations of NSPC.

Materials and Methods

Reagents
Tissue culture reagents were obtained from GIBCO-Invitrogen.

Basic fibroblast growth factor (bFGF) was obtained from

Peprotech. Heparin and protease inhibitor cocktail were obtained

from Sigma-Aldrich. The following antibodies were used: anti-O4

(1:20, Chemicon), anti-Tuj1 (1:500, Covance), anti-Nestin (1:50,

Rat 401 DSHB-University of Iowa), anti-GFAP (1:1000, DAKO),

anti-HSP90 (1:1000, Cell Signaling), anti-RACK1 (1:2500, BD

Transduction Laboratories), anti-TrkC (1:1000, R&D Systems),

anti-actin (1:500, Sigma), anti-Neogenin cytoplasmic (1:1000,

R&D Systems), anti-Neogenin monoclonal extracellular (5 mg/

ml, R&D Systems), aRGMa (1:1000, R&D Systems), and Alexa-

conjugated secondary antibodies (1:2000, Molecular Probes).

Propidium iodide (Molecular Probes) was used at 1:3000. The

detergent, ASB14, was purchased from Calbiochem.

High Density NS Cultures
NS were grown from E11.5 and P0 cortex (including ventricular

and subventricular zone, but with minimal ventral cortex) from

CD-1 mice (Charles River), as previously described [11], at a

density of 50,000 cells/ml medium (DMEM/F12 containing

20 ng/ml bFGF, 5 mg/ml heparin, B27, and penicillin-strepto-

mycin), and passaged every 7 d. Secondary NS were differentiated

by removal of bFGF for 72 h. Cells were centrifuged in the

presence of protease inhibitors, and stored at -80uC until analyzed.

Low Density NS Cultures
Low density cultures were analyzed for differentiation potential

and longevity. As outlined in Figure S1, Day 1 (D1) low density

cultures were derived directly from cortical tissue, while Day 7

(D7) and Day 14 (D14) low density cultures were derived from

primary NS, and secondary NS, respectively. Cultures were plated
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at 1,000 cells/ml medium (Neurobasal medium containing B27,

2 mM L-glutamine, 2 mg/ml heparin, 20 ng/ml bFGF and

penicillin/streptomycin) [53], treated as described for high density

culture, and the NS were counted following 14 d in culture. The

data represent five independent cultures, with each culture

counted in triplicate.

Adult SVZ NS Cultures
SVZ tissue was isolated from adult CD-1 mice, followed by

mechanical trituration with TripLExpress (Invitrogen). Cells were

grown at 50,000 cells/ml medium (DMEM/F12 containing B27,

20 ng/ml bFGF, 50 ng/ml EGF and penicillin-streptomycin), and

passaged every 7 d. Sorting experiments were performed on

tertiary SVZ NS.

Immunocytochemistry
Immunocytochemistry was performed as previously described

[11,54], following 72 h of differentiation using anti-Tuj1, anti-O4,

anti-GFAP, and propidium iodide. Individual NS from randomly

chosen fields from 4 separate cultures were scored for immuno-

reactivity and morphology: astrocytes alone (‘A’), neurons and

astrocytes (‘N/A’), oligodendrocytes and astrocytes (‘O/A’), and

neurons, oligodendrocytes and astrocytes (‘N/O/A’). At least 30

NS and 300 cells were scored per experiment/per condition, with

the exception of P0 D14 where only 20 NS and a minimum 100

cells were scored, as a consequence of reduced growth. Data was

analyzed by one-way ANOVA, with a p value#0.05 considered a

significant difference.

Membrane Protein Preparation and Analysis
As outlined in Figure S2, secondary NS were sheared in 1 mM

NaHCO3/1 mM CaCl2 buffer pH 8.0 containing protease

inhibitors, and centrifuged for 5 m at 1,0006g (P1), 5 m at

5,000xg (P2) and 1 h at 100,0006g (P3 and Supernatant), with the

final protein pellet (P3) solublized in 7 M urea, 2 M thiourea, 2%

ASB14, 0.4% Amersham IPG Buffer and 50 mM DTT. Protein

concentration was determined using a PlusOneTM 2-D Quant Kit

(Amersham Biosciences-GE) and equal amounts of protein were

applied (150 mg) to Immobiline DryStrips (18 cm pH 3–10 linear)

and were focused using 50 mA per strip at 20uC with the following

conditions: 500 V for 1 m, 4 000 V for 1.5 h, 8 000 V for 25

000 Vh (IPGphor Isoelectric Focusing, Amersham Biosciences-

GE). Proteins were separated in the second dimension with 10%

SDS-PAGE gels (25.5 cm 620.5 cm 61 mm, Ettan DALT II,

Amersham Biosciences-GE). Gels were stained (SyproRuby,

BioRad), visualized and analyzed with PDQuest Gel Imaging

software (Molecular Imager FX, BioRad), in automatic match

mode with manual editing, with images normalized according to

overall signal. Gel analysis was repeated for separate cultures to

reach an n = 7 for each of the three groups: E11.5 NS, E11.5

Differentiated NS, and P0 NS. Quantitative comparison of

expression used an upper and lower limit factor of 0.5 (2-fold).

Statistical comparison of densities was determined by one-way

ANOVA. The proteins were excised (Proteome Works Spot

Cutter, BioRad), and in-gel digested using sequence grade trypsin

(Promega) [55]. The reduced and alkylated peptides were

extracted, dried and stored at -80uC. Peptide samples were

analyzed by mLC-MS/MS using either an ion trap mass

spectrometer (Thermo-Finnigan LCQ-DECA), or a hybrid

quadrapole-time-of-flight mass spectrometer (Applied Biosystems

QSTAR XL). Tryptic peptides analyzed by ion trap were

reconstituted in 10 ml 70% acetic acid and 5 ml injected on to a

reverse-phase column (PLRP-S 0.26150 mm 5 mm 300 Å,

Michrom Biosciences) equilibrated in water/acetonitrile/formic

acid (95/5/0.1). Peptides were eluted at 3 ml/min over 80 min

with an acetonitrile gradient (0 min, 5%; 60 min, 100%; 70 min,

5%). The LCQ-DECA was operated in data-dependent acquisi-

tion mode, using a survey scan of 400–1500 m/z, a data-

dependent zoom scan, and MS/MS of singly, doubly and triply

charged ions. Tryptic peptides analyzed by hybrid mass

spectrometry were reconstituted in 0.1% trifluoroacetic acid and

separated as described above. The QSTAR XL was operated

using an Information Dependent Acquisition (IDA) mode with an

ion scan of 375 to 2000 m/z and with MS/MS of ions with a

charge state of 2–5. LCQ-DECA MS/MS data sets were analyzed

by Sonar MS/MS software (Genomic Solutions, Version

2004.01.15.01), and QSTAR MS/MS data sets were analyzed

by Mascot software (Matrix Science), with reference to databases

from NCBI, SIB and EBI. An Expect score of greater than

161022 was considered a positive identification. Search param-

eters included +/2 2 Da precursor, +/2 0.4 Da fragment, 3

missed cleavages by trypsin, carboxyamidomethylation of cyste-

ines, and oxidized methionines.

Western Blot Analysis
Protein expression was confirmed by western blot analysis using

total cell lysate or the P3 fraction. Protein concentration was

determined using the Bradford assay (BioRad) and equal amounts

of protein were loaded. To determine presence of released RGMa,

medium was collected from each culture (24–48 h post-transfec-

tion for exogenously produced RGMa), centrifuged, concentrated,

and 30 ml of each was analyzed by Western blot.

Semi-Quantitative PCR
Semi-quantitative RT-PCR was used to evaluate mRNA levels,

with GAPDH as a control. The following primer sets were used to

examine the expression of various transcripts: Neogenin sense ggg

tca aga atg ggg atg tgg tta, antisense ctc tcc tgg ctg gct ggt att ctc;

RGMa sense tct tcg acc tcc tca cga ct, antisense atg gtg cca agg aga

atc tg.

Fluorescent Activated Cell Sorting
Flow cytometry was performed in the UCLA Jonsson

Comprehensive Cancer Center Flow Cytometry Facility using

the Becton Dickinson FACSVantage SE and FACSAriaII High-

Speed Cell Sorter Flow Cytometers. E11.5 and P0 NS were grown

at 5,000 to 10,000 cells/ml, while adult SVZ NS were grown at

200,000 cells/ml. Cells were exposed to 10 mg/ml anti-Neogenin

antibody (extracellular, non-ligand blocking, gift of Dr. H. Cooper)

for 1 h followed by exposure to Alexa 488 secondary antibody for

1 h. Sorted E11.5 and P0 cells were grown at 5,000 cells/ml in

complete Neurobasal medium for two passages, followed by

passages at low density (1,000 cells/ml). NS were counted in each

culture prior to passaging. Adult SVZ NS were sorted into a 96-

well plate containing medium at 20 cells per well and allowed to

grow for 2 weeks before assessing sphere formation. Both

antibodies to the extracellular portion of Neogenin labeled the

same cells in vitro (data not shown).

Neogenin Ligand-Blocking Antibody and Apoptosis
Assay

E11.5 and P0 NS were grown at 2,500 to 10,000 cells/ml. Anti-

Neogenin antibody was added at 2.5 to 10 mg/ml of medium and

cells were grown for 24 h. Hydrogen peroxide, anti-mouse IgG,

and PBS were used as positive and negative controls for the

apoptosis assay. Caspase3/7 activities were measured using the

Caspase-Glo 3/7 Assay (Promega), according to the manufactur-
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er’s protocol, and luminescence was detected using the Analyst

HT Microplate Reader (LJL Biosystems).

Supporting Information

Table S1 Partial list of proteins with higher expression in both

E11.5 and P0 NS as compared to differentiated E11.5 NS.Proteins

were identified by mLC-MS/MS. Detailed information regarding

protein identification can be found in Table S2.

Found at: doi:10.1371/journal.pone.0009121.s001 (0.03 MB

DOC)

Table S2 List of all proteins identified by mLC-MS/MS. One of

two programs was used to establish protein identification: Mascot

or Sonar. The respective scores for each protein are listed, as well

as the identified peptide sequence. LCQ-DECA MS/MS data sets

were analyzed by Sonar MS/MS software (Genomic Solutions,

Version 2004.01.15.01), and QSTAR MS/MS data sets were

analyzed by Mascot software (Matrix Science), with reference to

databases from NCBI, SIB and EBI. An Expect score of greater

than 1610-2 was considered a positive identification. Search

parameters included +/2 2 Da precursor, +/2 0.4 Da fragment,

3 missed cleavages by trypsin, carboxyamidomethylation of

cysteines, and oxidized methionines.

Found at: doi:10.1371/journal.pone.0009121.s002 (0.24 MB

PDF)

Figure S1 Neurosphere culture design. Acutely dissociated

telencephalon (E11.5) or cortex (P0) from CD1 mice was grown

at both high density (50,000 cells/ml) and low density (1,000 cells/

ml, designated D1) as described. Subsequent D7, D14, and D21

low density cultures were derived from fully mature high density

1u, 2u, or 3u NS, respectively. High density cultures were passaged

every 7d, and low density cultures every 14d.

Found at: doi:10.1371/journal.pone.0009121.s003 (0.34 MB

TIF)

Figure S2 Proteomics workflow for identification of differentially

expressed proteins in NS by 2DGE. Additional details regarding the

methodology can be found in the Materials and Methods section.

Found at: doi:10.1371/journal.pone.0009121.s004 (4.00 MB TIF)

Figure S3 Representative total ion chromatograph and MS/MS

spectrum. A total ion chromatograph (inset, B) and MS/MS

spectrum (A) of a tryptic peptide of guanine nucleotide-binding

protein beta subunit 2-like 1, a heterotrimeric G protein. The MS/

MS spectrum shown is focused in the mass range where the

strongest b and y ions are present.

Found at: doi:10.1371/journal.pone.0009121.s005 (2.32 MB TIF)

Figure S4 Protein expression for several identified proteins.

Western blot analysis of the membrane-enriched preparation for

TrkC, Rack1, and HSP90 of E11.5 NS (lane 1), E11.5

Differentiated NS (lane 2), P0 NS (lane 3). The loading control,

Actin, was used for total cell lysate. Protein loading was equal in all

lanes and measured by Bradford analysis.

Found at: doi:10.1371/journal.pone.0009121.s006 (0.10 MB TIF)

Figure S5 Neogenin is highly expressed in E11.5 NS and is co-

expressed with Nestin in a sub-population of cells. By immuno-

cytochemistry (A), Neogenin (green) and Nestin (blue) expression

was evident in both E11.5 and P0 NS, although there was higher

expression of both in E11.5 NS (top panel, A). The percent of cells

expressing these proteins is shown in (B). Cell nuclei are shown in

red (propidium iodide).

Found at: doi:10.1371/journal.pone.0009121.s007 (0.09 MB TIF)

Figure S6 Incubation with ligand-blocking anti-Neogenin anti-

body increases percent of tryphan-blue positive cells in E11.5 cells.

E11.5 and P0 cells were incubated with either the ligand-blocking

anti-Neogenin antibody or the cell sorting anti-Neogenin antibody

for 3h and tryphan blue positive cells were counted.

Found at: doi:10.1371/journal.pone.0009121.s008 (0.06 MB TIF)
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