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Abstract
Many longitudinal imaging studies have collected repeated diffusion tensor magnetic resonance
imaging data to understand white matter maturation and structural connectivity pattern in normal
controls and diseased subjects. There is an urgent demand for the development of statistical
methods for the analysis of diffusion properties along fiber tracts and clinical data obtained from
longitudinal studies. Jointly analyzing repeated fiber-tract diffusion properties and covariates (e.g.,
age or gender) raises several major challenges including (i) infinite-dimensional functional
response data, (ii) complex spatial-temporal correlation structure, and (iii) complex spatial
smoothness. To address these challenges, this article is to develop a functional mixed effects
modeling (FMEM) framework to delineate the dynamic changes of diffusion properties along
major fiber tracts and their association with a set of covariates of interest and the structure of the
variability of these white matter tract properties in various longitudinal studies. Our FMEM
consists of a functional mixed effects model for addressing all three challenges, an efficient
method for spatially smoothing varying coefficient functions, an estimation method for estimating
the spatial-temporal correlation structure, a test procedure with local and global test statistics for
testing hypotheses of interest associated with functional response, and a simultaneous confidence
band for quantifying the uncertainty in the estimated coefficient functions. Simulated data are used
to evaluate the finite sample performance of FMEM and to demonstrate that FMEM significantly
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outperforms the standard point-wise mixed effects modeling approach. We apply FMEM to study
the spatial-temporal dynamics of white-matter fiber tracts in a clinical study of neurodevelopment.

Keywords
Diffusion properties; Functional mixed effects model; Longitudinal; Spatial-temporal correlation;
White matter fiber tract

1. Introduction
Development of brain white matter architecture, which begins in the fetal period and
continues into adulthood, is important for development of neural pathways connecting
individual brain regions and is associated with the development of cognitive functions.
Diffusion tensor imaging (DTI) provides a powerful tool for studying white matter pathways
by measuring water diffusion properties. Therefore, many DTI studies have been conducted
to calculate DTI-derived diffusion properties including fractional anisotropy (FA), radial
diffusivity (RD), and axial diffusivity (AD), for the quantification of white matter
maturation and integrity (Basser et al., 1994; Moseley, 2002; Mukherjee et al., 2002;
McGraw et al., 2002; Partridge et al., 2004; Haynes et al., 2005; Huppi and Dubois, 2006;
Mukherjee and McKinstry, 2006; Cascio et al., 2007; Rollins, 2007; Qiu et al., 2008; Gao et
al., 2009; Gilmore et al., 2010; Geng et al., 2012). Specifically, FA represents diffusion
anisotropy, AD represents axonal organization and is largely related to axonal density, and
RD reects the degree of white matter myelination (Song et al., 2002; Budde et al., 2007).
Moreover, it is clinically important to use diffusion properties to characterize white matter
development in normal brain. It may identify key maturational milestones and provide a
valuable reference with which various pathologies can be compared and characterized and
thus it could improve our understanding of normal brain development and neural bases of
many neuropsychiatric and neuro-degenerative disorders (McGraw et al., 2002; Huppi and
Dubois, 2006; Qiu et al., 2008; Gao et al., 2009; Gilmore et al., 2010; Geng et al., 2012).

Most DTI studies have extensively focused on region-of-interest (ROI) analysis, voxel-
based analysis, and fiber-tract based analysis of diffusion properties in cross-sectional
studies (Ding et al., 2008; Agosta et al., 2010; Snook et al., 2007; Zhu et al., 2010, 2011;
Smith et al., 2006; O’Donnell et al., 2009; Yushkevich et al., 2008; Goodlett et al., 2009;
Colby et al., 2012). As discussed in (Goodlett et al., 2009; Smith et al., 2006), ROI and
voxel-based analyses suffer from several serious drawbacks, such as poor alignment quality
and the identification of meaningful ROIs. To address these drawbacks, there is a great
scientific interest in developing fiber-tract based analysis of diffusion properties recently
(Smith et al., 2006; O’Donnell et al., 2009; Yushkevich et al., 2008; Goodlett et al., 2009;
Zhu et al., 2011, 2010; Colby et al., 2012), since white matter fiber tracts are much more
objective, specific, and reliable than ROIs anatomically defined by some existing atlases.
Statistically, several functional regression models have been developed to analyze fiber-tract
diffusion properties and covariates from cross-sectional studies (Zhu et al., 2010, 2011).
However, it is well known that cross-sectional studies have limited power in delineating the
dynamic changes of white matter fiber tracts within individuals.

Recently, longitudinal DTI studies have gained tremendous interest in quantifying individual
changes of fiber tract diffusion properties across time and the effects of some covariates,
such as gender, on such longitudinal changes (Evans and Group., 2006; Geng et al., 2012;
Lebel and Beaulieu, 2011; Sadeghi et al., 2013). For instance, in Lebel and Beaulieu (2011),
longitudinal DTI data are investigated to study the development of 10 commissural,
projection, and association white matter tracts from childhood to adulthood. For longitudinal
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data, measurements observed from the same individual usually exhibit positive temporal
correlation and the strength of the temporal correlation decreases with the time separation.
Ignoring temporal correlation in measures would dramatically influence subsequent
statistical inference, which can lead to misleading scientific inferences (Diggle et al., 2002;
Fitzmaurice et al., 2004). Recently, linear and nonlinear mixed effects models (Diggle et al.,
2002; Fitzmaurice et al., 2004) have been used to explicitly account for the temporal
correlation in the ROI analysis of longitudinal diffusion properties (Lebel and Beaulieu,
2011; Sadeghi et al., 2013). However, these mixed effects models cannot be used for the
analysis of repeated functional responses from longitudinal studies.

Little has been done on the development of advanced statistical methods to analyze repeated
functional responses from longitudinal studies due to at least three major challenges
including (i) infinite-dimensional functional responses measured at multiple time points, (ii)
complex spatial-temporal correlation structure, and (iii) complex spatial smoothness.
According to the best of our knowledge, a longitudinal functional principal component
analysis in Greven et al. (2010) is the first statistical method for the analysis of repeated
functional responses, in which an estimation procedure was proposed to estimate both fixed
effect curves and spatial-temporal covariance operators. However, in Greven et al. (2010),
there is a lack of several formal statistical inference tools, such as a test statistic. Moreover,
in Geng et al. (2012), a functional mixed effects model proposed by Guo (2002) was used to
analyze fiber-tract diffusion properties from longitudinal studies. However, since the
functional mixed effects model in Guo (2002) was developed to model the data with
functional responses (of time or distance) measured only once for each subject, directly
applying such model in Guo (2002) to functional responses measured multiple times
essentially accounts for only the spatial correlations, but ignores the within-subject temporal
correlations.

The aim of this paper is to present a functional analysis pipeline (FMEM) with several
formal statistical inference tools for delineating the dynamic changes of fiber-tract statistics
and their associations with a set of covariates obtained from longitudinal studies. A
schematic overview of FMEM is given in Fig.1. Moreover, a short version of this paper has
appeared in the conference proceedings of Information Processing in Medical Imaging
(IPMI) 2013 (Yuan et al., 2013). Specifically, we propose a functional mixed effect model
with two components: a varying-coefficient model for characterizing dynamic functional
fixed effects between fiber-tract diffusion properties and some covariates and a set of
functional random effects for capturing complex spatial-temporal correlation structure.
Compared with the existing literature (Greven et al., 2010), there are three methodological
contributions in this paper. The first one is to develop an efficient estimation method to
spatially smooth varying coefficient functions, while accounting for spatial-temporal
correlation structure. The second one is to propose a test procedure with both local and
global test statistics for testing hypotheses of interest associated with functional responses.
The third one is to approximate a simultaneous confidence band for quantifying the
uncertainty in the estimated coefficient functions. FMEM provides a rigorous analytical tool
for characterizing the dynamic changes of functional response data and their associations
with a set of covariates. Using simulation procedures that mimic the real imaging data, we
evaluate the finite sample performance of FMEM and demonstrate that FMEM significantly
outperforms the standard point-wise mixed effects modeling approach.

2. Method
To compare diffusion properties in populations of DTIs, we use DTI atlas building with a
group-wise longitudinal large deformation diffeomorphic registration method followed by
atlas fiber tractography and fiber parametrization as described in Geng et al. (2012) to
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extract DTI fibers and establish DTI fiber correspondence across all DTI datasets from
different subjects at all time points. Since this method has been described in Geng et al.
(2012), we do not include a detailed description here for the sake of simplicity. Method
section consists of data structure in subsection 2.1, method comparisons in subsection 2.3,
and all components of FMEM in other subsections. Specifically, FMEM includes model
formulation in subsection 2.2, initial estimator of varying coefficient functions in subsection
2.4, estimation of covariance operators in subsection 2.5, refined estimator of varying
coefficient functions in subsection 2.6, smoothing individual functions in subsection 2.7,
hypothesis testing in subsection 2.8, and constructing simultaneous confidence bands in
subsection 2.9.

2.1. Data Structure
In a typical longitudinal DTI study, we observe diffusion properties (e.g., FA, or RD) along
fiber bundles and some clinical/demographic variables measured at multiple time points
from n subjects to investigate the white matter maturation and the association of white
matter connectivity pattern with clinical/demographic variables of interest. We define ri as
the total number of time points, which can vary with the subject i, xij as a px × 1 vector of
covariates of interest, such as age and gender, and tij as the j–th time point for the i–th
subject for j = 1, ⋯, ri and i = 1,…, n. We assume that at least some subjects i have at least 2
times points. Let s ∈ [0, L] be the arc length of any point on a specific fiber bundle relative
to a fixed end point of the fiber bundle, where L is the longest arc length on the fiber bundle.
For each subject i, let yij(sm) be a specific diffusion property measured at the m–th grid point
sm ∈ [0, L] for m = 1,…, M at the j–th time point. Following spatial normalization, it is
typical that yij(sm) are measured at the same set of grid points for all subjects and all time
points. This data structure is similar to that of standard longitudinal data, except that instead
of observing scalar responses, yij, one observes curves or functions of location s, yij(s),
multiple times for subject i. Thus, yij(s) exhibit the within-curve (spatial) correlations
besides temporal correlations like in the standard longitudinal data. Note that when all
subjects have only one time point, that is ri = 1, yij(s) (can be reduced as yi(s)) exhibit only
the within-curve (spatial) correlations.

2.2. Functional Mixed Effects Model
A functional mixed effects model is defined as

(1)

where ξi(s) is a vector of functional random effects for subject i, zij is a pz × 1 vector of
covariates associated with ξi(s) and is commonly a subset of xij, ∊ij(s) is a measurement
error, and B(s) = (β1(s),…, βpx(s))T is a px × 1 vector of functional fixed effects. Model (1)

includes two components: (i) a functional fixed-effect component  for characterizing
dynamic functional fixed effects between fiber-tract diffusion properties and some co-

variates and (ii) a functional random-effect component  for capturing
complex spatial-temporal correlation structure. These two components play a critical role in
making a formal statistical inference on B(s).

In model (1), ηij(s) primarily characterizes within-curve spatial correlation structure,
whereas ξi(s) primarily characterizes the subject-level variations and within-subject spatial-
temporal correlation. Moreover, ξi(s), ηi(s), and ∊i(s) are independent and identical copies of
SP(0, Σξ(s, s′)), SP(0, Ση(s, s′)Iri), and SP(0, σ∊(s)21(s = s′)), respectively, where Iri is a ri ×
ri identity matrix, and SP(μ(s), Σ(s, s′)) denotes a stochastic process vector with mean
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function μ(s) and covariance function Σ(s, s′). The covariance structure of yi(s) = (yi1(s),…,
yiri(s))T, denoted by Σy,i(s, s′), is characterized as follows:

(2)

where  is a ri × ri matrix with the (j1, j2)–th element being

.

As an illustration, we considered FA values along the genu or splenium of the corpus
callosum (Fig. 3) of 137 subjects obtained from our neonatal study of normal brain and each
subject has up to three repeated measures at three time points corresponding to neonate, 1
year, and 2 years old. We may consider a quadratic growth fixed-effect model and a linear
growth randomeffect model, which are, respectively, given by

(3)

where gi represents gender and Ageij represents age at the j-th time point. In this case, we
have pz = 2, px = 4, ξi(s) = (ξi,1(s), ξi,2(s))T, zij = (1, Ageij)T, B(d) = (β1(s),…, β4(s))T, and

. For instance, in model (3), for any s, s′, we have Σξ(s, s′) =
(σξ,kk′(s, s′)), which is a 2 × 2 matrix, and

Thus, model (1) can capture spatial-temporal correlation through .

2.3. Comparisons with Existing Methods
Model (1) is closely associated with several existing methods in the literature. Such methods
include (i) standard linear mixed effects models (LMEM), (ii) a functional mixed effects
models proposed in Guo (2002), and (iii) a longitudinal functional principal component
analysis proposed in Greven et al. (2010). At each fixed s, model (1) reduces to LMEM.
Fitting point-wise LMEM to longitudinal functional data ignores the spatial correlations that
may exist in functional responses. We will show in Section 3 that FMEM outperforms
LMEM under the presence of spatial correlations. When ri = 1 for all i, model (1) reduces to
the functional mixed effects model considered in Guo (2002). Fitting FMEM in Guo (2002)
to longitudinal functional data ignores within-subject temporal correlations that may exist in
longitudinal functional responses. Model (1) is essentially the same as that in Greven et al.
(2010), which is the first statistical method for the analysis of repeatedly-measured
functions. In Greven et al. (2010), the authors proposed an estimation procedure for fixed
effect curves and spatial-temporal covariances, but no formal statistical inference tools, such
as test statistics, were developed. In this paper, we present a longitudinal functional analysis
pipeline, called FMEM, with several formal statistical inference tools for delineating the
dynamic changes of diffusion properties along major white matter fiber bundles and their
associations with a set of covariates of interest, such as age. Comparisons between FMEM
and other three methods (i)-(iii) are displayed in Fig. 2 in terms of their applicability for
data, estimation and inference tools. In the following subsections, We give a brief
description of each component of FMEM.
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2.4. Initial Estimator of Varying Coefficient Functions
We use the local linear regression method and the weighted least squares estimation to
estimate B(s) (Fan and Gijbels, 1992; Wand and Jones, 1995). Since the local linear
regression method adapts automatically at the boundary points (Fan and Gijbels, 1992), it is
ideal for dealing with scalar diffusion properties along fiber tracts with two ends, such as the
genu and the splenium of the corpus callosum (see Fig. 3). Specifically, for a specific
bandwidth h, we estimate B(s) by minimizing the following weighted least squares function

(4)

where K(s) is a kernel function and Kh(s) = h−1 K(s/h). The optimal estimator of B(s),
denoted by B̂(s), is obtained at the optimal bandwidth selected by using a leave-one-curve-
out cross-validation method (Zhang and Chen, 2007; Zhu et al., 2012). In practice, we
standardize all covariates and diffusion properties to have mean zero and standard deviation
one and then choose a common bandwidth for all covariates, which greatly increases
computational efficiency in bandwidth selection. Note that we have not incorporated the
temporal correlation in Equation (4), but we will address this issue in Section 2.6.

2.5. Estimating Covariance Operators
The covariance operator of yij(s) plays a crucial role in our proposed inference procedure.
We propose an estimation procedure to estimate the covariance operator of yij(s) as follows:

(i) We use the local constant method to estimate Σξ(s, s′) and Ση(s, s′), denoted by

 and , for each pair s ≤ s′ (Fan and Gijbels, 1992; Wand and
Jones, 1995; Ramsay and Silverman, 2005; Welsh and Yee, 2006).

(ii)
We use the local constant method to smooth  and . It yields

new estimates of Σξ(s, s′) and Ση(s, s′), denoted by  and ,
respectively, for any s and s′.

(iii)
We use  to estimate
σ∊(s)2, where 1(·) is an indicator function.

There is a practical issue associated with the above procedure. That is, the estimated

 and  may not be semipositive definite. We employ an adjustment

procedure proposed by Hall et al. (2008) to transform the estimated  and 
into semipositive definite covariance operators. The key idea is to approximate the
covariance operators by truncating the eigenfunctions associated with negative eigenvalues

in the spectral representations of  and  (see Appendix A for details).
Subsequently, we can substitute these estimators into (2) to obtain an estimate of Σy,i(s, s′),

denoted by .

2.6. Refined Estimator of Varying Coefficient Functions
In the initial estimation of varying coefficient functions, we ignore temporal correlation
among repeated fiber-tract diffusion properties. To explicitly incorporate the temporal
correlation, we refine the estimate of B(·) by incorporating the estimated covariance
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operators. Let Xi = [xi1 ⋯ xiri] be a px × ri matrix. We reestimate A(s) by minimizing the
following weighted least squares function:

(5)

where . The objective function (5) includes
both the spatial smoothness by using Kh2 (sm − s) and the spatial-temporal correlation by

using . We also select the bandwidth h2 by using a leave-one-out cross
validation criterion.

2.7. Smoothing Individual Functions

Let  for all i, j. Under certain smoothness conditions on ηij(s) and
ξi(s), we also employ the local linear regression technique to estimate all individual
functions gij(s). The optimal estimator, denoted by ĝij(s), is obtained at the optimal
bandwidth selected by using the leave-one-out generalized cross-validation method.

2.8. Hypothesis Test
In longitudinal DTI studies, most scientific questions focus on the detection of dynamic
changes of fiber tract diffusion properties along fiber bundles and the effects of covariates
on diffusion properties. Such questions can often be formulated as linear hypotheses of B(s)
as follows:

(6)

where C is a pc × px matrix of full row rank and b0(s) is a given pc × 1 vector of functions.

As an illustration, in model (3), we may be interested in assessing the overall changes of
FA’s along the fiber bundle from neonate to 2 years old. Statistically, for model (3), the
hypothesis can be formulated as follows:

In this case, we have

We test the above null hypothesis by proposing a global test statistic Sn, defined by

(7)

where Sn(s) is a local test statistic defined by

(8)
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in which d(s) = Cvec(B̂(s) − bias(B ̂(s))) − b0(s). The asymptotic distribution of Sn is very
complicated and it is difficult to directly approximate the percentiles of Sn under the null
hypothesis. Instead, we propose to use a novel wild bootstrap method described in Appendix
B to obtain the critical values of Sn and approximate the p-value of Sn. The key challenge of
this wild bootstrap method is to preserve the spatial-temporal correlation in model (1).

2.9. Simultaneous confidence bands
For a given significance level α, we construct a simultaneous confidence band for each βl(s)
such that

(9)

where  and  are, respectively, the lower and upper limits of the confidence
band. Specifically, a 1 − α simultaneous confidence band for βl(s) is given as follows:

(10)

where Cl(α) is a scalar. Since the calculation of  has been discussed and the effect of

dropping  is negligible, the critical issue is to determine Cl(α). We develop a
novel efficient resampling method described in Appendix C to approximate Cl(α). The key
challenge of this resampling method is to preserve the spatial-temporal correlation in model
(1).

3. Simulation Studies and A Real Example
In this section, we use Monte Carlo simulations and a real example to evaluate the finite-
sample performance of FMEM and compare FMEM with LMEM. All computations for
these numerical examples were done in Matlab on an IBM ThinkCentre M50 workstation.
The computation for FMEM is relatively efficient for moderate and even large data. The
computational time for FMEM can be further reduced by using other computer languages,
such as C++.

3.1. Simulation Studies
We conducted a Monte Carlo simulation study to evaluate the Type I and II error rates of the
global test statistic Sn. We simulated FA values along the genu of the corpus callosum tract
(Fig. 3) according to model (1), in which we set

(11)

where  and  were independently generated from  and  for all i, j,
and k. Specifically, we set the parameters according to our real imaging data as follows: n =
137, M = 64, ri = 1, 2 (or 3), xij = (1, Dirij, Gi, Ageij)T, B(s) = (β1(s), β2(s), β3(s), β4(s))T, and
zij = (1, Ageij)T for i = 1, ⋯, 137, where Dirij, Gi and Ageij, respectively, denote the
indicator of different number of gradient directions used, gender, and the gestational age at
the j–th scan time of the i–th subject. To mimic real imaging data, we applied model (1) to
FA measures along the genu of the corpus callosum tract from all 137 infants in our clinical

data to estimate B(s) by B ̂(s),  by ,  by ,  by , and  by ,. The
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curves of the varying coefficient functions of B̂(s) are presented in Fig. 5. According to the
results in Section 3.2, the age effect is significant for our clinical data. So we fixed all
parameters in model (1) at their corresponding estimated parameters, whereas β4(s) was set

as , where c is set at different values in order to study the Type I and II error rates of
our global test statistic in testing the age effect.

We have three aims in this simulation study. The first aim is to evaluate the Type I and II
error rates of the global test statistic Sn. In neuroimaging studies, some scientific questions
require the assessment of the development of white matter across age. We formulated the
questions as testing the null hypothesis H0 : β4(s) = 0 for all s along the genu against H1 :
β4(s) ≠ 0 for at least one s on the tract. We first fixed c = 0 to assess the Type I error rates for
Sn, and then we set c = 0.02, 0.04, 0.06, 0.08, and 0.1 to examine the Type II error rates for
Sn at different effect sizes. In order to evaluate the Type I and II error rates at different
sample sizes, we let n = 137 and 70. For n = 137, the values of indicator of number of
gradient directions, gender and age were set the same as the 137 subjects in our clinical
study. For n = 70, we randomly chose 35 males and 35 females from the 137 subjects and
used their values for indicator of number of gradient directions, gender and age to simulate
the values of FA along the genu tract. We applied the estimation procedure of FMEM to the
simulated FA measures along the genu. We approximated the p-value of Sn by using the
wild bootstrap method with G = 500. For each c, we set the significance level α at both 0.05
and 0.01 and used 500 replications to estimate the rejection rate of Sn. At a fixed α, if the
Type I rejection rate is smaller than α, then the test is conservative, whereas if the Type I
rejection rate is greater than α, then the test is anticonservative, or liberal. Fig. 4 presents the
rejection rates of Sn across all effect sizes at the two significance levels (α = 0.05 or 0.01). It
is observed that Type I error rates are well maintained with the values 0.048 and 0.01,
respectively, at the two significance levels. In addition, the statistical power for rejecting the
null hypothesis increases with the sample size, the effect size and the significance level,
which is consistent with our expectation. The Monte Carlo error rate is

 with N = 500.

The second aim is to show that FMEM outperforms standard LMEM. To this end, we first
fitted linear mixed effects model at each sm without separating ηij(sm) from ∊ij(sm). Then, we

calculated the global testing statistic except that we replaced  in Sn with

. Finally, we calculated the p-values with the
wild bootstrap method as in FMEM. Table 1 shows that LMEM is much less powerful than
FMEM (also see Fig. 4).

The third aim is to examine the coverage probabilities of the simultaneous confidence bands
for all varying coefficient functions βl(s) for l = 1, 2, 3, 4 in B(s). We only considered the
simulated FA measures at c = 0.1 and constructed the 95% and 99% simultaneous
confidence bands for all βl(s). Table 2 summarizes the empirical coverage probabilities
based on 500 replications for α = 0.01 and 0.05. The coverage probabilities are quite close to
the prespecified confidence levels. Fig. 5 presents typical 95% and 99% simultaneous
confidence bands for coefficient functions βl(s). The simultaneous confidence bands contain
the horizontal line crossing (0, 0) for the gender effect whereas the horizontal line is out of
the 95% and 99% simultaneous confidence band for number of directions and age effects,
which indicates the significant number of directions and age effects at the significance levels
α = 0.05 and 0.01. This is consistent with our simulation setup and our findings in the real
data analysis that age and number of directions significantly influence the FA measures.
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3.2. A Real Example
This study was approved by the Institutional Review Board of the University of North
Carolina (UNC) School of Medicine. Children analyzed in this work were taken from the
control group of a longitudinal study to investigate neonatal brain development in children at
high risk for neurodevelopmental disorders. After applying a certain exclusion criteria, 298
high quality scans are available for 137 children (83 males and 54 females). Demographic
information and distribution of scan availability are shown in Tables 3 and 4.

A 3 T Allegra head-only MR system (Siemens Medical Solutions, Erlangen, Germany) was
used to acquire all the images. The system was equipped with a maximal gradient strength
of 40 mT/m and a maximal slew rate of 400 mT/(m · ms). The DTI images were obtained by
using a single shot EPI DTI sequence with the following variables: TR/TE= 5200/73 ms,
slice thickness= 2 mm, in-plane resolution= 2 × 2 mm2 with eddy current compensation. We
applied the 6 or 42 non-collinear directions at the b-value of 1000 s/mm2 with a reference
scan (b = 0). When the sequence with 6 gradient directions was applied, to improve the
signal-to-noise ratio of the images, a total of five scans were acquired and averaged.

A weighted least squares estimation method were used to estimate diffusion tensors (Zhu et
al., 2007; Basser et al., 1994). A DTI atlas building with a group-wise longitudinal large
deformation diffeomorphic registration method followed by atlas fiber tractography and
fiber parametrization as described in (Joshi et al., 2004; Geng et al., 2012) were used to
extract DTI fibers and establish DTI fiber correspondence across all DTI datasets from
different subjects at all time points (see Fig. 6 for the visualization of the atlas building). The
fiber tractography was done by using the freely available ‘FiberTracking’ software (http://
www.ia.unc.edu)/dev). While several DTI fiber tracts were tracked, we chose to focus in this
paper on the commissural bundles of the genu and splenium of the corpus callosum (see Fig.
3) to illustrate the applicability of our method to assessing the effects of covariates of
interest, such as age, gender, and number of gradient directions, in this study. Three
diffusion properties including FA, RD, and AD, were extracted at each grid point along the
selected fiber tracts for all 137 infants.

For the two selected tracts, we fitted the functional mixed effects model (1) to the FA, RD
and AD values from all 137 subjects, in which x = (1, Dir, G, Age1, Age2)T, z = (1, Age1,
Age2)T and Age1 (or Age2) is an indicator variable indicating whether a subject belongs to
the first (or second) year age group. The coefficient functions related to Age1 and Age2 can
be used to investigate whether there are some diffusion changes from neonate to the first
year of life, from the first year to the second year and from neonate to the second year at
each grid point, the direction of changes and the changing speed (indicating white matter
maturation speed). The positive value indicates the increasing trend. In addition, it is
observed from Fig. 7 that there are random subject-to-subject variations in FA, RD and AD
measures at each grid point along the two tracts. Fig. 8 also shows that there are random
subject-to-subject variations in the age effect on FA, RD and AD measures at the selected
location. To take care of these inter-subject variations, random intercept and age effects
were included in the model. Then we estimated the functional coefficients B(s) and
constructed their 95% simultaneous confidence bands to look at the uncertainty in the
estimated coefficient functions. We also constructed the global test statistic Sn via Equation
(7) to test for the significance of gender, number of gradient directions and age effects on
FA, RD and AD values. We approximated the p-value of Sn using the resampling method
with G = 5, 000 replications.

The hypothesis testing results show that there are significant age and number of gradient
directions effects on FA, RD and AD values but gender was not found to be significant for
these two corpus callosum tracts (see Fig. 9), which agrees with the findings in panels (a)-(c)
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of Figures 10 and 11. The FA, RD and AD values are significantly different between
neonate versus the first year, and between the first year versus the second year with p value
< .0001, far smaller than 0.05 significance level. In general, FA increases while RD and AD
decrease from neonate to the first year and then from the first year to the second year, even
across all locations of the two tracts (see Fig. 12). Also changes of all three diffusion indices
in the first year are larger than in the second year (see Figures 9 and 12). This might reflect
that white matter development is not uniformly across time. It is observed from Fig. 10 that
when 6-gradient-directions instead of 42-gradient-directions was used, central regions of the
genu of the corpus callosum show significantly smaller FA values and larger RD values
while the peripheral regions show significantly larger FA and smaller RD values. For the
splenium of the corpus callosum, central regions show significantly smaller FA values and
larger RD and AD values, when 6-gradient-directions instead of 42-gradient-directions was
used (see Fig. 11). This reflects different regional impact of low number of gradient
directions on diffusion properties along these two callosal tracts. Essentially, it may inflate
FA values and deflate RD and AD values in the peripheral regions and vice versus for the
central regions.

4. Discussion
We have developed a FMEM pipeline for the spatial and temporal analysis of longitudinal
fiber tract diffusion properties. Our functional mixed effect model include the functional
fixed-effect component and the functional random-effect component for the explicit
incorporation of spatial smoothness and spatial-temporal correlation. These two components
are critical for correctly making formal statistical inferences on longitudinal functional
responses. We have explicitly incorporated these two components in both estimation and
testing procedures. We have used simulations to demonstrate that FMEM outperforms
standard mixed effects model coupled with a multiple comparison method.

We have demonstrated the applicability of FMEM by applying it to the analysis of dynamic
changes of diffusion properties along two corpus callosum tracts in a clinical study of
neurodevelopment. In agreement with previous studies (Neil et al., 1998; Gao et al., 2009;
Geng et al., 2012), increased FA and decreased AD and RD were detected across almost all
locations of the splenium and genu of the corpus callosum tracts in the first two years of life.
Our results showed that the changes in diffusion properties are greater in the first year than
in the second year. We have shown some strong number-of-diffusion-gradient-direction
effect on diffusion properties along fiber tracts.

Several important issues need to be addressed in future research. Firstly, it is critically
important to develop an unbiased image-processing framework for longitudinal
neuroimaging analysis (Reuter and Fischl, 2011; Keihaninejad et al., 2013; Yushkevich et
al., 2010; Hua et al., 2011). Secondly, the FMEM procedure is solely powerful for these
major white matter tracts, in which one can establish the common localization across
subjects. In practice, however, white matter tract pattern and structure may vary dramatically
across subjects due to both registration error and population heterogeneity. For instance, in
some heterogenous populations, it is possible that tract-specific changes occur in only a
subset of subjects. Therefore, it is important and interesting to develop new analytical tools
to quantitatively extract white matter tract pattern and structure for other DTI studies.
Thirdly, although we focus on linear functions in both the functional fixed-effect component
and the functional random-effect component, it is interesting to develop nonlinear functional
mixed effects models, which are important for quantifying complex growth curves.
Developing statistical methods for nonlinear functional mixed effects models faces up with
many new challenges both computationally and theoretically. Fourthly, we will extend
FMEM from simple longitudinal studies to more complex longitudinal twin/familial studies
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and extend FMEM to the analysis of whole-brain images as a single piecewisely smoothed
function with possible jumps and edges.

Appendix A: Approximating the covariance operators using the method
proposed by Hall et al. (2008)

Let  and  be, respectively, the

eigenvalue-eigenfunction pairs of  and  such  and

. Then, the adjusted estimators of Σξ(s, s′) and Ση(s, s′) are, respectively,
given by

(12)

(13)

where nξ and nη are positive integers such that the proportions of explained variance by
eigenvalues exceed a pre-specific value, such as 0.90.

Appendix B: Wild Bootstrap Methods for Approximating the Null
Distribution of Sn

The wild bootstrap consists of the following three steps:

Step 1. Fit model (1) under the null hypothesis H0, which yields B̂*(sm),  and

 for i = 1,…, n and m = 1,…, M.

Step 2. Generate a random sample  and τij(sm)(g) from a N(0,1) generator for i = 1, …, n
and m = 1, …, M and then construct

Then, based on ŷij(sm)(g), we recalculate B ̂(s)(g), bias(B̂(s)(g)), and d(s)(g) = Cvec(B̂(s)(g) −
bias(B̂(s)(g))) − b0(s). We also note that Cvec(B ̂(s)(g)) ≈ b0 and Cvec(bias(B̂(s)(g))) ≈ 0.
Thus, we can drop the term bias(B ̂(s)(g)) in d(s)(g) for computational efficiency.
Subsequently, we compute

Step 3. Aggregate the results of Step 2 over g = 1, ⋯, G to obtain  and

then calculate . If p is smaller than a pre-specified significance
level α, say 0.05, then one rejects the null hypothesis H0.
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Appendix C: Resampling Method for Approximating Cl(α)
The resampling bootstrap consists of the following three steps:

Step 1. We calculate  for all i and m.

Step 2. For g = 1,…, G, we independently simulate  from N(0,1) and
calculate a stochastic process G(s)(g) given by

where 

Step 3. We calculate sups∈[0,1] |elG(s)(g)| for all g, where el be a p × 1 vector with the l-th
element 1 and 0 otherwise, and use their 1 − α empirical percentile to estimate Cl(α).
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• Develop a FMEM for adaptive analysis of longitudinal functional data.

• Useful for understanding the development of white matter fiber bundles.

• Characterize the development of white matter diffusivities
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Fig. 1.
A schematic overview of FMEM: a functional mixed effects model (c) for the repeatedly
measured diffusion properties along a tract (a)-(b), a two-stage local linear regression
method for estimating the coefficient functions (d), local constant estimators for covariance
matrices adjusted by using a functional principal component analysis method (e), a
hypothesis test for coefficient functions using global test statistics along with a resampling
method for approximating the p-value of the global test statistics (f), and a method for
constructing the confidence bands for the coefficient functions based on a resampling
method (g).
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Fig. 2.
Comparisons among linear mixed effects models (LMEM), Guo (2002)’s FMEM, Greven et
al. (2010)’s longitudinal functional principal component model (LFPCA), and FMEM.

Yuan et al. Page 18

Neuroimage. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
3D visualization of the genu and splenium of the corpus callosum in axial (left panel) and
sagittal (right panel) views.
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Fig. 4.
Simulation study: Type I and Type II error rates as functions of c. Rejection rates of Sn
based on the wild bootstrap method are calculated at six different values of the effect size c
for sample size 70 and 137 at the 0.01 and 0.05 significance levels using FMEM and
LMEM.
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Fig. 5.
Simulation study: Typical 95% (left) and 99% (right) simultaneous confidence bands for
varying coefficient functions βl(s). The magenta, green solid, and red dash-dotted curves are,
respectively, the true curves, the estimated varying coefficient functions and their 95% and
99% confidence bands. The blue solid horizontal line is the line crossing the origin.
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Fig. 6.
2D axial views of 15 deformed images (FA of the deformed tensor images after
registration). The first, second and third rows include 5 images randomly selected from
neonate, 1- year-old and 2-year-old data, separately.
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Fig. 7.
FA, RD and AD values along the genu ((a), (b) and (c)) and splenium ((d), (e) and (f)) of the
corpus callosum for all 137 subjects in each age group.
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Fig. 8.
FA, RD and AD values varying over age at a selected location (arclength=−8.75 or
arclength=−14.07) along the genu ((a), (b) and (c)) and splenium ((d), (e) and (f)) of the
corpus callosum for the selected 35 subjects.
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Fig. 9.
Mean FA, RD and AD values along the genu ((a), (b) and (c)) and splenium ((d), (e) and (f))
of the corpus callosum tract and gender, number of gradient directions and age effects on
FA, RD and AD values. Solid lines are mean FA, RD and AD curves for the 42 gradient
directions while the dashed lines are mean curves for the 6 gradient directions. Red for
neonate, green for the first year age, and blue for the second year age. p1 is the p value for
the difference in the diffusion measure between neonate and the first year, p2 is the p value
for the difference in the diffusion measure between neonate and the second year, p12 is the p
value for the difference between the first year and the second year, pG is the p value for the
gender effect, pDir is the p value for the effect of the number of gradient directions.
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Fig. 10.
95% simultaneous confidence bands for varying coefficient functions for FA (a), RD (b) and
AD (c) along the genu of the corpus callosum tract. The solid curves are the estimated
coefficient functions, and the dashed curves are the 95% confidence bands. The thin
horizontal line is the line crossing the origin.
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Fig. 11.
95% simultaneous confidence bands for varying coefficient functions for FA (a), RD (b) and
AD (c) along the splenium of the corpus callosum tract. The solid curves are the estimated
coefficient functions, and the dashed curves are the 95% confidence bands. The thin
horizontal line is the line crossing the origin.
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Fig. 12.
Mean changes in FA, RD and AD along the genu (a)-(c) and splenium (d)-(f) of the corpus
callosum tract. Colors indicate different p values with red (p value < 0.01), orange (0.01 ≤ p
value < 0.02), yellow (0.02 ≤ p value < 0.03), green (0.03 ≤ p value < 0.04), and blue (0.04 ≤
p value < 0.05) and light purple (p value ≤ 0.05).
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Table 1

Simulation study: the Type I and Type II error rates of Sn under LMEM and FMEM.

c

sample size = 70 sample size = 137

α = 0.01 α = 0.05 α = 0.01 α = 0.05

LMEM FMEM LMEM FMEM LMEM FMEM LMEM FMEM

0 0.000 0.012 0.000 0.054 0.002 0.010 0.002 0.048

0.02 0.000 0.028 0.004 0.074 0.002 0.028 0.002 0.092

0.04 0.004 0.052 0.010 0.160 0.010 0.116 0.020 0.266

0.06 0.016 0.130 0.042 0.314 0.050 0.314 0.096 0.526

0.08 0.066 0.266 0.092 0.480 0.218 0.578 0.296 0.784

0.1 0.150 0.434 0.198 0.6860 0.452 0.804 0.536 0.910
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Table 2

Simulated coverage probabilities for varying coefficient functions in B(x) = (βl(x)) based on 500 replications at
the significance levels α = 0.01 and 0.05.

c

α = 0.05 α = 0.01

intercept Dir Gender Age intercept Dir Gender Age

l = 1 l = 2 l = 3 l = 4 l = 1 l = 2 l = 3 l = 4

0.1 0.942 0.930 0.946 0.946 0.992 0.986 0.986 0.980
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Table 3

Demographic characteristics for participants.

Gender: Male/Female 83/54

Gestational age at birth (weeks) 38.67 ± 1.74

Age at scan 1(days) 297.89 ± 13.90

Age at scan 2 (days) 655.34 ± 24.00

Age at scan 3 (days) 1021.70 ± 28.26

Number of Gradient directions

 dir6/dir42 at scan 1 80/24

 dir6/dir42 at scan 2 59/44

 dir6/dir42 at scan 3 42/49

Neuroimage. Author manuscript; available in PMC 2015 January 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yuan et al. Page 32

Table 4

Distributions of scan availability.

Available scans N

Neonate scan only 1

1 year scan only 2

2 year scan only 3

Neonate + 1 year scan 43

Neonate + 2 year scan 30

1 year + 2 year scan 28

Neonate + 1 year + 2 year scan 30
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