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Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinat-
ing new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C 
MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse 
range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early 
diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain 
for achieving clinical translation. This paper provides an overview of the discussions that took place at the international 
workshop “New Horizons in Hyperpolarized 13C MRI,” in March 2023 at the Bavarian Academy of Sciences and Humanities, 
Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization 
techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition 
and analysis, and emerging clinical applications in oncology and other fields.
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Introduction

Hyperpolarization techniques can increase the inherently 
low sensitivity of magnetic resonance (MR) by more than 
four orders of magnitude [1]. They have opened fascinat-
ing new avenues for in vivo MR imaging and spectroscopy 
(MRI/S). Hyperpolarized 13C MRI/S allows real-time meta-
bolic changes to be observed non-invasively in living organ-
isms, including cells, tissues, animal models, and humans. 
In clinical research studies, hyperpolarized 13C metabolic 
imaging has shown the potential to non-invasively improve 
diagnosis and monitoring of therapy in patients without 
the use of ionizing radiation. The only hyperpolarization 
technique applied in human research studies, dissolution 
dynamic nuclear polarization (d-DNP), was introduced 
20 years ago and demonstrated the ability to detect [1-13C]
pyruvate metabolism in animals 15 + years ago [2], repre-
senting a breakthrough in MR metabolic imaging. However, 
there are many challenges for hyperpolarized 13C MR to be 
translated to a routine clinical tool, from overcoming tech-
nical challenges (polarization, probes, and acquisition) to 
identifying the best clinical applications [3]. To accomplish 
the overwhelming promise of hyperpolarized 13C MR to rev-
olutionize medical diagnostic imaging, efforts are ongoing to 
improve the technique, investigate new applications, and find 
the best use cases for the technology. Evaluating the added 
clinical value of hyperpolarization techniques is currently 
a major challenge with more than twenty ongoing clinical 
trials focusing on hyperpolarized [1-13C]pyruvate, the poster 
child of metabolic probes that employ the technique [4–6]. 
Novel technologies are being developed to lower the hurdle 
for clinical translation and allow a more widespread and reli-
able use of the technique. During an international workshop 
on “New Horizons in Hyperpolarized 13C MRI” which took 
place on the 13th of March 2023 in the Bavarian Academy of 
Sciences and Humanities, Munich, Germany, recent devel-
opments ranging from hyperpolarization technology, novel 
probes, acquisition strategies, competing/synergistic tech-
nologies, and clinical studies were presented and discussed. 
In this article, we review the developments that were pre-
sented and summarize the scientific exchange that occurred 
during the workshop.

Latest Advances in Hyperpolarized 13C MR

Technical Progress of d‑DNP

The basics of d-DNP and its recent applications have been 
thoroughly described in a recent textbook [7]. Recent 
advances in this field have mostly been on the clinical side, 

and are discussed here and in “Clinical Studies: Scope, 
Acquisition, and Analysis.” A major milestone in clini-
cal application of hyperpolarized 13C MRI came with the 
SPINlab d-DNP polarizer [8], enabling human studies at 
over 24 sites. This system processes up to four samples 
simultaneously and includes automated quality assessment 
steps. Recent advances in d-DNP technology include the 
advent of cryogen free polarizers [9, 10], polarization at 
high field [11], faster polarization using cross-polarization 
[12], and UV-light-generated radicals from the substrate 
itself, leading to long-lived hyperpolarized solid-state 
samples [13, 14]. Dedicated transport systems of such 
samples have been demonstrated for remote dissolution, 
circumventing the need for an on-site polarizer [15, 16].

The Rise of Parahydrogen‑Based Methods

As an emerging option to d-DNP for preclinical and clini-
cal hyperpolarized 13C MRI, parahydrogen-based hyperpo-
larization methods do not require a superconducting magnet 
and cryogenic temperatures and were discussed with a spe-
cial focus in our workshop. They potentially offer a more 
controllable, faster, technically less demanding, and more 
cost-efficient polarization procedure. Parahydrogen induced 
polarization (PHIP) was first predicted theoretically in 1986 
by Bowers and Weitekamp and demonstrated experimentally 
the following year [17]. The method relies on parahydrogen 
as a source of the hyperpolarization, has lower equipment 
costs compared to d-DNP, and hyperpolarization occurs 
at a significantly faster rate (Fig. 1) [18–21]. However, the 
process typically requires organic solvents and the use of a 
catalyst that must be removed before exposure to the bio-
logical system. Therefore, attention has been focused on the 
attainment of a fully biocompatible aqueous solution of the 
hyperpolarized metabolite, with recent successful results, 
although this approach has not yet been approved for human 
use. Additionally, PHIP has faced limitations due to a small 
portfolio of agents, which includes succinate, fumarate, and 
a few others [22–24]. During the workshop, two main strate-
gies based on PHIP were discussed, PHIP-SAH and SABRE, 
which have expanded the portfolio and are currently being 
extensively explored.

• Side Arm Hydrogenation (PHIP-SAH)
  This approach, pioneered by Reineri and colleagues 

[25], allows the application of PHIP to 13C-labeled pyru-
vate and other biologically relevant molecules that con-
tain a carboxylate group (Fig. 1). Feasibility has been 
demonstrated in metabolic studies in cells and in pre-
clinical in vivo studies [26–28].

  Recently published results demonstrated that a PHIP-
SAH-based [1-13C]pyruvate hyperpolarization method 
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Fig. 1  Techniques comparison: d-DNP, PHIP-SAH, SABRE. Com-
parison between the most established 13C polarization methods. 
d-DNP relies on transfer of polarization from free electrons under 

conditions of very low temperature and high magnetic field. PHIP-
SAH and SABRE utilize parahydrogen as the source of polarization, 
transferred to the metabolite in a fast chemical reaction
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with a novel purification technique achieved ~ 18% 
polarization at the time of injection, with comparable 
imaging results to d-DNP in the same animal and with 
an excellent safety profile over a cohort of 24 mice and 
24 rats [29].

• SABRE
  Signal amplification by reversible exchange (SABRE) 

is a promising parahydrogen-based technique for hyper-
polarizing molecules without the need for chemical modi-
fication [30] (Fig. 1). While high polarizations have been 
reported for many compounds [18], SABRE has recently 
been enabled for hyperpolarization of 13C-labeled pyruvate 
[18, 31–33], achieving up to 22 and 6% polarization of 13C 
at the C1 and C2 positions, respectively (prior to purifi-
cation) [34]. Additionally, progress in sample purification 
has yielded clean aqueous pyruvate solutions with > 10% 
polarization, which have recently been used for the first in 
vivo metabolic MRI experiments in mice [35].

  PHIP-SAH and SABRE both have distinct advantages: 
SABRE does not require the synthesis of a precursor and 
thus is expected to be cheaper and to have fewer impuri-
ties. However, SABRE currently provides lower polariza-
tion and at lower concentrations compared to PHIP-SAH, 
which presents a challenge in scaling to clinical use. 
In addition, as the catalyst binding mechanism differs 
between the two methods, some probes can be more eas-
ily polarized with one method or the other. Thus, the two 
approaches can be considered complementary by provid-
ing together a broader range of hyperpolarized probes.

Preclinical Hyperpolarized 13C MR: Current and New 
Applications

Most of the focus of hyperpolarized 13C MR technology to 
date has been in the field of oncology, both for improved 
diagnosis and classification of tumors, as well as for 
monitoring therapeutic responses (see [36, 37] for recent 
reviews). Preclinical work in cancer is still ongoing to deter-
mine the best use cases of the technology. During the work-
shop, a preclinical study in estrogen receptor positive (ER +) 
patient-derived breast cancer xenografts treated with a phos-
phoinositide 3-kinase (PI3K) inhibitor was presented which 
demonstrated that hyperpolarized [1-13C]pyruvate detected 
response where none could be detected using fluorodeoxy-
glucose-18 positron emission tomography (18F-FDG-PET). 
The decrease in lactate labeling was shown to be a specific 
consequence of decreased expression of the transcription 
factor Forkhead box protein M1 (FOXM1) [38]. Similarly, 
hyperpolarized [1-13C]pyruvate detected early metabolic 
changes in a murine model of gastric cancer in response to 
a pan-tyrosine kinase inhibitor when no significant changes 
were detected by 18F-FDG-PET [39].

Beyond oncology, [1-13C]pyruvate has been used recently 
in preclinical studies on neurological pathologies such as 
neurodegenerative disease and brain trauma. In a mouse 
model of multiple sclerosis, a new study showed hyperpolar-
ized 13C MR imaging of [1-13C]pyruvate detected immuno-
logical responses to disease-modifying therapies, providing 
unique information on neuroinflammation and its modulation 
[40]. Importantly, hyperpolarized 13C MRS detected response 
to dimethyl fumarate therapy, whereas conventional  T1 post 
contrast MRI did not, demonstrating the complementarity to 
conventional MRI. Another recent study showed that specific 
neuronal deletion of the glucose transporter 3 (GLUT3cKO) 
or pyruvate kinase 1 (PKM1cKO) in mice hippocampi led 
to memory impairment and metabolic changes detectable 
by hyperpolarized 13C MRI/S [41]. Female, but not male, 
PKM1cKO mice had increased hyperpolarized [1-13C]pyru-
vate-to-lactate conversion, while this ratio was decreased 
in female GLUT3cKO mice. 18F-FDG-PET did not detect 
changes, highlighting the potential for hyperpolarized [1-13C]
pyruvate to detect downstream alterations in brain glucose 
metabolism. Expanding on previous work [42–44], another 
study explored the potential of hyperpolarized 13C MR to 
detect long-lasting alterations in brain metabolism follow-
ing repetitive mild repetitive traumatic brain injury (rTBI) in 
mice [45]. Decreased conversion of hyperpolarized [1-13C]
pyruvate to lactate, linked to decreased pyruvate dehydro-
genase activity, was detected in mice after rTBI, which was 
not detectable with other MRI methods. Machine learning 
approaches showed that hyperpolarized [1-13C]pyruvate can 
detect long-lasting metabolic impairment resulting from rTBI 
and predict associated behavioral changes, thereby demon-
strating its potential for improving the detection and monitor-
ing of previously undetected rTBI.

In addition to pyruvate, recent work was presented, where 
alternative hyperpolarized probes were used to explore other 
metabolic reactions in vivo including glutaminolysis, redox 
status, and fructolysis. Building on previous work [46–48], 
glutamine metabolism through glutaminase highlights a key 
way in which hyperpolarized glutamine can provide non-inva-
sive measurement of on-target inhibition of metabolic flux 
[49]. As hyperpolarized pyruvate is currently used in imaging 
brain tumors in humans [50], using pyruvate as a solvent for 
other probes provide a means of overcoming previous limi-
tations. For example, new formulations of hyperpolarized 
dehydroascorbate using pyruvate as a solvent potentially allow 
visualization of redox status in the brain [51]. Furthermore, 
utilizing hyperpolarized fructose [52] as an orthogonal probe 
of glycolysis can not only highlight differential nutrient uti-
lization by flux through the enzyme ketohexokinase but also 
flux switching that occurs in cancer [53]. Ultimately, these 
encouraging results suggest that the field is ready to expand 
well beyond pyruvate as a probe in vivo.



226 Molecular Imaging and Biology (2024) 26:222–232

1 3

Besides probing metabolism, hyperpolarized 13C MR of 
suitable sensor molecules can be used to probe tissue prop-
erties, such as temperature, ion content, redox state, or pH. 
Even though pH is an important biomarker which can be 
crucial for disease diagnosis [54] and therapy success [55, 
56], there is currently no routinely applied imaging modality 
in the clinic for measuring tissue pH [57]. Hyperpolarized 
13C MR has been successfully applied for pH imaging in vivo 
with pH sensors such as bicarbonate [58–60] and zymonic 
acids [61], which show an intrinsically high sensitivity to pH 
alterations in the physiological range. Translation of these 
sensors to the clinic has so far been limited by magnetiza-
tion lifetime or challenging agent preparation. In contrast to 
hyperpolarized metabolic agents, hyperpolarized pH sensors 
only rely on chemical shift differences between pH-sensitive 
moieties. Acquisition strategies do not have to be dynamic, 
which enables the design of efficient acquisition techniques 
for improved spatial resolution. Emerging hyperpolarized 
pH agents, such as Z-OMPD, will likely unlock the clinical 
value of pH imaging, for which there is sufficient evidence 
in a handful of studies [62–64].

Clinical Studies: Scope, Acquisition, and Analysis

The first paper describing the production of hyperpolarized 
13C-labeled substrates in solution was published in 2003 
[3], and the first clinical patient study with hyperpolarized 
[1-13C]pyruvate 10 years later in 2013 [65]. The research 
to date has shown that hyperpolarized [1-13C]pyruvate has 
great promise to revolutionize medical diagnostic imaging, 
and current studies are exploring clinical applications that 
have significant potential to improve patient outcome.

Most clinical applications have so far been in oncology, 
where it was shown, that the hyperpolarized  [13C] lactate 
signal is higher in aggressive breast, renal, and prostate 
cancers compared to more benign disease, with potential 
clinical applicability for patient stratification and for tar-
geting biopsies [5, 66–72]. In gliomas for example, it has 
been demonstrated that hyperpolarized [1-13C]pyruvate 
can detect metabolic subtypes, which can be dichotomized 
into more glycolytic and oxidative subtypes that have dif-
fering drug and radiation sensitivities [73, 74]. Therefore, 
imaging glioma patients with hyperpolarized [1-13C]pyru-
vate could be used to help guide treatment selection. Early 
treatment response assessment is another promising appli-
cation, where an increase in hyperpolarized  [13C] lactate 
labeling after 7–11 days of neoadjuvant chemotherapy 
has been demonstrated as an early response biomarker in 
triple-negative breast cancer [75]. Comparison of hyper-
polarized imaging to tissue-based metrics of metabolism 
is revealing the molecular basis for these changes includ-
ing the role of the pyruvate transporter (MCT1), lactate 
exporter (MCT4), and the enzyme lactate dehydrogenase 

(LDH), and can be used to explain intratumoral and inter-
tumoral metabolic heterogeneity on imaging. In pros-
tate cancer, elevated conversion rates of [1-13C]pyruvate 
to [1-13C]lactate  (kPL) have been demonstrated in more 
aggressive cancers, which can be utilized for improved 
biopsy guidance for primary organ-confined disease [72]. 
Another unmet clinical need that hyperpolarized 13C MR 
can potentially address is metabolic imaging of metastatic 
cancers to lung and bone [76] and detection of response to 
therapy by assessing lymph nodes and bone metastases in 
prostate cancer [77]. Exciting new studies have also shown 
applications of [1-13C]pyruvate for clinical research in 
renal cancer [67]. While most human studies have focused 
on [1-13C]pyruvate, new HP probes have been translated 
into human studies including: [2-13C]pyruvate that can 
detect metabolism via acetyl-CoA to acetylcarnitine, glu-
tamate, and glutamine [78]; [1-13C]alpha-ketoglutarate to 
detect conversion to glutamate and in mutant IDH cancers 
to 2-hydroxyglutarate (2-HG) [79]; and  [13C,15N2]urea that 
can be co-polarized with 13C-pyruvate to provide unique 
perfusion and metabolic information simultaneously [80, 
81].

Beyond oncology, applications in cardiology are also 
being investigated. The case for pushing hyperpolarized 
cardiac magnetic resonance imaging (CMR) is based on 
the accumulating evidence that the accuracy of conven-
tional myocardial viability assessment is not sufficient [82]. 
Hyperpolarized [1-13C]pyruvate CMR resembles PET/MR 
exams and as such could potentially replace PET/MR CMR 
exams in the clinical setting, if the method is either as good 
as FDG-PET or potentially better due to added metabolic 
measurements. Hyperpolarized perfusion imaging has the 
potential to provide as accurate perfusion information as 
15O-water PET, and it has been demonstrated that rest/stress 
pyruvate imaging is possible [83]. The current evidence sug-
gests that hyperpolarized CMR holds great potential and that 
the method is ready for clinical adoption [84–89].

In renal applications, hyperpolarized [1-13C]pyruvate 
exams have the potential to provide accurate metabolic read-
outs of the underlying metabolic cascades associated with 
kidney diseases [90]. The chronic nature and slow progres-
sion of renal disease and the low sensitivity and specificity 
of many biomarkers of renal dysfunction limits the ability 
to treat patients and develop new treatments [91, 92]. The 
increased sensitivity and specificity that hyperpolarized 
[1-13C]pyruvate MRI provides could potentially be used in 
clinical trials as earlier markers of disease progression and 
thus treatment response [93–97]. As anti-fibrotic drugs are 
entering clinical use, methods to select patients and monitor 
progression will be key, and hyperpolarized [1-13C]pyru-
vate used in combination with apparent diffusion coefficient 
(ADC) imaging provides the necessary sensitivity and speci-
ficity [98].
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Finally, deuterium metabolic imaging (DMI) was dis-
cussed during the workshop as a new metabolic imaging 
technique that can potentially complement hyperpolar-
ized 13C MR. DMI was used recently to study both the 
metabolism of oral [6,6-2H2]glucose and [2,3-2H2]fumarate 
[99–101]. One of the interesting points of discussion raised 
during the workshop was the interplay between hyperpolar-
ized 13C MR and DMI [102], where the community was 
encouraged to consider what the best application for each 
method would be and ways in which these methods can 
complement each other. For example, a direct comparison 
between [2,3-2H2]fumarate and hyperpolarized [1,4-13C]
fumarate on the same animal has not been performed, but 
comparison of the results of studies [100, 103], utilizing 
the different agents for assessing response to treatment in 
the same tumor model and treatment suggests that [2,3-2H2]
fumarate is more sensitive in detecting response to treat-
ment, but also requires a much higher concentration and scan 
time and achieves a lower malate SNR. As another example, 
oral [6,6-2H2]glucose may provide complementary metrics 
of oxidative and reductive metabolism.

Considerations on Data Analysis

Complex, dynamic, multidimensional hyperpolarized 13C 
MR is frequently parameterized using pharmacokinetic (PK) 
models or simpler area-under-the-curve (AUC) metabolite 
maps, or ratios of AUC maps [7]. Clinical adoption of this 
technology will require establishment of imaging biomark-
ers that are robust, reproducible, and readily interpretable. 
Although AUC maps and AUC ratios are straightforward to 
calculate, they are affected by a range of physical and physi-
ological factors that may hinder interpretation. PK models 
facilitate quantification of rate constants that can reduce bias 

imparted by some of these factors, although care must be 
taken to select a PK model that balances accuracy and com-
plexity in the context of the application [104]. The effects 
of confounding factors may also be minimized by careful 
experimental design and by acquisition of supplemental 
information to assess the potential impact of key sources 
of bias [105].

C. Hyperpolarized 13C: where are we going?

The future of hyperpolarized 13C technology was at the 
center of the scientific exchange at the workshop. Key ques-
tions that were raised included: Why is not MRI-based meta-
bolic imaging more prevalent today, 10 years after the first 
publication of d-DNP use in humans? What is needed for 
widespread use of the technology? What important problems 
can the technology address? The main discussion points are 
summarized below and in Fig. 2.

The main point that was agreed upon unanimously was 
that for the technology to become scalable and impactful, 
the hyperpolarized 13C MR technology has to be easy to 
use, regardless of the specific methodology and equipment 
employed. The following aspects were discussed:

• From the perspective of polarization, progress is being 
made in both d-DNP and PHIP-based polarization tech-
niques, with methods becoming more standardized and 
streamlined and new polarization technologies becoming 
newly accessible, opening the way to larger scale pre-
clinical and clinical studies. As such, more evidence is 
expected to accumulate in the coming years, paving the 
way towards clinical applications over a wide range of 
medical fields.

• PHIP-based methods with high 
ease of use, speed and reliability
• dDNP more standardized

• Large existing MRI install base
• Image resolution and quality
comparable to PET imaging
• Acquisition and analysis schemes
standardized

• Studies already conducted at ~15 sites

globally on ~800 healthy volunteers and

patients with different diseases including

cancer, heart disease, liver disease,

diabetes, and more

• Increase polarization level at

time of injection into humans to >

50%

• MRI X-nuclei package and coils
require extra investment

• Multi-center  studies
• “Hero” application - early treatment 
response assessment promising but larger 
studies needed
• Safer/cheaper alternative  to PET or Gd 
enhanced MRI - promising but more studies 
needed

Ease of use & reliability:
Greatly improved in the near future

Effectiveness:
More studies are urgently needed

Polarization Acquisition & analysis Application
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Fig. 2  The future of hyperpolarized 13C: for widespread use hyperpo-
larized MRI needs to be easy to use, reliable, and effective. Ease of 
use and reliability are dependent on technological advances that are 

already underway and expected to become fully realized in the near 
future. Evidence of effectiveness requires more and larger clinical 
studies
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• In addition to polarizers, specific MRI acquisition capa-
bilities are required. Firstly, hyperpolarized 13C MR 
metabolic imaging requires the MRI scanner to have 13C 
transmit and receive capabilities. While almost all small 
animal MRI systems have X-nuclei capabilities (although 
this is not provided by the vendors as a default), it is not 
the case for clinical systems. Among the 35,000 clinical 
MRI scanners installed world-wide, only approximately 
10% have X-nuclei capabilities (cf. https:// stats. oecd. 
org/). Even more importantly, out of these only a few 
hundred centers are actually utilizing this capacity. This 
low prevalence and utilization of X-nuclei capability is 
likely due to the difficulties of implementing X-nuclei 
MRI or MRS in the clinical setting. For example, for 
31P MRS, 3-APP was suggested as an exogenous probe 
for extracellular pH [106, 107]. However, the measure-
ment times for this pH imaging technique were long and 
the spatial resolution was poor, preventing wide-spread 
use even though it is still considered a “gold standard” 
for pH measurements. Furthermore, it is important to 
note that ~ 70% of the current MRI systems are 1.5 Tesla 
scanners, and to date, upgrading to X-nuclei capabili-
ties is only available for 3 Tesla systems. This is due 
to vendor marketing policy and may need to change to 
enable wider accessibility of hyperpolarized metabolic 
imaging. Finally, the combined cost of adding X-nuclei 
capabilities (hardware and software) and radiofrequency 
coils might be prohibitive for most centers (> $100 K).

After “ease of use,” the group unanimously took the 
position that robustness and reliability are a major factor 
required for scalability. As hyperpolarized 13C MR becomes 
easier and more reliable, its use will increase, not only in 
research but also as a routine clinical tool, in a similar fash-
ion to PET during the 1990s. Given the obvious parallel 
between PET and hyperpolarized 13C MR, a discussion 
comparing the market access and potential of both methods 
took place. First, it was pointed out that, despite having been 
around for 40 years, the impact and accessibility of PET 
are still modest, with only ~ 5000 PET scanners worldwide, 
80% of them in high income countries [108]. The lack of 
wider dissemination of this technology might partially be 
due to the need for a cyclotron, dedicated facilities with 
complex radiation controls, radioactive waste infrastructure 
and trained staff, which is a prohibitive cost for developing 
countries. On the other hand, the number of MRI scanners 
is one order of magnitude higher, with an estimate of 35,000 
worldwide, with a number of about 80 million MRI exams 
performed per year (cf. https:// stats. oecd. org/). Like PET, 
MRI scanners are more prevalent in high income countries, 
with Japan having the highest ratio of MRI units per million 
population (57.39 per million in 2020) followed by the USA 
with 38 units per million in 2021 (cf. https:// stats. oecd. org/ 

and [109]). Finally, an issue often raised in the context of 
hyperpolarized 13C MRI is the achievable spatial resolution, 
which today is around 6 mm for pyruvate and 12 mm for its 
products. Although this in-plane resolution is comparable to 
PET, the out of plane resolution of hyperpolarized 13C MRI 
is still coarse. At the same time, there was agreement that 
the required resolution is driven by the individual applica-
tion. As an outlook, denoising approaches are being applied 
broadly and could help to improve the quality of the images 
produced [110]. More generally, in the future, machine 
learning and artificial intelligence may render “image qual-
ity” (and thus resolution) less relevant if there will be a shift 
from relying on radiologists’ interpretation that is based on 
images to machine-based interpretation of the raw data.

A major part of the discussion focused on potential 
applications of hyperpolarized 13C MR, searching to find 
the “hero experiments” (a term which the group preferred 
to “killer applications”). Most participants believed that the 
biggest potential of this technology was for early treatment 
response assessment/prediction, especially in oncology. In 
parallel, a question was raised as to whether it is necessary 
for the technology to solve a current clinical unmet need to 
become widely useful or will it suffices to offer a safer and/
or cheaper alternative to an existing tool. The recent FDA 
approval of hyperpolarized xenon for assessment of lung 
function serves as an interesting test case, as it was approved 
based on a non-inferiority comparison study to standard 
radionuclide methods rather than for a new application. 
One such example for a “non-inferiority” application for 
hyperpolarized MRI that was discussed is as an alternative 
contrast agent to gadolinium chelates, especially considering 
recent growing concerns as to the long-term safety of these 
agents [111]. Other potential “non-inferiority” applications 
are those applications for which PET is used today, e.g., in 
oncology, neurology, and cardiology, as discussed in “Latest 
Advances in Hyperpolarized 13C MR.”

In conclusion, the participants shared an optimistic view 
about the future of hyperpolarized 13C MR. Recent tech-
nological advancement on the polarization side such as 
the development of PHIP methods, the ongoing efforts to 
introduce new probes both preclinically and in first-in-man 
clinical studies, as well as recent community efforts towards 
standardization of the technology such as the International 
Society for Magnetic Resonance in Medicine (ISMRM) con-
sensus group initiative and the first attempts at multicenter 
studies pave the way for hyperpolarized 13C MR to become 
much easier to use and more reliable. Combined with the 
already widely established and available MRI infrastructure, 
hyperpolarized MRI has the potential to scale up quickly 
to more widespread usage. This will hopefully encourage 
larger scale preclinical and clinical studies that are urgently 
needed to establish the usefulness of the tool and to explore 
its full potential.
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