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cInstitute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 61085, 
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ABSTRACT   

In this paper, complex modes in a linear chain of gold nanospheres are analyzed, accounting for metal losses. Dispersion 
diagrams are computed for travelling modes with both longitudinal and transverse (with respect to the array axis) 
polarization states. The procedure outlined in this work allows for the description of single mode evolution varying 
frequency, thus the modal dispersion diagrams are composed by the superposition of all the different modes in the one 
dimensional array. Each nanoparticle is modeled as an electric dipole, by adopting the single dipole approximation, and 
the complex zeroes of the homogeneous equation characterizing the field in the periodic structure are computed. The 
Ewald method is employed to analytically continue the periodic Green’s function into the complex spectral domain and 
to achieve rapid convergence. Full characterization of the modes is provided in terms of their direction of propagation 
(forward/backward), their guidance and radiation properties (bound/leaky), the position of their wavenumber on the 
Riemann sheet (proper/improper), and also in terms of their possible physical excitation in the structure by a source in 
proximity of the array or a defect (physical/nonphysical modes). Understanding the modes excitable in this kind of 
structures is essential for possible applications in which the linear chain can be employed, from near-field enhancement 
to SERS, and innovative sensors.  

Keywords: nanospheres, linear chains, plasmonics, mode analysis, metamaterials. 
 

1. INTRODUCTION AND STATEMENT OF THE PROBLEM 
Periodic arrays of plasmonic nanospheres have been recently adopted in several applications in the optical field (near-
field enhancement and super-resolution [1-5]), in the directive radiation [6], and in the biological and chemical fields 
(microscopy and spectroscopy using SERS [7-8], biosensors [9-10], DNA detectors [11]). However, despite these 
applications in which these arrays could be used, it is still quite hard to fully control and determine characteristics with a 
particular set of excitation wavelengths. Indeed, several difficulties are still encountered in the analysis and interpretation 
of mode propagation in 1D- and 2D-periodic arrays of metallic nanospheres. The evolution and the interactions between 
different modes are still unclear, and based on what it has been published so far it is somehow hard to discern if a mode 
is physical or not. These are the reasons why it is important to perform a thorough mode analysis for this kind of arrays. 

In this paper we present and interpret dispersion diagrams for linear chains of gold nanospheres. The reader is referred to 
[12-14] and references therein for detailed theoretical physical explanations and for a list of state of the art work not 
reported here for the sake of brevity. In the particular case of linear chains of plasmonic nanospheres, in [12-13], the 
numerical results were relevant to the case of silver nanospheres. In this paper, instead, we consider the case of gold 
nanospheres shown in Fig. 1. As described in the following sections, gold losses are larger than those of silver, the high 
frequency parameter of gold almost doubles the silver one and the gold plasma frequency is slightly smaller than the 
silver one, resulting in different modal dispersion diagrams for the chain. 
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The structure of the paper is as follows. The mathematical description for the simulation model adopted to perform the 
analyses described in this paper is briefly summarized in Sec. 2. The dispersion diagrams comprising complex bound 
and leaky modes in linear chains of gold nanospheres are reported in Sec. 3, considering the presence of losses in the 
nanoparticles, for both transversal and longitudinal polarization states. The physical interpretation of the obtained results 
in terms of guidance and radiation, and physical excitation, is provided as well. Conclusions are in Sec. 4.  

 
Fig. 1. Linear chain of gold nanospheres, of infinite extent, periodic along the z-direction, embedded in a 
homogeneous medium with permittivity hε . r is the radius of each nanoparticle, and d is the center-to-center 
distance (periodicity). The reference system shown here will be adopted throughout the paper. 

2. FORMULATION 
The aim of this section is to briefly describe the formulation adopted to perform mode analysis in a linear chain of 
metallic nanospheres, and the criteria for determining physical bound and leaky waves. A more detailed formulation and 
explanation is in [12-13,15]. Notice that the formulation outlined here is general, and is adopted in the following sections 
to characterize a particular array case. 

2.1 Definition of the simulation model 

The formulation is based on the single dipole approximation (SDA) [15-16]. According to SDA, each plasmonic 
nanosphere of the linear chain, at optical frequencies, acts as a single-dipole and can be described by a polarization 
vector 

                                                                     loc
eEp α= ,      (1) 

where eα  is the electric polarizability of the nanosphere, and locE  is the local field produced by all the nanoparticles of 
the array except the considered nanoparticle plus the external incident field to the array [13,15].  

The value of the polarizability eα  of a nanoparticle depends on both its geometry and material properties [15,17-18].  
Here, we assume that eα  is obtained according to Mie theory [13,15-16,19-20], as shown for example in eq. (8.9) in 
[15] or in chapter 4 in [16].  

The monochromatic time harmonic convention, ( )tiω−exp , is assumed and is therefore suppressed hereafter. 
Furthermore, the relative permittivity of the metal of each nanosphere is described by the Drude model 

                                                                          ( )γωω
ω

εε
i

p
m +

−= ∞

2

,      (2) 

where ∞ε  is a high-frequency fitting parameter, pω  is the plasma frequency of the metal (expressed in rad/s) and γ  is 

the damping factor (expressed in 1s− ).  
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Consider now a linear chain of nanospheres, for which each nanoparticle is placed at position ndzn = , with 
0, 1, 2,n = ± ± K , and d  is the period of the chain. Suppose that the array is immersed in a homogeneous background, 

with relative permittivity hε , and that the array is then excited by a plane wave or by a quasi-periodic excitation with 

wavevector zk ˆB zk=  [15]. Consequently, each nanoparticle will have a dipole moment equal to dink
n

ze0pp = . Then, 
the local field acting on a nanosphere at position 0 0z =  is given by 

                                                                              ( ) ( ) ( ) 0
incloc pGEE ⋅+=

∞
zzz kkk

(
,      (3) 

where ( )zk
∞

G
(

 represents the regularized electric-field dyadic Green’s function for the phased period array of 
nanoparticles, that provides the field contribution of all the nanospheres but the one at position 0 0z = .  

Substituting then the expression for the local field given in (3) into (1), it follows that 

                                                                          ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⋅+=

∞
0

inc
e0 pGEp zz kk

(
α  ,      (4) 

which leads to the linear system 

                                                  ( ) ( )inc
0z zk k⋅ =A p E ,                  ( ) ( )

e

1
z zk k

α
∞

= −A I G
(

.      (5) 

The dyadic Green’s function ( )zk
∞

G
(

 is computed by using the Ewald’s method, which provides two series with 
Gaussian convergence and only a handful of terms are needed [21-23].  

The mode dispersion analysis in the linear chain is then obtained by computing the complex zk -zeroes of the 

homogeneous linear system in (5), after having imposed no excitation source (i.e., ( )inc 0zk =E ). Therefore, the 

complex zeros of the determinant of ( )zkA  have to be computed. 

2.2 Definition of Floquet spatial harmonics 

The electric field in the linear chain, due to the periodicity of the array, is quasi-periodic, i.e., it is periodic except for an 
inter-element phase shift. Thus, it can be described as ( ) ( ) dik

zz
zekkd ,,ˆ rEzrE =+ , where d is the period of the periodic 

structure, zzz ik αβ +=  is the wavenumber along the array axis, and zyxr ˆˆˆ zyx ++= . A mode in the linear chain is 
expressed in term of a Fourier series expansion, and thus represented as the superposition of Floquet spatial harmonics 

                                                                      ( ) ( )∑
∞

−∞=

=
p

zp
zik

z kyxek pz ,,, modemode , erE ,                       (6) 

where , ,2 /z p z z p zk k p d iπ β α= + = + , with p the order of the Floquet spatial harmonic, and pe  is the weight of the p-
th harmonic. For more details, the reader is referred to [12-13] and references therein. 

2.3 Definition of physical modes 

The physical modes that can be excited in linear chains of plasmonic nanospheres are summarized in Table 1 in [12], in 
Table 12.1 in [14] or in [24]. To be physical, a mode has to have a complex wavenumber, i.e., a complex value 
representing a zero of the determinant of ( )zkA , that is captured in the integration path outlined in [12-14,25]. Looking 
at the positive z-direction, in order to be captured in the path deformation, a complex wavenumber zzz ik αβ +=  should 
have 0zα ≥ . Moreover, to be physical, not only it needs to have 0zα ≥ , but also it has to respect the conditions stated 
in the following. As such, considering the modal harmonic in the fundamental Brillouin zone (BZ), a physical forward 
wave belongs to the I quadrant of the complex zk  plane, whereas a backward one to the II quadrant. Looking at a 
positive z-direction, zk  wavenumbers in the II quadrant representing backward proper (i.e., belonging to the top 
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Riemann sheet) waves (either bound or leaky) are physical; whereas in the leaky region of the I quadrant (i.e., above the 
light line in the -planekβ ), wavenumbers representing forward improper (i.e., belonging to the bottom Riemann sheet) 
leaky waves are physical; last, wavenumbers in the bound region of the I quadrant of the complex zk  plane (i.e., below 
the light line in the -planekβ ) are physical forward proper bound waves. For more details about physical conditions, 
path deformation and proper/improper Riemann sheets, the reader is referred to [12-14] and references therein. 

2.4 Definition of bound and leaky modes 

A bound mode is a physical mode that has all its Floquet wavenumbers outside the visible region, or ,z p kβ > , where 

0 hk k ε=  is the wavenumber in the homogeneous background (host wavenumber), and 0k  is the free space 
wavenumber. Taking into account of the physical condition in Sec. 2.3, and considering the harmonic in the first BZ, an 
observer along the positive z-direction would be reached by a mode (excited at the origin) either when (i) it is proper (top 
Riemann sheet of the complex zk  plane) and zk β<  and zα  is positive (forward mode), or when (ii) it is proper and 

z kβ < −  and zα  is positive (backward mode). It can be noticed that physical waves for positive z-direction are limited 
to the first and second quadrants in the complex zk  plane. Also, improper (bottom Riemann sheet of the complex zk  
plane) bound modes cannot be launched.  

A leaky mode is a physical mode that presents at least one Floquet wavenumber within the visible region, or ,z p kβ <  

for some p. Taking into account of the physical condition in Sec. 2.3, and considering the harmonic in the first BZ, an 
observer along the positive z-direction would be reached by a radiating mode (excited at the origin) either when (i) it is 
improper and 0 z kβ< <  and zα  is positive (forward mode), or when (ii) it is proper and 0zk β− < <  and zα  is 
positive (backward mode).  

Physical guided modes (leaky or bound) travel a long distance when the imaginary part of their wavenumber is small 
with respect to the host wavenumber, or z kα << . 

3. NUMERICAL SIMULATION RESULTS: MODE DISPERSION DIAGRAMS  
The aim of this section is the illustration of dispersion diagrams of linear chains of gold nanospheres, in the particular 
case of nanoparticles with radius nm 25=r  and center-to-center periodicity nm 75=d , embedded in free space (i.e., 

1hε = ).  

The Drude parameters to model the permittivity of gold in (2) are taken from [26], adopted also in [27]  regarding gold-
dielectric nanoshells: rad/s 1036.1 16×=pω , 114 s 1005.1 −×=γ , and 5.9=∞ε . These parameters have been chosen 

because the modeled permittivity m iε ε ε′ ′′= +  agrees well with the experimental results presented in [28] by Johnson 
and Christy for a wide frequency range, as shown in Fig. 2.  

The frequency range of interest for this paper is between 100 THz and 700 THz, which correspond to / 0.05kd π =  and 
/ 0.35kd π = , respectively. Although the imaginary part is not perfectly modeled above 550 THz (as can be seen in Fig. 

2(b)), the results will provide a trend for the modal dispersion diagrams of linear chains of gold nanospheres.  

Dispersion diagrams are computed here for a chain of gold nanoparticles accounting also for metal losses. Specifically, if 
zk  is a complex wavenumber solution, then also zk−  is a solution. In absence of losses, the correspondent complex 

conjugate *
zk±  would be solutions as well. When losses are present, the complex conjugate solutions are modified from 

*
zk±  correspondingly to the amount of losses introduced in the model.  Here, the focus is on the wavenumber solutions 

belonging to the I and II quadrants of the complex zk  plane in the dispersion diagrams, i.e., those solutions with 
0≥zα , which are the only ones that can be captured in the path deformation described in Sec. 2.3 when observing 
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along the positive z axis. Note that this subset defines a complete set of modes in the linear chain because of the 
symmetry property stating that zk  and zk−  are both solutions. 

         
(a) (b) 

Fig. 2. Comparison of the (a) real and (b) imaginary parts of the gold complex permittivity between the chosen 
Drude model parameters provided by Grady, Halas, and Nordlander in [26] and the experimental results obtained 
by Johnson and Christy in [28]. 

3.1 Modes for transverse polarization 

In this section, modal dispersion diagrams are shown for modes travelling along the z-direction polarized along x- or y-
direction (transverse polarization, T-pol), in the case of gold nanospheres (accounting losses).  

The dispersion diagrams for the real and imaginary parts of the wavenumber of each mode are reported in Figs. 3(a) and 
3(b), respectively, whereas the evolution of the modes in the complex zk  plane varying frequency is presented in Fig. 5. 
Zoomed versions of the plots in Figs. 3 and 5 are reported in Figs. 4 and 6, respectively, for the sake of clarity. 

          
(a) (b) 

Fig. 3. Dispersion diagram for T-pol. (a) Real part and (b) imaginary part of the wavenumber z z zk iβ α= + . 
Some modes with negative imaginary part are shown here (dotted lines). They are not captured in the path 
deformation described in Sec. 2.3; we include them here for the sake of showing how the modes in the I and II 
complex quadrants evolve when changing frequency. 
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(a) (b) 

Fig. 4. Zoom for the dispersion diagram for T-pol in Fig. 3.  

          
(a) (b) 

Fig. 5. Modes in the complex zk  plane for T-pol, normalized with respect to (a) the period d, and (b) the host 
wavenumber k. Note that in (b), crossing “1” in the abscissa means crossing the light line. Arrows indicate 
direction of increasing frequency. Modes with negative imaginary part have a symmetric pattern with respect to 
those with positive imaginary part, and they are described with the same color scheme (and thus not shown as 
dotted lines, as was done in Figs. 3 and 4). 

The physical bound modes for T-pol considering an observer along the positive z-direction are the following. The modes 
‘Proper 1’ and ‘Proper 4’ in the II quadrant (Figs. 3(a) and 5(a)) are two bound backward modes; they do not have a 
small imaginary part with respect to the host wavenumber k, thus they cannot travel long distances from the excitation 
source. The bound mode ‘Proper 1’ can be excited for frequency values corresponding to /kd π  smaller than the one in 
‘A’ in Fig. 4(a) (for higher frequencies it becomes a proper leaky mode), whereas the bound mode ‘Proper 4’ can be 
excited for frequency values corresponding to /kd π  higher than the one in ‘B’ in Fig. 4(a) (at lower frequencies this 
mode is a proper leaky one). The mode ‘Proper 3’ in the I quadrant is a bound forward mode; however, it has a quite 
large imaginary part, thus it decays very fast while travelling. It is physical only in the slow wave region, i.e., it can be 
excited for frequency values corresponding to /kd π  higher than the one in ‘E’ in Fig. 4(a). The mode ‘Proper 2’ in the I 
quadrant is a bound forward mode for frequency values corresponding to /kd π  smaller than the one in ‘F’ in Fig. 4(a),  
that has the real part of the wavenumber equal to the host wavenumber k  (as can be seen in Fig. 3(a), this mode lies on 
top of the light line); indeed, this mode has a very small positive imaginary part in this frequency range, thus it can travel 
very long distances from the excitation source. 
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The physical leaky modes for T-pol considering an observer along the positive z-direction are the following. The modes 
‘Improper 1’ and ‘Improper 4’, for frequency values corresponding to /kd π  between ‘D’ and ‘G’, and between ‘H’ and 
‘C’ in Fig. 4(a), respectively, are radiating forward leaky modes. The ‘Improper 1’ does not have a small imaginary part 
with respect to the host wavenumber k, and thus cannot be used as a directive radiator. However, the dashed green 
(‘Improper 4’) has a smaller imaginary part than the dashed blue one, near the leaky region 0zβ ≈ , and thus it could be 
used for radiation. The modes ‘Proper 1’ and ‘Proper 4’ in the II quadrant, for frequency values corresponding to /kd π  
between ‘A’ and ‘D’, and between ‘C’ and ‘B’ in Fig. 4(a), respectively, are two radiating backward leaky modes. 
Again, the ‘Proper 1’ (solid blue) does not have a small imaginary part. However, the solid green (‘Proper 4’) has a 
smaller imaginary part than the blue one, near the leaky region 0zβ ≈ , and thus it could be used for moderate directive 
radiation. 

The plots shown in Fig. 5 provide a complete picture of the evolution of the modes for T-pol by varying frequency in the 
complex zk  plane. They also clarify what it has been previously stated about the definition of the physical bound and 
leaky waves. One can observe the total symmetry with respect to the origin. A zoom is provided in Fig. 6. 

         
(a) (b) 

Fig. 6. Zoom for the complex zk  plane for T-pol in Fig. 5.  

For the sake of clarity, we show in Fig. 7 only the subset of the excitable modes (bound and leaky) for transverse 
polarization, assuming an observer along the positive z axis and, for instance, a source near the origin. 

          
(a) (b) 

Fig. 7. As in Fig. 3, showing only the subset of physical modes (for an observer located on the positive z axis, and 
a source near the origin, for instance). 

Proc. of SPIE Vol. 7946  79461V-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/09/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

3.2 Modes for longitudinal polarization 

In this section, dispersion diagrams are shown for modes travelling along the z-direction polarized along z (longitudinal 
polarization, L-pol), in the case of lossy gold nanospheres.  

As in Sec. 3.1, the dispersion diagrams for the real and imaginary parts of the wavenumber of each mode are reported in 
Figs. 8(a) and 8(b), respectively, with a zoom in Fig. 9 for clarity, whereas the evolution of the modes in the complex 

zk  plane varying frequency is presented in Fig. 10.  

                       
(a) (b) 

Fig. 8. Dispersion diagram for L-pol. (a) Real part and (b) imaginary part of the wavenumber z z zk iβ α= + . 
Modes with negative imaginary part are shown here (dotted lines). They are not captured in the path deformation 
described in Sec. 2.3; we include them here for the sake of showing how the modes in the I and II complex 
quadrants evolve when changing frequency. 

              
(a) (b) 

Fig. 9. Zoom for the dispersion diagram for L-pol in Fig. 8.  

The physical bound modes for L-pol considering an observer along the positive z-direction are the following. The mode 
‘Proper 1’ is a bound forward mode; it has a small imaginary part when it is close to the light line in the -planekβ , as it 
can be noticed from the zoom provided in Fig. 9, thus it can travel long distances from the excitation source with small 
decay.  This mode can be excited for frequency values corresponding to /kd π  higher than the one in ‘A’ in Fig. 9(a).  

The physical leaky modes for L-pol considering an observer along the positive z-direction and, for instance, a source in 
proximity of the origin, are the following. The mode ‘Improper 2’ is a radiating forward mode for frequency values 
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corresponding to /kd π  between ‘B’ and ‘C’ in Fig. 9(a). It has a small imaginary part with respect to the host 
wavenumber k, as it can be noticed again from the zoom provided in Fig. 9. However, notice that this mode lies very 
close to the light line, as can be easily observed in Fig. 10(b); since the dipoles approximating the nanospheres are 
longitudinally polarized (i.e., along the z-direction), their far-field radiation pattern would behave with classical sin( )θ  
shape, with a far field null corresponding to the direction along which the dipoles are aligned. Indeed, in the case of the 
analyzed linear chain, when z kβ =  the radiation should take place along the z-direction; this is not possible due to the 

aforementioned null, present when the structure has finite size; whereas, when z kβ <  for z kβ ≈ , a very small 
radiation (due to the dipolar sinusoidal far-field behavior) could take place. 

            
(a) (b) 

Fig. 10. Modes in the complex relative zk  plane for L-pol, normalized with respect to (a) the period d, and (b) the 
host wavenumber k. Note that in (b), crossing “1” in the abscissa means crossing the light line. Arrows indicate 
direction of increasing frequency. Modes with negative imaginary part have a symmetric pattern with respect to 
those with positive imaginary part, and they are described with the same color scheme (and thus not shown as 
dotted lines, as was done in Figs. 8 and 9). 

The plots shown in Fig. 10 provide a complete picture of the evolution of the modes for L-pol by varying frequency in 
the complex zk  plane. They also clarify what it has been previously stated about the definition of the physical bound and 
leaky waves.  

          
(a) (b) 

Fig. 11. As in Fig. 8, showing only the subset of physical modes (for an observer located on the positive z axis, 
and a source near the origin, for instance). 
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For the sake of clarity, we show in Fig. 11 only the subset of excitable modes (physical bound and leaky modes) for 
longitudinal polarization, assuming an observer along the positive z axis and, for instance, a source near the origin. 

4. CONCLUSION 
In this work, modal dispersion diagrams, i.e., wavenumber versus frequency, have been computed for modes traveling in 
a periodic linear array (a chain) of gold nanospheres. The single dipole approximation has been adopted to model the 
behavior of each nanoparticle at optical frequencies, which is a good approximation when working close to the plasma 
resonance frequency of the nanospheres; however, more accurate results, for small period comparable with the spheres’ 
radius, would involve multipole field contributions. Physical and nonphysical modes in a chain have been described in 
this work. This is the first time such a complete physical characterization in a chain of gold nanoparticles has been 
presented.   
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