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Abstract 

Exploring the Graphene/hexagonal Boron Nitride Heterostructure from the Bottom to 

the Top 

by 

Eberth Arturo Quezada-López 

 

The wide range of applications and promising possibilities of stacked 2D 

materials highlight the importance of studying heterostructures. The works presented 

in this dissertation tell a comprehensive story about the heterostructure composed of 

graphene and hexagonal boron nitride (hBN). Through the use of established 

characterization techniques such as transport and scanning tunneling microscopy, we 

will explore phenomena in the graphene/hBN heterostructure from the bottom up in 

three vertical stages. Stage 1 is the bottommost part of the heterostructure and deals 

with the accumulation of charged defects in hBN induced by an exposure to high 

electric fields. Stage 2 focuses on the graphene/hBN interface and how these layered 

materials work together to enable the corralling of relativistic charge carriers. Finally, 

stage 3 probes the exposed surface of a double-layered graphene system which is 

decoupled from hBN while still benefiting from its structural support. The interplay 

between these materials yields high quality and atomically resolved tunneling 

spectroscopy results that suggest the emergence of correlated phenomena in naturally 

occurring double-layered graphene. 
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Chapter 1 – Introduction 

 

 The story of graphene begins even before it was conceivable for it to exist in 

stable form. Before Novoselov and Geim1,2 demonstrated that single atomic sheets of 

carbon could be isolated in the laboratory, theorists studied graphene’s properties as a 

steppingstone to understanding graphite3,4—a crystal made up of stacked graphene 

layers. A decade and a half after Novoselov and Geim’s 2004 historical achievement, 

the field of two-dimensional (2D) materials has expanded well beyond graphene. 

Developments in industrial and technological applications,5–13 the assembly and study 

of novel heterojunctions,5,14–17 and the rise of twisted graphene layers18–23 are proof that 

the world of 2D materials continues to expand. 

 

1.1 The Current State of Graphene 

 Graphene is a one-atom thick film of carbon atoms in a honeycomb 

arrangement. Graphene was shown to have an abundance of unique mechanical, 

electrical, chemical, and thermal properties. These properties were largely explored in 

the years following its isolation in 2004. Currently, the mature field of graphene is 

branching out into a wide array of applications, ranging from bio-medical sensors to 

energy storage. No joint effort embodies the development of applied graphene research 

better than the Graphene Flagship. Started in 2013, this 10-year project funded by the 
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European Union seeks to expedite the transition of graphene from research to 

commercialization.6 This multinational effort has even released products containing 

graphene to the market. Some of these include graphene-based inks,7,8 polymer-

graphene composites,9,10 thin-film coating,11,12 and even earphones.13  

 The projects promoted by the Graphene Flagship are exciting and crucial for 

the realization of future technologies. All of the products soon-to-be or currently in the 

market rely on graphene’s high mechanical strength, chemical stability, and high 

thermal conductivity. This is evident from the fact that most of these products integrate 

graphene in composites or use graphene as an added ingredient onto existing 

technology. The use of graphene’s unique and novel electrical properties, however, are 

largely lacking in current marketable applications. Scaling the production of graphene 

to fit industrial demand while maintaining its relativistic electron behavior continues to 

present a challenge. One possible solution for such challenge is offered by graphene’s 

ability to interface with other layered materials. Research efforts in recent years have 

explored the properties of other single to few atom thick materials that when combined 

with graphene lead to exciting physical phenomena. 

 

1.2 Graphene as Part of the Whole 

 Van der Waals forces that hold together single graphene layers in graphite can 

also hold together heterostructures that incorporate a wide variety of 2D materials. The 

family of 2D materials has expanded beyond semi-metallic graphene to include metals 
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like NbSe2, semiconductors like MoS2, and insulators like hBN. The creation of 

heterojunctions by mixing type III-V semiconductors are restricted by material 

compatibility such as lattice mismatch, crystal plane orientation, and difference in 

growth recipes. However, van der Waals heterostructures do not have such limitations. 

The large and growing number of members in the 2D materials family offers a far 

greater number of combinations. Moreover, the complexity of heterostructures that can 

be created is boundless and has proven to result in viable electrical components for 

future technologies. 

 Stacking different 2D crystals into a heterostructure can improve the quality 

and performance of its individual components. However, the effects arising from one 

material’s influence on the other have become more important as they have provided 

new and exciting insights. For example, when stacked on hBN (an insulator), 

graphene’s electronic and mechanical properties were initially shown to vastly 

improve.24 More recently, studies have shown that hBN does more than just improve 

graphene’s qualities. For example, graphene’s surface can undergo reconstruction,25,26 

its band structure can form a gap and satellite Dirac points,27,28 and defects in hBN can 

be used to corral electrons in graphene.29,30 Moreover, researchers have produced a 

wide range of electronic and optoelectronic devices by mixing graphene with a variety 

of layered materials. Such devices include logic gates and circuits,31,32 radio-frequency 

oscillators,33 resonant tunneling diodes,34 photodetectors,35 phototransistors,36 light-

emitting diodes,37 and plasmonic devices.38 In addition to all this progress, the field of 

2D materials has undergone a rebirth in the past two years after superconductivity was 
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discovered by stacking twisted graphene sheets. This twist was achieved by rotating 

two graphene sheets with respect to each other’s out-of-plane axes. Researchers have 

shown that the modulation of the crystallographic alignment between individual 

graphene layers by a “magic” angle leads to correlated insulating and unconventional 

superconducting states.18,20,39–41 

 

1.3 Outline of the Thesis 

 

Figure 1.1| Sectors of the graphene/hexagonal boron nitride (hBN) 

heterostructure. Schematic of a graphene/hBN heterostructure resting on standard 

SiO2/doped Si substrate. The stages of the heterostructure discussed in this thesis are 

label accordingly. “Bottom”: the interface between hBN and SiO2. “Interface”: the 

interface between hBN and graphene. “Top”: the surface of graphene. 

 

The wide range of applications and promising possibilities of stacked 2D 

materials highlight the importance of studying heterostructures. The works I will 



5 
 

present in this thesis tell a comprehensive story of the heterostructure composed of 

graphene and hBN. Through the use of established characterization techniques such as 

electrical transport, photoemission spectroscopy, and scanning tunneling microscopy, 

we will explore phenomena in the graphene/hBN heterostructure from the bottom up 

in 3 vertical stages (see Fig. 1.1). Stage 1, the “Bottom”, is the bottommost part of the 

stack and deals with the accumulation of charged defects in hBN. Stage 2, the 

“Interface”, focuses on the interface of graphene and hBN and how these layered 

materials work together to create superlattices and enable the corralling of graphene 

electrons. Finally stage 3, the “Top”, uses the benefits of fully decoupling graphene 

from hBN to yield high quality tunneling spectroscopic results in a double-layered 

graphene system enabling us to probe correlated phenomena. 

Chapter 2 introduces the band structure theory of monolayer graphene (MLG) 

and bilayer graphene (BLG) calculated using tight-binding theory. Using this single 

particle approach, I will show how the high degree of symmetry in MLG and BLG’s 

lattice lead to their unique band structures. After applying a low energy approximation 

in both graphene and BLG, I will obtain their respective characteristic zero-gap bands 

located at high symmetry points in the Brillouin zone. The acquired band structure 

knowledge will be used in the subsequent chapters as we explore the electrical 

properties of both MLG and BLG while on hBN. 

Chapter 3 contains the theory of the major characterization techniques used in 

this thesis: scanning tunneling microscopy (STM) and nanospot angle resolved 

photoemission spectroscopy (nano-ARPES). The experimental application of these 
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techniques on graphene will also be covered. Chapter 4 contains relevant experimental 

procedures that enable the application of the techniques discussed in Ch. 3. These 

procedures include graphene/hBN device fabrication, mechanical cleaning of 

graphene’s surface, electrochemical etching of STM probes, and the calibration of STM 

tips with Au(111). 

The stages of our exploration of the graphene/hBN heterostructure will begin 

in Ch. 5 with the “Bottom”. This stage explores the effect of strong electric fields on 

hBN. By applying electric fields on the order of 1 V/nm, we will demonstrate that 

charge accumulation can occur inside hBN through the excitation of its defects. Using 

electrical transport measurements, the charge build-up inside hBN will be tracked by 

changes in the electronic signature of MLG under different conditions. 

The “Interface” stage will be covered by Ch. 6 and 7. Chapter 6 will introduce 

a technique that uses charge accumulation in hBN to pseudo-confine electrons into a 

graphene quantum dot (QD). This chapter will demonstrate that an STM tip interacts 

electrostatically with the graphene QD during spectroscopic characterization. Chapter 

7 will explore variations in the crystallographic alignment between BLG and hBN 

using spatially resolved photoemission spectroscopy. 

Finally, the “Top” stage is covered by Ch. 8. After having explored the 

“Bottom” and “Interface” stages of the graphene/hBN heterostructure, we focus solely 

on the “Top” stage (see Fig. 1.1). This chapter provides a comprehensive 

characterization of BLG’s band structure using scanning tunneling spectroscopy. Any 
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possible electronic coupling between hBN and BLG is eliminated with a sufficiently 

large crystallographic misalignment between them. Despite decoupling from hBN, 

BLG still benefits from the structural support and electronic isolation from substrate 

induced disorder that hBN provides. These advantages of decoupled BLG on hBN 

enable us to map the atomically resolved distribution and evolution of electronic 

structure features such as the Van Hove singularity and high energy bands in BLG. 

 The last chapter (Ch. 9) will summarize and highlight the results discussed in 

Ch. 5-8 which explore the graphene/hBN heterostructure in three different, yet 

interconnected, stages. This chapter will end with an outlook and possible directions 

for future studies that can stem from the works presented in this thesis. 
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Chapter 2 – Band Structure Theory of Monolayer and Bilayer Graphene 

 

2.1 Introduction 

 One of the most frequently quoted facts about graphene is that it has massless 

electrons. In this chapter we will show how this result is obtained by using the tight-

binding (TB) model. We will begin by introducing the TB model for a general crystal 

with translational symmetry. Then, we will apply this model to monolayer graphene 

(MLG) to obtain insights about its quasiparticle scattering behavior which is a 

significant mechanism for the phenomena presented in Ch. 6. In a similar manner, we 

will apply the TB model to calculate bilayer graphene’s (BLG’s) band structure and 

discuss its bandgap tunability—a crucial feature discussed in Ch. 8. Finally, we will 

introduce a TB computational package used to simulate the local density of states for 

MLG and BLG in Ch. 6 and 8, respectively. 

 

2.2 The Tight-Binding (TB) Model 

 The TB model is an approach used to calculate the electronic band structure of 

a wide range of solids. As indicated in the name, this approach has increased accuracy 

for solids where atoms have atomic orbitals “tightly-bound” to their nuclei. By being 

“tightly-bound”, atoms in the solid have less overlap between themselves and are thus 

considered to be “non-interacting”. This enables us to approximate a material’s wave 
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functions by linear combinations of Bloch functions of isolated atoms in a crystal 

lattice. Despite being a single-electron approach, the TB model can provide insights 

necessary to describe many-body phenomena1 as we will see in Ch. 8. However, to 

calculate the band structure of MLG and BLG that is commonly used in the literature, 

such adaptations to the TB model are not necessary. 

 The starting point of the TB model is to assume a system of translational 

invariant sites—each having 𝑛 orbitals 𝜙𝑗. An appropriate description for such system 

can be given by a linear combination of these orbitals, i.e. Bloch functions: 

 

Φ𝑗(𝒌, 𝒓) =
1

√𝑁
 ∑𝑒𝑖𝒌∙𝑹𝑗𝑙  𝜙𝑗  (𝒓 − 𝑹𝑗𝑙)

𝑁

𝑙=1

 

 

(2.1) 

This expression is the linear combination of the 𝑗th orbital of 𝑁 unit cells, where 𝑅𝑗𝑙 

denotes the position of the 𝑗th orbital at the 𝑙th unit cell. 

 Once we have the modes Φ𝑗 across the crystals lattice, we can approximate the 

crystal’s wave function Ψ𝑖(𝑘, 𝑟) as follows: 

 
Ψ𝑖(𝒌, 𝒓) =  ∑𝑐𝑖𝑗Φ𝑗(𝒌, 𝒓)

𝑛

𝑗=1

 

 

(2.2) 

So far, the wave function Ψ𝑖(𝒌, 𝒓) can apply to any crystal with some form of 

translational symmetry. The specificity of the energy distribution and interaction 

between atoms in a crystal is encoded in the Hamiltonian 𝐻. So, assuming we have 𝐻 

for some crystal, from the Schrödinger equation we can express the eigenvalue 𝐸𝑖(𝒌) 

as: 
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𝐸𝑖(𝒌) =

⟨Ψ𝑖|𝐻|Ψ𝑖⟩

⟨Ψ𝑖|Ψ𝑖⟩
 

 

(2.3) 

By plugging in the expanded expression of the wave functions in (2.2), we obtain 

 

𝐸𝑖(𝒌) =

∑ 𝑐𝑖𝑗
∗ 𝑐𝑖𝑙𝐻𝑗𝑙

𝑛

𝑗,𝑙

∑ 𝑐𝑖𝑗
∗ 𝑐𝑖𝑙𝑆𝑗𝑙

𝑛

𝑗,𝑙

 

 

(2.4) 

Here, 𝐻𝑗𝑙 are referred to as the transfer integral’s matrix elements 𝐻𝑗𝑙 = ⟨Φ𝑗|𝐻|Φ𝑙⟩ and 

𝑆𝑗𝑙 are the overlap integral’s matrix elements 𝑆𝑗𝑙 = ⟨Φ𝑗|Φ𝑙⟩. 

 In principle we can compute the transfer and overlap integrals assuming we 

know the 𝜙𝑗 orbitals at each unit cell. However, to obtain the energy 𝐸𝑖(𝒌) we still 

need to address the unknown coefficients 𝑐𝑖𝑗. This requires minimizing the energy 

expression in (2.4) with respect to 𝑐𝑖𝑗
∗ . This process leads to the consolidation of the 

coefficients 𝑐𝑖𝑗
∗  in (2.4) which results in 

 
∑𝑐𝑖𝑗𝐻𝑙𝑗

𝑛

𝑗=1

= 𝐸𝑖(𝒌) ∑𝑐𝑖𝑗𝑆𝑙𝑗

𝑛

𝑗=1

 

 

(2.5) 

𝐸𝑖 can now be obtained by a standard matrix diagonalization process, or equivalently 

by solving the characteristic equation: 

 det (𝐻 − 𝐸𝑖𝑆) = 0  (2.6) 

There will be as many solutions for 𝐸𝑖 as there are atoms within a unit cell. Equation 

(2.6) is the starting point of TB calculations. In the upcoming sections we will apply 

this result to MLG and BLG. 
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2.3 Band Structure Theory of Monolayer Graphene 

Figure 2.3.1| Real and reciprocal space lattices of monolayer graphene (MLG). (a) 

Schematic of graphene’s lattice with lattice constant 𝑎0. The triangular sublattices A 

and B are colored red and blue, respectively. The primitive lattice vectors 𝐚1 and 𝐚2 

are shown as yellow arrows. The nearest neighbors 𝛿𝑖 are indicated by the red arrows. 

(b) Schematic of the reciprocal lattice of graphene showing the first Brillouin zone. 

There are two sets of equivalent high-symmetry points 𝐾 and 𝐾′. The reciprocal lattice 

vectors 𝐛1 and 𝐛2 are shown as the orange arrows. 

 

In graphene, carbon atoms use up their in-plane 𝑠𝑝2 orbitals to form 𝜎-bonds 

between them. This leaves us with their out-of-plane and “tightly-bound” 2𝑝𝑧 orbitals 

which are used as the building blocks for graphene’s Bloch functions which form 𝜋-

bonds. To assemble these, we define the parameters that encode graphene’s lattice 

information—the primitive and reciprocal lattice vectors. 

Figure 2.3.1a shows a schematic of graphene’s lattice. Graphene’s lattice can 

be thought of as two interlocking triangular lattices made up of atoms labeled A and B. 

For this reason, it is instructive to color each sublattice differently. The primitive unit 
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cell in this lattice is delineated by the dotted rhomboid in Fig. 2.3.1a. Each carbon atom 

is separated by a distance 𝑎0 = 1.4 Å. Thus, the primitive lattice vectors 𝐚1 and 𝐚2 are 

given by: 

 
𝐚1 = 𝑎0 (

3

2
,
√3

2
)       ;        𝐚2 = 𝑎0 (

3

2
,−
√3

2
) (2.7) 

 The primitive lattice vectors enable us to obtain the reciprocal lattice vectors 𝐛1 

and 𝐛2, which in turn enables us to construct graphene’s reciprocal lattice. The first 

Brillouin zone (BZ) of this space is depicted in Fig. 2.3.1b where the reciprocal lattice 

vectors 𝐛𝑖 satisfy 𝐛𝑖 ∙ 𝐚𝑗 = 2𝜋𝛅𝑖𝑗, and are given by: 

 
𝐛1 =

1

𝑎0
 (
2𝜋

3
,
2𝜋

√3
)       ;        𝐛2 =

1

𝑎0
 (
2𝜋

3
,−
2𝜋

√3
) (2.8) 

As mentioned above, we will only consider the out-of-plane 2𝑝𝑧 orbitals which 

lead to two low energy bands 𝜋 and 𝜋∗.2,3 With this consideration we can express the 

2D Bloch function for graphene as: 

 

Φ(𝒌, 𝒓) =∑𝑒𝑖𝒌∙𝑹

𝑹

(𝑐𝐴𝜙𝐴
2𝑝𝑧  (𝒓 − 𝑹) + 𝑐𝐵𝜙𝐵

2𝑝𝑧  (𝒓 − 𝑹 − 𝑎0𝒙̂)) 

 

(2.9) 

The orbitals 𝜙𝐴
2𝑝𝑧 and 𝜙𝐵

2𝑝𝑧 correspond to the 2𝑝𝑧 orbitals for each carbon atom within 

the unit cell. The translation vector 𝑹 is understood to be any integer combination of 

the primitive lattice vectors 𝐚1 and 𝐚2. The equivalent coefficients 𝑐𝐴 and 𝑐𝐵 are 

introduced to ensure the normalization of the Bloch function; i.e. |𝑐𝐴|
2 + |𝑐𝐵|

2 = 1. 
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 Referring to (2.6), to solve for graphene’s bands we need to identify the 

components 𝐻𝑖𝑗 and 𝑆𝑖𝑗 in the sublattice basis, where 

 
𝐻 = (

𝐻𝐴𝐴 𝐻𝐴𝐵
𝐻𝐵𝐴 𝐻𝐵𝐵

)       ;        𝑆 = (
𝑆𝐴𝐴 𝑆𝐴𝐵
𝑆𝐵𝐴 𝑆𝐵𝐵

) 
(2.10) 

It is convenient to first address the diagonal components for each matrix. The 

components 𝐻𝐴𝐴 and 𝐻𝐵𝐵 represent the ionization energies of the 2𝑝𝑧 orbitals for the 

A and B atoms in the unit cell, respectively. Thus, we define 𝐻𝐴𝐴 = 𝐻𝐵𝐵 ≡ ε2𝑝𝑧. The 

components 𝑆𝐴𝐴 and 𝑆𝐵𝐵 simplify to 1 given that these are expressed in terms of the 

normalized Bloch function (2.9) as 𝑆𝐴𝐴 = ⟨Φ(𝐫 = 𝑹𝐴)|Φ(𝐫 = 𝑹𝐴)⟩ = 1 and 𝑆𝐵𝐵 =

⟨Φ(𝐫 = 𝑹𝐵)|Φ(𝐫 = 𝑹𝐵)⟩ = 1, where 𝑹𝐴 and 𝑹𝐵 are the displacement vectors that 

span the A and B sublattices, respectively. To summarize these considerations thus far, 

we have: 

 
𝐻 = (

ε2𝑝𝑧 𝐻𝐴𝐵
𝐻𝐴𝐵
∗ ε2𝑝𝑧

)       ;        𝑆 = (
1 𝑆𝐴𝐵
𝑆𝐴𝐵
∗ 1

) (2.11) 

 To obtain expressions for the off-diagonal elements in the 𝐻 and 𝑆 matrices, it 

is adequate to only consider interactions between nearest neighbors.2 That is to say, we 

only consider the three B atoms surrounding each A atom, and vice versa. The vectors 

indicating the nearest neighbors of the sublattice atom A are depicted by the red arrows 

in Fig. 2.3.1a and given by: 

 
𝜹1 = (𝑎0, 0)  ;   𝜹2 = 𝑎0 (−

1

2
,
√3

2
)  ;   𝜹3 = 𝑎0 (−

1

2
,−
√3

2
)         (2.12) 
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Thus, the off-diagonal element 𝐻𝐴𝐵 can be written as: 

 

𝐻𝐴𝐵 = 2 ∑
1

2
𝑒𝑖𝒌∙(𝑹𝐵𝑖−𝑹𝐴𝑗)

𝑹𝐴𝑖,𝑹𝐵𝑗

⟨𝜙𝐴
2𝑝𝑧(𝒓 − 𝑹𝐴𝑖)|𝐻|𝜙𝐵

2𝑝𝑧(𝒓 − 𝑹𝐵𝑗)⟩   

 

(2.13) 

In this expression, the factors 2 and 1/2 account for spin and double counting of nearest 

neighbors, respectively. The factor in the bra-ket notation is the hopping energy 

between atoms A and B, and will hereby be expressed as −𝛾0. Optical spectroscopy 

and transport experiments have determined this parameter to be 𝛾0~3 eV.4 

 After limiting each atom’s influence to its three nearest neighbors by using the 

vectors from (2.12), we obtain: 

 

 𝐻𝐴𝐵 = −𝛾0∑𝑒𝑖𝒌∙𝜹𝒋

𝑗

= −𝛾0 𝑓(𝒌) 

 

(2.14) 

 

 

where      𝑓(𝒌) = 𝑒𝑖𝑘𝑥𝑎0 + 2𝑒−𝑖𝑘𝑥𝑎0/2cos (𝑘𝑦𝑎0√3/2) (2.15) 

A similar treatment follows for the off-diagonal elements of the 𝑆 matrix: 

 

 𝑆𝐴𝐵 = 2 ∑
1

2
𝑒𝑖𝒌∙(𝑹𝐵𝑖−𝑹𝐴𝑗)

𝑹𝐴𝑖,𝑹𝐵𝑗

⟨𝜙𝐴
2𝑝𝑍(𝒓 − 𝑹𝐴𝑖)|𝜙𝐵

2𝑝𝑍(𝒓 − 𝑹𝐵𝑗)⟩

=∑𝑒𝑖𝒌∙𝜹𝒋

𝑗

𝑠0 = 𝑠0 𝑓(𝒌) 

 

 
 
 

(2.16) 

here 𝑠0 = ⟨𝜙𝐴
2𝑝𝑧|𝜙𝐵

2𝑝𝑧⟩ = ⟨𝜙𝐵
2𝑝𝑧|𝜙𝐴

2𝑝𝑧⟩. 𝑠0 is an experimentally determined constant 
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with finite values for overlapping orthogonal orbitals between adjacent atoms. 

 We have now identified all the elements needed to solve the characteristic 

equation (2.6) which can be expressed as: 

 
det (

ε2𝑝𝑧 − 𝐸 −(𝛾0 + 𝑠0)𝑓(𝒌)

−(𝛾0 + 𝑠0)𝑓
∗(𝒌) ε2𝑝𝑧 − 𝐸

) = 0 (2.17) 

 

⇒ (𝐸 − ε2𝑝𝑧)
2
− ([𝐸 − ε2𝑝𝑧]𝑠0 + ε2𝑝𝑧𝑠0 + 𝛾0)

2
|𝑓(𝒌)|2 = 0 (2.18) 

Finally, the eigenvalue solutions 𝐸(𝒌) that relate a charge carrier’s energy to 

its momentum in graphene are given by:  

 
𝐸±(𝒌) =

ε2𝑝𝑧 ± 𝛾0|𝑓(𝒌)|

1 ∓ 𝑠0|𝑓(𝒌)|
         (2.19) 

 

Figure 2.3.2| Low energy band structure of MLG. (a) Surface plot of graphene’s 

low energy bands from (2.19) using the following parameters: 𝛾0 = 2.8 eV; 𝑠0 = 0.13; 

and ε2𝑝𝑧 = 0. The valence and conduction bands are colored blue and green-to-red, 

respectively.  These bands touch at six corners of the Brillouin zone—points 𝐾 and 𝐾′. 
Inset to the right shows a schematic of the zoomed in conical valence and conduction 

bands around a 𝐾 point. (b) Top-view of the bands in (a) where the first BZ is outlined 

using the color gradient from the conduction band. 
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A plot of these bands near the first BZ is shown in Figs. 2.3.2a-b. These plots 

display some of graphene’s unique band structure features. For example, the valence 

and conduction bands meet at the six vertices of the first BZ. These inequivalent points 

are labeled 𝐾 and 𝐾′ and are also referred to as valleys (akin to band minima in 

semiconductors). Near these points and within ~ 1 eV, the valence and conduction 

bands have linear dispersion which implies that graphene electrons behave as massless 

particles. By letting ε2𝑝𝑧 = 0, the zero-energy point in Fig. 2.3.2a resides at the 

intersection of the valence and conduction bands—called the Dirac point. This means 

that for pristine graphene, the Fermi level is located at these points. As a consequence, 

changing the onsite energy ε2𝑝𝑧 changes the Fermi level, which in turn changes the 

amount of available states. This property will be employed in Ch. 6 to simulate pseudo-

confinement in graphene by spatially varying the onsite energies ε2𝑝𝑧 across a sheet of 

graphene. Finally, we note that a clear asymmetry between the maxima and minima at 

the 𝛤 point can be observed in  Fig. 2.3.2a. This asymmetry arises due to a finite overlap 

parameter 𝑠0, which in most cases can be ignored given that it does not change the 

bands near the 𝐾 points and Fermi level. 

 

2.3.1 Low energy states in MLG 

 To study the low energy states in graphene near the Dirac point, we start by 

redefining the reciprocal lattice parameters 𝑘𝑥 and 𝑘𝑦 so that they become centered 
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around the point, expressed as 𝑲 =
1

𝑎0
(0,

4𝜋

3√3
 ) in the 𝒌-basis . Let 

 
𝜅𝑥 ≡ 𝑘𝑥    ;     𝜅𝑦 ≡ 𝑘𝑦 −

4𝜋

3𝑎0√3
 (2.20) 

This substitution and subsequent drop of higher order terms lead to an approximation 

of (2.15) given by: 

 

 

𝑓(𝒌) ≈
√3

2
𝑎0(−𝜅𝑦 + 𝑖𝜅𝑥) (2.21) 

This allows us to obtain a compact Dirac-like Hamiltonian for low-energy states near 

𝐾: 

 

 

𝐻𝐾 ∙ 𝒄⃗ =
√3

2
𝛾0𝑎0 (

0 𝜅𝑦 + 𝑖𝜅𝑥
𝜅𝑦 − 𝑖𝜅𝑥 0

) ∙ (
𝑐𝐴
𝑐𝐵
) = 𝐸 (

𝑐𝐴
𝑐𝐵
) (2.22) 

The eigenvalue solutions for this equation represent the valence (𝐸−) and conduction 

(𝐸+) bands in MLG: 

 

 

𝐸± = ±
√3

2
𝛾0𝑎0|𝜿| ≡ ±ℏ𝜈𝑓|𝜿| (2.23) 

In this expression, the vector 𝜿 represents small excursions in reciprocal space around 

the vicinity of the 𝐾 point. We have also introduced the Fermi velocity as 𝜈𝑓 =
3

2ℏ
𝛾0𝑎0. 

This quantity has been determined to be ~𝑐/300, where 𝑐 is the speed of light.5,6 

The band structure in this low energy regime is depicted in the inset of 

Fig.2.3.2a by the cones whose apices touch at the Dirac point. Graphene is thus referred 
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to as a semi-metal because despite having no bandgap, it has a density of states (DOS) 

minimum at the Dirac point. The simple result in (2.23) is extremely profound. The 

linear energy dispersion near the 𝐾 point suggests that electrons in graphene behave 

much like massless particles in vacuum that travel at about 1/100th the speed of light. 

Note that to arrive to this result we employed two approximations: (1) only nearest 

neighbor interactions, and (2) |𝜿|𝑎0 ≪ 1 near the 𝐾-point. However, despite these 

approximations, graphene’s linear dispersion near 𝐾 has been shown to hold when next 

nearest neighbors are considered or even when calculations more advanced than the 

TB model are used.7 

 We will now shift focus to the eigenvectors that result from (2.22). First, we 

define an angle 𝜃 between 𝜿 and the 𝜅𝑥-axis such that: 

 𝜅𝑦 ± 𝑖𝜅𝑥 = ±𝑖|𝜿|𝑒
∓𝑖𝜃 (2.24) 

 We note that a similar treatment for the 𝐾′ point leads to a similar relation after 

substituting 𝜅𝑦 → −𝜅𝑦. Thus, taking these expressions into account, the eigenstates for 

the 𝐾 and 𝐾′ valleys are found by solving for 𝑐𝐴 and 𝑐𝐵 in: 

 

 

𝐻𝐾 ∙ 𝒄 = ℏ𝜈𝐹|𝜿| (
0 𝑖𝑒−𝑖𝜃

−𝑖𝑒𝑖𝜃 0
) ∙ (

𝑐𝐴
𝑐𝐵
) = 𝐸± (

𝑐𝐴
𝑐𝐵
) 

(2.25) 

 

 

𝐻𝐾′ ∙ 𝒄 = ℏ𝜈𝐹|𝜿| (
0 𝑖𝑒𝑖𝜃

−𝑖𝑒−𝑖𝜃 0
) ∙ (

𝑐𝐴
𝑐𝐵
) = 𝐸± (

𝑐𝐴
𝑐𝐵
) 

(2.26) 

By choosing 𝑐𝐴 = 1, the eigenvector solutions are: 



23 
 

 

 

𝜓±
𝐾 =

1

√2
 (

1
∓𝑖𝑒𝑖𝜃

) 𝑒𝑖𝜿∙𝒓     ;      𝜓±
𝐾′ =

1

√2
 (

1
±𝑖𝑒−𝑖𝜃

) 𝑒𝑖𝜿∙𝒓        (2.27) 

In these expressions, 𝜓+ and 𝜓− correspond to the eigenvectors for the conduction and 

valence bands, respectively. A plane wave term 𝑒𝑖𝜿∙𝒓 has been attached to provide 

spatial dependence . The vectors in (2.27) are expressed in the basis of the A and B 

sublattices. Thus, there is a strong dependence between a state’s momentum direction 

and its probability of being in the A or B sublattice. This binary behavior resembles an 

electron’s spin in a magnetic field and is thus referred to as pseudospin. However, 

instead of saying that electrons are spin up or down, we may think of pseudospin as the 

quality of electrons being localized either in the A or B sublattice.  

In addition, by arranging the Pauli matrices as 𝝈̂ = (𝜎𝑦, −𝜎𝑥), we can express 

the effective Dirac-like Hamiltonian in (2.22) as 𝐻𝐾 = 𝜈𝐹𝝈̂ ∙ 𝐩; where 𝐩 = ℏ𝜿. For the 

𝐾′ valley we just substitute 𝜎𝑦 → (−𝜎𝑦). This expression highlights the fact that the 

pseudospin of graphene’s fermions is intimately linked to their momenta. From 

conservation of energy, the projection of an electron or hole’s momentum onto their 

pseudospin must be conserved. This conservation rule gives rise to exotic scattering 

properties of charge carriers in graphene which will be discussed in the following 

section. 
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2.3.2 Scattering properties of charge carriers in MLG 

Figure 2.3.3| MLG charge carrier scattering across a step potential. (a) Schematic 

showing electron scattering off a sharp step potential in MLG which separates n-doped 

and p-doped regions. Top: Side-view of scattering potential where an electron in the 

conduction band moves transmits through with amplitude 𝑡 onto the valence band and 

reflects with amplitude 𝑟. The black arrows depict electron velocities. Bottom: Top-

view of scattering process depicting an electron’s incident (𝜿𝑖), transmitted (𝜿𝑡), and 

reflected (𝜿𝑟) wave vectors. (b) Plots of the transmission probability 𝑇 as a function of 

the incident angle 𝜃𝑖 for different values of the potential height  𝑉0 with respect to 

electron’s energy 𝐸. Regardless of potential height, an electron can be fully transmitted 

at normal incidence. 

 

The eigenvectors in (2.27) display unique scattering behavior akin to relativistic 

particles.8,9 The scattering properties of quasiparticles in graphene are crucial to explain 

the mechanism behind the pseudo-confinement of graphene electrons discussed in Ch. 

6. 

As a first simple example, consider a state in the conduction band propagating 
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along the 𝜃 = 0 direction near the 𝐾 point. In the conduction band, the pseudospin part 

in (2.27) results in (
1
−𝑖
). Now, consider a state that propagates in the opposite direction; 

i.e. 𝜃 = 𝜋. Such state has a pseudospin of  (
1
𝑖
). The inner product of these oppositely 

propagating states results in zero. This implies that there is no overlap between 

backscattered states. In the absence of A-B sublattice symmetry breaking, this property 

manifests experimentally in the form of weak backscattering which leads to enhanced 

mean free paths.10 

Now, we will consider a more complex scenario and come up with an 

expression for the transmission probability of an electron across a sharp potential as 

done by Allain and Fuchs.11 Consider an electron in the 𝐾 valley impinging on a sharp 

step potential 𝑉0 with incident angle 𝜃𝑖 shown in Fig. 2.3.3a. This schematic depicts 

two regions separated by a sharp step potential. In the left region, the electron in the 

conduction band has energy 𝐸+ = 𝐸 with respect to the Dirac point. In the right region, 

the electron propagates in the valence band and has energy 𝐸− = 𝐸 − 𝑉0. The fact that 

𝐸− < 0 implies that the wave vector points in the opposite direction to the wave 

propagation. Additionally, backscattering in 𝑦 across the step potential is not allowed 

since the potential is a function of 𝑥 only. Unlike familiar optics behavior, these 

considerations result in the depiction of the transmitted orange arrow pointing towards 

the left region and appearing below the normal line (see Fig. 2.3.3a). 

First, we write out the expressions for the three wave vectors in Fig. 2.3.3a. For 
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sake of simplicity, we will let ℏ𝜈𝐹 = 1, so that (2.23) becomes: 

 𝐸± = ±|𝜿| (2.28) 

With this in mind, we can express the wave vectors from Fig. 2.3.3a as: 

 𝜿𝑖 = 𝐸(cos 𝜃𝑖 , sin 𝜃𝑖) ≡ (𝜅𝑥, 𝜅𝑦) (2.29) 

 𝜿𝑟 = 𝐸(cos(𝜋 − 𝜃𝑖) , sin(𝜋 − 𝜃𝑖)) = (−𝜅𝑥, 𝜅𝑦) (2.30) 

 𝜿𝑡 = −(𝐸 − 𝑉0)(cos𝜃𝑡 , sin 𝜃𝑡) ≡ (𝜅𝑥
′ , 𝜅𝑦) (2.31) 

where 𝜃𝑟 = 𝜋 − 𝜃𝑖 in (2.30) results from translational symmetry between the incident 

and reflected wave vectors along 𝑦, i.e. 𝜿𝑖 ∙ 𝒚̂ = 𝜿𝑟 ∙ 𝒚̂. The same condition applied to 

the transmitted wave 𝜿𝑖 ∙ 𝒚̂ = 𝜿𝑡 ∙ 𝒚̂ leads to an expression for 𝜃𝑡 which was applied to 

(2.31): 

 
sin𝜃𝑡 =

−𝐸

𝑉0 − 𝐸
sin 𝜃𝑖 

(2.32) 

 Second, we write out the wavefunctions corresponding to the n and p-doped 

regions in Fig. 2.3.3a. Let 𝑟 and 𝑡 be the coefficients for the reflected and transmitted 

eigenstates, respectively. If we ignore normalization coefficients, account for 

symmetry arguments, and use (2.27) at the 𝐾 point, we can express these wavefunctions 

as: 

 𝜓𝑛 = [(
1

−𝑒𝑖𝜃𝑖
) 𝑒𝑖𝜅𝑥𝑥 + 𝑟 (

1
−𝑒𝑖(𝜋−𝜃𝑖)

) 𝑒−𝑖𝜅𝑥𝑥] 𝑒𝑖𝜅𝑦𝑦 
(2.33) 
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 𝜓𝑝 = 𝑡 (
1
𝑒𝑖𝜃𝑡

) 𝑒𝑖𝜅𝑥
′ 𝑥𝑒𝑖𝜅𝑦𝑦 (2.34) 

Ensuring continuity of these wavefunctions at  𝑥 = 0 leads to: 

 
𝑟 =

𝑒𝑖𝜃𝑡+𝑒𝑖𝜃𝑖

𝑒−𝑖𝜃𝑖−𝑒𝑖𝜃𝑡
   ;   𝑡 =

𝑒𝑖𝜃𝑖+𝑒−𝑖𝜃𝑖

𝑒−𝑖𝜃𝑖−𝑒𝑖𝜃𝑡
              

(2.35) 

Now, we consider conservation of current probability along the 𝑥 direction. 

This means the following: 

 ⟨𝜓𝑖 |
𝜿𝑖
|𝜿𝑖|

| 𝜓𝑖⟩ + ⟨𝜓𝑟 |
𝜿𝑟
|𝜿𝑟|

| 𝜓𝑟⟩ + ⟨𝜓𝑡 |
𝜿𝑡
|𝜿𝑡|

| 𝜓𝑡⟩ = 0 
(2.36) 

where the wavefunctions 𝜓𝑖, 𝜓𝑟, and 𝜓𝑡 correspond to the incident, reflected, and 

transmitted components in (2.33) and (2.34). If we consider 𝑅 and 𝑇 to be the reflection 

and transmission probabilities, respectively, the law of conservation of probability 

states that 1 = 𝑅 + 𝑇. Consequently, from (2.36) we obtain: 

 
1 = |𝑟|2 + (−|𝑡|2

cos 𝜃𝑡
cos 𝜃𝑖

 ) = 𝑅 + 𝑇 
(2.37) 

Finally, using (2.35) we can express the transmission and reflection probabilities as: 

 
𝑇 = −

cos 𝜃𝑖 cos 𝜃𝑡

sin2 (
𝜃𝑖 + 𝜃𝑡
2 )

 (2.38) 

 

𝑅 =
cos2 (

𝜃𝑖 − 𝜃𝑡
2 )

sin2 (
𝜃𝑖 + 𝜃𝑡
2 )

 
(2.39) 



28 
 

where 𝜃𝑡 can be expressed in terms of 𝜃𝑖 with (2.32). 

 Figure 2.3.3b shows a plot of the transmission probability T as a function of the 

incident angle 𝜃𝑖. The curves are plotted for −𝜋/2 < 𝜃𝑖 < 𝜋/2 and 𝜃𝑡 has been shifted 

by 𝜋 to fit within this range. The case for four magnitudes of the potential step 𝑉0 with 

respect to 𝐸 are plotted. From this plot we gather that as 𝑉0 → 𝐸; a particle can cross 

the potential step only if it travels at normal incidence (𝜃𝑖 = 0°). As 𝑉0 increases, 

particles have higher transmission probabilities for angles near normal incidence. 

Additionally, particles become fully reflected past certain critical angles for different 

values of 𝑉0. These minimum angles of total internal reflection are indicated by the 

dashed lines in Fig. 2.3.3b. In the limit 𝑉0 → ∞; only particles with 𝜅𝑥 = 0 become 

fully reflected. Regardless of the relative height of 𝑉0 it is apparent that at normal 

incidence particles have a 100% probability of being transmitted through the step 

potential. This bizarre result is known as Klein tunneling. The unconventional 

scattering properties of graphene electrons have led to the realization of novel electron-

optics phenomena like negative index of refraction.12,13 Moreover, in Ch. 6 we will 

discuss a circular electrostatic potential where the primary trapping and escape 

mechanism relies on the scattering results we have presented here. For further 

discussion of different scattering scenarios such as smoothly varying potentials, see the 

work by Allain and Fuchs.11 
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2.4 Band Structure Theory of Bilayer Graphene 

Figure 2.4.1| Lattice of Bernal stacked bilayer graphene (BLG). (a) Schematic of 

the lattice of Bernal stacked BLG. The top layer atoms are labeled as AT (red circles) 

and BT (gray circles). The bottom layer atoms are labeled as AB (gray circles) and BB 

(blue circles). The intralayer hopping term 𝛾0 between AT(B) and BT(B) atoms and the 

interlayer hopping term 𝛾0 between BT and AB atoms are indicated. (b) Top view of 

Bernal stacked BLG. The unit cell is outlined by the orange rhomboid. The unit cell in 

BLG encloses 4 atoms in total. The primitive lattice vectors 𝐚1 and 𝐚2 are illustrated 

by the green arrows. 

 

In this section we will calculate the band structure of Bernal stacked bilayer 

graphene (BLG) using the TB model and following a similar procedure as done for 

MLG. However, we will only highlight the main points of the calculation. We will 

apply the nearest neighbor approximation early on to acquire expressions for the low 

energy band structure of BLG. 

 The lattice in BLG is composed of two layers of graphene stacked on top of 

each other. Figure 2.4.1a depicts BLG’s lattice in the Bernal stacking configuration 

where the AB atom is right below the BT atom. This configuration is also known as AB-



30 
 

stacked. BLG’s band structure will be calculated using the intralayer and interlayer 

hopping terms 𝛾0 and 𝛾1, respectively. The term 𝛾0 is the same as in monolayer 

graphene. The term 𝛾1 indicates the coupling between the AB and BT atoms, which 

approximates the coupling between the top and bottom layers. More advanced 

calculations may employ higher order hopping terms4 such as 𝛾3 and 𝛾4. However, 

assuming that 𝛾3 = 𝛾4 = 0 appropriately describes the results I will discuss in Ch. 7 

and 8. Figure 2.4.1b shows the top view of BLG’s lattice with the primitive lattice 𝐚1 

and 𝐚2 vectors indicated by the green arrows. The unit cell is outlined by the orange 

rhomboid. For BLG, this unit cell extends in the 𝑧 direction such that it encloses a total 

of 4 atoms: AT, BT, AB, and BB. 

 Similar to the procedure demonstrated for MLG, we will use BLG’s unit cell 

atoms to indicate the basis for the matrices in the characteristic equation 

det(𝐻𝑖𝑗 − 𝐸𝑆𝑖𝑗) = 0. Thus, assuming the basis {AT, BT, AB, BB} 

 

𝐻 =

(

 
 

ε2𝑝𝑧 −𝛾0𝑓
∗(𝒌) 0 0

−𝛾0𝑓
∗(𝒌) ε2𝑝𝑧 𝛾1 0

0 𝛾1 ε2𝑝𝑧 −𝛾0𝑓
∗(𝒌)

0 0 −𝛾0𝑓
∗(𝒌) ε2𝑝𝑧 )

 
 

 

(2.40) 

  

𝑆 =

(

 

1 −𝑠0𝑓(𝒌) 0 0

−𝑠0𝑓
∗(𝒌) 1 0 0

0 0 1 −𝑠0𝑓(𝒌)

0 0 −𝑠0𝑓
∗(𝒌) 1 )

  

 

(2.41) 

where 
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 𝑓(𝒌) = 𝑒𝑖𝑘𝑦𝑎0 + 2𝑒−𝑖𝑘𝑦𝑎0/2 cos (𝑘𝑥𝑎0√3/2) (2.42) 

Note that this expression is slightly different from (2.15) since we arbitrarily chose the 

unit cell such that the BZ is rotated by 30° with respect to the MLG case. The 

composition of BLG by two single layers of graphene is apparent from these matrices. 

If subdivided by layers, we see that each of the top and bottom sub-bases form the same 

matrices as (2.11) coupled by a single “hopping” matrix (
0 0
𝛾1 0

). 

 At this point, the characteristic equation det(𝐻𝑖𝑗 − 𝐸𝑆𝑖𝑗) = 0 may be solved. 

However, we can simplify our calculations by applying the low energy restrictions. 

Like in MLG, these restrictions imply that we can assume; 𝑠0 → 0 at low energies and 

define ε2𝑝𝑧 ≡ 0. These considerations simplify the characteristic equation to: 

 

det

(

 

−𝐸 −𝛾0𝑓(𝒌) 0 0

−𝛾0𝑓
∗(𝒌) −𝐸 𝛾1 0

0 𝛾1 −𝐸 −𝛾0𝑓(𝒌)

0 0 −𝛾0𝑓
∗(𝒌) −𝐸 )

 = 0 

 

(2.43) 

the four eigenvalue solutions are: 

 

𝐸±
𝛼(𝒌) = ±

𝛾1
2
(√1 +

4𝛾0
2|𝑓(𝒌)|2

𝛾1
2 + 𝛼)     ;    𝛼 = ±1        (2.44) 
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Figure 2.4.2| Low energy band structure of BLG. (a) Plot of the low energy bands 

of BLG considering only nearest neighbor interactions and 𝑠0 = 0. Parameters used: 

𝛾0 = 3 eV; 𝛾1 = 0.4 eV; and ε2𝑝𝑧 = 0. The conduction and valence bands touch at six 

corners of the BZ as shown by the inset around the 𝐾 point. (b) Plot of the low energy 

bands of BLG near 𝐾 considering only nearest neighbor interactions, 𝑠0 = 0, and finite 

layer asymmetry Δ. Parameters used: 𝛾0 = 3 eV; Δ = 𝛾1 = 0.4 eV. Finite layer 

asymmetry Δ induces a band gap at the 𝐾 and 𝐾′ points in the BZ. 

 

These solutions are plotted in Fig. 2.4.2a. This plot shows that two bands touch 

at six high symmetry points; akin to what we obtained for MLG. These points are also 

labeled 𝐾 and 𝐾′. However, unlike MLG, the bands touching at the CNP are not linear. 

From this we infer that BLG does not have massless light-like electrons. However, we 

will shortly see that BLG electrons still have their own version of pseudospin and are 

therefore considered massive Dirac fermions. 

 To obtain the low energy eigenvectors in BLG near the 𝐾 point, we further 

assume that |𝐸| ≪ |𝛾1| and |𝛾0𝑓(𝒌)| ≪ |𝛾1|. The latter assumption is justified given 

that at the 𝐾 points 𝑓(𝑲) = 0. Applying these conditions to (2.43) reduces the 
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dimensionality of the problem such that only the coefficients representing the AT and 

BB atoms have non-zero components4. Similar to (2.22) for MLG, we can restructure 

the characteristic equation (2.43) about the 𝐾 point as: 

 

 

−
ℏ2

2𝑚
 (

0 (𝜅𝑥 − 𝑖𝜅𝑦)
2

(𝜅𝑥 + 𝑖𝜅𝑦)
2

0
) (
𝑐AT
𝑐BB
) = 𝐸 (

𝑐AT
𝑐BB
) (2.45) 

here 𝑚 = 𝛾1/(2𝜈𝑓
2) acts as an effective mass term. Solutions to 𝐸 yield the valence 

(𝐸−) and conduction (𝐸+) bands: 

 

 

𝐸± = ±
ℏ2

2𝑚
|𝜿|2 (2.46) 

We will now shift focus to the eigenvectors that result from (2.45). First, we 

define an angle 𝜃 between 𝜿 and the 𝜅𝑥-axis such that: 

 𝜅𝑥 ± 𝑖𝜅𝑦 = |𝜿|𝑒
±𝑖𝜃 (2.47) 

 We note that a similar treatment for the 𝐾′ point leads to a similar relation after 

substituting 𝜅𝑥 → −𝜅𝑥. Thus, taking these expressions into account, we find the 

eigenstates for the 𝐾 and 𝐾′ valleys by solving for 𝑐𝐴 and 𝑐𝐵 in: 

 

 

𝐻𝐾 ∙ 𝒄 =
ℏ2

2𝑚
|𝜿|2 ( 0 𝑒−2𝑖𝜃

𝑒2𝑖𝜃 0
) ∙ (

𝑐𝐴𝑇
𝑐𝐵𝐵
) = 𝐸± (

𝑐𝐴𝑇
𝑐𝐵𝐵
) (2.48) 

 

 

𝐻𝐾′ ∙ 𝒄 =
ℏ2

2𝑚
|𝜿|2 ( 0 𝑒2𝑖𝜃

𝑒−2𝑖𝜃 0
) ∙ (

𝑐𝐴𝑇
𝑐𝐵𝐵
) = 𝐸± (

𝑐𝐴𝑇
𝑐𝐵𝐵
) (2.49) 
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By choosing 𝑐𝐴𝑇 = 1, the eigenvectors are given by: 

 

 

𝜓±
𝐾 =

1

√2
 (

1
∓𝑒2𝑖𝜃

) 𝑒𝑖𝜿∙𝒓     ;      𝜓±
𝐾′ =

1

√2
 (

1
∓𝑒−2𝑖𝜃

) 𝑒𝑖𝜿∙𝒓        (2.50) 

 Much like MLG, BLG also displays pseudospin properties. However, they do 

not exactly mirror the scattering properties discussed in section 2.3.2. Regardless, we 

can draw an analogy between MLG and BLG. In MLG’s case, the pseudospin degree 

of freedom corresponds to charge carriers being localized in the A or B sublattice. In 

BLG, given that we decoupled from the dimer site atoms BT and AB, the pseudospin 

degree of freedom corresponds to an electron or hole’s localization in either the AT or 

BB sublattice. In simpler terms, a particle’s pseudospin in BLG can be thought of as 

being localized in the top or bottom layer. BLG chirality will not be considered in the 

rest of the thesis, but for further reading on its consequences in scattering see the works 

by McCann,4 Shytov,14 and Allain and Fuchs.11 

 

2.4.1 Bandgap tunability in BLG 

 The ability to tune a material’s band gap is of paramount importance in the 

development of electronic and optoelectronic components such as transistors, diodes, 

and photodetectors. In conventional semiconductors, band gap tunability is set in a 

material during fabrication through careful tuning of stoichiometric ratios and strain 

engineering. However, real-time in-situ tunability has not been realized. This limitation 

in conventional semiconductors can be overcome in BLG.  
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The semi-metallic nature of MLG arises from the symmetry between the A and 

B sublattices. In order to induce a gap, these two sublattices would need to have unequal 

on-site energies. Although a precise and controllable change of these sublattice 

energies in MLG has not been experimentally achieved, recent studies have shown that 

graphene can be gapped with strain and substrate-induce symmetry breaking.15,16 

Thankfully, band gap tunability is feasible in BLG due to the primary sublattice 

symmetry existing between the top and bottom layers. This section will provide an 

overview of BLG’s band gap tunability achieved by braking layer symmetry which will 

be experimentally demonstrated in Ch. 8. 

Inducing layer asymmetry in BLG amounts to changing the 2𝑝𝑧 orbital energies 

of the top layer atoms with respect to the bottom ones. Experimentally, this is achieved 

by applying a perpendicular electric field on BLG. As an electric field emanates from 

a remote conducting substrate, the layer in BLG closest to such substrate experiences 

enhanced changes to its charge density when compared to the layer furthest away. This 

is the case for a uniform electric field 𝐸 since a change in electric potential Δ𝑉 only 

depends on a change in distance Δ𝑑 from the plate electrode, i.e. Δ𝑉 = 𝐸 ∙ Δ𝑑. I will 

cover the experimental process to achieve this change in more detail in Ch. 8. However, 

for our TB model calculations, layer asymmetry can be adapted into (2.40) by shifting 

the onsite energies between the layers by Δ, such that (ε2𝑝𝑧)
AT
= (ε2𝑝𝑧)

BT
= −

1

2
Δ; 

and (ε2𝑝𝑧)
AB
= (ε2𝑝𝑧)

BB
= +

1

2
Δ. These considerations yield: 



36 
 

 

𝐻Δ =

(

 
 
 
 
 

−
1

2
Δ −𝛾0𝑓(𝒌) 0 0

−𝛾0𝑓
∗(𝒌) −

1

2
Δ 𝛾1 0

0 𝛾1 +
1

2
Δ −𝛾0𝑓(𝒌)

0 0 −𝛾0𝑓
∗(𝒌) +

1

2
Δ )

 
 
 
 
 

  

 

 

(2.51) 

 Applying the same restrictions as done for the layer symmetric case, we can 

assume the overlap matrix 𝑆 to be a unit matrix. Thus, to calculate the bands in this 

layer-asymmetric case, one needs to solve the characteristic equation det(𝐻Δ − 𝐸𝐈) =

0, where 𝐈 is a 4x4 unit matrix. There are four eigenvalue solutions for 𝐸 which are 

given by4: 

 

𝐸±
𝛼(𝒌) = ± [

Δ2

4
+ 𝜈𝐹

2𝑝2 +
γ1
2

2
+ 𝛼

γ1
2

2
√1 +

4𝜈𝐹
2𝑝2

𝛾1
2 +

4Δ2𝜈𝐹
2𝑝2

𝛾1
4 ]

1/2

 
(2.52) 

where 𝛼 = ±1, and the linear approximation from (2.21) was applied such that 

𝛾0|𝑓(𝒌)|~𝜈𝐹𝑝 = 𝜈𝐹ℏ|𝒌|. 

Figure 2.4.2b shows a plot of the solutions for (2.52) where the asymmetry term 

used is Δ = 𝛾1 = 0.4 eV. Far from the 𝐾 and 𝐾′points, the bands in BLG remain largely 

unchanged after layer symmetry has been broken. However, as shown in Fig. 2.4.2b 

we see that within a few eV around the 𝐾 point, the conduction and valence bands no 

longer touch. In fact, an effective bandgap 𝑈𝑔𝑎𝑝 = Δ has opened up. 

 In Ch. 8 we will use scanning tunneling spectroscopy to map the evolution of 
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this gap as we change the strength of a perpendicular electric field. Additionally, we 

will demonstrate that appropriate tuning of the layer asymmetry in BLG leads to a clear 

spectroscopic signature of the valence band edge which is mapped spatially. 

 

2.5 Pybinding: a TB Computational Package 

 The TB model results obtained in section 2.2 have general applicability to 

crystals with translational symmetry. Those results are applied and can be expanded 

upon by a computational package written in Python called Pybinding17. Essentially, 

this method computes (2.6) after the user has defined the unit cell, primitive lattice 

vectors, and hopping parameters 𝛾𝑖. Conveniently, this package comes with predefined 

models for MLG and BLG which can be called with the commands 

graphene.monolayer() and graphene.bilayer(), respectively. 

 Below is a sample script that computes the bands in MLG assuming 

translational symmetry by using a standard eigenvalue solver17 

"""Calculate and plot the band structure of monolayer graphene""" 
import pybinding as pb 
import matplotlib.pyplot as plt 
from math import sqrt, pi 
from pybinding.repository import graphene 
 
pb.pltutils.use_style() 
 
 
model = pb.Model( 
    graphene.monolayer(),  # predefined lattice from the material repository 
    pb.translational_symmetry()    # creates an infinite sheet of graphene 
) 
solver = pb.solver.lapack(model)  # eigensolver from the LAPACK library 
 
# significant points in graphene's Brillouin zone 
a_cc = graphene.a_cc  # carbon-carbon distance 
Gamma = [0, 0] 
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K1 = [-4*pi / (3*sqrt(3)*a_cc), 0] 
M = [0, 2*pi / (3*a_cc)] 
K2 = [2*pi / (3*sqrt(3)*a_cc), 2*pi / (3*a_cc)] 
 
# plot the bands through the desired points 
bands = solver.calc_bands(K1, Gamma, M, K2) 
bands.plot(point_labels=['K', r'$\Gamma$', 'M', 'K']) 
plt.show() 

 

Figure 2.5| Computed MLG and BLG bands using Pybinding. (a) Plot of MLG’s 

bands considering only nearest neighbor interactions. Parameters used: 𝛾0 = 2.8 eV; 

and ε2𝑝𝑧 = 0. (b) Plot of BLG’s bands considering only nearest neighbor interactions. 

Parameters used: 𝛾0 = 2.8 eV; 𝛾1 = 0.4 eV. 

 

The result of this script is the plot shown in Fig. 2.5a where the band structure 

of MLG is plotted along the dashed orange arrows indicated in the BZ. The bands of 

BLG can also be calculated by calling graphene.bilayer() from the material 

repository. The result for BLG’s bands calculation is shown in Fig. 2.5b. Note that 

these bands are also shown in Fig. 2.4.2a which were obtained analytically. The 

Pybinding package will be used in Ch. 6 and 8. In Ch. 6 we will calculate the spatial 

dependence of the local density of states (LDOS) of MLG within a parabolic 

electrostatic potential. In Ch. 8, we will simulate layer asymmetry in BLG to calculate 
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its LDOS for specific atoms in the unit cell. 
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Chapter 3 - Scanning Tunneling Microscopy and Angle-Resolved 

Photoemission Spectroscopy 

 

3.1 Introduction 

 In this chapter I will discuss two techniques used to characterize graphene—

scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy 

(ARPES). These techniques are surface sensitive and are generally limited to probing 

a crystal’s surface properties.1–7 However, graphene is a true 2D crystal that hosts an 

exposed 2D electron gas.8,9 This fact makes both STM and ARPES extremely valuable 

tools to explore graphene’s unique electronic properties. Moreover, STM and ARPES 

are complimentary techniques. For example, ARPES is only able to probe occupied 

states while STM can probe occupied and unoccupied states.4 ARPES can probe a 

material’s band structure with momentum resolution and an energy range of ~10 eV, 

but with limited energy resolution (~10 meV).3 On the other hand, STM can probe a 

sample’s density of states without momentum resolution over a narrower energy range 

(~1 eV) but with higher energy resolution (~0.5 meV).  

In the following sections, I will outline the theory behind STM with detailed 

emphasis on results that are necessary to explain spectroscopic features in Ch. 6 and 

Ch. 8. The last section will cover the general principle of ARPES which will be used 

to characterize BLG in Ch. 7. 
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3.2 The Scanning Tunneling Microscopy Technique 

Figure 3.2.1| Scanning Tunneling Microscopy on graphene. (a) Schematic of an 

STM showing the main components used in constant-current topography scans. During 

a constant-current scan the tip hovers over the sample by a distance Δ𝑧 regulated by the 

𝑧-piezo. The tunneling current can be tuned by changing the bias voltage 𝑉𝑆 between 

the tip and sample. (b) Constant-current topographic image of monolayer graphene 

(MLG). Variations of the intensity in this image corresponds to changes of the 𝑧-piezo 

height to keep 𝐼 constant while the tip tracks the surface in the 𝑥𝑦 plane. Tunneling 

parameters used in this scan: 𝐼 = 0.5 nA; 𝑉𝑆 = −200 mV. 

 

Before discussing the theory behind the tunneling phenomena that is at the heart 

of STM, it is important to become acquainted with the STM’s basic experimental 

operation. An STM can be thought of as the interaction between two electrodes: a tip 

and a sample. The schematic of an STM is depicted in Fig. 3.2.1a. A voltage bias (𝑉𝑆) 

is applied between a metallic tip and a conductive sample while the tip hovers over the 

sample’s surface sufficiently close (~5 − 10 Å). Once the tip’s apex and sample’s 

surface are in close proximity, electrons may hop from the tip onto the sample, or vice 

versa. The steady flow of these electrons registers as a current 𝐼. This is the quantum 

mechanical tunneling current. 
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When a sample’s surface topography is scanned, we engage the feedback 

controller (see Fig. 3.2.1a) in “constant-current” mode. For this mode, we select a 

constant value for 𝐼 that is maintained by the 𝑧-piezoelectric motor which self-regulates 

the tip’s distance from the sample’s surface. A resolution of ~1 pm at ~4.8 K is 

achieved by the 𝑧-piezoelectric motor which responds to electrical stimuli by 

expanding and contracting as a result of the piezoelectric effect.10,11 This sequence of 

procedures describes the feedback loop used in the STM measurements presented in 

this thesis. As an example, Fig. 3.2.1b shows a topographic map of monolayer graphene 

(MLG) in “constant-current” mode. Once a constant current 𝐼 is engaged, the 𝑥 and 𝑦-

piezoelectric motors track along the sample’s surface plane while the 𝑧-piezo changes 

the tip’s height (Δ𝑧) so that 𝐼 remains constant. A computer then compiles the Δ𝑧 values 

and plots them as a function of (𝑥, 𝑦) as shown in Fig. 3.2.1b where the hexagonal 

lattice of graphene is clearly displayed. 

The STM measurements discussed for the remainder of this thesis are 

performed in a low-temperature ultra-high vacuum STM manufactured by Createc.10 

A photograph of the STM system is shown in Fig. 3.2.2a where the main sections have 

been highlighted and labeled. When a sample is introduced into the system, it enters 

through the loading-lock (highlighted in orange). This chamber is pumped with a 

turbomolecular pump down to ~10−7 Torr before introducing the sample into the 

preparation-chamber (prep-chamber) highlighted in yellow. Once inside the prep-

chamber, the sample may be annealed to remove excess adsorbates from it’s surface. 

Once the pressure in the prep-chamber drops to ~10−10 Torr, it is introduced into the  
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Figure 3.2.2| Low-temperature ultra-high vacuum STM. (a) Photograph of the 

Createc10 STM used to characterize graphene field effect transistors. Some of the 

STM’s components crucial to its operation in ultra-high vacuum and low-temperature 

operation are indicated. (b) Photograph of the STM head. This part contains the 

relevant components sketched in Fig. 3.2.1. 

 

STM-chamber (highlighted green) where the pressure can drop down to 10−11 Torr. 

The sample is then placed into the STM’s head pictured in Fig. 3.2.2b. The STM head 

is maintained at ~4.8 K by being in contact with a liquid helium cryostat (highlighted 

blue in Fig. 3.2.2a) via a thin metallic wire with high thermal conductivity. Figure 

3.2.2b also labels the main components (sample, tip, and piezoelectric motors) depicted 

and discussed on Fig. 3.2.1a. 
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3.2.1 The theory of scanning tunneling microscopy 

 Now that the basic experimental procedures to operate the STM have been 

discussed, I will present the theoretical treatment of the tunneling phenomena that 

enables the STM to probe a material’s density of states (DOS). First, we will obtain an 

expression for the tunneling current between the tip and sample in 1D. Then, we will 

transition to 3D space by approximating the tip’s apex to be an atom with a spherically 

symmetric wavefunction. Finally, we will apply these tunneling theory results to the 

case for tunneling onto surface states. The topics discussed here have been adapted 

from previous works and discussions4,12–14 to present the most relevant details for the 

studies covered in this thesis. 

 

3.2.1.1 Tip-to-sample tunneling in 1D  

 To understand tunneling between the STM tip and a sample, it is convenient to 

simplify the geometry and dimensionality of the problem by assuming a 1D system. 

The formalism introduced by Bardeen15 assumes both the tip and sample to be two 1D 

electrodes separated by a vacuum gap as depicted in the diagram in Fig. 3.2.3a, where 

the vacuum potential energy 𝑈𝑉 = 0. It is also assumed that both the tip and sample 

have eigenstates {Ψ𝑇𝑖
(𝑡)} and {Ψ𝑆𝑗

(𝑡)}, respectively, each of which satisfies the time 

dependent Schrödinger equation under their respective potentials: 
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Figure 3.2.3| Schematic representations of tunneling phenomena between a tip 

and sample. (a) A tip (𝑈𝑇) and sample (𝑈𝑆) are separated by a region of empty space 

(𝑈𝑉). General eigenstates of the tip (𝜓𝑇𝑖
) and sample (𝜓𝑆𝑗

) are depicted such that they 

extend and decay into the vacuum. The overlap and transitions between these 

eigenstates determine the rate of electron hoping events which leads to a measurable 

tunneling current. (b) Schematic depicting tunneling between two electrodes (tip and 

sample) with defined density of states 𝜌𝑇(𝐸) and 𝜌𝑆(𝐸). By applying a bias 𝑉𝑆 between 

the sample and tip, elastic tunneling occurs when occupied states in the tip tunnel into 

unoccupied states in the sample with the same energy. 

 

 
𝑖ℏ

𝜕Ψ𝑇𝑖

𝜕𝑡
 = [−

ℏ2

2𝑚

𝜕2

𝜕𝑧2
+ 𝑈𝑇] Ψ𝑇𝑖

= 𝐻𝑇Ψ𝑇𝑖
 

 

(3.1) 

 
𝑖ℏ

𝜕Ψ𝑆𝑗

𝜕𝑡
 = [−

ℏ2

2𝑚

𝜕2

𝜕𝑧2
+ 𝑈𝑆] Ψ𝑆𝑗

= 𝐻𝑆Ψ𝑆𝑗
 

 

(3.2) 

The respective time independent Schrödinger equations are also satisfied by their 

stationary components {𝜓𝑇𝑖
} and {𝜓𝑆𝑗

}, i.e.: 

 Ψ𝑇𝑖
(𝑡)  = 𝜓𝑇𝑖

𝑒−𝑖(𝐸𝑇𝑖
)𝑡/ℏ

   where  𝐻𝑇𝜓𝑇𝑖
= 𝐸𝑇𝑖

𝜓𝑇𝑖
    (3.3) 

 Ψ𝑆𝑗
(𝑡)  = 𝜓𝑆𝑗

𝑒
−𝑖(𝐸𝑆𝑗

)𝑡/ℏ
   where  𝐻𝑆𝜓𝑆𝑗

= 𝐸𝑆𝑗
𝜓𝑆𝑗

 (3.4) 

 Now that the eigenstates for both the tip and sample have been properly defined, 

we need to impose the condition that an eigenstate from the tip (or sample) may 
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temporally evolve into eigenstates of the sample (or tip). Imposing this condition 

implies that ⟨𝜓𝑆𝑗
|𝜓𝑇𝑖

⟩ = 0 for all 𝑖, 𝑗. If this were not the case, it would open the 

possibility for an electron to be both in the tip and sample simultaneously at 𝑡 = 0. 

Thus, a wavefunction that starts as the 𝑖th eigenstate of the tip (𝜓𝑇𝑖
) and evolves into 

eigenstates of the sample is written as: 

 Ψ𝑇𝑖→𝑆(𝑡) = 𝜓𝑇𝑖
𝑒−𝑖(𝐸𝑇𝑖

)𝑡/ℏ + ∑ 𝑐𝑆𝑗
(𝑡)𝜓𝑆𝑗

𝑒
−𝑖(𝐸𝑆𝑗

)𝑡/ℏ

𝑗

 
(3.5) 

with 𝑐𝑗(0) = 0. This wavefunction is defined for the complete system which includes 

the tip, vacuum, and sample. Thus, we can apply it to the complete system’s 

Schrödinger equation 

 
𝑖ℏ

𝜕Ψ𝑇𝑖→𝑆

𝜕𝑡
 = [−

ℏ2

2𝑚

𝜕2

𝜕𝑧2
+ 𝑈𝑇 + 𝑈𝑉 + 𝑈𝑆] Ψ𝑇𝑖→𝑆 

 

(3.6) 

Plugging (3.5) into (3.6) results in: 

 
𝑖ℏ ∑

𝜕𝑐𝑆𝑗
(𝑡)

𝜕𝑡
𝜓𝑆𝑗

𝑒
−𝑖(𝐸𝑆𝑗

)𝑡/ℏ

𝑗

 

= 𝑈𝑆 𝜓𝑇𝑗
𝑒

−𝑖(𝐸𝑇𝑗
)𝑡/ℏ

+ ∑ 𝑐𝑆𝑗
(𝑡)𝑈𝑇𝜓𝑆𝑗

𝑒
−𝑖(𝐸𝑆𝑗

)𝑡/ℏ

𝑗

 

 

 

(3.7) 

We then operate on the left with ⟨𝜓𝑆𝑖
| to obtain: 
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𝑖ℏ ∑

𝜕𝑐𝑆𝑗
(𝑡)

𝜕𝑡
𝛿𝑖𝑗 𝑒

−𝑖(𝐸𝑆𝑗
)𝑡/ℏ

𝑗

 

= ⟨𝜓𝑆𝑖
|𝑈𝑆|𝜓𝑇𝑗

⟩𝑒
−𝑖(𝐸𝑇𝑗

)𝑡/ℏ

+ ∑ 𝑐𝑆𝑗
(𝑡)⟨𝜓𝑆𝑖

|𝑈𝑇|𝜓𝑆𝑗
⟩𝑒

−𝑖(𝐸𝑆𝑗
)𝑡/ℏ

𝑗

 

 

 

(3.8) 

Recalling our previous discussion, eigenstates in the sample should not exists in the tip, 

thus ⟨𝜓𝑆𝑖
|𝑈𝑇|𝜓𝑆𝑗

⟩~0. Therefore, (3.8) becomes: 

 
𝑖ℏ

𝜕𝑐𝑆𝑖
(𝑡)

𝜕𝑡
= 𝑀𝑆𝑖,𝑇𝑗

 𝑒
−𝑖(𝐸𝑇𝑗

−𝐸𝑆𝑖
)𝑡/ℏ

 (3.9) 

where the tunneling matrix element is defined as  𝑀𝑆𝑖,𝑇𝑗
= ⟨𝜓𝑆𝑖

|𝑈𝑆|𝜓𝑇𝑗
⟩. After 

integrating (3.9) over time, we have: 

 

𝑐𝑆𝑗
(𝑡) = 𝑀𝑆𝑗,𝑇𝑖

2 sin [(𝐸𝑇𝑖
−𝐸𝑆𝑗

) 𝑡/2ℏ]

𝐸𝑇𝑖
−𝐸𝑆𝑗

 (3.10) 

where the indices 𝑖 and 𝑗 have been exchanged to the coefficient defined in (3.5). 

Based on the way we defined the time-evolving wavefunction (3.5), the 

probability rate of the 𝑖th tip eigenstate tunneling into the 𝑗th sample eigenstate is given 

by: 

 

𝑝𝑇𝑖→𝑆𝑗
=

𝑑

𝑑𝑡
|𝑐𝑆𝑗

(𝑡)|2 =
2𝜋

ℏ
|𝑀𝑆𝑗,𝑇𝑖

|2
sin [(𝐸𝑇𝑖

−𝐸𝑆𝑗
) 𝑡/ℏ]

𝜋 (𝐸𝑇𝑖
−𝐸𝑆𝑗

)
 (3.11) 
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 Equation (3.11) has been written in a manner such that the last factor resembles 

the Dirac delta function: 

 sin[(𝐸𝑇𝑖
−𝐸𝑆𝑗

)𝑡/ℏ]

𝜋(𝐸𝑇𝑖
−𝐸𝑆𝑗

)
→ 𝛿 (𝐸𝑇𝑖

−𝐸𝑆𝑗
)    in the limit   ℏ/𝑡 → 0   (3.12) 

Considering the time-energy relation Δ𝐸 Δ𝑡 ~ ℏ, the requirement that ℏ/𝑡 → 0 is 

equivalent to the elastic tunneling condition 𝐸𝑇𝑖
~𝐸𝑆𝑗

, i.e. this applies for sufficiently 

long tunneling times. This implies that to tunnel into the 𝑗th sample eigenstate, the 𝑖th 

tip eigenstate must have the same energy. Thus, the tunneling probability rate from the 

𝑖th tip eigenstate to sample eigenstates of energies within the elastic tunneling range is: 

 
𝑝𝑇𝑖→𝑆 =

𝑑

𝑑𝑡
|𝑐𝑆(𝑡)|2 =

2𝜋

ℏ
|𝑀𝑆𝑗,𝑇𝑖

|2 ∑ 𝛿 (𝐸𝑇𝑖
−𝐸𝑆𝑗

)

𝑆𝑗

 (3.13) 

The quantity inside the sum counts the number of sample eigenstates with energy 𝐸𝑇𝑖
. 

Thus, this quantity can be interpreted as the density of states of the sample at such 

energy. With this consideration, we can express (3.13) as follows: 

 
𝑝𝑇𝑖→𝑆 =

𝑑

𝑑𝑡
|𝑐𝑆(𝑡)|2 =

2𝜋

ℏ
|𝑀𝑆𝑗,𝑇𝑖

|2 𝜌𝑆(𝐸𝑇𝑖
) (3.14) 

 Finally, to relate the transition probability rate (3.14) to our experimental 

procedures, we apply a voltage bias 𝑉𝑆 between the sample and the tip, depicted in Fig. 

3.2.3b. For electrons to hop from the tip to the sample, states in the sample have to be 

unoccupied. A finite 𝑉𝑆 voltage makes this possible by emptying sample states 

accessible to tip states within the energy range 𝑒𝑉𝑆 = 𝐸𝐹
𝑇 − 𝐸𝐹

𝑆, where 𝐸𝐹
𝑇 and 𝐸𝐹

𝑆 are 
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tip and sample Fermi energies, respectively. The tunneling current 𝐼 can therefore be 

expressed as the compilation of all such tip eigenstates that overlap with sample 

eigenstates within 𝑒𝑉𝑆: 

 
𝐼 =

4𝜋𝑒

ℏ
∫ 𝜌𝑇(𝐸𝐹

𝑇 + 𝜖) 𝜌𝑆(𝐸𝐹
𝑇 − 𝑒𝑉𝑆 + 𝜖)|𝑀𝑇𝑆|2𝑑𝜖

𝑒𝑉𝑆

0

  (3.15) 

In this expression, I omit the broadening from the Fermi distribution functions under 

the assumption that the energy resolution of our experimental probe is larger than 

thermal broadening. This is the case experimentally since we can achieve a resolution 

of ~1 meV, whereas our thermal broadening is ~0.4 meV at a temperature of 5 K. 

Equation (3.15) provides a generalized approximation for the tunneling current 𝐼 

between two electrodes under an applied 𝑉𝑆 voltage. 

 Finally, we can apply experimentally reasonable restrictions on (3.15) to 

acquire the sample’s density of states 𝜌𝑆(𝐸). First, we use a metallic tip like tungsten 

or platinum-iridium. Since metals’ DOS stay relatively constant within energy ranges 

of a few hundred meV, we can assume: 𝜌𝑇(𝐸) → 𝜌𝑇. Second, the tunneling matrix 𝑀𝑇𝑆 

can be assumed to be energy independent within a few hundred meV. In fact, in the 

next section we will see that  𝑀𝑇𝑆 approximately depends on the out-of-plane reach of 

the sample’s wave functions. Third, by coupling 𝑉𝑆 to an AC signal, we can extract the 

derivative of the tunneling current with respect to 𝑉𝑆. These considerations lead to: 

 𝑑𝐼

𝑑𝑉𝑆
=

4𝜋𝑒2

ℏ
|𝑀𝑇𝑆|2𝜌𝑇 𝜌𝑆(𝑉𝑆) (3.16) 
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 This important result is the foundation of scanning tunneling spectroscopy 

(STS). The interpretation of the STS results presented in Ch. 6, and Ch. 8 rely on the 

fact that 𝑑𝐼/𝑑𝑉𝑆 ∝ 𝜌𝑆(𝑉𝑆). Thus, we can expect a 𝑑𝐼/𝑑𝑉𝑆 signal to provide information 

about a sample’s DOS. 

 

3.2.1.2 Decoding the tunneling matrix elements in 3D: the s-wave approximation 

 The expression for the tunneling current 𝐼 (3.15) obtained in the previous 

section holds for the 3D case despite having been derived in 1D. In this section we will 

adapt the real-world implications of tunneling between a 3D tip and a surface. 

Information regarding the geometry of a tip is encoded in the tunneling matrix |𝑀𝑇𝑆| 

[see (3.15)]. By generalizing Eqts. (3.1)-(3.4) to 3D, we can express the tunneling 

matrix as: 

 
𝑀𝑇𝑆 = ⟨𝜓𝑆|𝑈𝑆|𝜓𝑇⟩ = ⟨𝜓𝑆| (𝐸𝑆 +

ℏ2

2𝑚
∇𝑆

2) |𝜓𝑇⟩ (3.17) 

where ∇𝑆
2 is the second spatial derivative applied to eigenstates of the sample. 

 We must now invoke the elastic tunneling condition (𝐸𝑆 = 𝐸𝑇) in the vacuum 

region where the tip and sample eigenstates overlap. Thus, we can substitute:  

 
𝐸𝑆 → 𝐸𝑇 = −

ℏ2

2𝑚
∇𝑇

2 + 𝑈𝑇 
(3.18) 

where ∇𝑇
2  is the second spatial derivative applied to eigenstates of the tip. After 

plugging (3.18) into (3.17) we obtain: 
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𝑀𝑇𝑆 = −

ℏ2

2𝑚
⟨𝜓𝑆|∇𝑇

2 |𝜓𝑇⟩ +
ℏ2

2𝑚
⟨𝜓𝑆|∇𝑆

2|𝜓𝑇⟩ + ⟨𝜓𝑆|𝑈𝑇|𝜓𝑇⟩ (3.19) 

The third term in this equation has been crossed out because the tip’s potential 

approaches zero in the vacuum. The tunneling matrix can be expressed in integral form 

as: 

 
𝑀𝑇𝑆 = −

ℏ2

2𝑚
∫ (𝜓𝑆

∗∇2𝜓𝑇 − 𝜓𝑇∇2𝜓𝑆
∗)

Ω𝑆

𝑑3𝒓 (3.20) 

where Ω𝑆 represents a volume around the sample such that 𝜓𝑆 ≠ 0. This expression is 

further simplified by noting that the integrand equals ∇ ∙ (𝜓𝑆
∗∇𝜓𝑇 − 𝜓𝑇∇𝜓𝑆

∗). This 

enables us to apply Green’s theorem and integrate over a surface Σ between the tip and 

sample. This results in: 

 
𝑀𝑇𝑆 = −

ℏ2

2𝑚
∫(𝜓𝑆

∗∇𝜓𝑇 − 𝜓𝑇∇𝜓𝑆
∗)

Σ

∙ 𝑑𝑺 (3.21) 

 We have thus far, expressed the tunneling matrix 𝑀𝑇𝑆 in a way that excludes 

the sample’s potential 𝑈𝑆. Now, we apply Green’s theorem again to (3.21) to obtain: 

 
𝑀𝑇𝑆 = −

ℏ2

2𝑚
∫ (𝜓𝑆

∗∇2𝜓𝑇 − 𝜓𝑇∇2𝜓𝑆
∗)

ΩT

𝑑3𝒓 (3.22) 

  It may appear that the progression from (3.20) to (3.22) has circular reasoning. 

However, the ability to switch the space we integrate over from the sample to tip is a 

profound consequence of the elastic tunneling condition. Namely, the eigenstates with 

energies 𝐸𝑇 and 𝐸𝑆 overlap somewhere in the region between the tip and the sample. 

This enables us to choose a surface Σ such that the second application of Green’s 
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theorem changes the integrable volume to enclose the tip. These steps completely 

decouple the tunneling matrix from the sample and can be summarized as: 

 
∫ 𝑑3𝒓

ΩS

 →  ∫𝑑𝑺
Σ

 →  ∫ 𝑑3𝒓
ΩT

 (3.23) 

Finally, I shall take this one step further and assume that the tip’s apex is 

represented by an atom. If this is the case, it is logical to assume that 𝜓𝑇 can be 

expressed by an s-wave function much like the ground state of the hydrogen atom 

 
𝜓𝑇  ∝

𝑒𝜅|𝐫−𝐫0|

4𝜋|𝐫 − 𝐫0|
 (3.24) 

where 𝐫0 is the radius of the electron cloud for the atom at the tip’s apex and 𝜅 is known 

as the screening or decay length. Importantly, this expression is a solution to the 

screened Poisson equation such that: 

 (∇2 − 𝜅2)𝜓𝑇 = −𝛿(𝐫 − 𝐫𝟎) (3.25) 

 Invoking once again the elastic tunneling condition (𝐸𝑇 = 𝐸𝑆), it is reasonable 

to expect both 𝜓𝑆 and 𝜓𝑇 to the decay at the same rate into the vacuum. Thus, with the 

sample’s surface located at 𝑧0, 𝜓𝑆~𝑒𝜅|𝑧−𝑧0| implies that:  

 ∇2𝜓𝑆 = 𝜅2𝜓𝑆 (3.26) 

We apply this expression to (3.22) and use (3.25) to obtain: 

 
𝑀𝑇𝑆 ∝ − ∫ 𝜓𝑆

∗(∇2 − κ2)𝜓𝑇
ΩT

𝑑3𝒓 ∝ ∫ 𝜓𝑆
∗𝛿(𝐫 − 𝐫0)

ΩT

𝑑3𝒓  (3.27) 

Lastly, the application of the 3D delta function leads to one of the main results:  
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 𝑀𝑇𝑆 ∝ 𝜓𝑆
∗(𝐫0) (3.28) 

We recall that 𝐫0 indicates the radial extent of the atom at the tip’s apex. Thus, (3.28) 

implies that sample eigenstates with a larger overlap with this atom will have an 

increased tunneling probability. This is the case given that the weighing coefficients 

|𝑀𝑇𝑆|2 in (3.15) modulate the contribution of sample eigenstates to the tunneling 

current.  In other words, sample states that extend further into the vacuum contribute 

the most to the tunneling current. 

 

3.2.1.3 Tunneling into a 2D crystal 

 I will now expand upon the insights from the previous section by approximating 

𝜓𝑆 as a 2D Bloch function with onsite s-wave orbitals: 

 𝜓𝑆 = ∑ 𝑓(𝐫 − 𝐑)𝑒𝑖𝒌∥∙𝐑

𝐑

 
(3.29) 

where 𝐑 is the 2D Bravais lattice vector, 𝒌∥ is the in-plane momentum, and 

 
𝑓(𝐫 − 𝐑) =

𝑒−𝜆(𝐫−𝐑)

𝜆(𝐫 − 𝐑)
 (3.30) 

with 𝜆 representing the “decay” length of the atomic s-wave state. Considering that the 

onsite s-wave should decay in the out-of-plane direction 𝑧, we can perform a Fourier 

expansion on (3.30) as done by Tersoff and Hamann12 

 
𝑓(𝐫 − 𝐑) = ∫ 𝑏(𝒒) 𝑒−(𝜆2 + 𝑞2)1/2|𝑧| 𝑒

𝑖𝒒 ∙ (𝐫∥ − 𝐑)
𝑑2𝑞 (3.31) 
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where 𝑏(𝒒) is a real valued function with no spatial dependence, and 𝐫∥ is the in-plane 

position vector. By applying (3.31) to (3.29) we obtain: 

 
𝜓𝑆 = ∫ 𝑏(𝒒) 𝑒−(𝜆2+𝑞2)

1/2
|𝑧| 𝑒𝑖𝒒∙𝐫∥ ∑ 𝑒𝑖(𝒌∥−𝒒)∙𝐑

𝐑

𝑑2𝑞 (3.32) 

 Next, we note that the quantity being summed over, 𝐑 in (3.32), is a collection 

of plane waves in real space. Thus, we can express it as a sum of singularities in 

reciprocal space 

 ∑ 𝑒𝑖(𝒌∥−𝒒)∙𝐑

𝐑

= ∑ 𝛿(𝒌∥ − 𝒒 + 𝑮)

𝑮

 
(3.33) 

with 𝑮 as the reciprocal lattice vectors that span the Brillouin zone (BZ). Applying this 

to (3.32) leads to: 

 𝜓𝑆 = ∑ 𝑏(𝒌∥ + 𝑮) 𝑒−(𝜆2+𝑘∥
2+G2)

1/2
|𝑧|𝑒𝑖(𝒌∥+𝑮)∙𝐫∥

𝑮

 
(3.34) 

By restricting the extent of the sample wave function to the first BZ (i.e. 𝑮 = 0) we 

can simplify (3.34) as: 

 
𝜓𝑆 ∝ 𝑒−(𝜆2 + 𝑘∥

2)
1/2

|𝑧|𝑒𝑖𝒌∥ ∙ 𝐫∥  (3.35) 

This result indicates that states with large in-plane momentum rapidly decay into the 

vacuum. This fact is significant for graphene since the Fermi level lies at the corners of 

the BZ, which have large in-plane momenta. In Ch. 6, I will discuss the implication of 

this result when analyzing graphene’s tunneling spectroscopy. 
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 In summary we apply the results (3.35) and (3.28) to the experimentally 

measured tunneling current 𝐼 to obtain: 

 𝐼 ∝ exp (−2(𝜆2 + 𝑘∥
2)

1 2⁄
|𝑧|) (3.36) 

This relation shows that states with large in-plane momentum contribute much less to 

the measured tunneling current. Furthermore, this result indicates that the contribution 

of the strong in-plane momentum states can be modulated by changes in the tip height 

𝑧. I will apply this concept to measurements performed in Ch. 6 and Ch. 8 to increase 

the contribution of large in-plane momentum states. 
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3.3 Angle Resolved Photoemission Spectroscopy 

 

Figure 3.3| Photoemission spectroscopy of graphene. (a) Schematic depicting the 

photoemission process. A beam of light with energy ℎ𝜈 (typically from a laser, helium 

lamp, or synchrotron source) ejects electrons from graphene’s surface. These electrons 

are collected by a hemispherical analyzer (Image credit: Rowaco16) which maps the 

emitted photoelectron’s kinetic energy 𝐸𝐾 as a function of the photoemission angle 𝜃. 

(b) Angle resolved photoemission spectra of n-doped MLG. The inset depicts MLG’s 

bands with 𝐸𝐹 in the conduction band. A momentum distribution curve (MDC) taken 

at the Fermi level is shown at the top of the plot. These pair of peaks correspond to the 

Lorentz distributions predicted by the single-particle spectral function applied to MLG. 

This plot was adapted from D. Siegel.17 

 

In this section, I will provide a summarized overview of angle resolved 

photoemission spectroscopy (ARPES) adapted from various works.17–19 A spatially-

resolved version of this technique will be used in Ch. 7 to map spatial inhomogeneities 

and their effects on BLG’s band structure.  
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ARPES is a widely used surface characterization technique in condensed matter 

physics.1,2,20 It uses the photoelectric effect to directly probe a material’s band structure 

with energy and momentum resolution. The schematic in Fig. 3.3a depicts the 

photoemission spectroscopy process. A focused beam of light with energy ℎ𝜈 shines 

upon the sample’s surface. As a result of the photoelectric effect, a photoelectron is 

ejected from the sample’s surface with kinetic energy 𝐸 given by: 

 𝐸 = ℎ𝜈 − 𝜙 − |𝐸𝐵| (3.37) 

where 𝜙 is the sample’s work function and 𝐸𝐵 is the binding energy of the ejected 

photoelectron. Photons impart negligible momentum onto electrons in the sample. 

Thus, in-plane momentum is conserved for a crystal with translational invariance. This 

suggests that the emitted photoelectron has in-plane momentum given by: 

 𝐩∥ = ℏ𝒌∥ = √2𝑚𝐸 sin(𝜃) (3.38) 

where 𝜃 is the angle between the ejected electron and the out-of-plane axis.  

Equations (3.37) and (3.38) outline the principle of photoemission 

spectroscopy. Namely, by knowing the photoelectron’s kinetic energy 𝐸 and angle 𝜃, 

we can deduce the emitted electron’s binding energy and in-plane momentum. 

Conveniently, due to graphene’s 2D nature, its electrons do not have out-of-plane 

momentum. Thus, photoemission spectroscopy is able to fully map graphene’s band 

structure. Experimentally, 𝐸 and 𝜃 can be determined by a hemispherical analyzer such 

as that shown in Fig. 3.3a. This analyzer maps the intensity 𝐼 of ejected photoelectrons 

as a function of 𝐸 and 𝒌∥ by electrostatically deflecting their path onto a charge-coupled 
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device. However, the signal intensity measured by the analyzer contains more 

information than just 𝐸. 

 Assuming that when excited, a photoelectron does not interact with the system 

it originated from,21 the experimentally obtained photoemission intensity 𝐼(𝐸, 𝒌) can 

be expressed as follows: 

 𝐼(𝐸, 𝒌) = 𝐼0(𝐸, 𝒌)𝑓(𝐸)𝐴(𝐸, 𝒌) (3.39) 

where 𝐸 and 𝒌 are the photoelectron’s energy and momentum vector, respectively. The 

first term in the expression above, 𝐼0(𝐸, 𝒌), is the transition matrix element which 

suppresses the photoemission intensity based on interference phenomena or 

experimentally controlled parameters such as polarization2,17,20,22. The second term, 

𝑓(𝐸), is the Fermi occupation function. The inclusion of this function highlights the 

fact that photoemission spectroscopy only probes occupied states, i.e. states with 

energy 𝐸 < 𝐸𝐹. Finally, the third term, 𝐴(𝐸, 𝒌), is the single-particle spectral function 

given by: 

 
𝐴(𝐸, 𝒌) = −

1

𝜋

Σ′′(𝐸, 𝒌)

(𝐸 − 𝜖(𝒌) − Σ′(𝐸, 𝒌))
2

+ (Σ′′(𝐸, 𝒌))
2  (3.40) 

In this expression, 𝜖(𝒌) is the bare band energy dispersion. Σ′ and Σ′′ are the real and 

imaginary parts of the electron self-energy, respectively. Physically, Σ′ is the 

photoelectron’s excitation screening energy and Σ′′ is proportional to the inverse 

lifetime of the states with energy 𝜖(𝒌). 



60 
 

 In general, the self-energy Σ is assumed to be independent or negligibly 

dependent on the photoelectron’s momentum.23–25 This approximation implies that 

only 𝜖(𝒌) carries momentum dependence in (3.40). Furthermore, if we consider 

graphene’s dispersion relation 𝜖(𝒌) = 𝜈𝐹|𝒌|, the experimentally obtained 

photoemission intensity 𝐼(𝐸, 𝒌) becomes a Lorentzian distribution centered at 𝜈𝐹|𝒌| +

Σ′(𝐸), with a characteristic width Σ′′(𝐸). This result is beautifully illustrated by D. 

Siegel’s plot17 in Fig. 3.3b, where the horizontal trace taken at 𝐸𝐹 for n-doped MLG  

clearly shows two Lorentzian distributions at ±|𝒌|. This experimental result displays 

the capability of photoemission spectroscopy at resolving bandstructure features with 

momentum resolution. In Ch. 7, I will show the application of this technique on BLG 

using a highly focused incident light beam which enables us to extract crucial tight-

binding parameters.  
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Chapter 4 - Experimental Methods 

 

4.1 Graphene/hBN Field Effect Transistor Fabrication 

The studies discussed in this thesis use 2D material heterostructures that were 

fabricated with specific experiments in mind. In this section we present the fabrication 

techniques for a graphene/hBN field effect transistor (FET). These techniques and 

recipes were adapted from and inspired by multiple fabrication works1–4 and were 

perfected after intensive trial-and-error. 

Figure 4.1.1| Ingredients for a graphene/hexagonal boron nitride heterostructure. 

(a) Crystals of highly oriented pyrolytic graphite. (b) Crystals of hexagonal-boron 

nitride. (c) Lattice schematic of a single layer of graphene where the unit cell containing 

two carbon atoms is enclosed by the dashed rhomboid. (d) Lattice schematic of a single 

layer of hBN where the unit cell containing a nitrogen and a boron atom is enclosed by 

the dashed rhomboid. (e) Optical image of exfoliated graphite placed onto a substrate 

MMA. (f) Optical image of exfoliated hBN placed onto an SiO2 substrate. 

Approximately, light blue flakes have 10 to 60 layers, yellow flakes have 60 to 120 

layers. Other flake colors have higher layer counts and are not typically used. 
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In our experiments, the heterostructures consist of a combination of single and 

multi-layers of graphene and hBN held together by interlayer van der Waals forces. We 

obtain graphene and hBN layers by mechanically exfoliating parent crystals of  highly 

oriented pyrolytic graphite and hBN,5 respectively. Mechanical exfoliation of these 

crystals is performed using the same Scotch tape technique from the seminal work by 

K. Novoselov and A. Geim.6 Figures 4.1.1a and 4.1.1b shown optical images of the 

parent crystals from which we obtain thin films of graphene and hBN, respectively. 

 The use of hBN is ubiquitous in all the experiments discussed in this thesis and 

the majority of studies that involve 2D materials in the last few years. The combination 

of hBN’s electronic and mechanical properties make it an ideal substrate for graphene-

based heterostructures. Figures 4.1.1c and 4.1.1d show schematics of the lattices for 

graphene and hBN, respectively. The unit cell in graphene is delineated by the dashed 

rhomboid in Fig. 4.1.1c. Graphene gets its semi-metallic properties from the presence 

of inversion symmetry between the carbon atoms in this unit cell. In contrast, hBN does 

not have a similar inversion symmetry given that its unit cell (dashed rhomboid in Fig. 

4.1.1d) is composed of two unequal atoms (boron and nitrogen). Similar to a 1D dimer 

with unequal atoms in the unit cell,7 hBN has a bandgap. Optical and electric 

characterization of hBN have reported its bandgap to be between 5 and 6 eV.5,8,9 As an 

insulator, hBN serves as a substrate for graphene without interfering with its electrical 

transport properties. Additionally, Fig. 4.1.1d shows that hBN has a honeycomb 

structure similar to graphene. In fact, the boron-to-nitrogen bonds in hBN are only 

~1.7% longer than the carbon-to-carbon bonds in graphene.1 This mechanical 
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similarity, together with Van der Waals attraction, enables sharp interfaces and ultra-

flat surfaces on graphene/hBN heterostructures.10,11 Additionally, charge 

inhomogeneity is drastically reduced as compared to graphene that is supported by 

substrates with dangling bonds such as SiO2.1,12 

 Before mechanically assembling our graphene/hBN heterostructure, we place 

each of these exfoliated materials onto appropriate substrates. For the case of graphene, 

we place the exfoliated graphite crystal onto a polymer stack. Figure 4.1.1e shows an 

optical image of a polymer substrate after placing scotch tape with exfoliated graphite 

onto it. (See appendix for polymer preparation recipe). The polymer used is methyl 

methacrylate (MMA) resting on top of clear Scotch tape stuck onto a glass slide. The 

bright white regions in Fig. 4.1.1e correspond to thick (up to hundreds of layers) pieces 

of graphite. Careful optical survey is necessary in order to find faint mono and bilayer 

graphene flakes. We identify few-layer graphene flakes by measuring the contrast 

between them and the background. A contrast of 3% and 6% indicate we have located 

mono and bilayer graphene, respectively.13,14 Next, we place down exfoliated hBN 

crystals onto a SiO2/Si+ wafer. An optical image of the result is shown in Fig. 4.1.1f. 

In this image the SiO2 substrate appears purple in color. The hBN flakes are the 

multicolored islands seen on the image. The variations in color, a product of thin film 

interference, roughly indicate the thickness of the hBN flakes. Flakes between purple 

and blue colors are a few to tens of nanometers, whereas green and yellow flakes can 

be hundreds of nanometers thick. From this multitude of islands, we choose an 

appropriately sized hBN with a flat and damage-free surface. Flat and damage free 
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surfaces can be identified by using the differential interference contrast (DIC) mode on 

an optical microscope. DIC mode enhances variations in image contrast caused by 

surface roughness. 

Figure 4.1.2| Assembly and fabrication of graphene/hBN Field Effect Transistors 

(FETs). (a) Picture of the tabletop setup used to assemble heterostructures. A substrate 

containing graphene is attached facing down onto the Top Aligner. The substrate hBN 

is placed onto the Substrate Stage. The optic attachments are used to align the graphene 

and hBN flakes as they approach contact. (b) Schematic of the placement of graphene 

onto hBN. The Substrate Stage in (a) can be tuned to achieve optimal tilt. (c) Completed 

graphene/hBN heterostructure after dissolving MMA substrate. (d) Heterostructure 

with PMMA resist spin-coated onto it. (e) Source and drain electrode pattern cavities 

following electron beam lithography (EBL) and resist development. (f) Completed 

graphene/hBN FET after Au/Cr thermal evaporation. (g) Optical image of completed 

graphene/hBN FET where graphene is outlined by the purple lines. The source and 

drain electrodes serve to inject charge carriers onto graphene, while a voltage applied 

to Si+ controls the back-gate. 

 

Once we have identified both graphene and hBN crystals on their respective 

substrates, we proceed with their mechanical interfacing. After identifying and 

choosing a suitable graphene flake, we mount the polymer substrate facing down on 
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the Top Aligner, pictured in Fig. 4.1.2a. The selected hBN flake on the SiO2/Si+ wafer 

is placed onto the Substrate Stage, also pictured in Fig. 4.1.2a. The home-built 

assembly stage has multiple micromanipulator controls that enable us to tune the tilt of 

both the Top Aligner and Substrate stage. By controlling the height of the Top Aligner 

with a 𝑧-micromanipulator, we slowly place graphene onto hBN as depicted by the 

schematic in Fig. 4.1.2b. Once graphene has contacted hBN, we gradually raise the 

Substrate Stage’s temperature to ~65 ℃. This gentle increase in temperature allows us 

to regulate the speed at which the polymer spreads across the SiO2 substrate. After 

mechanically placing graphene onto hBN, the stack is placed in dichloromethane for 

45 minutes to dissolve the polymer stack. Figure 4.1.2c shows a complete 

heterostructure schematic after mechanical assembly and solvent treatment. 

 To make a field effect transistor (FET) out of the graphene/hBN heterostructure, 

we proceed by placing down source and drain electrodes onto it, noting that the 

underlying doped silicon (Si+) acts as a tunable gate. Figures 4.1.2d-f depict the process 

of placing down electrodes. First, we spin coat a double layer of poly-methyl 

methacrylate (PMMA) resists (495-PMMA/950-PMMA) onto the heterostructure and 

substrate wafer (Fig. 4.1.2d). The resist is then cured for 5 minutes at 180 ℃. We use 

electron beam lithography (EBL) to alter the polymer structure in the resist which 

exposes cavities with small regions of exposed graphene as illustrated in Fig 4.1.2e. 

(See appendix for EBL parameters used). The final step of the FET fabrication is the 

evaporation of contact metals. First, we thermally evaporate a sticky metal layer (~5 

nm) of chromium (Cr) immediately followed by 50 to 200 nm of gold (Au). The 



68 
 

Figure 4.1.3| Stencil mask for single-electrode evaporation. (a-b) Optical images of 

a stainless-steel stencil mask placed over an hBN flake shown at different focus lengths 

prior to evaporation. (c) Optical image of the stencil mask evaporation result showing 

the desired overlap with a chosen hBN. 

 

thickness of Au evaporated depends on the thickness of the hBN crystal in the 

heterostructure. The Au thickness needs to be at least 10 nm thicker than the hBN 

substrate to ensure successful electrical contact. After dissolving the PMMA resist in 

acetone, we obtain a completed graphene/hBN FET depicted in Fig. 4.1.2f. The Au 

electrodes act as the source and drain for the FET, and a back-gate voltage is connected 

to the p-doped Si layer below the insulating SiO2 dielectric. Some devices discussed in 

this thesis implement a graphite layer underneath hBN and serve as a back-gate to allow 

for stronger capacitive coupling and reduce charge inhomogeneity on the graphene 

layer. Figure 4.1.2g shows an optical image of a completed graphene/hBN FET where 
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the graphene flake has been purposefully chosen to be narrow in order to minimize the 

channel area and improve electrical transport characteristics. 

 As an alternative to EBL, we also placed a contact electrode using a stencil 

mask method. The device in Ch. 7 was fabricated using this technique in order to ensure 

a clean surface for photoemission characterization. For this evaporation technique we 

use a laser etched stainless steel stencil mask15 (see Figs. 4.1.3a-b). This mask is aligned 

so that a corner of the polygon shape overlaps with a flake before being evaporated 

using the same metal combination discussed above. Figure 4.1.3c shows the final result 

of a stencil mask evaporation which required no polymer contact or solvent rinsing. 
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4.2 Mechanical Cleaning of Graphene Using Atomic Force Microscopy 

  

Figure 4.2.1| Atomic force microscope (AFM) inside a glovebox. (a) Picture of the 

Cypher-S AFM used to characterize and treat the surface of 2D materials. This AFM 

is operated inside a glovebox filled with nitrogen or argon gas. (b) Schematic of an 

AFM showing the basic components used during sample surface characterization. A 

laser shines light onto a highly reflective cantilever while a photodiode converts the 

reflected light into an electrical signal. This signal is used to modulate the deflection 

(contact AFM mode) or oscillation amplitude (tapping AFM mode) of the cantilever 

by varying the tip-sample distance.  

 

During the mechanical assembly and EBL of the graphene/hBN heterostructure, 

the surface of graphene is exposed to polymers. In this section I will present a technique 

for clearing off polymer residue from the surface of graphene using an atomic force 

microscope (AFM). This technique has been adapted from an earlier work.16 We 

improve upon this work by scanning in an inert environment and minimizing the 

damaging effect of the AFM tip onto graphene’s surface, thus, making it compatible 

with scanning tunneling microscopy studies. 
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 The mechanical cleaning of graphene’s surface is performed with an Asylum 

Research Cypher-S AFM from Oxford Instruments. The AFM is operated at room 

temperature inside a glovebox filled with nitrogen or argon gas and is pictured in Fig. 

4.2.1a. Two AFM modes are primarily used: (1) tapping mode for surface 

characterization and (2) contact mode for mechanical cleaning. Both of these modes 

use the same components depicted in Fig. 4.2.1b. In tapping mode, the cantilever 

oscillates around its natural frequency as the photodiode acquires an oscillating signal 

from the laser reflection near the end of the cantilever. As the tip tracks along the 

sample surface, changes in the oscillation amplitude are picked up by the detector. The 

feedback controller then commands the cantilever to change height in order to restore 

the oscillation amplitude of the cantilever to a pre-determined value. Contact mode 

operates in a similar but simpler manner. In contact mode, the tip touches the sample 

surface until the cantilever bends by an amount determined by the laser signal’s 

deflection. As the tip tracks the surface of the sample, the feedback controller varies 

the height of the cantilever to keep a constant laser signal deflection. Both of these 

methods enable us to construct an image of the sample surface’s height, height 

variations, and stiffness as the tip tracks along the 𝑥 and 𝑦 directions. 

 We use tapping mode AFM to characterize the coverage of graphene’s surface 

by polymer residue, given that it is less damaging to soft surfaces. Figure 4.2.2a shows 

an optical image of a graphene/hBN/graphite heterostructure after completing the 

fabrication steps discussed in section 4.1. Figure 4.2.2b shows a tapping mode AFM  
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Figure 4.2.2| Initial characterization of the surface of graphene using an AFM. (a) 

Optical image of a graphene/hBN/graphite heterostructure after the placement of gold 

(Au) electrodes. (b) AFM amplitude image of the black dashed rectangle in (a). The 

region where graphene lays on top of hBN is enclosed by the purple dotted lines. (c) 

Close-up AFM amplitude image of the blue dashed rectangle in (b). Regions of higher 

amplitude are bubbles in the interface of graphene and hBN. In this scan, residual 

polymer evenly coats graphene’s surface and appears as granularity in the AFM image. 

(d) Close-up AFM height image of red dashed rectangle in (c). Small alternating dark 

and bright circles indicating contaminants, evenly cover graphene’s surface. (e) AFM 

phase image of the same region in (d). Bright regions in this image indicate stiff areas 

while dark regions indicate soft areas. The dark circles (soft areas) in (c) indicate the 

accumulation of polymer residue.   

 

amplitude scan of the region enclosed by the dashed black rectangle in Fig. 4.2.2a. The 

bright and dark regions indicate changes in the  amplitude of oscillation of the 
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cantilever as the tip is tracked over the sample surface. The smooth and round bubbles 

on Fig. 4.2.2b are formed during the placement of hBN on top of graphite. The sharper 

and elongated bubbles are formed during the placement of graphene onto hBN. The 

region consisting of exposed graphene is outlined by the purple dashed lines in Fig. 

4.2.2b. Figure 4.2.2c shows a close-up tapping mode AFM amplitude scan of the 

graphene FET channel corresponding to the blue dashed box in Fig. 4.2.2b. This image 

displays some granularity (appearance of roughness). On occasion, these features may 

be caused by AFM image artefacts caused by an enlarged radius of the AFM tip, 

resulting from wear. However, we will see that this apparent roughness is due to the 

presence of contaminants uniformly covering graphene’s surface. We can see this more 

clearly in the close-up scan in Fig. 4.2.2d. This image shows the variations in height 

across the surface of graphene. Moreover, we can obtain the signal for the phase of the 

oscillation of the cantilever. Figure 4.2.2e shows the AFM phase image of the same 

region in Fig. 4.2.2d. The dark and bright regions on this image correspond to relative 

changes in stiffness on the surface.17 For our case, the darker regions correspond to 

softer material than the bright regions. Thus, we attribute these dark spots to 

accumulations of polymer residue left during the FET fabrication process. 

 Now that the presence of contaminants on graphene’s surface has been 

identified, I demonstrate how to remove them. We use the AFM in contact mode to 

clear polymer off graphene’s surface. We use an AFM cantilever with relatively low 

spring constant, specifically the Econo-ESP-Au tips with spring constant 𝑘~0.2 N/m. 

By using a tip with a small 𝑘 value, we are able to gently contact the surface of graphene 
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without causing damage. Figures 4.2.3a-c show a progression of contact mode AFM 

amplitude scans taken at the second, fifth, and twentieth pass using a force of 3.5 nN. 

From these images, it is evident that material is moved aside until no more is left to be 

moved; such is the case in Fig. 4.2.3c. In Figs. 4.2.3d and 4.2.3e we compare tapping 

mode AFM phase scans taken before and after the mechanical cleaning process. This 

comparison clearly shows that the soft material evenly coating graphene’s surface (Fig. 

4.2.3d) no longer appears after the cleaning process. Instead, Fig. 4.2.3e shows a clear 

surface without soft/stiff variations. Finally, we demonstrate that this AFM cleaning 

method does not damage the atomic structure of graphene. In Fig. 4.2.3f we show an 

STM topographic scan of a bilayer graphene FET that underwent the mechanical 

cleaning process with AFM. As is evident from this STM image, no small-scale damage 

is imparted by the AFM cleaning procedure. 



75 
 

Figure 4.2.3| Mechanical cleaning of graphene’s surface with AFM. (a)-(c) AFM 

amplitude images acquired during the second, fifth, and twentieth AFM scan in contact 

mode was performed, respectively. (b) shows polymer in the process of being moved 

aside by the AFM tip. After twenty passes (c), polymer streaks are no longer observed 

which indicates the removal of polymer residue on this region. (d) Tapping mode AFM 

phase image of graphene’s surface before the AFM mechanical cleaning process. (e) 

Tapping mode AFM phase image of graphene’s surface after the AFM mechanical 

cleaning process. The clear reduction of dark spots from (d) to (e) indicates a successful 

removal of polymer residue from graphene’s surface. (f) STM topographic scan of the 

surface of a bilayer graphene sample that underwent the mechanical cleaning process 

with AFM. The lack of damage at the atomic level highlights the gentle nature of our 

adapted mechanical cleaning technique. 
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4.3 Electrochemical Etching of Metallic Probes for Scanning Tunneling 

Microscopy  

Figure 4.3.1| Electrochemically etching of STM tips. (a-b) Schematics for the tip 

etching setup using tungsten (a) and platinum-iridium (b) consisting an electrode and a 

counter-electrode submerged in an ionic solution while connected to opposite ends of 

a power supply (𝑉𝑏𝑖𝑎𝑠). (c) Schematic of the tip (gray) submerged in the solution before 

starting the etching process. The shape of the tip primarily depends on the formation of 

a proper meniscus (enclosed by red rectangle). (d) Schematic of the tip (gray) 

submerged in the solution near the end of the etching process. Once the bottom part of 

the tip electrode falls off, 𝑉𝑏𝑖𝑎𝑠 is turned off immediately. (e) Optical image of a 

tungsten tip after the process of electrochemical etching. (f) SEM image of the apex of 

a tungsten tip demonstrating the sharpness of the apex. 

 



77 
 

Landing a metallic STM tip onto a graphene sample measuring a few tens of 

micrometers across presents numerous challenges. However, using a telescoping lens 

mounted on an optical port at the side of the STM, we manage to view our sample 

substrates with a resolution of ~3 μm. To land on a graphene sample under these 

conditions, a sharp, mechanically robust, and oxidation-free tip is needed. Diagrams 

for the electrochemical etching process for making tungsten (W) and platinum-iridium 

(Pt-Ir) tips are shown in Figs. 4.3.1a and 4.3.1b, respectively. The experiments 

presented in this thesis use these two tip materials. Below we outline the process and 

components to electrochemically etch each tip material: 

(i) Tungsten Tip: 

- Electrode: High purity tungsten wire (~ 0.6 mm in diameter). 

- Counter-electrode: circular loop of copper wire. 

- Solution: 4 g of NaOH in 50 mL of DI water. 

- 𝑉𝑏𝑖𝑎𝑠 starts at  8 V DC and may vary as needed so that current stays 

around 15 mA. 

(ii) Platinum-iridium Tip: 

- Electrode: High purity PtIr wire (~ 0.6 mm in diameter). 

- Counter-electrode: artist-grade water-soluble graphite block. 

- Solution: 14 g of CaCl2 in 40 mL of DI water 

- 𝑉𝑏𝑖𝑎𝑠 starts at  20 V AC with a current of ~ 800 mA. The tip may be 

sunk deeper into the solution to maintain a similar current. 
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- A few drops of acetone may be added to reduce large bubble formation 

during the etching process. 

 

During the etching process, it is crucial to maintain a well-formed meniscus at 

the interface of the electrode and solution to ensure a tip shape with a proper aspect 

ratio. This meniscus is indicated by the red box in Figs. 4.3.1c-d and may need to be 

readjusted during the etching process. Figure 4.3.1d depicts the state of the electrode 

towards the end of the etching processes. After the bottom dangling piece of the tip 

electrode drops, 𝑉𝑏𝑖𝑎𝑠 is turned off immediately. The tip is then rinsed with acetone and 

isopropanol. We proceed to mount the newly etched tip onto the STM’s tip holder, 

immediately introduce it into the STM’s high vacuum load-lock chamber and pump it 

down. This rapid introduction into the vacuum system minimizes the buildup of 

oxidants on the tip’s apex. Figure 4.3.1e shows an optical image of a successfully 

etched W tip. The gradual reduction in width ensures mechanical stability of the tip. 

Tips with high aspect ratios are more likely to become unstable during STM scans. A 

close-up of the tip’s apex is shown by the SEM image in Fig. 4.3.1f. We are able to 

obtain tips with apex radii down to ~150 nm. 

Finally, before a tip can be used in the STM, it must first undergo treatment 

under UHV. After being introduced into the preparation chamber of the STM, the tip 

is sputtered with Argon gas at 1.7 kV and an emission current of 10 mA for 30 to 60 

minutes. It is then briefly annealed for 1 minute at ~550 ℃. This UHV treatment 
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ensures the removal of any oxidants that may have formed on the surface of the newly 

etched tip. Once this is done, the STM tip is ready for calibration. 

 

4.4 STM Tip Calibration on Au(111) 

Figure 4.4.1| Scanning tunneling microscope (STM) tip calibration on Au(111). (a) 

Topography of Au(111) after aggressively poking the STM tip 5 nm onto the surface 

while applying a sample bias 𝑉𝑆 =– 5 V. The triangular cavity left by the aggressive 

poke suggests the tip was coated with Au. (b) Topography of Au(111). After lightly 

poking the STM tip 8 Å onto the surface, a small circular protrusion is left behind. The 

vertical ridges correspond to Au(111)’s surface reconstruction.18 (c) Differential 

conductance (𝑑𝐼/𝑑𝑉𝑆) of Au(111) displays the expected surface-state spectrum18. 

Tunneling parameters used: 𝑉𝑆 = −0.7 V, 𝐼 = 1 nA, 𝑉𝑎𝑐 = 10 mV. 

 

The most important factor in any experiment is the ability to obtain reproducible 

results. When performing STM characterization, reproducibility of spectroscopic 

measurements is key. To this end, whenever a sample is under study inside the STM, 

we follow a careful STM tip calibration procedure. This procedure enables us to obtain 



80 
 

a stable STM tip that provides reproducible spectroscopic data and clear atomic 

resolution.  

The STM experiments presented in this thesis used electrochemically etched W 

and PtIr tips. Using tips of different materials can create variability in spectroscopic 

data due to differences in work function between the tip and graphene or BLG. 

Reproducibility, regardless of tip material, is still attained when proper calibration is 

followed. The first step of our calibration process is to coat the tip with gold by 

aggressively poking the STM tip onto the surface of a single crystal of Au(111).  To 

perform an aggressive poke, we bring the STM tip ~5 nm into the gold surface. In 

some cases, we found that applying a sample bias of  𝑉𝑆 ≤ − 5 𝑉 during the poke left 

behind a cavity. One such cavity left by an aggressive poke is shown in Fig. 4.4.1a. 

The triangular shaped cavity left behind suggests that the STM tip’s apex became 

coated by gold atoms.19  

After coating the STM tip with gold, we gently poke the STM tip 8 Å into the 

surface of Au(111). Figure 4.4.1b shows an example of a successful gentle poke that 

leaves behind a small circular protrusion. We perform an average of 50 gentle pokes 

before we find a protrusion with the desired characteristics. These characteristics 

include a diameter of < 2 nm, circular symmetry, and an absence of residue 

surrounding the protrusion. Finally, to ensure reproducible spectroscopic 

measurements, we obtain a differential conductance (𝑑𝐼/𝑑𝑉𝑆) spectrum of the surface 

of Au(111). An example of an acceptable 𝑑𝐼/𝑑𝑉𝑆 spectrum is shown in Fig. 4.4.1c 
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where the expected surface-state signature of Au(111)18 can be seen at 𝑉𝑆~ − 500 m𝑉. 
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Chapter 5 - Persistent and Reversible Electrostatic Control of Doping in 

Graphene/hexagonal Boron Nitride Heterostructures 

 

5.1 Introduction 

Since its first application as a substrate for graphene field effect transistors 

(FETs),1 hexagonal Boron Nitride (hBN) has become a prominent component in 2D 

material devices. In addition, hBN has been shown to host defects that can be 

manipulated to change the electronic properties of adjacent 2D materials.2–9 Despite 

the wide use of such defect manipulations, no focused efforts have been made to further 

the understanding of defect excitations and their influence in graphene/hBN FETs. In 

this chapter, we explore the effect of high electric fields (~1 V/nm) on graphene/hBN 

FETs and find persistent and reversible shifts in graphene’s charge neutrality point 

(CNP). By increasing the applied electric field and temperature of our device, we find 

that this CNP shift is enhanced. With this insight, we propose a mechanism that 

explains these observations based on Pool-Frenkel emissions from defects in hBN. 

Finally, we show that such effect may be suppressed by using graphite as a backgate, 

thus preventing any unintended changes in the electrical properties of graphene/hBN 

FETs. 

 

 



84 
 

5.2 Basics of Monolayer Graphene (MLG) Electrical Transport  

Figure 5.1| Device schematic and conductance measurement for a graphene/hBN 

Field Effect Transistor (FET). (a) Graphene/hBN heterostructure supported by 

SiO2/Si
+ substrate (not drawn to scale). Graphene is contacted by Cr/Au electrodes 

and a gate voltage (𝑉𝐺) is applied to the p-doped silicon substrate. (b) Conductance (𝐺) 

plotted as a function of 𝑉𝐺 for a graphene/hBN FET. The CNP is close to 0 V, indicating 

low levels of pre-existing doping. Inset: optical micrograph of device. The scale bar 

shown is 10 μm. (c) Re-scaled axes from conductance curve in (b) after employing a 

parallel plate capacitor geometry and the Drude model. Conductivity 𝜎 as a function of 

charge density 𝑛 is shown by the red curve. The corresponding field effect mobility 

𝜇(𝑛) is shown by the blue curve. 

 

Before discussing the effects of high electric fields (𝐸-fields) on graphene/hBN 

FETs, it is worth taking a closer look at the primary characterization technique used in 

this chapter. 

The electrical transport measurements presented in this chapter were primarily 

performed on two-terminal graphene/hBN FETs. The fabrication steps for these FETs 

is provided in Ch. 4. We apply a 5 μ𝑉 AC signal between the source and drain 

electrodes as depicted in Fig. 5.1a. In this circuit arrangement, graphene acts as a 

resistor with conductance 𝐺 which is inversely proportional to the amplitude of the 
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output AC signal. Next, due to graphene’s 2D nature, we modulate the amount of filled 

states by changing the Fermi level with a perpendicular 𝐸-field. This field emanates 

from the Si+ substrate by application of a backgate voltage 𝑉𝐺. Figure 5.1b shows a 

plot obtained by measuring the two-terminal conductance 𝐺 while varying 𝑉𝐺. This 

conductance curve was obtained at 77 K with the FET device shown in the inset of Fig. 

5.1b. From this curve we see that as 𝑉𝐺 is tuned, the amount of mobile charges changes 

manifesting as variation in conductance 𝐺. The minimum of conductance in this curve 

corresponds to the Fermi level crossing the Dirac point and is referred to as the CNP. 

The curve obtained in Fig. 5.1b can be re-scaled using a parallel plate capacitor 

model and the Drude model to approximate physically relevant quantities. We note that 

our approximations neglect contact resistance and quantum capacitance. Our analysis 

in this chapter relies on quantifying relative changes of the CNP, thus given that contact 

resistance contributes a constant reduction to conductance, we may ignore it. 

Additionally, we are not concerned with higher order contributions to the device 

capacitance by MLG’s density of states, thus we can also ignore quantum capacitance. 

For a more rigorous treatment that considers contact resistance and quantum 

capacitance, see the review by Das Sarma et al10 and the thesis by Jilin11.  

First, we consider a parallel plate capacitor geometry with insulating hBN/SiO2 

dielectric layers. This simple electrostatic configuration enables us to express the 

charge carrier density 𝑛 induced on graphene by the Si+ backgate as: 

                      𝑛 = 𝐶𝐺(𝑉𝐺 − 𝑉0)/𝑒         where (5.1) 
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 1

𝐶𝐺
=

1

𝜖0
(
𝑑SiO2

𝜖SiO2

+
𝑑ℎBN

𝜖ℎBN
) (5.2) 

and 𝐶𝐺 is the backgate capacitance per unit area with dielectric thicknesses 𝑑SiO2
=

285 nm and 𝑑ℎBN = 10 nm. The relative permittivity used for these layers are 𝜖SiO2 =

𝜖ℎBN = 4.12,13 The value 𝑉0 is the offset between the CNP and 𝑉𝐺 = 0. For the curve in 

Fig. 5.1b this value is 𝑉0 = −5 V. In general, the quantity 𝑉0 accounts for the intrinsic 

doping of an FET device due to the presence of charged impurities.11,14,15 Thus, pristine 

graphene FETs are expected to have 𝑉0 = 0. This value can be heavily influenced by 

the substrate underneath MLG (tens of volts for MLG/SiO2). However, since we use 

hBN as a substrate, we often find graphene FET devices with 𝑉0 < 5 V. 

 An additional quantity that can be extracted from conductance curves is the 

device’s field effect mobility 𝜇. This quantity gives an indication for the quality and 

cleanliness of the device. However, it is important to note that unlike metals, 

graphene’s carrier concentration is not constant. As a consequence, the mobility 𝜇 is 

not an accurate representation of sample cleanliness at vanishing charge carrier 

concentration near the CNP. Regardless, we can use 𝜇 as an indication of sample 

quality for sufficiently large carrier concentrations.10,16,17 High values of 𝜇 indicate low 

rates of charge carrier scattering events during electrical transport. State-of-the-art 

graphene FET fabrication techniques18 can achieve mobilities of up to 

~105 cm2𝑉−1s−1. We can approximate a value for 𝜇 on our device by using an 

expression for electrical conductivity 𝜎 from the Drude model: 
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 𝜎 ~ 𝑛𝑒𝜇 (5.3) 

The FETs characterized in this chapter were assembled such that the channel width 𝑊 

and length 𝐿 are both ~3 μ𝑚. Thus, since 𝐺 = (𝑊/𝐿)𝜎; we can approximate 𝐺~𝜎. 

Using this estimate and (5.1) we replot the conductance curve as 𝜎(𝑛) shown by the 

red curve in Fig. 5.1c. From (5.3), the slope of this curve enables us to extract 𝜇: 

 
𝜇 ~ 

1

𝑒
 
𝑑𝜎

𝑑𝑛
 (5.4) 

The field effect mobility 𝜇 is plotted in blue in Fig. 5.1c where it displays maximum 

mobilities of ~18 000 cm2𝑉−1s−1, but for higher charge carrier densities the mobility 

stays roughly constant at ~3 000 cm2𝑉−1s−1. We note that in our estimates we have 

not accounted for contact resistance from the thermally evaporated electrodes. 

However, in this chapter we primarily rely on relative qualitative differences between 

curves of the same device and changes in CNP. Thus, the added contact resistance may 

be ignored. Now that we have a general idea of electrical transport characterization in 

MLG/hBN FETs, we will explore the effect of strong electric fields on MLG’s CNP. 

 

5.3 The Versatility of Defects in hBN 

Thin sheets of hBN are prominent components in 2D material devices because 

they are insulating and exhibit atomically flat surfaces. In addition, hBN has been 

shown to enable manipulation of the electronic properties of adjacent 2D materials. 

Early studies that incorporated hBN into graphene FETs showed that the electronic 
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properties of these devices vastly improved due to hBN’s characteristic inertness and 

flatness.1,19 Since then, many techniques have been developed to mechanically place 

graphene on top of hBN. This has resulted in the continued improvement of graphene 

FET electron mobilities.18,20–22 A second wave of studies used hBN as a vehicle to 

induce electronic changes in graphene FETs, such as control of crystallographic 

alignment between graphene and hBN23–25 and  the excitation of defects in the 

supporting hBN.2 In regards to the latter, numerous experiments have utilized light and 

localized electric fields to manipulate defects in hBN,2,3 realize rewritable p-n 

junctions,4 image and control chiral bound states,5,6 and develop Berry phase switches.7 

Despite the wide use of these techniques based on the manipulation of defects in 

graphene/hBN FETs, no focused efforts have been made to understand such defect 

excitation process. In particular, the role of high 𝐸-fields and variable temperatures on 

the excitation of hBN defects in these FETs remains largely unexamined. Such 

parameters should be crucial for the onset and nature of defect excitations in hBN. 

 

5.4 High 𝑬-Field Induced CNP Shifts in Graphene/hBN FETs  

In this section, we discuss the effects of applying high 𝐸-fields on the order of 

~1 V/nm on graphene/hBN heterostructures at different temperatures. Figure 5.1a 

shows a schematic for a graphene FET transistor used in our study. Before we expose 

the FETs to high 𝐸-fields, we obtain their intrinsic behavior by sweeping an applied 

gate voltage (𝑉𝐺) while recording the two-terminal conductance (𝐺). Figure 5.1b shows 
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one such conductance curve where the minima corresponds to the CNP in graphene’s 

band structure.26 As discussed above, the close proximity of the CNP to 𝑉𝐺 = 0, 

indicates a low level of intrinsic doping 𝑉0 for this device. This is expected for 

heterostructures composed of graphene and hBN.1  

Figure 5.2| Graphene/hBN FETs exposed to high electric fields. (a) 𝐺(𝑉𝐺) curves 

display the changes of electrical properties in graphene/hBN FETs after application of 

a high electric field emanating from the backgate. The red curve was obtained before 

high 𝐸-field exposure. The green curve was obtained after applying 𝑉𝐺 = −190 V for 

8 minutes. The dashed blue line was obtained after shining light on the FET for 5 

minutes while maintaining 𝑉𝐺 = 0 V. (b) Dependence of charge neutrality point (CNP) 

shifts on applied 𝑉𝐺 of 4 devices with similar hBN thickness (~55 nm) at 77 K (blue) 

and 300 K (red). (c) Dependence of CNP shifts on substrate hBN thickness for 𝑉𝐺 =
−180 V (green circles) and 𝑉𝐺 = −190 V (orange circles). 

 

We induce large 𝐸-fields in our FET devices by applying 𝑉𝐺 from −80 V to 

−210 V between the p-doped silicon (Si+) substrate and monolayer graphene (MLG) 

for 8 minutes (see section 5.5 for details on time dependence). Immediately after, we 

reduce 𝑉𝐺 to zero and obtain a conductance curve 𝐺(𝑉𝐺). Figure 5.2a shows 

conductance curves taken before and after high 𝐸-fields are applied. The red curve 

corresponds to an initial state (before high 𝐸-field exposure), while the green curve 
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corresponds to a state after the sample was exposed to 𝑉𝐺 = −190 V. Evidently, the 

high 𝐸-field exposure has shifted the CNP of the device to the left by 40 V. We note 

that only negative values of 𝑉𝐺 were applied since changes to the CNP for positive 𝑉𝐺 

were slow and nearly imperceptible. Additionally, we observed negligible changes in 

the field effect mobility 𝜇 after high 𝐸-field exposures as demonstrated by the slopes 

of the before (red) and after (green) curves in Fig. 5.2a. Finally, by exposing the same 

device to light while maintaining  𝑉𝐺 = 0 V, we find that the initial state of our FET 

device is recovered. This effect was studied in depth by L. Ju et al.2 For details on the 

experimental setup used for the light-induced recovery, see the published article’s 

supplement.27 The hBN defects’ sensitive response to light provides an additional 

mechanism for tuning 2D material’s electrical properties beyond graphene.28,29 The 

result of the light-mediated resetting process is shown by the dashed blue curve in Fig. 

5.2a, where the CNP has returned to its original value.  

 

5.4.1 CNP shifts dependence on 𝑽𝑮 and temperature 

We further explore the behavior of graphene/hBN FETs under high 𝐸-fields by 

varying gate voltage intensities 𝑉𝐺 for samples with similar hBN thicknesses. Figure 

5.2b shows a plot of the CNP shifts for four different devices with hBN substrates of 

similar thicknesses (~55 nm) measured after multiple high 𝐸-field exposures by 𝑉𝐺. 

We observe that the magnitude of the CNP shifts are generally greater after the FETs 

have been exposed to higher gate voltages. Figure 5.2b also shows that the CNP shift 
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behaves similarly for each temperature that was examined, 300 K and 77 K. This is 

evident from the clustering of the CNP shift points for each temperature, as shown by 

the grouping of the red and blue curves. At 300 K, the CNP shifts become more 

pronounced after applying  𝑉𝐺 = −150 V. At 77 K, the CNP shift becomes greater after 

applying 𝑉𝐺 = −180 V. The overall magnitude of the CNP shifts are also higher at 

300 K. For example, with an applied gate voltage of −160 V a CNP shift of 5 V is 

achieved at 77 K, whereas at 300 K, the same device achieves a CNP shift of 20 V.  

 

5.4.2 CNP shifts dependence on substrate hBN thickness 

We also consider the role of hBN thickness in CNP shifts for graphene/hBN 

FETs under high 𝐸-field exposures. We measured shifts in CNP for various hBN 

thicknesses after applying two different gate voltages. The thicknesses of our FETs 

were determined using atomic force microscopy. We find that the thickness of the 

substrate hBN also influences the level of CNP shift after a high 𝐸-field exposure. 

Figure 5.2c shows CNP shifts achieved for multiple FET devices that have different 

thicknesses of hBN substrates. The data indicates that devices with hBN substrates that 

are thin achieve higher levels of CNP shift when exposed to the same gate voltage as 

devices with thicker hBN substrates. The thicknesses of the hBN substrates in our FET 

devices range from 10 nm to 56 nm. We also note, in Fig. 5.2c, that although CNP 

shifts are different between 𝑉𝐺 exposures of −180 V and −190 V, the incremental 

change in CNP shift for each gate exposure (with different hBN thicknesses) increases 
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by similar amounts. Finally, we found that devices with hBN thinner than 10 nm did 

not respond to resetting with light. For this reason, we did not include these devices in 

Fig. 5.2c, nor in the rest of our experiments. 

 

5.4.3 CNP shifts dependence on exposure time 

Figure 5.3| Time dependence of CNP shifts in graphene/hBN FET under a high 𝑬-

field exposure. (a) Conductance curves (𝐺) as a function of backgate voltage 𝑉𝐺 for a 

graphene/hBN FET. Curves were obtained for different exposure times to a backgate 

voltage of −180 V. (b) CNP shifts obtained from (a) are plotted as a function of time. 

The time axis has been scaled logarithmically. Given the logarithmic behavior of CNP 

shift magnitudes, the arbitrary choice of an 8 minute high 𝐸-field exposure time was 

made. 

 

Shifts in CNP were also measured as a function of high 𝐸-field exposure time. 

Figure 5.3a shows conductance (𝐺) traces as a function of gate voltage 𝑉𝐺 for different 

exposure times at 𝑉𝐺 = −180 V and 77 K. These traces were obtained using a 

graphene/hBN FET with an hBN thickness of 10 nm. It is evident from Fig. 5.3a that 
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the CNP (minima in each curve) shifts towards increasingly negative values as the 

exposure time increases. Figure 5.3b shows the magnitude of the CNP shifts from Fig 

5.3a as a function of exposure time. The time (horizontal) axis is scaled logarithmically. 

Figure 5.3b shows that within the range of the CNP shifts plotted, the magnitude of 

CNP shifts increases with time. This increment in CNP shift is pronounced at first, and 

then diminishes as the exposure time increases. 

In the following section we will establish a link between CNP shifts and hBN 

defect ionization events. With this in mind, we can make an analogy between the time 

dependence of CNP shifts and charge buildup in a parallel plate capacitor. Like charges 

populating a capacitor, CNP shifts should continue to gradually but slowly increase 

until a maximum number of ionized defects is reached at 𝑡 = ∞. For the case of defect 

ionization in bulk hBN, the intensity of the electric field diminishes due to screening 

from charged hBN defects. Therefore, the CNP shift’s rate of increase should continue 

to decrease until the potential from the applied 𝑉𝐺 matches the potential from the 

charged defects in bulk hBN. For the FET used in Figs. 5.3a-b, at 𝑡 = ∞ the CNP shift 

magnitude should in principle reach −180 V. As a side note, this limit is more easily 

attained when using photo-excitations, as observed in previous works.2,28,29 

 

5.5 Heuristic Model for High 𝑬-Field Defect Ionization in hBN 

We believe that the observed pronounced CNP shifts in our graphene FETs can 

be explained by the manipulation of defects in the supporting hBN substrate. Negligible 
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hysteresis observed in conductance curves allows us to dismiss the presence of dipolar 

adsorbates on graphene’s surface.30 In addition, the leakage current between the 

backgate and graphene stayed constant at the noise floor of our voltage supply (~1 pA) 

while the high 𝐸-fields were being applied. These observations hence allow us to rule 

out electrochemical doping. Furthermore, the existence of defects in bulk hBN has been 

experimentally verified and even utilized to alter the electronic properties of 2D 

materials. Initially, bulk hBN was shown to have defects such as carbon and oxygen 

impurities through studies that used averaged ensemble techniques, such as secondary 

ion mass spectroscopy and photo-luminescence.31–33 Individual defects have also been 

observed at the atomic scale via scanning tunneling and transmission electron 

microscopy studies.3,34,35 In addition, numerous previous works have demonstrated 

manipulation of hBN defects. One set of studies realized manipulation of hBN defects 

at the micron scale by exposing 2D material/hBN heterostructures to visible light.2,28,29 

Another set of studies achieved manipulation by using localized electrostatic 

excitations from a scanning tunneling microscope tip to modulate the charge state of 

individual defects and small ensembles of defects.3,6,7,9,36 In these works, it was also 

shown that no irreversible changes are made to graphene’s surface after the application 

of strong localized 𝐸-fields.  

To explain the CNP shift observed in our experiments we utilize the 

existence/manipulation of hBN defects and the Poole-Frenkel (PF) model.37 This 

model puts forth that at finite temperature, an 𝐸-field enables the flow of charges that 

originate from the ionization of defect traps in insulating and semi-conducting 
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materials. Other models that describe charge flow through an insulator such as Fowler-

Nordheim tunneling and space charge limited current were not considered because they 

are not defect-based and do not account for simultaneous temperature and 𝐸-field 

modulation.38 Previous experiments on thin insulating/semiconducting films have 

measured a flow of charges due to defect traps, known as the PF current (𝑗𝑃𝐹). For 

semiconducting films, such traps come from dopant impurities.39,40 In the case of 

insulators, growth and synthesis parameters determine the number of charge carrier 

traps.41,42 These works have shown that 𝑗𝑃𝐹 increases with increasing temperature and 

increasing applied 𝐸-field.43 Thus, within the PF model, a measurement of larger 𝑗𝑃𝐹 

(coincident with increased temperature or 𝐸) corresponds to a greater number of defect 

ionization events. In our experiment with graphene/hBN FETs, we observe CNP shifts 

after our samples have been exposed to high 𝐸-fields and increased temperatures (see 

Figs. 5.2b-c). Because the CNP shifts in our experiments and 𝑗𝑃𝐹 in prior works both 

increase with large applied 𝐸 and increasing temperature, we believe that these two 

share the same origin. 

Now that we have established a basis for invoking the PF model to describe our 

experimental observations, we apply it to explain the mechanism behind the CNP 

shifts. Single donor-like defects within the hBN are modeled as an 1/𝑟 potential (black 

solid line) with a trap charge (red circle) in Fig. 5.4. Only donor-like defects are 

considered since CNP shifts were mostly absent when applying positive 𝑉𝐺. Initially 

(Fig. 5.4a), when no gate voltage is applied, the defects in hBN are neutral; the trapped 

charge remains within an unaltered potential. Moreover, the FET can be modeled as a 
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parallel plate capacitor with an electric potential that is linear with respect to the 

distance between the electrodes. As a result, once a sufficiently large and uniform field 

𝐸⃗  (Fig. 5.4b) is applied, a linear potential is added onto the attractive Coulomb 

potential. This addition causes a tilt which lowers the barrier that confines the trapped 

charge,37 allowing the charge to escape.  

Figure 5.4| Heuristic model for the persistent electrostatic doping due to high 𝑬-

fields. (a) Initial state of a graphene/hBN FET. Neutral hBN defects are represented by 

a trap potential (black line) with a charge inside (red circle). (b) Intermediate state. 

When a large electric field is applied with the gate, defect charges are excited out of 

the trap potential via three different pathways:  direct tunneling (DT), phonon assisted 

tunneling (PAT), thermal emission (PF). These pathways are depicted by the blue, 

orange, and red arrows respectively. (c) Final state. After some period of time, defects 

remain ionized and remotely n-dope graphene. 
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Generally, three different charge escape pathways from Frenkel type defects 

can occur; direct tunneling (DT), phonon assisted tunneling (PAT), and thermal 

emission (PF).44 Thermal emission via the Poole-Frenkel effect is the simplest 

mechanism of ionization given that it only considers over-the-barrier emissions. PAT 

considers trapped charges tunneling out of the potential after the ionization energy has 

been lowered due to lattice vibrations around the defect traps. Notably, DT dominates 

when 𝐸-fields are high enough that phonon interactions are not necessary for defects 

to tunnel out of the trap. Determination of which of these mechanisms dominates is out 

of the scope of the device geometry of this work. Future investigations can be pursued 

that measure the ionization current directly as a function of 𝐸-field and temperature.45 

Nonetheless, we do observe that at higher temperatures, defect ionization events 

increase. We believe this to be a result of an enhancement of the thermally excitable 

pathways PF and PAT.  

After the trapped charges escape their confining potential, they eventually reach 

the graphene layer and leave a net positive charge in hBN. Guidance of these charges 

is enabled by the applied 𝐸-field, which allows them to gradually migrate towards 

graphene by hoping onto vacant defects within adjacent hBN layers. This process is 

depicted in the right panel of Fig. 5.4b. Once they reach the top layer of hBN, these 

charges exit the heterostructure through the grounded graphene. Eventually, this 

process leads to a layer of positive ionized defects close to the interface of hBN and 

SiO2 resulting in the partial screening of negative charges from the Si+ backgate. As 

depicted in Figs. 5.4b-c, the separation distance between the ionized defect layer and 
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graphene approximately equals the supporting hBN thickness. As a result, in FETs with 

thinner hBN, an increase in capacitive coupling between the slab of charged defects 

and graphene (considering a parallel plate capacitor model) enhances CNP shifts (see 

Fig. 5.2c). In Fig. 5.4c, the electric field 𝐸⃗  is turned off and the charged defect traps 

near the hBN/SiO2 interface remain. These charged traps persistently gate the entire 

graphene flake remotely and make it n-doped. Such doping results in the CNP shift 

shown in Fig. 5.2a. 

 

5.6 Suppression of Charge Accumulation in hBN 

Figure 5.5| Suppression of high 𝑬-field and light induced CNP shifts. (a) Schematic 

of hBN defect de-activation. Charges in Graphite repopulate emptied hBN defect traps. 

(b) Comparison of CNP shifts between silicon gated (red polygons) and graphite gated 

(purple polygons) FETs after exposure to similar electric field intensities. (c) 

Suppression of light-induced doping in a graphene/hBN/graphite FET. Conductance 

curves (𝐺) as a function of backgate voltage 𝑉𝐺 for a graphene/hBN/graphite FET. For 

both curves, the backgate voltage 𝑉𝐺 was swept from zero towards negative values, 

back to positive values, and finally back to 0 V. Traces were obtained while exposing 

the FET to light and no light as represented by the purple and dashed black curves, 

respectively. This plot demonstrates the resilience of a graphite gated FET against 

photo-induced CNP changes. 
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The PF model and electric field guided charge hopping within hBN discussed 

above provides insight on how to suppress the CNP shifts observed in our experiments. 

Such suppression is crucial for experiments that require controllable doping of 2D 

materials supported by hBN such as angle resolved photoemission spectroscopy 

(ARPES)46,47 and high temperature electrical transport.48,49 Based on the discussion for 

Fig. 5.4, the neutralization of the ionized traps near the hBN/SiO2 interface should 

suppress high 𝐸-field induced CNP shifts.  To this end, we have implemented a graphite 

flake as a backgate for our graphene/hBN heterostructure. A schematic for one such 

device is shown in Fig. 5.5a. To explain how this device will suppress high 𝐸-field 

induced CNP shifts, we adapt the process described in Figs. 5.4b-c to include free 

charges from a graphite layer between hBN and SiO2. As we expose the hBN traps to 

strong 𝐸-fields, released charges migrate towards graphene and eventually to ground 

(similar to Fig. 5.4b). For the graphene/hBN/graphite heterostructure, however, free 

electrons in semi-metallic graphite populate the activated traps in hBN. This flow of 

electrons between graphite, hBN, and ultimately graphene prevents the build-up of 

charged traps near the hBN and graphite interface. Without this buildup, a persistent 

CNP shift cannot emerge. 

In Fig. 5.5b we show the results of several transport experiments that validate 

our proposed solution for suppressing CNP shifts due to high 𝐸-fields. Specifically, we 

measured the two-terminal conductance (𝐺) for three graphene/hBN/graphite FETs 

after exposing them to large 𝐸-field intensities, similar to our measurements in Figs. 

5.1b and 5.2a. The hBN thicknesses for these devices were 20 nm, 40 nm, and 60 nm. 
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From these conductance measurements we extract the shift in CNP and plot them with 

the corresponding electric field used during the exposure. This data is shown in Fig. 

5.5b, where the measured response for each device is denoted by a purple colored 

polygon. As a comparison, we replot the room temperature data from graphene/hBN 

FETs supported by Si+ from Fig. 5.2b. These data points are indicated as red colored 

polygons. Evidently, for the graphene/hBN/graphite FETs we did not observe shifts in 

the CNP for 𝐸-field intensities of up to ~ 0.8 V/nm; while for the graphene/hBN FETs, 

clear shifts were observed. 

 To further test the resilience of graphite-gated FETs against doping from 

ionized hBN defects, we applied the photoinduced doping technique on a 

graphene/hBN/graphite FET. This technique applies light onto 2D material/hBN 

FETs2,4,28 to create doped region on graphene by exciting hBN defects, as is done with 

high electric fields in this chapter. The results of this test are shown in Fig. 5.5c. The 

purple curve in Fig. 5.5c shows conductance (𝐺) as a function of gate voltage 𝑉𝐺 of a 

graphite-gated FET while exposing it to light from a purple diode laser.27 We also 

measured the FET’s conductance against  𝑉𝐺 without exposing the sample to any light. 

This is shown by the dashed black curve in Fig 5.5c. For the case of graphene/hBN 

FETs, the inclusion of photo-excitations increases the rate at which hBN defects are 

ionized.2 Despite the possible increase of ionization events provided by light, Fig. 5.5c 

demonstrates the complete suppression of electrostatic changes in our 

graphene/hBN/graphite FET. Both curves in Fig. 5.5c show a small hysteresis with 𝑉𝐺. 

However, 𝐺(𝑉𝐺) traces do not change significantly between the trials when the sample 
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was and was not exposed to light. 

 

5.7 Conclusion 

 In conclusion, we have demonstrated that high 𝐸-field exposures emanating 

from a Si+ backgate can induce a reversible change in the electronic properties of 

graphene/hBN heterostructures. A range of 𝐸-field intensities and different 

temperatures were examined in our study. We found that CNP shifts in graphene 

increase as both the electric field intensity and temperature are increased. Due to the 

similarities between CNP shifts in our study and prior works on Poole-Frenkel 

emissions, we applied the Poole-Frenkel model to explain the mechanism by which 

high 𝐸-fields induce persistent doping in our graphene/hBN FETs. Using insight from 

our proposed mechanism, we assembled an FET heterostructure that eliminates 

persistent unintended doping. This FET contains an additional layer of graphite 

underneath the graphene/hBN stack. Here, graphite acts as a backgate and, importantly, 

prevents charge buildup in the hBN. The suppression of charge buildup in hBN is 

important for ARPES and high temperature electrical transport studies because it 

recovers controllable device doping.29,48 Nonetheless, studies that utilize doping in 2D 

materials can incorporate the doping technique we presented here to enhance n-doping 

in a given 2D material. Finally, this doping technique can be used to quantify deliberate 

defect incorporation in hBN, which has been employed by several quantum emitter 

studies.50–52 Synthesis processes that deliberately increase defect densities in hBN may 
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utilize high 𝐸-field exposure to attain an approximate measure of defect densities based 

on the magnitude of CNP shifts. 
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Chapter 6 - Comprehensive Electrostatic Modeling of Exposed Quantum 

Dots in Graphene/Hexagonal Boron Nitride Heterostructures 

 

6.1 Introduction 

Recent experimental advancements have enabled the creation of tunable 

localized electrostatic potentials in graphene/hexagonal boron nitride (hBN) 

heterostructures without concealing the graphene surface.1–6 These potentials corral 

graphene electrons yielding systems akin to electrostatically defined quantum dots 

(QDs). Spectroscopic characterization of these exposed QDs with the scanning 

tunneling microscope (STM) has revealed intriguing resonances that are consistent 

with a tunneling probability of 100% across the QD walls. This effect, known as Klein 

tunneling, is emblematic of relativistic particles, underscoring the uniqueness of these 

graphene QDs. Despite the advancements with electrostatically defined graphene QDs, 

a complete understanding of their spectroscopic features still remains elusive. In this 

chapter, we address this lapse in knowledge by comprehensively considering the 

electrostatic environment of exposed graphene QDs. We then implement these 

considerations into tight binding calculations to enable simulations of the graphene QD 

local density of states. We find that the inclusion of the STM tip’s electrostatics in 

conjunction with that of the underlying hBN charges reproduces all of the 

experimentally resolved spectroscopic features. Our work provides an effective 

approach for modeling the electrostatics of exposed graphene QDs. The methods 
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discussed here can be applied to other electrostatically defined QD systems that have 

exposed surfaces. 

 

6.2 Scanning Tunneling Spectroscopy on MLG 

 Before discussing the creation and characterization of QD-like circular p-n 

junctions in MLG, we first need to understand MLG’s tunneling spectroscopic features 

as acquired by an STM. As discussed in Ch. 3, scanning tunneling spectroscopy (STS) 

probes a sample’s surface local density of states (LDOS) if we assume a tip with 

constant density of states and energy independent tunneling matrix elements [see 

expression (3.16)]. STS is a surface sensitive probe and, conveniently, graphene is a 

“surface-only” material due to its true 2D nature. Thus, with STS we acquire a 𝑑𝐼/𝑑𝑉𝑆 

signal that is proportional to graphene’s “bulk” LDOS. This complementary relation 

makes STS an ideal probe for graphene’s electronic properties. However, the tunneling 

picture described in Fig. 3.2.3b needs to be modified to account for the large in-plane 

momentum of graphene’s charge carriers around the 𝐾 and 𝐾’ points as calculated in 

section 2.3. 
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6.2.1 Inelastic and elastic tunneling processes 

Figure 6.1| Diagrams showing tunneling between an STM tip and MLG in the 

inelastic and elastic regimes. (a) Inelastic tunneling of an electron from an STM tip 

into p-doped MLG while applying a bias voltage 𝑉𝑆, such that |𝑒𝑉𝑆| > ℏ𝜔0. In this 

regime, an electron scatters to a low energy state in MLG by releasing a phonon with 

energy ℏ𝜔0. (b) Expected tunneling spectroscopy response of MLG in the inelastic 

regime. (c) Elastic tunneling of an electron from an STM tip into p-doped MLG while 

applying a bias voltage 𝑉𝑆, such that |𝑒𝑉𝑆| < ℏ𝜔0. In this regime, an electron tunnels 

into a low energy state in MLG of the same energy. (d) Expected tunneling 

spectroscopy response of MLG in the elastic regime. 

 

In Ch. 3 we obtained the following dependence of the tunneling current 𝐼 on 2D 

Bloch states tunneling into a spherical tip: 

 𝐼 ∝ exp (−2(𝜆2 + 𝑘∥
2)

1 2⁄
|𝑧|) (6.1) 
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where 𝜆 is the decay factor of the onsite atomic orbitals, 𝑘∥ is the in-plane momentum 

of the crystal Bloch states, and |𝑧| is the tip-to-sample distance. From this result it is 

evident that states with large in-plane momentum 𝑘∥ decay rapidly in the vacuum and 

thus contribute much less to the tunneling current 𝐼. Charge carriers in graphene reside 

near the corners of the Brillouin zone and thus have large in-plane momentum 

(~1.7 Å−1). However, graphene has an optical phonon at the 𝐾 and 𝐾′ points7,8 with 

energy ℏ𝜔0~67 m𝑒𝑉, where 𝜔0 is the phonon’s vibrational frequency. This phonon 

mode corresponds to out-of-plane vibrations in graphene’s lattice and enables charge 

carriers from graphene’s 𝜎∗-band at the Γ point (where 𝑘∥ = 0) to scatter into the 𝐾 

point by releasing a 𝐾′ phonon.9 In other words, this process can be described as an 

electron that starts with only initial potential energy, gains momentum by scattering off 

MLG’s lattice, and ends with residual potential energy which is diminished by the 

energy lost to making MLG’s lattice vibrate. Since this process involves the loss of 

potential energy to vibrational energy it is described as inelastic. As a consequence, 

through this inelastic process, charge carriers with momentum 𝑘∥ = 0 are the primary 

contributors to the tunneling current observed in MLG and BLG. 

 The schematic in Fig. 6.1a depicts the tunneling process between the STM tip 

and MLG via the inelastic tunneling process described above. In graphene, inelastic 

tunneling occurs when electrons with zero momentum have enough energy to scatter 

into the 𝐾 and 𝐾′ points by releasing a phonon, i.e. |𝑒𝑉𝑆| > ℏ𝜔0. In Fig. 6.1a, this 

process is depicted by an electron with energy at the Dirac point releasing a phonon 

with energy ℏ𝜔0 and tunneling into the highest unoccupied MLG state. The release of 
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energy via the electron-phonon scattering manifest as a 2ℏ𝜔0 wide suppression around 

𝑉𝑆 = 0 in the differential conductance (𝑑𝐼/𝑑𝑉𝑆) signal obtained during STS (see Fig. 

6.1b). We refer to this 𝑑𝐼/𝑑𝑉𝑆 suppression region as the “phonon gap”.9 Additionally, 

spectroscopic features from MLG’s DOS such as the Dirac point 𝐸𝐷, appear shifted by 

+ℏ𝜔0 and −ℏ𝜔0 to the right and left of the phonon gap, respectively. 

 The use of hBN as a substrate for graphene provides the mechanical stability 

not accessible to previous STS studies that used SiO2 substrates.9,10 This mechanical 

stability enables us to reduce the distance between the tip and graphene’s surface in 

order to access MLG states within the elastic tunneling regime.11 As indicated in (6.1), 

the rapid decay of large 𝑘∥ states in MLG can be counteracted by reducing the tip-to-

sample distance |𝑧|. The schematic in Fig. 6.1c depicts the tunneling process in the 

elastic regime, |𝑒𝑉𝑆| < ℏ𝜔0. In this regime, probing of MLG’s electronic features leads 

to finite values for 𝑑𝐼/𝑑𝑉𝑆 inside the phonon gap. Generally, the suppression of the 

𝑑𝐼/𝑑𝑉𝑆 signal inside the phonon gap does not enable a clear observation of the Dirac 

point 𝐸𝐷, as depicted in Fig. 6.1c. However, in section 6.4 we will probe pseudo-

confined states of circular p-n junctions that display clear resonances inside the phonon 

gap. 
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6.2.2 STS on backgated MLG 

Figure 6.2| Tunneling spectroscopy and backgate-tunability of MLG. (a) 

Differential conductance 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) of MLG in the inelastic regime showing the 

2ℏ𝜔0 wide suppression centered at 𝑉𝑆 = 0 and dip due to the Dirac point (𝐸𝐷) as 

indicated in Fig. 6.1b. Tunneling parameters: 𝑉𝑆 =  −500 mV; 𝐼 = 1 nA; 𝑉𝑎𝑐 = 2 mV; 

𝑓𝑎𝑐 = 400 Hz. Inset: 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) of MLG in the elastic regime showing finite 

differential conductance. Tunneling parameters: 𝑉𝑆 =  −55 mV; 𝐼 = 1 nA; 𝑉𝑎𝑐 =
1.5 mV; 𝑓𝑎𝑐 = 400 Hz. (b) 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) spectra of MLG stacked horizontally for 

different values of 𝑉𝐺. The 𝑉𝐺-independent suppression due to electron-phonon 

coupling appears as a dark band centered at 𝑉𝑆 = 0. The inverted “S” suppression 

traced by the dashed orange curves corresponds to the shifted Dirac point 𝐸𝐷 of MLG 

that changes with the backgate as √|𝑉𝐺|. 

 

 After gaining some familiarity with the elastic and inelastic tunneling 

processes, we are equipped to discuss the backgate tunability of MLG as characterized 

by STS. First, in Fig. 6.2a we show an experimentally acquired 𝑑𝐼/𝑑𝑉𝑆 curve as a 

function of sample bias (𝑉𝑆) for p-doped graphene. This spectrum was acquired by 

sweeping 𝑉𝑆 starting from 𝑉𝑆 = −500 mV and using a setpoint tunneling current of 𝐼 =

1 nA. This curve displays the primary features depicted in Fig. 6.1b: (1) a dip in 

conductance corresponding to the shifted Dirac point energy (orange arrow) and (2) a 

clear 𝑑𝐼/𝑑𝑉𝑆 suppression of width ~130 mV centered at 𝑉𝑆 = 0. The fact that the 𝐾 
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point phonons have energy ℏ𝜔0~67 meV verifies this suppression to be the 

aforementioned phonon gap. Additionally, we are able to probe MLG’s states inside 

the phonon gap, i.e. in the elastic regime. The inset of Fig. 6.2a shows a 𝑑𝐼/𝑑𝑉𝑆 close-

up acquired by sweeping 𝑉𝑆 starting from 𝑉𝑆 = −55 mV and using a setpoint tunneling 

current of 𝐼 = 1 nA. This smaller starting 𝑉𝑆 value translates to a ~30% shorter tip-to-

sample distance during the STS measurement,9,11–13 which enhances the tunneling 

contribution from large 𝑘∥ states. Additionally, from the inset in Fig. 6.2a we see that 

the 𝑑𝐼/𝑑𝑉𝑆 signal within the elastic regime does not completely bottom at zero 𝑑𝐼/𝑑𝑉𝑆. 

The ability to maintain a stable and finite conductance inside the phonon gap (unlike 

conventional semiconductors)14–17 indicates that it does not originate from an electronic 

bandgap. 

 The spectrum in Fig. 6.2a was obtained after p-doping graphene using a 

backgate voltage 𝑉𝐺 to bring the Dirac point outside of the phonon gap. We can further 

exploit the gate tunability provided by graphene’s 2D nature and map the dependence 

of tunneling spectra on a variable backgate 𝑉𝐺. In Fig. 6.2b we show a plot where 

𝑑𝐼/𝑑𝑉𝑆 spectra taken at different 𝑉𝐺 have been stacked along the 𝑥-axis with bright and 

dark regions representing high and low values of 𝑑𝐼/𝑑𝑉𝑆 intensity, respectively. The 

application of 𝑉𝐺 enables the tunability of the charge carrier density 𝑛 in graphene. As 

we saw in Ch. 5, modelling the backgate and graphene as a parallel plate capacitor leads 

to 𝑛 ∝ 𝑉𝐺. Additionally, graphene’s linear density of states18 leads to 𝑛 ∝ |𝐸|2. Thus, 

we expect that the applied backgate 𝑉𝐺 and the Fermi energy 𝐸𝐹 in graphene will follow 

the relation: 
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 𝐸𝐹 ∝ sgn[𝑉𝐺] × √|𝑉𝐺| (6.2) 

This result confirms that the 𝑑𝐼/𝑑𝑉𝑆 suppression in Fig. 6.2b corresponds to a DOS 

feature in MLG that changes along with 𝐸𝐹—namely the Dirac point 𝐸𝐷. In Fig. 6.2b 

we account for the shifts introduced by the inelastic tunneling process by indicating 

that the actual energies for 𝐸𝐷 need to be shifted by ℏ𝜔0. Finally, the presence of the 

phonon gap across all 𝑉𝐺 values, further confirms that the origin of this feature is not 

from graphene’s band structure. 

 In section 6.2.2, we will approximate the charge carrier density induced by the 

STM tip on graphene by looking closely at a 𝑑𝐼/𝑑𝑉𝑆(𝑉𝐺 , 𝑉𝑆) plot that displays tip-

induced charging features due to charge carrier pseudo-confinement in MLG. These 

features originate from a secondary tunneling channel not visible on plots with wide 𝑉𝐺 

and 𝑉𝑆 ranges like the one shown in Fig. 6.2b. First, however, we will motivate and 

discuss the background of charge carrier confinement in MLG. 

 

6.3 Overview of Confinement and Pseudo-Confinement in MLG 

 The endeavor to corral graphene’s massless Dirac fermions has led to the 

development of multiple techniques and novel procedures for charge carrier 

confinement. These techniques include the use of lithographic patterning,19–22 ultra-

high vacuum chemical synthesis,23–26 controlled deposition of adatoms,27 and the 

application of perpendicular magnetic fields.28–30 However, such techniques require 

either complicated fabrication procedures or rely on rigid material synthesis schemes. 
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Recently, a flexible procedure was developed to corral graphene charges that employs 

an STM and a graphene/ hBN heterostructure.1,31 This procedure works by using an 

STM tip to locally induce charges in the underlying hBN, thus creating persistent and 

embedded local gates in the hBN by a similar mechanism to that explored in Ch. 5. 

These local gates enable the pseudo-confinement of electrons in an exposed circular p-

n junction, which effectively behaves as a quantum dot (QD).1 Such QDs have been 

used to develop novel electronic devices such as Berry phase switches4 and enabled the 

unprecedented visualization of correlated relativistic charges under large magnetic 

fields.5 Despite the widespread progress on these exposed graphene QDs, their spatially 

resolved spectroscopic characterization still remains not well understood.  

An important commonality in the existing works on exposed graphene QDs is 

that the influence of the STM tip has been excluded in the theoretical modeling of QD 

states. This is despite several experiments that show the STM tip itself can induce a 

small QD,2 and even create coulomb-like confinement.3 In this chapter, we address the 

influence of the STM tip on exposed graphene QDs by comparing our visualization of 

QD states with tight-binding (TB) calculations that include the electrostatics of the 

STM tip and underlying charged hBN. Our results demonstrate that accounting for the 

influence of the STM tip is necessary to reproduce key features seen in the experimental 

data. Additionally, we use the insight from our study to show how the tip’s influence 

can be mitigated.  
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6.4 MLG Quantum Dot Creation Using STM 

Figure 6.3| Schematic layout of characterization and potential of an exposed 

graphene Quantum Dot (QD). (a) Schematic showing the STM circuit and 

graphene/hBN heterostructure. The circular p-doped region outlines the QD created by 

applying a 𝑉𝑆 pulse between the tip and graphene/hBN while holding 𝑉𝐺 constant. (b) 

Top: 𝑈𝐷(𝑟) (red curve) is the potential of the QD which is outlined by tracing along 

the Dirac point in each cone. Bottom: Side-view schematic of the QD in a 

graphene/hBN heterostructure for 𝑉𝐺 > 0. The application of a high electric field by the 

STM tip induces a localized net charge accumulation after exciting defects in hBN.32 

Applying 𝑉𝐺 with opposite polarity to charges in hBN induces the spatial variation in 

doping on graphene which forms the QD boundaries. 

 

The experiments we present here were performed on heterostructures composed 

of graphene on hBN resting on a SiO2/p-doped Si (Si+) substrate as depicted in Fig. 

6.3a. The graphene/hBN heterostructure was assembled using a standard polymer-

based transfer technique.33 Following this assembly, the surface of graphene was 

cleared of debris and polymer residue using an atomic force microscope while in 

contact mode34 as discussed in Ch. 4. We perform this step to ensure the absence of 
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contaminants that could affect the electronic properties of our QDs. The creation and 

characterization of graphene QDs were performed at 4.8 K. 

Figure 6.3a shows a schematic of the STM circuit used. 𝑉𝑆 is applied between 

graphene and the grounded STM tip to induce a tunneling current between them and 

enable probing of electronic states. 𝑉𝐺 is connected to Si+ to remotely tune graphene’s 

Fermi level (𝐸𝐹). We use these control voltages to create a graphene QD by applying a 

𝑉𝑆 pulse between graphene and the STM tip while maintaining 𝑉𝐺 at a constant 

value.1,4–6,31,35 For detailed steps on this tip pulsing process see the Appendix section. 

During the application of this pulse, defects in hBN underneath the tip become ionized 

with opposite polarity to 𝑉𝐺. The end result of this process is depicted in Fig. 6.3b for 

the case where 𝑉𝐺 > 0. At a fixed positive value of 𝑉𝐺, graphene becomes globally n-

doped except for the circular region where the pulse was applied. In this region, an 

excess of negative charges embedded in the hBN act as a local backgate that p-dopes 

graphene. The resulting spatial variation of the Dirac point in graphene with respect to 

𝐸𝐹 (dashed orange line) gives rise to a smooth electrostatic potential 𝑈𝐷(𝑟). A profile 

of this electrostatic potential is outlined in Fig. 6.3b (red curve) and specifies the 

boundary of the exposed graphene QD. 
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6.5 MLG Quantum Dot Characterization Using STM 

Figure 6.4| Scanning Tunneling Spectroscopy (STS) of an exposed graphene QD. 

(a) Topography of graphene acquired by STM. Regions where graphene is n and p-

doped are indicated with green and brown color scales respectively. (b) 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) 

spectra obtained at the corresponding crosses indicated in (a). Each spectrum is offset 

for clarity and was taken with 𝑉𝐺 = 22 V. (c-e) Spatial dependence of 𝑑𝐼/𝑑𝑉𝑆 spectra 

with different 𝑉𝐺 values indicated in each panel. These images map the spatial 

dependence of graphene QD states obtained along the dashed cyan line in (a). Dashed 

vertical lines in (d) correspond to spectra displayed in (b). Tunneling parameters: 𝑉𝑆 =
 −100 mV; 𝐼 = 1 nA; 𝑉𝑎𝑐 = 2 mV; 𝑓𝑎𝑐 = 400 Hz. 

 

To map and visualize the electronic properties of the states in the exposed 

graphene QD, we use scanning tunneling microscopy (STM) and spectroscopy (STS). 

Figure 6.4a shows an STM topographic map of graphene’s ultra-flat surface after the 
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creation of a QD. For the case where 𝑉𝐺 > 0, the approximate regions where graphene 

is p and n-doped have been colored brown and green, respectively. With STS we can 

obtain the differential conductance (𝑑𝐼/𝑑𝑉𝑆) at a specific point on graphene underneath 

the STM tip. From the tunneling theory discussion in Ch. 3, we recall that this 𝑑𝐼/𝑑𝑉𝑆 

signal is proportional to graphene’s LDOS.36,37 By performing this measurement at 

different points within the QD, we reveal the coarse spatial dependence of the QD 

states. In Fig. 6.4b we plot 𝑑𝐼/𝑑𝑉𝑆 as a function of 𝑉𝑆 taken at the center (black curve) 

and boundaries (blue and orange curves) of the QD at points corresponding to the 

colored crosses in Fig. 6.4a. These curves clearly display differences between the 

signals recovered at the center and edges of the QD. At the edges, the 𝑑𝐼/𝑑𝑉𝑆 curves 

have prominent peaks while at the center, these peaks are suppressed and broadened. 

To attain a more comprehensive understanding of the spatial dependence of the 

exposed graphene QD’s LDOS, we obtain 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) curves at multiple points along 

the dashed cyan line in Fig. 6.4a. Figures 6.4c-e show the compiled 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) curves 

plotted as a function of distance, where the origin is defined at the center of the 

graphene QD. Additionally, each of these image plots are taken at different values of 

𝑉𝐺 which offsets the global graphene doping. Following the schematic in Fig. 6.3b, as 

𝑉𝐺 changes, 𝐸𝐹 also changes relative to the QD’s potential 𝑈𝐷(𝑟). For Fig. 6.4c, 𝐸𝐹 is 

near the top of the potential 𝑈𝐷(𝑟) which creates a shallow QD. From the image plots 

in Figs. 6.4d-e, it is apparent that as 𝑉𝐺 decreases (hole density increases), the QD gains 

depth and width as the difference between 𝐸𝐹 and 𝑈𝐷(𝑟) increases. Finally, we note 

that signal contributions from the inelastic tunneling channel discussed previously may 
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be ignored since we probe graphene’s LDOS primarily inside the phonon gap. In fact, 

the image plots in Fig. 6.4c-e clearly display the outer regions of the phonon gap (|𝑉𝑆| >

67 mV) where some resonant states replicas can be observed. 

The patterns and features observed in Figs. 6.4b-e can be explained by 

considering the behavior of massless Dirac fermions corralled within a circular and 

harmonic electrostatic potential. From our discussion in Ch. 2 regarding Klein 

tunneling, recall that a p-n junction on graphene perfectly transmits quasiparticles at 

normal incidence to the junction but reflects them at larger incident angles.38–40 We 

note that the p-n junction we have created has a smoothly varying profile, unlike the 

sharp profile discussed in section 2.3.2. In the case of a smoothly varying potential, 

incident charge carriers deflect their trajectories as they move through the p-to-n 

transition region.41,42 This leads to a narrower transmission probability which means 

that charges require a smaller incident angle 𝜃𝑖 to achieve total internal reflection (see 

Fig. 2.3.3b). Therefore, in a circular potential, electrons with high enough angular 

momentum have oblique incidence with the barrier and become internally reflected. 

This leads to partial charge carrier trapping and the formation of quasibound states43–47 

with pronounced intensities near the boundary of the circular potential, in agreement 

with Fig. 6.4b. Additionally, in Fig. 6.4b we also see evidence of the internal reflection 

due to Klein tunneling. This can be seen in the manifestation of differing peak widths 

between the  𝑑𝐼/𝑑𝑉𝑆 curve taken at the QD’s center and curves taken at the QD’s edges. 

As electrons with high angular momenta get trapped near the edges, these states exhibit 

longer trapping times and thus narrower spectroscopic peaks.1,2 Moreover, the bright 
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nodal features in Figs 6.4c-e can be attributed to the eigenstates of the exposed 

graphene QD.1 The profile of the confinement potential in this QD is parabolic, akin to 

that of a harmonic oscillator. However, unlike Schrödinger fermions in a harmonic 

potential, these nodal patterns are unevenly spaced in energy. Instead, the nodal 

patterns formed by these massless Dirac fermions become more closely packed as 

𝑉𝑆 decreases (see. Fig. 6.4d).1,2,45–47 

In addition to the well understood features described above, there are some 

features that lack explanation. For example, all three of the plots in Figs. 6.4c-e show 

a bright skirt-like feature around the edges of the QD (~𝑉𝑆 = −100 mV). A clear 

downward bending of the QD states is also visible near the QD boundaries for all values 

of 𝑉𝐺. This bending effect is particularly pronounced in Fig. 6.4c, where the strong 

distortion of states creates an envelope-like feature. As we will soon show, these 

features can be reproduced after comprehensive consideration of the QD electrostatic 

environment. 
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6.6 Electrostatic Modeling of Exposed Graphene QDs 

To study the effect of the STM tip on the exposed graphene QDs, we use 

simplified electrostatics and a numerical tight binding model. We first discuss our 

considerations for the electrostatics. In our experiments, spatial variations in doping 

across graphene originate from localized hBN defect charges (see Fig. 6.3b) and 

inadvertent gating from the STM tip. To a first approximation, the localized hBN defect 

charges will create a fixed spatially varying doping profile. On the other hand, the STM 

tip will create a mobile spatially varying doping profile that changes its influence as 

the STM tip’s position changes. An exact solution for the charge density in graphene 

would require inaccessible experimental parameters such as the spatial distribution of 

hBN defect charges as well as the in-situ STM tip’s geometry. We proceed by making 

a set of simple approximations for the doping profiles due to the hBN defects and the 

geometry of the STM tip. 

 

6.6.1 Extracting the QD potential due to charged hBN defects 

We first focus on the doping profile due to charged defects in the underlying 

hBN. The electrostatic potential profile of a graphene QD can be extracted by tracking 

the spatial evolution of the region with reduced 𝑑𝐼/𝑑𝑉𝑆 intensity. This region 

corresponds to the spatially varying Dirac point and can be seen in a measurement 

similar to those shown in Figs. 6.4c-e. Figure 6.5a shows an example of an extracted 

potential profile 𝑈𝐷(𝑟) (red curve). 𝑈𝐷(𝑟) is then converted to a doping profile 𝑛(𝑟) 

by the relation: 
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Figure 6.5| Charge density profile induced on graphene by charged hBN defects. 

(a) Experimentally approximated QD potential profile. The underlying 2D plot shows 

the spatial dependence of QD states (similar to Figs. 6.4c-e). The red line (same as 

𝑈𝐷(𝑟) in Fig. 6.3b) represents the extracted potential profile of the graphene QD. (b) 

QD’s charge density profile converted and smoothed from the extracted potential 

profile in (a). (c) QD’s charge density profile used in our tight binding (TB) calculation 

after adjustment. This profile's 𝑥-axis is reduced to 65% of the profile in (b) to account 

for the widening effect of the tip-induced electrostatic potential. 

 

 
𝑛(𝑟) = sgn[𝑈𝐷(𝑟)] ∗

𝑈𝐷(𝑟)2

ℏ2𝑣𝐹
2𝜋

 
 

(6.3) 

with 𝑣𝐹 = 1 × 106 m/s, where 𝑈𝐷(𝑟) replaces the energy term.48 The resulting plot 

after smoothing is shown in Fig. 6.5b. We note that the STM data in Fig 6.5a, which is 

the source of our estimate for the hBN defect potential, necessarily includes the effect 

of the STM tip. To remove this effect so that we may treat it separately, we 

preemptively reduce the lateral extent of the potential profile in Fig. 6.5b to 65% while 

leaving the energy scale unchanged. The resulting adjusted charge density profile is 

shown in Fig. 6.5c. The similarities displayed by our final simulated (Fig. 6.8) and 

experimental (Fig. 6.4c-e) results will validate the lateral reduction of the hBN defect 

potential we applied here.  
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6.6.2 Approximating the STM tip’s top gating effect on MLG 

 

 

Figure 6.6| Estimate of the work function mismatch between the STM tip and 

MLG. (a) Experimentally determined 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑉𝐺) on pristine graphene without a 

QD. This 2D plot is used to determine the magnitude of the STM tip’s band shifting 

effect on graphene. The inverted “S” shaped features correspond to direct tunneling 

into tip-induced confined states. Diagonal features correspond to the charging of 

spectroscopic features as they coincide with the tip’s Fermi level 𝐸𝐹
𝑡𝑖𝑝

. Namely, the 

dashed orange box encloses a charging feature due to a tip-induce state and the green 

dashed line outlines a 𝑑𝐼/𝑑𝑉𝑆 suppression belonging to graphene’s Dirac point 𝐸𝐷. The 

dashed white line indicates where 𝑉𝑆 = 0. Tunneling parameters: 𝑉𝑆 = −0.2 V; 𝐼 =
1 nA; 𝑉𝑎𝑐 = 2 mV; 𝑓𝑎𝑐 = 400 Hz. (b-d) Tunneling diagrams highlighting the channels 

responsible for the features in (a) at 𝑉𝐺 = 0. Both 𝐶ℎ. 1 and 𝐶ℎ. 2 contribute to the 

𝑑𝐼/𝑑𝑉𝑆 signal when 0 > 𝑉𝑆 > −290 m𝑉. The work function mismatch ΔΦ is 

determined by tracking the 𝑑𝐼/𝑑𝑉𝑆 suppression in 𝐶ℎ. 2 that occurs when 𝑒𝑉𝑆~ΔΦ in 

(d). (e) Hypothetical tunneling diagram if ΔΦ = 0 at 𝑉𝑆 = 𝑉𝐺 = 0. 
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Now that we have obtained the induced charge density profile on graphene due 

to the charged hBN defects alone, we proceed to estimate the induced charge profile 

due to the STM tip. In our experiments, we use a tip made of tungsten that is likely 

coated with gold (see Ch. 4). The differing materials (metals and graphene) in close 

proximity and the indeterminacy of the STM tip’s shape lead to a finite work function 

mismatch (ΔΦ) between the STM tip and graphene. In the tunneling regime, the STM 

tip remains at a distance ~7.5 Å from the graphene surface. Because of the finite ΔΦ, 

there is shift of the graphene bands even when 𝑉𝑆 = 0 and 𝑉𝐺 = 0. This effect is depicted 

in Fig. 6.6b. For |ΔΦ| ≫ |𝑉𝑆|, the polarity and intensity of the tip induced doping is 

dominated by ΔΦ. Therefore, in this regime we can acquire an estimate for the doping 

profile induced by the STM tip by obtaining an approximation of ΔΦ. 

To get an estimate of ΔΦ and ultimately the top gating effect of the STM tip, 

we measure and plot the dependence of 𝑑𝐼/𝑑𝑉𝑆 as function of 𝑉𝑆 and 𝑉𝐺 on pristine 

MLG prior to creating the QD (see Fig. 6.6a). As discussed in earlier sections, the 

resulting 2D image plot displays changes in the tunneling current between the tip and 

graphene as we vary their relative band alignments. In Fig. 6.6a we observe several 

confined states appearing as a result of the STM tip’s local top gating effect.2 As we 

vary 𝑉𝑆 for different values of 𝑉𝐺 we obtain a 𝑑𝐼/𝑑𝑉𝑆 signal that includes the 

contribution from two channels during the tunneling process, a common occurrence for 

low dimensional systems with low charge density.49,50  

The tunneling schematics in Figs. 6.6b-d illustrate these two channels (𝐶ℎ. 1 

and 𝐶ℎ. 2) as 𝑉𝑆 decreases to negative values. As a side note, when 𝑉𝑆 > 0 the 
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conventions for 𝐶ℎ. 1 and 𝐶ℎ. 2 we discuss here need to be interchanged. For 𝑉𝑆 < 0, 

the first channel (𝐶ℎ. 1) corresponds to the differential tunneling current between the 

topmost occupied states in graphene and unoccupied states in the STM tip at an energy 

determined by the sample bias 𝑉𝑆. Note, inelastic tunneling is present in 𝐶ℎ. 1 but is 

ignored in the schematics for simplicity. From expression (6.2), LDOS features in MLG 

follow 𝐸𝐹 with √|𝑉𝐺| dependence. Thus, tip-induced resonant states manifest as 

inverted “S”-shape fans2 in 𝐶ℎ. 1. These features are clearly visible in Fig. 6.6a. To 

obtain an estimate for ΔΦ, we focus on the second channel (𝐶ℎ. 2). As depicted in Fig. 

6.6c, this channel corresponds to the differential tunneling current between the lowest 

unoccupied states of the STM tip and states in graphene at the same energy. Thus, 

inelastic tunneling does not contribute to the signal of 𝐶ℎ. 2. Consequently, signal 

traces in 𝐶ℎ. 2 will manifest as lines along which MLG retains a constant charge density 

𝑛.35,51 These lines have a finite slope due to the capacitive couplings in the tip-MLG 

and MLG-backgate system.52 One such line appears in Fig. 6.6a enclosed by an orange 

box. This feature results from the charging of a tip-induced confined state as it aligns 

with the tip’s Fermi level (𝐸𝐹
𝑡𝑖𝑝

). 

Now that we have identified the origin of the tunneling features in Fig. 6.6a for 

different band alignment configurations, we are ready to obtain an estimate for ΔΦ. 

First, as depicted in Fig. 6.6e, we note that for pristine MLG and assuming ΔΦ = 0,  

the Dirac point 𝐸𝐷 should cross the Fermi level 𝐸𝐹 at 𝑉𝑆 = 𝑉𝐺 = 0. However, because 

ΔΦ ≠ 0, 𝐸𝐷 will be shifted away from 𝐸𝐹 at 𝑉𝑆 = 𝑉𝐺 = 0 (see Fig. 6.6b). To this end, 

we find the value of 𝑉𝑆 at which 𝐸𝐷 crosses the tip’s Fermi level 𝐸𝐹
𝑡𝑖𝑝 = 𝐸𝐹 − 𝑒𝑉𝑆 at 
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𝑉𝐺 = 0 in 𝐶ℎ. 2. In summary, applying this 𝑉𝑆 voltage counters the STM tip’s top gating 

effect due to ΔΦ on the surface of graphene as depicted by the downward shift of 

MLG’s DOS profile in Figs. 6.6b-d (see yellow arrows). In the absence of gating from 

below, finding this value for 𝑉𝑆 allows us to estimate ΔΦ. Next, we follow the slope of 

the charging feature inside the orange box and trace a green dashed line with the same 

slope along the furthest dark fringe on the right (see Fig. 6.6a). The suppression of 

𝑑𝐼/𝑑𝑉𝑆 along this dark fringe indicates where 𝐸𝐷 crosses 𝐸𝐹
𝑡𝑖𝑝

 as depicted in Fig. 6.6d. 

Finally, we extend this green dashed line downward and find that it crosses 𝑉𝐺 = 0 at 

𝑉𝑆~– 290 mV. We note that this value for 𝑉𝑆 is greater in magnitude than the 𝑉𝑆 range 

in our measurements (−100 mV < 𝑉𝑆 < 100 mV). Thus, we can reasonably assume 

that the effect of ΔΦ dominates within the experimental 𝑉𝑆 range we used to map the 

QD states. 
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6.6.3 Modeling the charge-induced profile on MLG by the STM tip 

 

 

Figure 6.7| Determination of the charge 

density profile induced by the STM tip on 

MLG. (a) Charge density profile induced on 

graphene by the STM tip. The induced charge 

density intensity is extracted from the 

extrapolation in (a). The shape of this density 

profile is determined by assuming the tip to be a 

charged sphere with a radius of 80 nm. 

 

Finally, with an estimate for the band shift of MLG due to ΔΦ, we can 

approximate the profile for the charge induced on graphene by the STM tip. If we 

assume the STM tip’s apex and graphene act as a parallel plate capacitor with a 7.5 Å 

separation, then the 𝑉𝑆~– 290 mV offset corresponds to a maximum tip induced charge 

density of ~2.14 × 1012 cm−2. We calculated the shape of the tip’s doping profile by 

using a standard Poisson solver where the tip is represented by a charged 80 nm radius 

sphere placed 7.5 Å away from a metal surface. The tip radius and distance to graphene 

that we used are both consistent with values found in the literature.3,9,53 With this 

analysis we acquire the tip-induced doping profile shown in Fig. 6.7a. 

 

 

 

 

 



130 
 

6.6.4 Simulating the STM tip’s effect on an exposed graphene QD 

 

 

Figure 6.8| Simulation of the local density of states (LDOS) of an exposed 

graphene QD with an STM tip at a fixed position. (a-c) Spatial 2D map of 

graphene’s Dirac point energy 𝐸𝐷 with respect to 𝐸𝐹 after adding the contributions from 

hBN defects (Fig. 6.5c) and the STM tip (Fig. 6.7a). The STM tip’s location varies for 

each of these maps. (d) Spatial 2D map of the 𝐸𝐷 with respect to 𝐸𝐹 determined by 

only considering the contribution from hBN defects (Fig. 6.5c). (e-h) Respective 

potential profile line cuts along the yellow dashed lines in (a-d). (i-l) Calculated LDOS 

distributions for each corresponding potential map. These simulations reveal the effect 

of the STM tip on the QD states for tip positions placed at different distances from the 

QD’s center. 

 

We have thus far obtained approximations for the charge density profiles 

induced on graphene due to charged defects in the underlying hBN and the STM tip. 
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We proceed by adding these contributions and obtain a potential profile resulting from 

the summation of the induced charge densities. After adding the charge densities 

induced on graphene from Figs. 6.5c and 6.7a, we convert the resulting charge density 

𝑛(𝑟) into a potential profile 

 𝑈𝐷(𝑟) = sgn[𝑛(𝑟)] ∗ ℏ𝑣𝐹√𝜋|𝑛(𝑟)| (6.4) 

Figures 6.8a-c show 2D maps of the potentials resulting from the cumulative charge 

densities of the hBN defects and STM tip. The color scale corresponds to the potential 

value, where red and blue indicate high and low values, respectively. Notably, each of 

the potential maps differ because the position of the tip changes between them. As a 

comparison, we also show a 2D potential map without the effect of the STM tip (Fig. 

6.8d). When the STM tip is at the center (Fig. 6.8a) or 50 nm away from the center 

(Fig. 6.8b), the potential map has the highest value at the STM tip’s location, as 

indicated by the red dot at the corresponding locations. Additionally, we plot line cuts 

of the potential maps in Figs. 6.8e-g. Here the QD’s potential reveals a distorted profile 

with a prominent peak. For maps with the STM tip 100 nm away from the center (Fig. 

6.8c), the potential profile has two separate peaks (Fig. 6.8g), effectively becoming an 

asymmetric double QD system. 

We now discuss our numerical TB calculations, which use the potential profiles 

from Figs. 6.8a-d. These calculations allow us to simulate the QD’s LDOS in the 

presence of a fixed STM tip. Figure 6.8i shows the calculated LDOS distribution of a 

graphene QD when the STM tip is fixed at the center. In this image we note several 
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distinct nodes that correspond to graphene QD states.43–47 In Figs. 6.8j and 6.8k we 

show the calculated LDOS distributions when the STM tip is fixed 50 nm and 100 nm 

away from the QD’s center. As a comparison we also show the calculated LDOS of a 

QD that excludes the effect of the STM tip (Fig. 6.8l). When the tip is fixed at the QD’s 

center (Fig. 6.8i) or 50 nm away from the center (Fig. 6.8j), several new states with 

higher LDOS appear at the tip’s location. We also note that the LDOS distribution and 

intensities away from the tip’s location (in Figs. 6.8i-j) are similar to the calculated 

LDOS that excludes the tip’s effect (Fig. 6.8l). When the tip is fixed 100 nm away 

from the QD’s center, we observe a new state with a much higher LDOS at the tip’s 

position (Fig. 6.8k). Similar to the previous cases, the LDOS distribution and intensities 

away from the tip’s location remains unaffected. 

 

6.6.5 Simulating spatial STS characterization of an exposed MLG QD 

Now that we have demonstrated that graphene QD states are affected by an 

STM tip at a fixed position with our simulations, we study the case for a movable STM 

tip, which is more akin to our experiment. In measurements such as those shown in 

Figs. 6.4c-e, each vertical array of pixels in the image corresponds to a 𝑑𝐼/𝑑𝑉𝑆 curve 

acquired at the location of the STM tip. Consequently, to compare our experimental 

results with our simulations, we calculate the QD’s LDOS with the STM tip located at 

each position along a line that crosses the QD. After obtaining the LDOS distribution 

from each profile (similar to those in Figs. 6.8e-g), we compile the individual 𝑑𝐼/𝑑𝑉𝑆 

curves calculated specifically at the STM tip’s location for each point within the QD 
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and along the line that crosses the QD. In Fig. 6.9a we show the result of this 

compilation process. 

 

 

Figure 6.9| Simulation of the LDOS in a graphene QD with a moving STM tip for 

different 𝑽𝑮 configurations. (a-c) Simulated LDOS spectra along a line that crosses 

the center of a graphene QD. This simulation includes the influence of the STM tip. 

The LDOS spectra at each position is calculated with the tip fixed at that location. (d-

f) Simulated LDOS spectra along a line that crosses the center of the graphene QD 

without considering the effect of the STM tip. The potentials induced by hBN defects 

used in (a), (b), and (c) are the same as those used in (d), (e), and (f), respectively. By 

comparing our results that include the effect of the STM tip (a-c) with those that 

exclude it (d-f), we find that a comprehensive treatment of the QD electrostatic 

environment is necessary to achieve agreement between theory and the experimental 

results from Figs. 6.4c-e. 
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We now consider how varying 𝑉𝐺 affects the QD states in our calculation. By 

changing 𝑉𝐺 the global electron and hole densities in graphene are offset. We simulate 

this effect by shifting the charge density profile due to the hBN defects (see Fig. 6.5c). 

Specifically, this profile is shifted up to simulate an increase in hole density in 

graphene. Onto this shifted profile we add the unchanged STM tip’s charge density 

profile (Fig. 6.7a) and perform the sequence of calculations as described for Fig. 6.9a. 

Figures 6.9b-c show the complete results for two additional simulated values of 𝑉𝐺.  

To highlight the importance of the STM tip’s influence on our exposed 

graphene QDs, we show LDOS calculations at different 𝑉𝐺 values that omit the tip’s 

presence (Figs. 6.9d–f). Clearly, by comparing these simulations with measurements 

from Figs. 6.4c–e and the simulations in Figs. 6.9a–c, it is evident that a tip-inclusive 

model achieves better agreement with our experimental results. Similar agreement can 

be seen with other experimental results as well.1,4,5 Specifically, the model that omits 

the STM tip (Figs. 6.9d–f) lacks several key features from our experiment. For 

example, the deflection of states near the edges of the QD are missing in Figs. 6.9d–f, 

but the tip-inclusive model captures this feature consistently. In addition, we note that 

the presence of a continuous bright line that wraps around the edge of the QD’s profile 

for higher 𝑉𝐺 values is shared by the experiment (Fig. 6.4c) and the comprehensive 

model (Fig. 6.9a), but absent in the model that ignores the tip (Fig. 6.9a). Finally, for 

the graphene QD from the experiment we note that the QD states are less distorted at 

higher values of 𝑉𝐺, see for example Fig. 6.4e. This insightful trend is also displayed 
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in the comprehensive model indicating that the effect of the tip can be mitigated when 

a sufficiently large QD is achieved. 

 

6.7 Conclusion 

In conclusion, we showed that incorporating the STM tip’s electrostatics in 

conjunction with that of the underlying hBN charges enables a more complete 

understanding of the experimental spectroscopic features of exposed graphene QDs. 

We compared experimental STM data obtained on graphene QDs with simulations that 

include the tip-induced potential as well as with simulations that neglect this potential. 

The agreement between experiments and simulations is greater when the simulations 

include the influence of the tip. In particular, the experimentally observed bright 

envelope of the potential and the deflection of states close to the QD edge are only 

reproduced when the tip-induced potential is included. Our results highlight the 

importance of considering the effect of the STM tip when interpreting spectroscopic 

characterization of exposed graphene QD states. Our analysis also reveals the 

intriguing possibility of studying the interplay between states confined by the potential 

due to hBN defects and the potential due to the STM tip (see Fig. 6.8k). Studies that 

seek to reduce such interplay may use insights from our simulations to mitigate the 

tip’s effect by tuning 𝑉𝐺. Additionally, the interaction between these two QDs could 

potentially be used to emulate relativistic molecular behavior or other complex coupled 

QD systems.6 



136 
 

Chapter 6 - References 

(1)  Lee, J.; Wong, D.; Velasco, J.; Rodriguez-Nieva, J. F.; Kahn, S.; Tsai, H. Z.; 

Taniguchi, T.; Watanabe, K.; Zettl, A.; Wang, F.; Levitov, L. S.; Crommie, M. 

F. Imaging Electrostatically Confined Dirac Fermions in Graphene Quantum 

Dots. Nat. Phys. 2016. https://doi.org/10.1038/nphys3805. 

(2)  Zhao, Y.; Wyrick, J.; Natterer, F. D.; Rodriguez-Nieva, J. F.; Lewandowski, 

C.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Zhitenev, N. B.; Stroscio, J. A. 

Creating and Probing Electron Whispering-Gallery Modes in Graphene. 

Science (80-. ). 2015. https://doi.org/10.1126/science.aaa7469. 

(3)  Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M. R.; Li, G.; Watanabe, K.; 

Taniguchi, T.; Peeters, F. M.; Andrei, E. Y. Tuning a Circular P-n Junction in 

Graphene from Quantum Confinement to Optical Guiding. Nat. Nanotechnol. 

2017. https://doi.org/10.1038/nnano.2017.181. 

(4)  Ghahari, F.; Walkup, D.; Gutiérrez, C.; Rodriguez-Nieva, J. F.; Zhao, Y.; 

Wyrick, J.; Natterer, F. D.; Cullen, W. G.; Watanabe, K.; Taniguchi, T.; 

Levitov, L. S.; Zhitenev, N. B.; Stroscio, J. A. An on/off Berry Phase Switch in 

Circular Graphene Resonators. Science (80-. ). 2017. 

https://doi.org/10.1126/science.aal0212. 

(5)  Gutiérrez, C.; Walkup, D.; Ghahari, F.; Lewandowski, C.; Rodriguez-Nieva, J. 

F.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Zhitenev, N. B.; Stroscio, J. A. 

Interaction-Driven Quantum Hall Wedding Cake–like Structures in Graphene 

Quantum Dots. Science (80-. ). 2018. https://doi.org/10.1126/science.aar2014. 

(6)  Walkup, D.; Ghahari, F.; Gutiérrez, C.; Watanabe, K.; Taniguchi, T.; Zhitenev, 

N. B.; Stroscio, J. A. Tuning Single-Electron Charging and Interactions 

between Compressible Landau Level Islands in Graphene. Phys. Rev. B 2020. 

https://doi.org/10.1103/PhysRevB.101.035428. 

(7)  Mohr, M.; Maultzsch, J.; Dobardžić, E.; Reich, S.; Milošević, I.; Damnjanović, 

M.; Bosak, A.; Krisch, M.; Thomsen, C. Phonon Dispersion of Graphite by 

Inelastic X-Ray Scattering. Phys. Rev. B - Condens. Matter Mater. Phys. 2007. 

https://doi.org/10.1103/PhysRevB.76.035439. 

(8)  Jung, S.; Park, M.; Park, J.; Jeong, T. Y.; Kim, H. J.; Watanabe, K.; Taniguchi, 

T.; Ha, D. H.; Hwang, C.; Kim, Y. S. Vibrational Properties of H-BN and h-

BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling 

Spectroscopy. Sci. Rep. 2015. https://doi.org/10.1038/srep16642. 

(9)  Zhang, Y.; Brar, V. W.; Wang, F.; Girit, C.; Yayon, Y.; Panlasigui, M.; Zettl, 

A.; Crommie, M. F. Giant Phonon-Induced Conductance in Scanning 

Tunnelling Spectroscopy of Gate-Tunable Graphene. Nat. Phys. 2008. 

https://doi.org/10.1038/nphys1022. 



137 
 

(10)  Brar, V. W. Scanning Tunneling Spectroscopy of Graphene and Magnetic 

Nanostructures. PhD Thesis, University fo California, Berkeley, 2010. 

(11)  Geringer, V.; Subramaniam, D.; Michel, A. K.; Szafranek, B.; Schall, D.; 

Georgi, A.; Mashoff, T.; Neumaier, D.; Liebmann, M.; Morgenstern, M. 

Electrical Transport and Low-Temperature Scanning Tunneling Microscopy of 

Microsoldered Graphene. Appl. Phys. Lett. 2010. 

https://doi.org/10.1063/1.3334730. 

(12)  Lagoute, J.; Joucken, F.; Repain, V.; Tison, Y.; Chacon, C.; Bellec, A.; Girard, 

Y.; Sporken, R.; Conrad, E. H.; Ducastelle, F.; Palsgaard, M.; Andersen, N. P.; 

Brandbyge, M.; Rousset, S. Giant Tunnel-Electron Injection in Nitrogen-

Doped Graphene. Phys. Rev. B - Condens. Matter Mater. Phys. 2015. 

https://doi.org/10.1103/PhysRevB.91.125442. 

(13)  Joucken, F.; Henrard, L.; Lagoute, J. Electronic Properties of Chemically 

Doped Graphene. Phys. Rev. Mater. 2019. 

https://doi.org/10.1103/PhysRevMaterials.3.110301. 

(14)  Feenstra, R. M. A Prospective: Quantitative Scanning Tunneling Spectroscopy 

of Semiconductor Surfaces. Surface Science. 2009. 

https://doi.org/10.1016/j.susc.2009.08.002. 

(15)  Lu, C. P.; Li, G.; Mao, J.; Wang, L. M.; Andrei, E. Y. Bandgap, Mid-Gap 

States, and Gating Effects in MoS2. Nano Lett. 2014. 

https://doi.org/10.1021/nl501659n. 

(16)  Koós, A. A.; Vancsó, P.; Magda, G. Z.; Osváth, Z.; Kertész, K.; Dobrik, G.; 

Hwang, C.; Tapasztó, L.; Biró, L. P. STM Study of the MoS2 Flakes Grown on 

Graphite: A Model System for Atomically Clean 2D Heterostructure 

Interfaces. Carbon N. Y. 2016. https://doi.org/10.1016/j.carbon.2016.04.069. 

(17)  Vancsó, P.; Magda, G. Z.; Peto, J.; Noh, J. Y.; Kim, Y. S.; Hwang, C.; Biró, L. 

P.; Tapasztó, L. The Intrinsic Defect Structure of Exfoliated MoS2 Single 

Layers Revealed by Scanning Tunneling Microscopy. Sci. Rep. 2016. 

https://doi.org/10.1038/srep29726. 

(18)  Wallace, P. R. The Band Theory of Graphite. Phys. Rev. 1947. 

https://doi.org/10.1103/PhysRev.71.622. 

(19)  Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; 

Novoselov, K. S.; Geim, A. K. Chaotic Dirac Billiard in Graphene Quantum 

Dots. Science (80-. ). 2008. https://doi.org/10.1126/science.1154663. 

(20)  Schnez, S.; Güttinger, J.; Huefner, M.; Stampfer, C.; Ensslin, K.; Ihn, T. 

Imaging Localized States in Graphene Nanostructures. Phys. Rev. B - Condens. 

Matter Mater. Phys. 2010. https://doi.org/10.1103/PhysRevB.82.165445. 



138 
 

(21)  Todd, K.; Chou, H. T.; Amasha, S.; David, G. G. Quantum Dot Behavior in 

Graphene Nanoconstrictions. Nano Lett. 2009. 

https://doi.org/10.1021/nl803291b. 

(22)  Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy Band-Gap Engineering 

of Graphene Nanoribbons. Phys. Rev. Lett. 2007. 

https://doi.org/10.1103/PhysRevLett.98.206805. 

(23)  Subramaniam, D.; Libisch, F.; Li, Y.; Pauly, C.; Geringer, V.; Reiter, R.; 

Mashoff, T.; Liebmann, M.; Burgdörfer, J.; Busse, C.; Michely, T.; 

Mazzarello, R.; Pratzer, M.; Morgenstern, M. Wave-Function Mapping of 

Graphene Quantum Dots with Soft Confinement. Phys. Rev. Lett. 2012. 

https://doi.org/10.1103/PhysRevLett.108.046801. 

(24)  Hämäläinen, S. K.; Sun, Z.; Boneschanscher, M. P.; Uppstu, A.; Ijäs, M.; 

Harju, A.; Vanmaekelbergh, D.; Liljeroth, P. Quantum-Confined Electronic 

States in Atomically Well-Defined Graphene Nanostructures. Phys. Rev. Lett. 

2011. https://doi.org/10.1103/PhysRevLett.107.236803. 

(25)  Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. 

Direct Observation of Electron Confinement in Epitaxial Graphene 

Nanoislands. ACS Nano 2011. https://doi.org/10.1021/nn2028105. 

(26)  Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P. Transforming C 60 

Molecules into Graphene Quantum Dots. Nat. Nanotechnol. 2011. 

https://doi.org/10.1038/nnano.2011.30. 

(27)  Wang, Y.; Wong, D.; Shytov, A. V.; Brar, V. W.; Choi, S.; Wu, Q.; Tsai, H. 

Z.; Regan, W.; Zettl, A.; Kawakami, R. K.; Louie, S. G.; Levitov, L. S.; 

Crommie, M. F. Observing Atomic Collapse Resonances in Artificial Nuclei 

on Graphene. Science (80-. ). 2013. https://doi.org/10.1126/science.1234320. 

(28)  Jung, S.; Rutter, G. M.; Klimov, N. N.; Newell, D. B.; Calizo, I.; Hight-

Walker, A. R.; Zhitenev, N. B.; Stroscio, J. A. Evolution of Microscopic 

Localization in Graphene in a Magnetic Field from Scattering Resonances to 

Quantum Dots. Nat. Phys. 2011. https://doi.org/10.1038/nphys1866. 

(29)  Freitag, N. M.; Chizhova, L. A.; Nemes-Incze, P.; Woods, C. R.; Gorbachev, 

R. V.; Cao, Y.; Geim, A. K.; Novoselov, K. S.; Burgdörfer, J.; Libisch, F.; 

Morgenstern, M. Electrostatically Confined Monolayer Graphene Quantum 

Dots with Orbital and Valley Splittings. Nano Lett. 2016. 

https://doi.org/10.1021/acs.nanolett.6b02548. 

(30)  Freitag, N. M.; Reisch, T.; Chizhova, L. A.; Nemes-Incze, P.; Holl, C.; Woods, 

C. R.; Gorbachev, R. V.; Cao, Y.; Geim, A. K.; Novoselov, K. S.; Burgdörfer, 

J.; Libisch, F.; Morgenstern, M. Large Tunable Valley Splitting in Edge-Free 

Graphene Quantum Dots on Boron Nitride. Nat. Nanotechnol. 2018. 

https://doi.org/10.1038/s41565-018-0080-8. 



139 
 

(31)  Velasco, J.; Ju, L.; Wong, D.; Kahn, S.; Lee, J.; Tsai, H. Z.; Germany, C.; 

Wickenburg, S.; Lu, J.; Taniguchi, T.; Watanabe, K.; Zettl, A.; Wang, F.; 

Crommie, M. F. Nanoscale Control of Rewriteable Doping Patterns in Pristine 

Graphene/Boron Nitride Heterostructures. Nano Lett. 2016. 

https://doi.org/10.1021/acs.nanolett.5b04441. 

(32)  Quezada-Lopez, E. A.; Joucken, F.; Chen, H.; Lara, A.; Davenport, J. L.; 

Hellier, K.; Taniguchi, T.; Watanabe, K.; Carter, S.; Ramirez, A. P.; Velasco, 

J. Persistent and Reversible Electrostatic Control of Doping in 

Graphene/Hexagonal Boron Nitride Heterostructures. J. Appl. Phys. 2020. 

https://doi.org/10.1063/1.5127770. 

(33)  Zomer, P. J.; Dash, S. P.; Tombros, N.; Van Wees, B. J. A Transfer Technique 

for High Mobility Graphene Devices on Commercially Available Hexagonal 

Boron Nitride. Appl. Phys. Lett. 2011. https://doi.org/10.1063/1.3665405. 

(34)  Goossens, A. M.; Calado, V. E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; 

Vandersypen, L. M. K. Mechanical Cleaning of Graphene. Appl. Phys. Lett. 

2012. https://doi.org/10.1063/1.3685504. 

(35)  Velasco, J.; Lee, J.; Wong, D.; Kahn, S.; Tsai, H. Z.; Costello, J.; Umeda, T.; 

Taniguchi, T.; Watanabe, K.; Zettl, A.; Wang, F.; Crommie, M. F. 

Visualization and Control of Single-Electron Charging in Bilayer Graphene 

Quantum Dots. Nano Lett. 2018. https://doi.org/10.1021/acs.nanolett.8b01972. 

(36)  Tersoff, J.; Hamann, D. R. Theory of the Scanning Tunneling Microscope. 

Phys. Rev. B 1985. https://doi.org/10.1103/PhysRevB.31.805. 

(37)  Chen, C. J. Introduction to Scanning Tunneling Microscopy: Second Edition; 

2007. https://doi.org/10.1093/acprof:oso/9780199211500.001.0001. 

(38)  Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral Tunnelling and the 

Klein Paradox in Graphene. Nat. Phys. 2006. 

https://doi.org/10.1038/nphys384. 

(39)  Cheianov, V. V.; Fal’ko, V. I. Selective Transmission of Dirac Electrons and 

Ballistic Magnetoresistance of N-p Junctions in Graphene. Phys. Rev. B - 

Condens. Matter Mater. Phys. 2006. 

https://doi.org/10.1103/PhysRevB.74.041403. 

(40)  Shytov, A. V.; Rudner, M. S.; Levitov, L. S. Klein Backscattering and Fabry-

Pérot Interference in Graphene Heterojunctions. Phys. Rev. Lett. 2008. 

https://doi.org/10.1103/PhysRevLett.101.156804. 

(41)  Allain, P. E.; Fuchs, J. N. Klein Tunneling in Graphene: Optics with Massless 

Electrons. Eur. Phys. J. B 2011. https://doi.org/10.1140/epjb/e2011-20351-3. 

(42)  Rickhaus, P. S. Electron Optics in Ballistic Graphene. PhD Thesis., University 



140 
 

of Basel, Switzerland, 2015. 

(43)  Wu, J. S.; Fogler, M. M. Scattering of Two-Dimensional Massless Dirac 

Electrons by a Circular Potential Barrier. Phys. Rev. B - Condens. Matter 

Mater. Phys. 2014. https://doi.org/10.1103/PhysRevB.90.235402. 

(44)  Schulz, C.; Heinisch, R. L.; Fehske, H. Scattering of Two-Dimensional Dirac 

Fermions on Gate-Defined Oscillating Quantum Dots. Phys. Rev. B - Condens. 

Matter Mater. Phys. 2015. https://doi.org/10.1103/PhysRevB.91.045130. 

(45)  Chen, H. Y.; Apalkov, V.; Chakraborty, T. Fock-Darwin States of Dirac 

Electrons in Graphene-Based Artificial Atoms. Phys. Rev. Lett. 2007. 

https://doi.org/10.1103/PhysRevLett.98.186803. 

(46)  Matulis, A.; Peeters, F. M. Quasibound States of Quantum Dots in Single and 

Bilayer Graphene. Phys. Rev. B - Condens. Matter Mater. Phys. 2008. 

https://doi.org/10.1103/PhysRevB.77.115423. 

(47)  Bardarson, J. H.; Titov, M.; Brouwer, P. W. Electrostatic Confinement of 

Electrons in an Integrable Graphene Quantum Dot. Phys. Rev. Lett. 2009. 

https://doi.org/10.1103/PhysRevLett.102.226803. 

(48)  Zhang, Y.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of Spatial 

Charge Inhomogeneity in Graphene. Nat. Phys. 2009. 

https://doi.org/10.1038/nphys1365. 

(49)  Rutter, G. M.; Jung, S.; Klimov, N. N.; Newell, D. B.; Zhitenev, N. B.; 

Stroscio, J. A. Microscopic Polarization in Bilayer Graphene. Nat. Phys. 2011. 

https://doi.org/10.1038/nphys1988. 

(50)  LeRoy, B. J.; Kong, J.; Pahilwani, V. K.; Dekker, C.; Lemay, S. G. Three-

Terminal Scanning Tunneling Spectroscopy of Suspended Carbon Nanotubes. 

Phys. Rev. B - Condens. Matter Mater. Phys. 2005. 

https://doi.org/10.1103/PhysRevB.72.075413. 

(51)  Chae, J.; Jung, S.; Young, A. F.; Dean, C. R.; Wang, L.; Gao, Y.; Watanabe, 

K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P.; Zhitenev, N. B.; Stroscio, 

J. A. Renormalization of the Graphene Dispersion Velocity Determined from 

Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2012. 

https://doi.org/10.1103/PhysRevLett.109.116802. 

(52)  Davenport, J. L.; Ge, Z.; Joucken, F.; Eberth A. Quezada-Lopez, T. T.; 

Watanabe, K.; Jr., J. V. Unraveling the Tunneling Spectrum of Bernal-Stacked 

Bilayer Graphene. 

(53)  Holdman, G. R.; Krebs, Z. J.; Behn, W. A.; Smith, K. J.; Watanabe, K.; 

Taniguchi, T.; Brar, V. W. Dynamic Band Structure and Capacitance Effects in 

Scanning Tunneling Spectroscopy of Bilayer Graphene. Appl. Phys. Lett. 2019. 



141 
 

https://doi.org/10.1063/1.5127078. 

 



142 
 

Chapter 7 - Nanospot Angle Resolved Photoemission Study of Bernal-

Stacked Bilayer Graphene on Hexagonal Boron Nitride: Band Structure 

and Local Variation of Lattice Alignment 

 

7.1 Introduction 

Hexagonal boron nitride (hBN) is the supporting substrate of choice for two-

dimensional material devices because it is atomically flat and chemically inert.1 

However, due to the small lateral size of mechanically exfoliated hBN flakes 

(~30 μm), electronic structure studies of two-dimensional materials supported by hBN 

using angle-resolved photoemission spectroscopy (ARPES) are challenging. Here we 

investigate the electronic band structure of a Bernal-stacked bilayer graphene sheet on 

a hBN (BLG/hBN) flake using nanospot ARPES (nanoARPES).2–5 By fitting high-

resolution energy vs momentum electronic band spectra, we extract the tight-binding 

parameters for BLG on hBN. In addition, we reveal spatial variations of the alignment 

angle between BLG and hBN lattices via inhomogeneity of the electronic bands near 

the Fermi level. We confirmed these findings by scanning tunneling microscopy (STM) 

measurements obtained on the same device. Our results from spatially resolved 

nanoARPES measurements of BLG/hBN heterostructures are instrumental for 

understanding experiments that utilize spatial averaging techniques such as electronic 

transport and optical spectroscopy. 
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7.2 ARPES with Nanometer-Scale Spatial Resolution 

Figure 7.1| Nanospot angle-resolved photoemission spectroscopy (nanoARPES) 

enabled by advanced optics and translational control. (a) Design outline of a 

Fresnel zone plate (FZP) showing the alternating opaque (black) and transparent 

(white) rings. This alternating pattern acts as a diffraction grating component which 

coaxially focuses an incident monochromatic beam of light. [Image credit: NASA]. (b) 

Schematic of the nanoARPES setup used for the experiments in this chapter. An 

incident beam of light (ℎ𝜈~100 eV) from a synchrotron source gets projected by a 

pinhole onto the FZP. An order sorting aperture filters out higher diffracted modes from 

the FZP so that the beam is focused down to a ~120 nm spot on the sample’s surface. 

A photoelectron analyzer collects the sample’s emitted electrons as the stage moves 

along the 𝑥𝑦-plane of the sample to spatially map photoemission intensities. [Image 

adapted from Chen et al].6 

 

The fundamental principle and theory of ARPES was discussed in Ch. 3. 

However, it is necessary to discuss the additional experimental features that enable the 

novelty of the results presented in this chapter.  

Conventional ARPES shines light on a sample’s surface with a beam spot size 

of 50 − 100 μm in diameter.2 This spot size is larger than the size of most exfoliated 

graphene/hBN samples. Thus, the application of ARPES on such samples tends to 

average over large areas and even include photoemission from the surrounding 
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substrate.4,6 To address this lack in spatial resolution, the experiments discussed in this 

chapter apply an additional optical component to the incident beam. This component is 

a Fresnel zone plate and its alternating opaque and transparent pattern is depicted in 

Fig. 7.1a. This zone plate acts as a diffraction grating component that focuses 

monochromatic light down to a much smaller spot size via constructive interference. 

The transparent zones are arranged in such a way that the optical path difference 

through the sequential zones arriving at the focus is exactly one wavelength, and 

therefore light coming through these zones undergoes positive interference at the focal 

point.6 The nanoARPES setup used for the experiments in this chapter can focus this 

beam down to ~120 nm in diameter.  

In addition to a conveniently small beam size, this nanoARPES system includes 

fine spatial control of the substrate stage that uses eight axes of motion.6 Three linear 

translators enable the positioning of the sample near the beam spot. Two rotation axes 

enable probing of different region on the Brillouin zone (BZ) as we will see in the 

upcoming sections. The last three axes are the piezo-electric controlled translations in 

𝑥𝑦𝑧 that enable the nanometer-scale scanning and focusing of the beam spot along a 

sample’s surface. Figure 7.1b depicts the primary components of the nanoARPES 

system which includes order sorting aperture to filter out higher order diffracted modes 

and a photoelectron analyzer that collects the photoemitted charges to map a sample’s 

band structure. 

 



145 
 

7.3 Background of Spatially Resolved ARPES on 2D Materials 

 The recent development of nanoARPES allows unprecedented spatial mapping 

of the electronic band structure of 2D material heterostructures.7–11 In particular, by 

applying this spatially resolved technique to heterostructures that use hBN as a 

supporting substrate, reliable, direct, and insightful visualization of top-lying 2D 

material band structures can be achieved.7–11 Recent spatially resolved ARPES studies 

on monolayer graphene/hBN and WS2/hBN have carefully examined the band structure 

of the top-lying 2D materials and found evidence for polarons8 and bandgap 

renormalization.10 BLG that is supported on hBN is also of fundamental interest 

because of the peculiar physics that has been recently revealed in this system such as 

excitons with pseudospin texture12 and indications of non-Abelian excitations.13 

However, direct spatially resolved electronic structure investigation of BLG/hBN 

heterostructures with ARPES is lacking. 

We present in this chapter a direct spatial mapping of the electronic structure of 

a BLG/hBN heterostructure using nanoARPES in combination with STM. We extract 

tight-binding parameters from high-resolution ARPES spectra. This allows the 

comparison of BLG/hBN parameters with those from previous measurements on BLG 

resting on different substrates and acquired via different techniques. In addition, we 

show that direct access to the band structure with submicron spatial resolution offered 

by nanoARPES reveals small spatial variations of lattice alignment between BLG and 

the supporting hBN. Our results provide important fundamental insight on band 
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structure parameters and nanoscale alignment between 2D materials. This insight can 

be used for improved modeling and further understanding of the interesting physics 

hosted in BLG/hBN heterostructures. 

 

7.4 NanoARPES and STM on BLG/hBN 

Figure 7.2| Optical and photoemission imaging of the heterostructure used for the 

experiment. (a) Dark-field optical image of the sample which consists of a Bernal-

stacked bilayer graphene/hexagonal boron nitride (BLG/hBN) heterostructure resting 

upon a SiO2/Si
+ substrate and is grounded via a gold electrode. This is schematized in 

the inset with gold electrode in yellow, BLG in purple, hBN in blue, SiO2 in faded 

purple, and Si+ in gray. (b) Photoemission image of the same heterostructure as (a). 

Pixel intensities are assigned after integrating an ARPES 𝐸(𝒌) spectrum at each pixel 

position. The components of the device are labeled accordingly in (a) and (b). [Images 

were adapted from the published article].14 

 

Our study was composed of two different characterization techniques 

(nanoARPES and STM) that were applied to our BLG/hBN heterostructure. The 
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nanoARPES experiments were carried out at the ANTARES beam line of synchrotron 

SOLEIL. As described in section 6.2, this beam line is equipped with a Fresnel zone 

plate (FZP) to focus the beam down to a ~120 nm diameter spot. The sample was 

mounted on a nano-positioning stage which was placed at the coincident focus point of 

the electron analyzer and the FZP (see Fig. 7.1b). The photoelectron spectra were 

obtained using a hemispherical analyzer (MBS A1) equipped with electrostatic lenses. 

These lenses are able to electrostatically deflect the photoemitted electrons so that they 

hit a screen at different locations depending on their momenta, thus enabling Fermi 

surface measurements without rotating the sample. All photoemission measurements 

were performed at a temperature of ∼ 100 K, at a photon energy of 100 eV, and with 

an overall energy and momentum resolution better than 35 meV and 0.01 Å−1 , 

respectively. The sample was annealed at ∼ 300 °C for two hours before performing 

measurements. The STM characterization was conducted in ultrahigh vacuum (UHV) 

at a pressure below 2 × 10−10 mbar and at a temperature of 4.8 K in a Createc STM. 

The bias was applied to the sample with respect to the STM tip. The tips were 

electrochemically etched tungsten tips calibrated against the Shockley surface state of 

Au(111), as discussed in Ch. 4. The sample was exposed to atmosphere between the 

two UHV setups. The sample was also annealed at ∼ 300 °C for two hours before STM 

characterization. 

A dark-field optical image of the device is shown in Fig. 7.2a, with a schematic 

in the inset. The BLG flake (purple) rests onto the hBN flake (blue) lying on the 

SiO2/Si
+ substrate and is grounded via a gold/chromium electrode (yellow). These 
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components are labeled in the darkfield optical image. A nanoARPES image of the 

same region is displayed in Fig. 7.2b. Each pixel of this image is assigned an intensity 

level by integrating the ARPES energy vs. momentum 𝐸(𝒌) spectrum obtained at the 

corresponding positions (for additional details on nanoARPES imaging, see the 

discussion below and references)4,8,15,16. There is a clear correspondence between the 

optical and nanoARPES image. This enables identification of device components in 

the nanoARPES image as indicated by the labels in Fig. 7.2b. 

 

7.4.1 Determination of BLG/hBN tight-binding parameters using nanoARPES 

We first focus on the electronic structure of our BLG flake supported by hBN. 

Figure 7.3a displays an ARPES 𝐸(𝒌) spectrum acquired in the direction indicated in 

the inset. The measurement direction makes an angle of ∼ 9° with the 𝛤-𝐾 direction. 

Because of matrix element effects17,18 (also see Ch. 3), only the part of the band 

corresponding to 𝜅𝑥 < 𝐾 is resolved, where 𝐾~1.7 Å−1. Note that 𝜅 is used (instead of 

𝑘) to denote small excursions in reciprocal space around the 𝐾 point as done in Ch. 2. 

Given that photoemission only probes occupied states and the sample’s lack of doping, 

only the valence bands of BLG are visible in the spectrum19,20 (also see Ch. 3). We 

refer to the band closest to the Fermi level as the low-energy band (LEB) and the band 

below it as the high energy band (HEB). We show in Figs. 7.3b and 7.3c ARPES 

constant energy cuts acquired around the 𝐾 point at binding energies (BE) of −1 and 

−2 eV, respectively. These constant energy cuts allow another visualization of the 
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matrix element effects.17,18 We note that the threefold symmetry of the bands around 

the 𝐾 point becomes clearly visible at a high binding energy Fig. 7.3c. This is expected 

because of the threefold symmetry of BLG’s reciprocal space around the 𝐾 point.21 

 

Figure 7.3| ARPES characterization and associated tight-binding (TB) fits of 

BLG/hBN. (a) Experimental ARPES 𝐸(𝒌) spectrum acquired along the direction 

indicated in the BZ shown in the inset. (b) Experimental ARPES constant energy cut 

at a binding energy: BE = −1 eV. (c) Experimental ARPES constant energy cut at 

BE = −2 eV. Each panel contains superimposed best-fit TB bands following the 

conventions of McCann and Koshino.21 Tight-binding parameters used for the fits are: 

𝛾0 = 3.3 eV, 𝛾1 = 0.42 eV, 𝛾3 = 0.07 eV, 𝛾4 = 0.22 eV, and  Δ′ = 0.02 eV. [Plots 

were adapted from the published article].14 
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The direct visualization of BLG’s bands in conjunction with the quality of our 

data enable facile quantitative analysis using a tight binding (TB) model to extract band 

structure parameters. Fits from such a model are superimposed onto the ARPES 𝐸(𝒌) 

spectrum of Fig. 7.3a and the ARPES constant energy cuts in Figs. 7.3b-c. The 

conventions we used to compute the TB bands follow McCann and Koshino.21 

Specifically, the TB bands are obtained by solving numerically, at each point in 

reciprocal space, the following Hamiltonian: 

 

𝐻 =

(

 

0 −𝛾0𝑓(𝒌) 𝛾4𝑓(𝒌) −𝛾3𝑓
∗(𝒌)

−𝛾0𝑓
∗(𝒌) Δ′ 𝛾1 𝛾4𝑓(𝒌)

𝛾4𝑓
∗(𝒌) 𝛾1 Δ′ −𝛾0𝑓(𝒌)

−𝛾3𝑓(𝒌) 𝛾4𝑓
∗(𝒌) −𝛾0𝑓

∗(𝒌) 0 )

  

 

(7.1) 

where 𝑓(𝒌) is given by equation (2.42). Note that this is a more complete Hamiltonian 

for BLG than that discussed in Ch. 2. Additionally, we do not consider the Hamiltonian 

for gapped BLG (2.51) given that layer symmetry is preserved by the lack of a 

perpendicular electric field or charged contaminants on BLG’s surface. Thus, for 

undoped non-gated BLG, there are five independent TB parameters to determine: the 

hopping energies (𝛾0, 𝛾1, 𝛾3, 𝛾4) and Δ′, which is the energy difference between dimer 

and non-dimer sites.21 Briefly, the four hopping energies determine the overall velocity 

of the bands (𝛾0) [see (2.23)], the energy difference between the tops of the LEB and 

the HEB (𝛾1), the trigonal warping effect (𝛾3), and the electron-hole asymmetry (𝛾4). 

Because we do not have access to the unoccupied states with ARPES, we assumed that 

𝛾4 = 0.22 eV, as found from STS studies on a similar sample as ours (BLG/hBN).22 

Also following previous results, we let Δ′ = 0.02 𝑒𝑉 (an average of the values found 
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in the literature).23–25 The remaining parameters were determined by our fits, which 

yielded 𝛾0 = 3.3 ± 0.15 eV, 𝛾1 = 0.42 ± 0.05 eV, and 𝛾3 = 0.07 ± 0.1 eV. The 

uncertainty of these values is determined by the range of the fitting parameters 𝛾𝑖 in 

our simulations that agree with our experimental results (for further details see the 

supplement of the published article).14 The hopping energies 𝛾𝑖 lead to a band velocity 

of 𝜈𝐹 = (3 2ℏ⁄ )𝛾0𝑎0  = 1.07 ± 0.05 × 10
6 m/s and an effective mass 𝑚 =

𝛾1 (2𝜈𝐹
2) ⁄ = 0.032 ± 0.05 𝑚𝑒, where 𝑚𝑒 is the bare electron mass. For details 

regarding the fitting procedure, see the supplement of the published article.14 

In Table I, we compare our results to previously reported tight binding 

parameters for BLG. A comparison of our TB results to the values reported in the 

literature is intricate because of the disparity among definitions for TB parameters, 

which are not always explicit,18,19,21–32 as discussed by Jung and MacDonald.34 The 

signs of the entries in Table I marked by an asterisk have been corrected following 

Table III in Jung and MacDonald,34 which matches the convention used by McCann 

and Koshino.21 Our value for 𝛾0 is slightly higher than the value reported for BLG on 

hBN by Yankowitz et al.22 However, compared to Yankowitz’s result,22 we probed the 

bands down to much larger binding energies without applying an effective low-energy 

Hamiltonian. For 𝛾1, ARPES analyses for BLG on SiC27 and on SiO2
20 led to 

substantially higher values. The larger value found for BLG on SiC (𝛾1~0.48 eV)27 can 

be explained by an enhancement in substrate interaction as evidenced by strong 

electron doping. The value of 𝛾1~0.61 eV found for BLG on SiO2
20 is intriguing and 

might be explained by the difficulty in extracting 𝛾1 due to the suppressed intensity at 
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the top of the HEB. Finally, the disparity between our value for 𝛾3 and other groups’ 

may be explained by the possibility of 𝛾3 being negative. In a recent quasiparticle 

interference experiment35 we determined that 𝛾3 = −0.3 eV, which agrees in 

magnitude to other groups’ results. We also noted that the choice in 𝛾4 did not 

appreciably influence the fit value for 𝛾3. 

 

Reference 𝜸𝟎 (𝐞𝐕) 𝜸𝟏 (𝐞𝐕) 𝜸𝟑 (𝐞𝐕) 𝜸𝟒 (𝐞𝐕) 𝜟’ (𝐞𝐕) Technique/ 

Substrate 

Malard et al.26 * 2.9 0.30 −0.10 0.12  Raman/SiO2 

Ohta et al.19   0.41-0.46 0.12   ARPES/SiC 

Ohta et al.27 3.24 0.48    ARPES/SiC 

Zhang et al.23  0.40  0.15 0.018 IR/SiO2  

Lauffer et al.28 3.27 0.46    STM/SiC 

Henriksen et al.29   0.43-0.52    Cycl. Reso./ 

SiO2 

Yan et al.30  0.35    Raman/SiO2 

Kuzmenko et al.24*  3.16 0.381 −0.38 0.14 0.022 IR/SiO2 

Li et al.25 3.1-3.4 0.404  0.16 0.018 IR/SiO2 

Zou et al.31 3.43   0.216  SdH/SiO2 

Mayorov et al.32   0.435   E-transport/ 

suspended 

Mallet et al.36 3.7a 0.38    STM/SiC 

Yankowitz et al.22 3.1   0.22  STM/hBN 

Cheng et al.20 −3.21 0.61 0.39 0.15  ARPES/SiO2 

Lee et al.33 3.1-3.3 0.35-0.42  0.06-0.12  E-transport/ 

hBN 

Min et al.37 2.6 0.34 0.3   DFT/none 

This work 𝟑. 𝟑 𝟎. 𝟒𝟐 𝟎. 𝟎𝟕   ARPES/hBN 
aMallet et al. determined  𝜈𝐹 = 1.21 × 10

6 m/s by directly determining the slope of the bands 

they measured, we translated this value for 𝜈𝐹 using 𝜈𝐹 = (3 2ℏ⁄ )𝛾0𝑎0. 

Table I| Literature values for the TB parameters of BLG. The signs of the entries in 

Table I marked by an asterisk have been corrected (using Table III in Jung and 

MacDonald)34 to match the convention we used, which is the one from McCann and 

Koshino.21 [The table was adapted from the published article]14. 
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7.4.2 Spatially resolved nanoARPES on BLG/hBN 

Figure 7.4| Spatial variation of the photoemission intensity across the surface of 

BLG/hBN. (a) Representative ARPES 𝐸(𝒌) spectrum from which the photoemission 

images shown in (b) and (c) are made. (b) Photoemission image of the BLG flake in 

which each pixel level is the integrated intensity within the brown rectangle depicted 

in (a). (c) Photoemission image of the BLG flake in which each pixel level is the 

integrated intensity within the blue rectangle depicted in (a). Arrows on (b) and (c) 

indicate areas where BLG is absent (topographic holes). The region boxed by the white 

frames in both images illustrates the greater intensity modulation for image (c), 

compared to (b). [Plots and images were adapted from the published article]14. 

 

We now discuss spatial mapping of our BLG/hBN heterostructure via 

nanoARPES. Figures 7.4b-c depict images constructed from a nanoARPES map of the 

BLG flake. For each pixel on this map, an ARPES 𝐸(𝒌) spectrum similar to the one 

displayed in Fig. 7.4a was recorded. During the map acquisition, the sample position 

was scanned in the 𝑥𝑦-plane, while its rotation axes and the photoelectron analyzer 

were fixed. From this map, we constructed two different images (Figs. 7.4b and 7.4c) 

by integrating over the pixel intensities in the 𝐸(𝒌) regions outlined with brown (Fig. 
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7.4b) and blue (Fig. 7.4c) frames in Fig. 7.4a. Both images show dark spots, with close 

to zero intensity (two of which are indicated by white arrows in Figs. 7.4b and 7.4c). 

Figure 7.5| Comparison between optical, atomic force, and ARPES images of 

BLG/hBN. (a) and (b) are dark-field optical images before and after UHV annealing 

at ~300 ℃. (c) AFM image of the BLG/hBN region from (b). (d) is a nanoARPES 

image that corresponds to the same region from (c). Yellow arrows are used in (b)-(d) 

to indicate the same regions between all three images. Because the indicated regions in 

(d) display a suppression in photoemission intensity, we identify them as holes 

(exposed hBN) on the BLG flake that arise after UHV annealing. [Images were adapted 

from the published article]14. 

 

To complement the spatial characterization acquired by nanoARPES, we use 

optical and atomic force microscopy (AFM) images of our BLG/hBN heterostructure. 

Figures 7.5a and 7.5b are dark-field optical images of our sample acquired before and 

after undergoing UHV annealing of up to 300 ℃. The image acquired before UHV 

annealing (Fig. 7.5a) shows numerous bright blue spots. These features correspond to 

bubbles that arise from trapped contaminants between 2D materials within a 
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heterostructure.38 The image taken after UHV annealing (Fig. 7.5b) shows similar 

features but with different arrangement, shape, and density than those from Fig. 7.5a. 

Further insight on these new features can be obtained by comparing the optical images 

to an AFM image as shown in Fig. 7.5c. This AFM image reveals that these new 

features correspond to tall ridges that surround flat plateaus. Some of these areas are 

indicated by yellow arrows which link to corresponding locations in Fig. 7.5b.  

To clarify our comparisons, we show the nanoARPES image from Fig. 7.4b in 

Fig. 7.5d. Yellow arrows are used to indicate the same regions on the three images 

(Figs 7.5b-d). Because these common regions in Fig. 7.5d display a suppression in 

integrated 𝐸(𝒌) intensity, we identify these features as holes in the BLG flake that arise 

after UHV annealing. Such holes could have been created during the annealing process 

in UHV,39 which is a required sample preparation step for nanoARPES experiments. 

Besides the shared presence of these dark spots on both images in Figs. 7.4b and 7.4c, 

there are also noticeable differences. Specifically, there is a greater intensity 

modulation in the region outlined by the white frame in Fig. 7.4c when compared to 

the same region in Fig. 7.4b.  

To gain further insight into this intensity fluctuation, we acquired high-

resolution ARPES 𝐸(𝒌) spectra at various locations on the investigated sample. 

Figures 7.6a and 7.6b show two typical ARPES 𝐸(𝒌) spectra obtained at the regions 

labeled “spot 1” and “spot 2”, indicated by white dots in Fig. 7.4c. Notably, the intensity 

close to the Fermi level (BE = 0 eV) is greater in Fig. 7.6a than in Fig. 7.6b. We 

attribute this difference to a variation of the BLG lattice alignment with the analyzer  
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Figure 7.6| Variation of the 

BLG/hBN alignment as evidenced by 

nanoARPES. (a) High resolution 

ARPES 𝐸(𝒌) spectrum obtained at 

“spot 1” on Fig. 7.4c for which the 

analyzer entrance slit is parallel to the 

𝛤-𝐾 direction, as indicated in the inset. 

(b) High resolution ARPES 𝐸(𝒌) 
spectrum obtained at “spot 2” on image 

Fig. 7.4c, for which the analyzer 

entrance slit is slightly misaligned with 

the 𝛤-𝐾 direction, as indicated in the 

inset. (c) and (d) Calculated 𝐸(𝒌) 
spectra with simulated slit alignment at 

0° and 3° with respect to the 𝛤-𝐾 

direction as indicated by the insets. The 

dashed gray boxes in (a)-(b) indicate the 

simulated regions in (c)-(d). [Plots and 

images were adapted from the 

published article]14. 

 

entrance slit, which is fixed. Indeed, the high intensity close to the Fermi level in Fig. 

7.6a indicates that the analyzer entrance slit is aligned with the 𝛤-𝐾 direction for this 

spectrum, as indicated in the inset. On the other hand, this is not the case for the 

spectrum of Fig. 7.6b, where the intensity reduction at the Fermi level corresponds to 

a rotational misalignment between the analyzer entrance slit and the 𝛤-𝐾 direction (see 

the inset). To support this interpretation, ARPES 𝐸(𝒌) spectra was simulated for a 

BLG/analyzer misalignment of 0° and 3° with respect to the 𝛤-𝐾 direction. These 

simulations reproduced the spectra of Figs. 7.6a and 7.6b and are shown in Figs. 7.6c 

and 7.6d, respectively. For details on the calculation see the supplement of the 

published article.14 
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Using this insight, we now explain the intensity modulation differences 

between the images of Figs. 7.4b and 7.4c. The blue box in Fig. 7.4a (from which the 

image of Fig. 7.4c is generated) corresponds to the very top of the LEB of BLG. Small 

misalignment between the probed BLG area and the electron analyzer decreases the 

integrated intensity in this area significantly, as shown by the difference between Figs. 

7.6a and 7.6b. On the other hand, the brown box in Fig. 7.4a is much larger and the 

corresponding integrated intensity is therefore less dependent on the lattice orientation 

of the probed BLG area. This explains the intensity modulation difference between the 

two images. Notably, because the supporting hBN flake is a single crystal, its 

orientation is the same throughout the entire device. Thus, an alignment variation 

between the BLG and the electron analyzer equates to an alignment variation between 

the BLG and the hBN substrate. 
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7.4.3 Crystallographic misalignment of BLG on hBN determined by STM 

Figure 7.7| Real space STM imaging revealing different BLG/hBN 

crystallographic alignment on the same device. (a) and (b) STM images obtained at 

two different locations on the same BLG/hBN heterostructure discussed in Figs. 7.2–

7.6. The periodicities of the Moiré patterns observed are 𝜆(a) = 11.6 nm and 𝜆(b) =

4.1 nm, respectively, corresponding to a BLG/hBN alignment angle of 𝜙(a) = 0.7° and 

𝜙(b) = 3.3°. Tunneling parameters for (a): 𝐼 = 0.3 nA and 𝑉𝑆 = 80 mV, and (b): 𝐼 =

0.1 nA and 𝑉𝑆 = 75 mV. (c) and (d) are the fast Fourier transforms of images (a) and 

(b), respectively. The white dashed line on (c) serves as a guide to the eye for the 

graphene lattice orientation of image (a) and is reproduced in (d). The blue dashed line 

in (d) indicates the orientation of the graphene lattice of image (b). The angle between 

these two lines is ~2.6°, as expected from their Moiré wavelengths. [Images were 

adapted from the published article]14. 
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To confirm our interpretation of the spatial variation in nanoARPES signal, we 

acquired STM data on the same device studied in Figs. 7.2–7.6. Figures 7.7a and 7.7b 

show STM images obtained at two different locations on our sample and their 

respective fast Fourier transforms (FFTs) are presented in Figs. 7.7c and 7.7d. We 

observe Moiré periodicities in the images of Figs. 7.7a and 7.7b of 𝜆(a) = 11.6 and 

𝜆(b) = 4.1 nm, respectively. The relation between the Moiré periodicity 𝜆 and the 

misorientation angle 𝜙 is given by: 

 
𝜆 =

(1 + 𝛿)√3𝑎0

√2(1 + 𝛿)(1 − 𝑐𝑜𝑠 𝜙) + 𝛿2
 (7.2) 

where 𝛿 = 1.8% is the lattice mismatch between graphene and hBN.31 Applying (7.2) 

to the images from Figs. 7.7a and 7.7b yields misorientation angles between the hBN 

and the BLG of 𝜙(a) = 0.7° and 𝜙(b) = 3.3°, respectively. These misalignments can 

also be observed on the FFTs of our topographic data. The white (blue) dashed line in 

Fig. 7.7c (Fig. 7.7d) indicates the BLG lattice orientation from the image in Fig. 7.7a 

(Fig. 7.7b). In Fig. 7.7d, we also reproduce the white dashed line from Fig. 7.7c to 

enable comparison between the lattice orientations. The 𝜙(b) − 𝜙(a) = 2.6° mismatch 

determined by the Moiré wavelength comparison is confirmed by the direct comparison 

of the lattice orientation in the FFTs. Furthermore, we observed intermediate 

crystallographic misalignments at eight different locations on the sample with angles 

𝜙 = 3.3°, 3.1°, 2.8°, 2.4°, 2.1°, 0.7°. The observed variation in Moiré periodicities 
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confirms our interpretation of the ARPES data in terms of BLG/hBN lattice alignment 

inhomogeneity. 

We believe that the rotational disorder seen in our experiment appears during 

the annealing procedure because of the heat-induced self-alignment mechanism 

reported by Woods et al.40,41 These authors have shown that it is energetically favorable 

for graphene to be macroscopically aligned within ±0.7° with hBN, and that mild 

heating (~200 °C in an Ar/H2 environment) can provide the energy necessary for self-

alignment of regions that are misaligned by angles near 1°. In particular, they 

demonstrated quasi-homogeneous rotation by ∼ 0.3° for flakes with characteristic size 

of ∼ 30 μm. In their experiment, they did not observe self-alignment for samples 

displaying more than a few bubbles. This was attributed to the contaminants within 

bubbles decoupling graphene from hBN or acting as pinning centers.41 In our 

experiment, we believe the misalignment between the BLG and the hBN was ∼ 3.3° 

after transfer and was reduced in a spatially inhomogeneous fashion by the UHV 

annealing, down to ~0.7° in certain regions. The self-rotation we observed (> 2.5°) is 

thus much larger than what was reported by Woods et al. and is inhomogeneous across 

our sample. We attribute this inhomogeneity to the fact that our sample contained 

numerous bubbles that burst during the UHV annealing as demonstrated by Fig. 7.5. 

This process most likely segmented our flake into smaller domains loosely attached to 

one another, making them able to rotate more easily. 
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7.5 Conclusion 

In conclusion, we have presented the results from a nanoARPES investigation 

of a BLG/hBN heterostructure. We have directly extracted TB parameters with 

nanoARPES for BLG on hBN, the standard insulating supporting substrate for 2D 

material heterostructures. We have also shown that nanoARPES can reveal variations 

in crystallographic alignment between BLG and hBN. These latter findings were 

confirmed by STM imaging, which showed areas with different Moiré periodicities due 

to numerous domains with various orientations. We attribute this variation of lattice 

alignment to an inhomogeneous BLG/hBN alignment induced by standard UHV 

heating used to prepare samples for ARPES and STM characterization. These results 

substantially improve our understanding of the BLG/hBN heterostructure and provide 

researchers using this heterostructure with a direct picture of the electronic bands 

resolved in reciprocal space with nanoscale resolution. In addition, the spatial variation 

of lattice alignment between the BLG and the supporting hBN that we evidenced here 

is important for researchers investigating these samples with spatially averaging probes 

such as electronic transport or optical spectroscopy. 
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Chapter 8 - Atomically Resolved Mapping of the Van Hove Singularity 

Enhanced by Pseudospin Ferromagnetism in Bernal Stacked Bilayer 

Graphene 

 

8.1 Introduction 

The emergence of flat bands in 2D materials such as twisted magic angle bilayer 

graphene has attracted substantial attention in recent years. Close proximity between 

the Fermi energy (𝐸𝐹) and a flat band leads to an intensely high density of states (DOS) 

due to the large number of degenerate states. Such phenomena is known as a Van Hove 

singularity (VHS).1 The large number of states present at the VHS are often subject to 

interact with each other. As a consequence, the VHS may host novel phases of matter 

such as superconductivity,2 magnetism,3 and charge density waves.4 In graphene, 

recent efforts to engineer flat bands have heavily relied on modulating graphene’s 

lattice with a periodic potential, which is achieved by twisting two or more graphene 

layers relative to each other.5–10 Controlled twisting of graphene layers requires 

cumbersome micromechanical techniques not yet proven to be scalable. On the other 

hand, naturally occurring Bernal or AB stacked bilayer graphene (BLG) is scalable11–

13 and can host VHSs near 𝐸𝐹.14–16 By electrostatically controlling the layer occupation 

asymmetry in BLG, we provide the first report of a clear tunneling spectroscopic 

signature of the VHS in Bernal stacked BLG. Using a scanning tunneling microscope 

(STM) we confirm the expected lattice localization of the VHS by imaging the 
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atomically resolved distribution of states near and at the VHS energy. Additionally, we 

note a significant asymmetry in the VHS intensity for different layer polarization 

arrangements. We propose that pseudospin ferro-magnetization accounts for this 

observed asymmetry given that a non-interacting model fails to do so.  Finally, we 

apply the same imaging technique to confirm and spatially resolve a subtle 

spectroscopic feature due to secondary bands in BLG. 

 

8.2 Atomic Localization and Tunneling Spectroscopy of BLG 

In these subsections I begin by briefly reviewing the lattice and band structure 

of gapped BLG near the 𝐾 point. Then, I will show the results of numerical calculations 

(see section 2.5) for the local density of states (LDOS) for each atom in gapped BLG’s 

unit cell. Knowing the LDOS distributions for specific atoms will enable us to make 

appropriate predictions regarding the localization of states in gapped BLG’s lattice as 

we perform spatially resolved tunneling spectroscopy maps. 

  

8.2.1 BLG band structure and local density of states (LDOS) near 𝑲 

BLG offers unprecedented band structure control achieved via electrostatic 

gating. As discussed in Ch. 2, we use Bernal (or AB) stacked BLG where the BT atom 

in the top graphene layer is located directly above the AB atom in the bottom graphene  
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Figure 8.1| Electronic properties of Bernal stacked bilayer graphene (BLG). (a) 

Schematic of the lattice of Bernal stacked BLG. The inset shows a side view of the unit 

cell where the AT and BT (AB and BB) atoms correspond to the top (bottom) graphene 

layers in BLG. (b) Band structure of gapped (solid bands) and non-gapped (dashed 

bands) BLG calculated using tight binding with γ0 = 3.0 eV and γ1 = 0.4 eV. (c) 

Calculated local density of states (LDOS) for gapped BLG from (b) at specified atomic 

sites for each atom in BLG’s unit cell. A bandgap of 60 meV is induced with the top 

and bottom layer’s potentials at 𝜖𝑡𝑜𝑝 = −30 meV and 𝜖𝑏𝑜𝑡𝑡𝑜𝑚 = +30 meV, 

respectively. Band structure features such as the charge neutrality point (CNP) and high 

energy bands (HEBs) are indicated. 

 

layer—forming a “dimer” pair (see Fig. 8.1a). These atoms are considered a dimer pair 

given that their orbitals have strong interlayer coupling—resembling a 1D dimer in the 

𝑧-direction. Conveniently, we may refer to the AT and BB atoms as “non-dimers”. The 

inset of Fig. 8.1a shows a side view of BLG’s unit cell where the dimer pair has been 

assigned the same gray color. Importantly, BLG has inversion symmetry that can be 

broken by the application of a perpendicular electric field. Such an electric field 

unequally alters the potential energy of each layer and induces a bandgap in BLG (see 

section 2.4.1). The solid lines in Fig. 8.1b correspond to the calculated band structure 

of BLG around the 𝐾 point for the case when the top layer is at a lower energy potential 

than the bottom layer, i.e. the electric field between BLG’s layers points in the +𝑧 
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direction. As a comparison, the dashed lines correspond to BLG’s band structure when 

the top and bottom layers have the same energy potential. Evidently, a bandgap 

centered about the charge neutrality point (CNP) emerges when the top and bottom 

layers are at different energy potentials. 

Unlike non-gapped BLG, the LDOS distribution for gapped BLG displays 

features which are strongly localized at the atoms in its unit cell. In Fig. 8.1c we plot 

the LDOS calculated for specific atoms in the unit cell for gapped BLG using the same 

parameters as the solid bands in Fig. 8.1b. The LDOS at the AT and BT atoms from 

BLG’s top layer are represented by the solid red and black curves, respectively. The 

bottom layer’s atoms AB and BB are represented by the dashed black and blue curves, 

respectively. As will be discussed shortly, we have assigned increased visibility (solid 

instead of dashed lines) to the top layer’s LDOS given that STM almost exclusively 

probes the top layer in BLG. In this plot we have labeled the prominent features 

discussed in the remainder of this article: VHSs and the onset of the high energy bands 

(HEB and HEB*). From the LDOS plotted for specific atoms in Fig. 8.1c, it is evident 

that the valence and conduction VHS peaks are predominantly localized at the AT and 

BB atoms, respectively.  Additionally, we see that the dimer site atoms in BLG’s unit 

cell (BT and AB) have a significant contribution to BLG’s LDOS for energies higher 

than the onset of the HEB and HEB*. 
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8.2.2 Scanning tunneling spectroscopy (STS) of BLG on hBN 

Figure 8.2| Tunneling spectroscopy of BLG. (a) Schematic of the experimental setup 

showing scanning tunneling microscopy (STM) on a BLG/hexagonal Boron Nitride 

heterostructure (hBN). The backgate voltage (𝑉𝐺) applied to p-doped Si and the sample 

bias (𝑉𝑆) both tune the perpendicular electric field on BLG. Tuning 𝑉𝑆 also modulates 

the tunneling current between the tip and BLG. (b) Image plot of the differential 

conductance (𝑑𝐼/𝑑𝑉𝑆) of BLG as a function 𝑉𝑆 and 𝑉𝐺. Band structure features such as 

the CNP and HEBs are outlined by the orange and yellow dashed lines, respectively. 

The onset of the top layer’s VHS is noted by the red arrow. (c) BLG tunneling spectra 

taken for different values of 𝑉𝐺 corresponding to the vertical dashed lines in (b). Band 

structure features are indicated with arrows. Tunneling parameters: 𝑉𝑆 = 0.5 V;  𝐼 =
2.5 nA; 𝑉𝑎𝑐 = 5 mV; 𝑓𝑎𝑐 = 400 Hz. 

 

As detailed in Ch. 4, the experiments presented in this chapter are performed in 

a low-temperature scanning tunneling microscope (STM). STM enables us to explore 

BLG’s band structure features with atomic scale precision. To achieve high stability, 

resolution, and spectroscopically reproducible results, the STM tip undergoes careful 

calibration on Au(111) (see section 4.4 for details). Figure 8.2a shows a schematic of 

the STM circuit and the BLG on hBN (22 nm thick) heterostructure used in our study. 

A sample bias voltage (𝑉𝑆) is applied to tune the tunneling current between states in 

BLG and the STM tip. A backgate voltage (𝑉𝐺) is applied to the p-doped Si layer at the 
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bottom of the substrate to tune the perpendicular electric field (𝐸⊥) in BLG. A thermally 

oxidized layer of 285 nm SiO2 separates the hBN layer from the p-doped Si substrate. 

Figure 8.2b shows a differential conductance 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑉𝐺) measurement 

performed on pristine BLG/hBN (see Fig. 6.2b for a similar plot of MLG/hBN). From 

tunneling theory, 𝑑𝐼/𝑑𝑉𝑆 is proportional to the LDOS of the substrate material’s 

surface.17 Thus, the features observed in Fig. 8.2b correspond to band structure 

features18–21 like those highlighted in Fig. 8.1b,c. Line cuts for three values of 𝑉𝐺 are 

plotted in Fig. 8.2c, where the relevant band structure features introduced above, the 

CNP, VHS, and HEBs, are indicated by the orange, red, and yellow arrows, 

respectively. In Fig. 8.2b we observe that the 𝑑𝐼/𝑑𝑉𝑆 suppression centered along the 

CNP becomes narrower between 𝑉𝐺 = +60 V and ~ − 50 V. This suppression feature 

outlines BLG’s bandgap in the inelastic channel20–22 which gradually closes as 𝑉𝐺 

decreases. For 𝑉𝐺 < −51 V, we see a higher  𝑑𝐼/𝑑𝑉𝑆 intensity feature along the CNP 

which we will show to be BLG’s top layer VHS in the upcoming sections.  

The secondary bands (HEB and HEB*) in BLG and tip-induced quantum dot 

charging features can also be observed spectroscopically. The HEB/HEB* bands’ 

onsets are outlined by the dashed yellow lines in Fig. 8.2b and indicated by the yellow 

arrows in Fig. 8.2c. Additionally, a numerical derivative of the image plot from Fig. 

8.2b is shown in Fig. 8.3a with a wider 𝑉𝑆 range. In the plot shown in Fig. 8.3a, we 

have enclosed the boundaries that outline the onsets for the HEB and HEB* with  
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Figure 8.3| Tunneling spectroscopy highlighting the high energy bands (HEBs) 

and tip-induced quantum dot (QD) charging states in BLG. (a) Numerical 

derivative of the 𝑑𝐼/𝑑𝑉𝑆(𝑉𝐺 , 𝑉𝑆) plot from Fig. 8.2b plotted within a wider 𝑉𝑆 range. 

The onset boundaries for the HEB and HEB* follow the dispersion of the CNP and are 

enclosed by the yellow and red dashed lines, respectively. (b) 𝑑𝐼/𝑑𝑉𝑆(𝑉𝐺 , 𝑉𝑆) image 

plot taken within a narrow 𝑉𝐺 range to display the charging features originating from a 

tip-induced QD. 

 

dashed yellow and red lines, respectively. We note that these features follow the same 

trend as the CNP which is linear in 𝑉𝐺 due to the quadratic dispersion relation near the 

𝐾 points. As discussed in Ch. 6, 𝑑𝐼/𝑑𝑉𝑆 features that disperse with 𝐸𝐹 correspond to 

band structure features. This further verifies that the dark and bright boundaries labeled 

HEB and HEB* in Fig. 8.3a are band structure features.  

Figures 8.2b and 8.3a also display clear and strong vertical features parallel to 

the 𝑉𝐺 = 0 line. These striking features in the 𝑑𝐼/𝑑𝑉𝑆 signal are due to STM tip-

induced single electron charging effects.23 A 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑉𝐺) image plot with a 

narrower 𝑉𝐺 range is shown in Fig. 8.3b. Similar to our discussion in Ch. 6, the STM 
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tip’s top gating effect creates a circular region below the tip’s apex that is p-doped 

relative to the surrounding bulk. As a consequence, strong single electron charging 

peaks appear within certain values of 𝑉𝐺. These charging features display a distinctive 

four-fold grouping that accounts for spin and valley degeneracies.23 These 

spectroscopic features are observed in BLG but not in MLG given that BLG’s low 

energy bands are gapped at the boundaries of the circular p-n junction formed by the 

tip. Thus, charges become trapped in a similar manner to conventional quantum dots, 

unlike pseudo-confined charges in MLG. Finally, it is important to mention that the 

𝑑𝐼/𝑑𝑉𝑆 plots in Figs. 8.2b, 8.3a-b clearly display the “phonon gap”20,23,24 akin to the 

case for MLG. For a detailed discussion of the origin of this feature see section 6.2.1. 
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8.3 Atomic Localization of the Van Hove Singularity in BLG 

Figure 8.4| Atomically resolved localization of the Van Hove singularity (VHS) in 

Bernal stacked BLG. (a) STM topography of ultra-flat pristine BLG/hBN. (b) 

Topography map of white box in (a). Schematic of BLG’s lattice overlays the image. 

The top layer’s atoms AT (BT) are represented by the red (gray) circles. The blue circles 

represent BB atoms. (c) Tunneling spectroscopy of BLG taken over an AT atom with 

𝑉𝐺 = −80 V. Tunneling parameters: 𝑉𝑆 = 0.1 V, 𝐼 = 1.2 nA, 𝑉𝑎𝑐 = 2 mV. (d-f) Spatial 

𝑑𝐼/𝑑𝑉𝑆 maps of BLG taken for energies at (𝑉𝑆 = 135 mV) and near (𝑉𝑆 = 125 mV, 

𝑉𝑆 = 145 mV) the top layer’s VHS as noted by the arrows in (c). For energies below 

(d) and above (f) the VHS, AT and BT atoms display similar 𝑑𝐼/𝑑𝑉𝑆 intensities. At the 

VHS (e), there is a clear increase in 𝑑𝐼/𝑑𝑉𝑆 intensity localized at AT. 
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In this study we explore features in BLG’s band structure that lack spatially 

resolved examination. Specifically, we are interested in the high intensity feature 

observed for 𝑉𝐺 < −51 V (see Fig. 8.2b-c). In previous tunneling spectroscopy studies 

on gated Bernal stacked BLG, this feature has been largely ignored,20,22 attributed to 

impurities,18 or fallen outside the experimental 𝑉𝐺 range.19,21 A differential capacitance 

study attributed electrode-induced disorder to their observation of a strongly 

suppressed VHS.25 We demonstrate below that this feature corresponds to BLG’s top 

layer VHS. 

Before we explore the spatial dependence of the 𝑑𝐼/𝑑𝑉𝑆 peak in the red curve 

(𝑉𝐺 = −80 V) of Fig. 8.2c, we first identify BLG’s atomically resolved topographic 

features. Figure 8.4a shows a constant-current STM topographic map of pristine BLG 

on hBN. From this image, it is evident that the ultra-flat region used in our study does 

not contain defects or impurities that could alter the electronic properties of BLG. We 

also note the absence of a moiré superlattice which indicates that BLG and hBN are 

properly decoupled by a large mismatch angle.6,26–28 To map the atomically resolved 

distribution of the LDOS in BLG, we scan over a 6 × 6 Å region shown in Fig. 8.4b. A 

schematic of BLG’s lattice is overlaid onto the topographic scan to highlight the 

location of the atoms probed.29,30 The high elevation points in the scan correspond to 

the AT atoms depicted by the red circles. The saddle points in the scan correspond to 

the BT atoms (grey circles) which sit right above the AB atoms. The lowest elevation 

points in Fig. 8.4b align with the location of the BB atoms. However, given that the 

interlayer separation (~3 Å) is considerably larger than the tunneling current decay 
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length on graphene (0.25 − 0.5 Å),24,31 we do not expect 𝑑𝐼/𝑑𝑉𝑆 signal contributions 

by AB nor BB. As a result, STM probes electronic states exclusively from BLG’s top 

layer. 

 Next, we use the STM’s atomically resolved spectroscopic capabilities to 

determine that the 𝑑𝐼/𝑑𝑉𝑆 peak in the red curve (𝑉𝐺 = −80 V) of Fig. 8.2c is strongly 

localized at the AT atom and thus corresponds to a VHS in BLG. Figure 8.4c shows a 

𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) spectrum taken at the location of an AT atom within a 𝑉𝑆 range around the 

CNP. The spectrum in Fig. 8.4c appears shifted to lower 𝑉𝑆 when compared to the 

spectrum in Fig. 8.2c because the former is taken at a higher setpoint, which suppresses 

the inelastic tunneling channel32 (see also section 6.2.1). Figures 8.4d-f show spatial 

𝑑𝐼/𝑑𝑉𝑆 maps plotted using the same relative 𝑑𝐼/𝑑𝑉𝑆 scale. Simultaneously acquired 

constant-current topographic maps enable us to overlay BLG’s lattice on them. The 

𝑑𝐼/𝑑𝑉𝑆 map in Fig. 8.4d (8.4f) was obtained at a 𝑉𝑆 voltage 10 mV below (above) the 

prominent peak at 𝑉𝑆 = 135 mV (see Fig. 8.4c). The maps in Fig. 8.4d and 8.4f display 

small variations in 𝑑𝐼/𝑑𝑉𝑆 signal intensity which we attribute to artefacts due to tip 

height variations (see section 8.3.1). In contrast, the 𝑑𝐼/𝑑𝑉𝑆 map in Fig. 8.4e acquired 

at the energy of the prominent peak in Fig. 8.4c (𝑉𝑆 = 135 mV), shows a drastic 

increase in 𝑑𝐼/𝑑𝑉𝑆 intensity localized at the AT atoms (red circles). With this 

consideration, it is evident that the spectrum in Fig. 8.1c shows that the intense LDOS 

peak obtained at AT corresponds to BLG’s top layer VHS. The localization of the 

𝑑𝐼/𝑑𝑉𝑆 intensity peak at the AT atoms in Fig. 8.4e agrees with our LDOS calculations 
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in Fig. 8.1c. Thus, we attribute this localization in 𝑑𝐼/𝑑𝑉𝑆 intensity to BLG’s top layer 

VHS. 

 

8.3.1 Height variation artefact in 𝒅𝑰/𝒅𝑽𝑺 intensity on MLG/hBN 

Figure 8.5| Observation of height variation 𝒅𝑰/𝒅𝑽𝑺 artefact on monolayer 

graphene (MLG). (a) STM constant-current topographic map of MLG with its lattice 

schematic overlaid. (b) Spatial 𝑑𝐼/𝑑𝑉𝑆 map of the same region as (a) taken at 𝑉𝐺 =
30 V. The regions of low elevation in (a) correspond to regions of higher 𝑑𝐼/𝑑𝑉𝑆 

intensity in (b). The region centered on the honeycombs are not expected to contribute 

to the LDOS. Thus, the apparent higher intensity in (b) suggests contribution to the 

𝑑𝐼/𝑑𝑉𝑆 signal from neighboring 2𝑝𝑧 orbitals as the STM tip gets closer to graphene’s 

surface. Tunneling parameters: 𝑉𝑆 = 0.1 V; 𝐼 = 1.5 nA; 𝑉𝑎𝑐 = 2.5 mV; 𝑓𝑎𝑐 = 400 Hz. 

 

The spatial 𝑑𝐼/𝑑𝑉𝑆 maps in Fig. 8.4d-f display an artefact we attribute to 

variations in height during the constant-current topographic scan. To further investigate 

this artefact, we performed a similar spatial 𝑑𝐼/𝑑𝑉𝑆 map on MLG/hBN. A constant-

current topographic map with overlaid MLG lattice is shown in Fig. 8.5a. Figure 8.5b 
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shows the spatial 𝑑𝐼/𝑑𝑉𝑆 map of MLG acquired at the same time as the map in Fig. 

8.5a. By comparing these two images, we see that a higher 𝑑𝐼/𝑑𝑉𝑆 intensity region 

appears at the center of the carbon honeycombs. Since we do not expect the middle of 

the honeycombs to have a significant contribution to graphene’s LDOS, we attribute 

the higher intensity on these regions to an enhancement of the 𝑑𝐼/𝑑𝑉𝑆 signal due to a 

decrease in tip-sample distance. As discussed above, this artefact is observed in BLG. 

The BB atoms in BLG display the highest 𝑑𝐼/𝑑𝑉𝑆 intensities in Figs. 8.4d and 8.4f and 

second highest 𝑑𝐼/𝑑𝑉𝑆 intensity in Fig. 8.4e despite being at the lowest topographic 

points. 

 

 

8.4 Backgate Modulated Pseudospin Ferromagnetic Transitions in BLG 

We electrostatically tune BLG’s band structure near the bandgap minimum 

(𝑉𝐺~ − 51 V ≡ 𝑉𝐺
0) and find that the top layer VHS displays considerably different 

intensities for 𝑉𝐺 < 𝑉𝐺
0 and 𝑉𝐺 > 𝑉𝐺

0. Figure 8.6a shows a 𝑑𝐼/𝑑𝑉𝑆(𝑉𝐺 , 𝑉𝑆) map taken 

within narrower 𝑉𝐺 and 𝑉𝑆 values than the map in Fig. 8.2b. This image plot displays a 

suppression in the 𝑑𝐼/𝑑𝑉𝑆 signal centered near the CNP which corresponds to BLG’s 

bandgap. We clearly see the evolution of BLG’s bandgap as it narrows from 𝑉𝐺 =

−20 V to 𝑉𝐺
0, and widens from 𝑉𝐺

0 to 𝑉𝐺 = −80 V. As previously noted, the strip with 

high 𝑑𝐼/𝑑𝑉𝑆 intensity (colored yellow) corresponds to BLG’s top layer VHS. 

Remarkably, a feature of similar intensity does not appear on either valence or 
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conduction band edges for 𝑉𝐺 > 𝑉𝐺
0. This is a surprising result given that differential 

capacitance studies in dual gated Bernal stacked BLG predicted and observed layer 

polarized VHS peaks adjacent to BLG’s bandgap minimum.25,33  

Figure 8.6| Asymmetry in VHS intensities due to layer polarization enhanced by 

pseudospin ferromagnetism in BLG. (a) 𝑑𝐼/𝑑𝑉𝑆(𝑉𝐺 , 𝑉𝑆) image plot of BLG for 

values near BLG’s bandgap minimum (𝑉𝐺
0~ − 51 V). The peak corresponding to the 

top layer VHS has been saturated in yellow to allow for better visibility of surrounding 

features. (b) 𝑑𝐼/𝑑𝑉𝑆 spectra taken at 𝑉𝐺 = −80 V (red), 𝑉𝐺 = 𝑉𝐺
0 (blue), and 𝑉𝐺 =

−20 V (yellow) corresponding to the vertical dashed lines in (a) and centered at BLG’s 

CNP. Tunneling parameters: 𝑉𝑆 = 0.18 V; 𝐼 = 1.2 nA; 𝑉𝑎𝑐 = 2 mV; 𝑓𝑎𝑐 = 400 Hz. 

The dashed gray curves are fitted with the AT atom’s calculated LDOS using TB.34 The 

TB fit for the red curve uses layer energies: 𝜖𝑡𝑜𝑝 = −13.5 meV and 𝜖𝑏𝑜𝑡𝑡𝑜𝑚 =

+13.5 meV. The TB fit for the blue curve uses layer energies: 𝜖𝑡𝑜𝑝 = 𝜖𝑏𝑜𝑡𝑡𝑜𝑚 = 0. 

And, the TB fit for the yellow curve uses layer energies: 𝜖𝑡𝑜𝑝 = +10 m𝑒𝑉 and 

𝜖𝑏𝑜𝑡𝑡𝑜𝑚 = −10 meV. All three fits use 𝛾0 = 3.0 eV, 𝛾1 = 0.4 eV, 𝛾3 = 0.3 eV, and 

𝛾4 = 0.15 eV. Insets: Diagrams of the layer polarization enhanced by pseudospin 

ferromagnetism (as described by Jung et al)35 in BLG corresponding to values of 𝑉𝐺 <
𝑉𝐺

0 and 𝑉𝐺 > 𝑉𝐺
0 depicted by the red and yellow schematics, respectively. The layer 

polarization in red shows a high intensity 𝑑𝐼/𝑑𝑉𝑆 peak corresponding to the VHS; 

whereas the layer polarization in yellow shows no peak. 

 

By comparing the AT atom’s calculated LDOS with our experimental results 

we infer that a change in layer polarization and direction of the perpendicular 
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displacement field (𝐷⊥) between BLG’s layers occurs around 𝑉𝐺
0. Figure 8.6b shows 

𝑑𝐼/𝑑𝑉𝑆 spectra taken at 𝑉𝐺 = −80 V < 𝑉𝐺
0 (red curve), 𝑉𝐺

0 (blue curve), and 𝑉𝐺 =

−20 V > 𝑉𝐺
0 (yellow curve), corresponding to the vertical dashed lines in Fig. 8.6a. A 

recent analysis on the top gating effect of the STM tip on MLG yields a work-function 

mismatch displacement field36 of 𝐷⊥
𝑡𝑖𝑝~ + 0.44 ± 0.15 V/nm for a tip-sample 

separation between 5 and 10 Å. By using a screening-inclusive dielectric constant35 

𝜀𝑟~5/2 for our substrates, we expect a backgate displacement field of 𝐷⊥
𝑔𝑎𝑡𝑒

~ −

0.42 V/nm at 𝑉𝐺
0. From these observations we infer that the total displacement field 

𝐷⊥ vanishes near 𝑉𝐺
0 (i.e. 𝐷⊥ = 𝐷⊥

𝑡𝑖𝑝 + 𝐷⊥
𝑔𝑎𝑡𝑒

~0) Additionally, given that the bandgap 

narrows and then widens as 𝑉𝐺 decreases monotonically from −20 to −80 V, we expect 

a reversal in the sign of layer potential energy between the top and bottom layers. With 

this in mind, we calculate the AT atom’s LDOS with opposite top and bottom layer 

potentials. In Fig. 8.6b we include the tight-binding (TB) fits for the 𝑉𝐺 < 𝑉𝐺
0, 𝑉𝐺~𝑉𝐺

0 

and 𝑉𝐺 > 𝑉𝐺
0 cases. For 𝑉𝐺 = −80 V, we assume top and bottom layer potentials of 

𝜖𝑡𝑜𝑝 = −13.5 meV and 𝜖𝑏𝑜𝑡𝑡𝑜𝑚 = +13.5 meV, repectively. For 𝑉𝐺 = 𝑉𝐺
0, we assume 

𝜖𝑡𝑜𝑝 = 𝜖𝑏𝑜𝑡𝑡𝑜𝑚 = 0. And for 𝑉𝐺 = −20 V, we assume 𝜖𝑡𝑜𝑝 = +10 meV and 𝜖𝑏𝑜𝑡𝑡𝑜𝑚 =

−10 meV. We also note that the estimated bandgap values corresponding to the 

displacement fields (see top axis in Fig. 8.6a) obtained in Fig. 8.6b reasonably agree 

with previous estimates for BLG’s bandgap.20,37 

By comparing our TB fits and spectra in Fig. 8.6b, we observe the expected 

transition in layer energy polarization but we also note a disagreement between VHS 
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intensities for the 𝑉𝐺 < 𝑉𝐺
0 and 𝑉𝐺 > 𝑉𝐺

0 cases. In Fig. 8.1c we showed the LDOS 

distribution for the case of the displacement field pointing up (𝐷⊥ > 0). For this case, 

the VHS at AT appears at the valence band edge. For the case of the displacement field 

pointing down (𝐷⊥ < 0), the VHS at AT should appear at the conduction band edge. 

The band edge localization of the top layer VHS for both 𝐷⊥ > 0 and 𝐷⊥ < 0 cases is 

captured by the TB fits. In both cases, the simulated LDOS display reasonable 

agreement with the spectra’s dip and shoulder regions. However, there is a clear 

disagreement between the expected VHS intensity from TB and the spectrum for the 

𝐷⊥ < 0 case. It has been shown that the presence of disorder may suppress and smear 

the VHS in BLG.25,33,38 However, we rule out disorder as the cause for the VHS 

suppression due to the following reasons: (1) the use of hBN as an intermediary 

substrate decouples BLG from oxide substrate effects,19 (2) we showed in Fig. 8.4a that 

we are probing exposed BLG on a clean, flat, and defect-free region, and (3) the VHS 

for the 𝐷⊥ > 0 case (red curve in Fig. 8.6b) does not become suppressed or smeared. 

To explain the observed asymmetry in VHS intensities between the 𝐷⊥ < 0 and 

𝐷⊥ > 0 cases, we propose that we are resolving a transition between pseudospin 

ferromagnetic states in BLG,35 where pseudospin refers to the layer degree freedom. 

The lattice Hartree-Fock model for BLG proposed by Jung et al.35 describes the 

energetics for various competing broken-symmetry layer occupation arrangements in 

BLG. These competing states include six antiferromagnetic (AF) states [where both 

layers are occupied evenly], eight ferrimagnetic (Fi) states [where one of the layers has 

a 1/4 occupation], and two ferromagnetic (F) states [where a single layer becomes fully 
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occupied]. Among the predictions made by this model is the existence of insulating 

states at 𝐷⊥ = 0 which has been experimentally verified.39,40 We will not make any 

claims regarding the 𝐷⊥~0 case given that our spectroscopic data does not show 

distinctive features for |𝑉𝐺 − 𝑉𝐺
0| < 1.5 V and the temperature used in our experiments 

is higher than the previous experimental studies. However, considering a parallel plate 

capacitor system with a dielectric constant 𝜀𝑟~5/2,35 this backgate voltage range 

translates into a displacement field range of |𝐷⊥| < 12 mV/nm ≡ 𝐷⊥
𝑐 . Here we define 

𝐷⊥
𝑐  as the critical perpendicular displacement field magnitude that coincides with the 

boundary between the AF/Fi and F regimes predicted by Jung et al.35 Thus, for 

|𝑉𝐺 − 𝑉𝐺
0| > 1.5 V (or equivalently |𝐷⊥| > 𝐷⊥

𝑐), the pseudospin ferromagnetic states 

become the most favorable configurations.  

In Fig. 8.6b we have included schematics that show the two BLG ferromagnetic 

states for the 𝐷⊥ > 𝐷⊥
𝑐  and 𝐷⊥ < −𝐷⊥

𝑐  cases. When 𝐷⊥ < −𝐷⊥
𝑐 , the bottom layer atoms 

AB and BB in the unit cell get fully occupied by charge carriers with both valley and 

spin indices as depicted in the yellow schematic in Fig. 8.6b. In a similar but opposite 

manner, the top layer atoms AT and BT become fully occupied when 𝐷⊥ > 𝐷⊥
𝑐  (see red 

schematic in Fig. 8.6b). 

The drastic accumulation of states onto specific layers predicted using a many-

body approach reasonably accounts for our experimental observations. A strong 

suppression of the VHS for the 𝐷⊥ < −𝐷⊥
𝑐  case should be expected given that states 

accumulate in the bottom layer and are thus not immediately accessible to the STM tip. 
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Additionally, the VHS intensity for the 𝐷⊥ > 𝐷⊥
𝑐  case generally appears higher than 

predicted by TB which can be explained by the accumulation of states on the top layer. 

We suspect that our observation of the VHS intensity asymmetry has evaded 

previous tunneling studies of gated Bernal stacked BLG due to limitations in 

electrostatic gating ranges,19,21,30 presence of defects,41 or lack of highly resolved 

spectroscopic characterization.18,20,22 Additionally, with STM we probed BLG’s 

surface with an electrode-to-sample distance an order of magnitude smaller than that 

achieved by a differential capacitance study on BLG.25 This study claims to observe a 

faint signature of the VHS for both 𝐷⊥ > 𝐷⊥
𝑐  and 𝐷⊥ < −𝐷⊥

𝑐  cases. In our experiments, 

we expect the close proximity of the STM tip to BLG’s surface to result in a larger near 

layer capacitance enhancement.20,33 This consideration and the absence of substrate-

induced disorder can account for the fact that we observed a clear contrast between the 

two pseudospin ferromagnetic states. 
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8.5 Atomic Localization of the High Energy Bands in BLG 

Figure 8.7| Atomically resolved localization of the high energy band (HEB) in 

BLG. (a) 𝑑𝐼/𝑑𝑉𝑆 of BLG near the onset of the HEB plotted in green. The added 

calculated LDOS for the AT and BT atoms is given by the dashed black curve. 

Tunneling parameters: 𝑉𝑆 = −0.4 V; 𝐼 = 2.5 nA; 𝑉𝑎𝑐 = 5 mV; 𝑓𝑎𝑐 = 400 Hz. (b) 

Atomically resolved topography of BLG with overlaid lattice schematic. (c) and (d) 

Spatial 𝑑𝐼/𝑑𝑉𝑆 maps of BLG taken at energies below (𝑉𝑆 = −500 mV) and above 

(𝑉𝑆 = −600 mV) the onset of the HEB in BLG corresponding to the blue and orange 

arrows in (a), respectively. A schematic of BLG’s lattice overlays each image. Below 

the onset of the HEB (c), 𝑑𝐼/𝑑𝑉𝑆 intensities between the BT and BB sites are similar. 

Above the onset of the HEB (d), the 𝑑𝐼/𝑑𝑉𝑆 signal is more localized at the BT atom as 

predicted in Fig. 8.1c. 
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The procedure to spatially map the evolution of BLG’s top layer VHS can also be 

applied to a more subtle spectroscopic feature such as the HEBs in BLG. Figure 8.1c 

displays a clear increase in LDOS from the AB and BT atoms once the edges of the 

second set of bands (HEB and HEB*) have been crossed. In our experimental data, 

these features manifest as shoulders in 𝑑𝐼/𝑑𝑉𝑆 curves such as those highlighted by the 

black arrows in Fig. 8.2c. Figure 8.7a shows a 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) spectrum measured with the 

STM tip positioned above the BT atom. Here, the shoulder around 𝑉𝑆 = −550 mV 

corresponds to the edge of the HEB. The calculated LDOS of the top layer atoms (AT 

and BT) is shown by the black dashed curve. Figure 8.7b shows a topographic STM 

map of BLG’s lattice. This map is similar to that in Fig. 8.4b, but with a significantly 

smaller height range. Figures 8.7c and 8.7d show spatial 𝑑𝐼/𝑑𝑉𝑆 maps of the same 

region in Fig. 8.7b taken at 𝑉𝑆 biases below (blue arrow in Fig. 8.7a) and above (yellow 

arrow in Fig. 4a) the onset of the HEB, respectively. Before the onset of the HEB (Fig. 

8.7c), the regions of higher 𝑑𝐼/𝑑𝑉𝑆 intensity appear similarly distributed between the 

BT (grey circles) and BB (blue circles) atom locations. After the onset of the HEB (Fig. 

8.7d), the regions of higher 𝑑𝐼/𝑑𝑉𝑆 intensity are clearly localized at the BT (grey 

circles) atoms. This behavior is consistent with the enhanced LDOS contribution by 

the BT atom depicted in Fig. 8.1c.  

We observe a similar localization behavior on the HEB*. We perform a similar 

analysis as done above but with the upper secondary bands labeled HEB* in Fig. 8.2b. 

Figure 8.8a shows a 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆) spectrum measured with the STM tip positioned above 

the BT atom. The shoulder around 𝑉𝑆 = 550 mV corresponds to the edge of the HEB*.  
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Figure 8.8| Atomically resolved localization of the HEB* in BLG. (a) 𝑑𝐼/𝑑𝑉𝑆 of 

BLG near the onset of the HEB* plotted in green. Tunneling parameters: 𝑉𝑆 = 0.4 V; 

𝐼 = 2 nA; 𝑉𝑎𝑐 = 5 mV; 𝑓𝑎𝑐 = 400 Hz. (b) Atomically resolved topography of BLG 

with overlaid lattice schematic. (c) and (d) Spatial 𝑑𝐼/𝑑𝑉𝑆 maps of BLG taken at 

energies below (𝑉𝑆 = 500 mV) and above (𝑉𝑆 = 600 mV) the onset of the HEB in BLG 

corresponding to the blue and orange arrows in (a), respectively. A schematic of BLG’s 

lattice overlays each image. Below the onset of the HEB (c), 𝑑𝐼/𝑑𝑉𝑆 intensities 

between the BT and BB sites are similar. Above the onset of the HEB (d), the 𝑑𝐼/𝑑𝑉𝑆 

signal is localized at the BT atom as predicted in Fig. 8.1c. 

 

Figure 8.8b shows a topographic STM map of BLG, similar to Fig. 8.7b. Figures 8.8c 

and 8.8d show spatial 𝑑𝐼/𝑑𝑉𝑆 maps of the same region in Fig. 8.8b taken at 𝑉𝑆 biases 
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below (blue arrow in Fig. 8.8a) and above (yellow arrow in Fig. 8.8a) the onset of the 

HEB*, respectively. Before the onset of the HEB* (Fig. 8.8c), the regions of higher 

𝑑𝐼/𝑑𝑉𝑆 intensity appear similarly distributed between the BT (grey circles) and BB (blue 

circles) atoms. After the onset of the HEB* (Fig. 8.8d), the regions of higher 𝑑𝐼/𝑑𝑉𝑆 

intensity appear localized near the BT (grey circles) atoms. Again, similar to the case 

for the HEB, this behavior is consistent with the enhanced LDOS contribution by the 

BT atom depicted in Fig. 8.1c. 

 

 

8.6 Conclusion 

In conclusion we have shown that an enhancement in layer polarization 

attributed to pseudospin ferromagnetism in Bernal stacked BLG, leads to a clear 

spectroscopic signature of the VHS. As predicted by our localized LDOS calculations, 

we used spatially and atomically resolved STS to demonstrate that BLG’s top layer 

VHS is localized at a single atom (AT) in the unit cell. Additionally, we employed the 

same atomically resolved imaging technique to study the HEBs in BLG. Similarly, we 

verified our LDOS calculations by experimentally determining that states localize at 

the overlapping atom (BT) in the unit cell at the onset of the HEBs. Future studies may 

focus on the modification of the STM tip’s work function42 to bring the band edges in 

BLG closer to 𝐸𝐹. Additionally, BLG is expected to host various competing layer 

occupation states near the bandgap minimum (𝑉𝐺~ − 51 V)35,43,44 and the energy cost 
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of some of these states can be tuned via the application of a perpendicular magnetic 

field. As a consequence, the asymmetry in VHS intensity observed in our experiment 

could display different behavior when a magnetic field as small as 4 mT is applied.35 

This field should vary the energy costs of different spin occupation states between the 

top and bottom layer in BLG. 
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Chapter 9 – Conclusion 

  

As one of my adviser’s first graduate students working to set up a new 2D 

materials lab, I was tasked with benchmarking some of the latest (at the time) results 

in the field. When I began my graduate studies, this field had vastly studied (among 

other things) the electrical properties of graphene and was in the midst of exploring 

ways to apply and enhance these properties by interfacing graphene with other 2D 

materials such as hexagonal boron nitride (hBN). As a result, I was able to gather and 

apply knowledge from a mature and still active field. This enabled me to pay closer 

attention to experimental peculiarities as I assembled and characterized the 

graphene/hBN heterostructure from the bottom up. The experiments presented in Ch.5-

8 are, therefore, a byproduct of a global scientific effort started in 2004 which continues 

to actively further our understanding of the physical world as well as to provide viable 

solutions for current and future challenges. 

 

9.1 What We Learned Through Our Journey from the Bottom to the Top 

We started our journey at the bottom in Ch. 5, where silicon oxide (SiO2) meets 

hBN. There we learned that electric fields on the order of ~1 V/nm lead to the 

accumulation of charged defects at the SiO2/hBN interface. By exposing graphene/hBN 

field effect transistors (FETs) to such high electric fields we demonstrated reversible 
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changes in our graphene FETs’ electronic properties. A range of electric field 

intensities and different temperatures were examined in Ch. 5. We found that shifts in 

graphene’s charge neutrality point (CNP) increase as both the electric field intensity 

and temperature are increased. Due to the similarities between CNP shifts in our study 

and prior works on Poole-Frenkel emissions, we applied the Poole-Frenkel model to 

explain the mechanism by which high electric fields induce persistent doping in our 

graphene/hBN FETs. Using insight from our proposed mechanism, we assembled an 

FET heterostructure that eliminates persistent unintended doping. This FET contains 

an additional layer of graphite underneath the graphene/hBN stack. Here, graphite acts 

as a backgate and, importantly, prevents charge buildup in the hBN. The suppression 

of charge buildup in hBN is important for ARPES and high temperature electrical 

transport studies because it recovers controllable device doping.1–3 Nonetheless, studies 

that utilize doping in 2D materials can incorporate the doping technique we presented 

in Ch.5 to enhance n-doping in a given 2D material. Finally, this doping technique can 

be used to quantify deliberate defect incorporation in hBN, which has been employed 

by several quantum emitter studies.4–6 Synthesis processes that deliberately increase 

defect densities in hBN may utilize high exposure to high electric fields to attain an 

approximate measure of defect densities based on the magnitude of CNP shifts. 

Then, in Ch. 6 and Ch. 7, our journey progressed to the interface between 

graphene and hBN. In Ch. 6 we learned how to corral graphene charges using an 

scanning tunneling microscope (STM) on a graphene/hBN heterostructure by creating 

a persistent and embedded local gate in the hBN7–10 by a similar mechanism to that in 
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Ch. 5. This embedded local gate enables the pseudo-confinement of graphene charge 

carriers via Klein tunneling—creating a structure resembling a quantum dot (QD). In 

particular, we showed that incorporating the STM tip’s electrostatics in conjunction 

with that of the underlying hBN charges enables a more complete understanding of the 

experimental spectroscopic features of exposed graphene QDs. We compared 

experimental STM data obtained on graphene QDs with simulations that include the 

tip-induced potential as well as with simulations that neglect this potential. The 

agreement between experiments and simulations is greater when the simulations 

include the influence of the tip. Our analysis also reveals the intriguing possibility of 

studying the interplay between states confined by the potential due to hBN defects and 

the potential due to the STM tip. Studies that seek to reduce such interplay may use 

insights from our simulations to mitigate the tip’s effect by tuning a backgate voltage. 

Additionally, the interaction between these two QDs could potentially be used to 

emulate relativistic molecular behavior or other complex coupled QD systems.10 

Still at the interface, in Ch.7 we looked at the interplay between bilayer 

graphene (BLG) and hBN in regard to their relative crystallographic alignment. We 

performed a spatially resolved investigation of a BLG/hBN heterostructure using an 

advanced photoemission spectroscopy technique—nanoARPES. With this technique, 

we were able to directly extract tight-binding parameters for BLG on hBN. We showed 

that nanoARPES can reveal variations in crystallographic alignment between BLG and 

hBN. These latter findings were confirmed by STM imaging, which showed areas with 

different Moiré periodicities due to numerous domains with various orientations. We 
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attributed this variation of lattice alignment to an inhomogeneous BLG/hBN alignment 

induced by standard ultra-high vacuum heating used to prepare samples for ARPES 

and STM characterization. These results substantially improve our understanding of 

the BLG/hBN heterostructure and provide researchers using this heterostructure with a 

direct picture of the electronic bands resolved in reciprocal space with nanoscale 

resolution. In addition, the spatial variation of lattice alignment between the BLG and 

the supporting hBN that we evidenced here is important for researchers investigating 

these samples with spatially averaging probes such as electronic transport or optical 

spectroscopy. 

Finally, we reached the top in Ch.8, where BLG is decoupled from and yet is 

still supported by hBN. In Ch.8 we primarily focused on the intricate and tunable 

electronic behavior of BLG down to the atomic scale. Such an achievement was 

realized partly due to hBN’s ultra-flat and inert properties that make it an ideal substrate 

for graphene—leading to unprecedented STM probe stability. We showed that an 

enhancement in layer polarization due to pseudospin ferromagnetism in Bernal stacked 

BLG can lead to a clear spectroscopic signature of BLG’s Van Hove singularity (VHS). 

As predicted by our local density of states (LDOS) calculations, we used spatially and 

atomically resolved scanning tunneling spectroscopy (STS) to demonstrate that such 

VHS is localized at a single atom in BLG’s top layer. Additionally, we employed the 

same atomically resolved imaging technique to study the higher energy bands in BLG. 

Similarly, we verified our LDOS calculations by experimentally determining that states 

localize at the dimer site in the unit cell at the onset of their band edges. Future studies 
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may focus on the modification of the STM tip’s work function11 to bring the band edges 

in BLG even closer to the Fermi level (𝐸𝐹), providing further insights into many-body 

phenomena in BLG. Additionally, the application of a perpendicular magnetic field and 

temperature variability should enable the exploration of the pseudospin ferromagnetic 

transitions in BLG12–14 for small electric field intensities. 

 

9.2 Prospects for Future Investigations 

An intriguing direction for further studying the phenomena explored in Ch. 6 

and Ch. 8 involves tuning the work function of the STM tip. The STM tip’s work 

function could possibly be changed by exposure to deuterium gas as done by Zhao et 

al11 or by calibrating the STM tip onto a crystalline surface with a different work 

function than gold. By modifying the work function difference between graphene and 

the STM tip (ΔΦ) such that ΔΦ ≥ 0, could provide different results for the spatially 

resolved spectroscopic characterization of circular pn junctions as done in Ch. 6. 

Furthermore, having ΔΦ ≥ 0 opens up the possibility of bringing the bandgap 

minimum in BLG close to 𝑉𝐺 = 0. This would bring the observed VHS in Ch. 8 closer 

to 𝐸𝐹 which could enable the partial filling of the flat bands at the VHS, as was done 

in twisted graphene studies.15–17 

 In Ch. 8, I showed that many body effects are present near the VHS in BLG. 

This result may be explored further. For example, BLG is expected to host various 

competing layer occupation states near the bandgap minimum (𝑉𝐺~ − 51 V).12–14 The 



 
199 

 

energy cost of some of these states can be tuned via the application of a perpendicular 

magnetic field. As a consequence, the asymmetry in VHS intensity observed in Ch. 8 

should display different behavior after a magnetic field as small as 4 mT is applied.12 

Additionally, the technique for creating quasibound states in Ch. 6 may be applied to 

create circular regions in BLG such that the inner circle has a different top layer 

occupation than the surrounding bulk. This could possibly lead to the observation of a 

new kind of confined states in BLG subject to interaction effects. 
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Appendix Section 

 

Appendix A: Polymer Substrate Preparation 

The following steps outline the process of preparing a polymer substrate for use in the 

graphene/hBN heterostructure assembly discussed in Ch. 4. 

 

Steps: 

1. Cut a glass slide into squares using a diamond-tip pen and carefully snap them 

with your hands (see Fig. A.1). Discard any glass squares that have nicks or 

other significant damage on the edges as these may increase the chances of 

cracking and braking during the assembly process. 

Figure A.1| Cut glass slide. 
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2. Blow clean nitrogen gas onto the cut slide to remove any shards or dust. Rinse 

the glass square with acetone and isopropanol. Immediately after, dry the glass 

square with nitrogen gas. 

3. Gently and slowly place Clear Tape™ onto the clean glass square (see Fig. A.2). 

Then, with your index finger press the tape onto the glass with a steam-rolling 

motion to minimize the amount of bubbles formed. Finally, remove the excess 

tape from the edges with a clean razor blade. 

Figure A.2| Placing tape on glass slide. 

 

4. Before spin coating the slide with MMA solution (10: 1 MIBK:MMA by mass) 

onto the glass slide and tape, do the following:  

- Squirt some acetone onto the tape, wait ~5 seconds.  

- Run the spinner at ~3000 RPM for 4 seconds and squirt a small amount of 

IPA as the square spins to rinse the Acetone off. Letting the acetone dry 

creates groves on the PVC side of the tape which allows for better polymer 

adhesion.  
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- Turn the spinner off.  

- To apply the MMA place 9 drops of MMA solution using the glass dropper 

bottle in a 3 × 3 array (see Fig. A.3). 

- Immediately after, turn on spinner and increase the speed from ~500 RPM 

to 1300 RPM in about 3 to 4 seconds.  

- Let spinner run for 1 minute before reducing the spinner’s rotation speed 

down to ~500 RPM. 

- After a few seconds, turn the spinner off. 

 

Figure A.3| MMA solution droplets on a tape/glass slide. The blue circles represent 

the MMA droplets. The gray area represents the tape which sits on the clear glass. 
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Appendix B: Electron Beam Lithography Parameters 

The following screenshots show the parameters used in patterning with the 

NPGS program (https://www.jcnabity.com). There are two run files “e” and “b” for 

small and large electrodes, respectively (see the top “File” label on each screenshot). 

We consider small electrodes those with widths between a few micrometers to a few 

tens of micrometers. Large electrodes are features between a few tens to a few hundred 

micrometers. The right column of the images below contain the exposure, 

magnification, and line density parameters. 

 

Figure B.1| NPGS parameters for small electrodes. 
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Figure B.2| NPGS parameters for large electrodes. 
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Appendix C: Making a Circular p-n Junction with the STM 

The following steps outline the process of creating a circular p-n junction or 

quantum dot (QD) on the surface of monolayer graphene (MLG) in order to probe 

quasibound states as done in Ch. 6. These steps assume that the STM tip has been 

properly calibrated on the surface of Au(111) as outlined in Ch. 4. 

 

Part 1. Locate a clean region on the surface of MLG 

 After landing the STM tip on the surface of MLG, perform topographic scans 

on small windows (~ 2 × 2 nm) on a square grid with an area of about 200 × 200 nm. 

About 16 windows will suffice during this small-window sampling process. The QDs 

are generally ~150 nm in diameter. Therefore, the grid must be large enough to contain 

the QD while ensuring that there are no contaminants present on the surface. After 

ensuring that the windows sampled only contain pristine and flat graphene, proceed to 

scanning the entire 200 × 200 nm area. 

 

Part 2. Create a p-doped QD 

- Move the STM tip over the center of the clean region found in Part 1 and 

set the current (𝐼) to 500 pA and the sample bias (𝑉𝑆) to +500 mV while 

the tunneling current feedback is engaged. 
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- Change the backgate voltage (𝑉𝐺) to an arbitrary positive value. A typical 

value used is 𝑉𝐺 = +30 V. 

- Lift the STM tip 2 nm off the surface of MLG and immediately change 𝑉𝑆 

to +5 V. 

- After one minute, switch 𝑉𝑆 back to +500 mV and bring the tip back down 

by 2 nm (the same height the tip was lifted by). 

Part 2.5. (Alternatively) Create an n-doped QD 

- To create an n doped QD you must follow the same steps as in Part 2 but 

use a negative value for 𝑉𝐺. A typical value used is 𝑉𝐺 = −30 V. 

 

Part 3. Characterize the p-doped QD 

- Change the setpoint to values used for QD characterization. The typical 

values used are 𝐼 = 1 nA and 𝑉𝑆 < −100 mV. 

- Change 𝑉𝐺 to some value between zero and the 𝑉𝐺 value used in Part 2 (e.g. 

𝑉𝐺 = +15 V for a p doped QD or 𝑉𝐺 = −15 V for a n doped QD). Perform 

a spatial 𝑑𝐼/𝑑𝑉𝑆 map along a line that crosses the center of the QD (see Ch. 

6). We call this type of spatial sampling a “line scan”. You do not need a 

high-resolution line scan here. You may perform a scan that takes ~20 

minutes. 
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Figure C.1| Examples of QDs. (a) Shows a QD too large to resolve the typical 

intermittent nodal pattern attributed to quasibound states. (b) Shows an asymmetric 

QD. Asymmetry in a QD may arise due to a highly asymmetric macroscopic STM tip 

or contaminant(s) on the surface of graphene near or on the QD area. (c) Shows an 

example of an ideal QD that symmetrically displays the nodal patterns expected in an 

MLG QD. 

 

- Verify that the QD created is symmetric and that the nodal patterns that 

indicate quasibound states in MLG are present. For example, Fig. C.1a 

shows a QD that is too large. A QD that extends too far laterally tends to 

suppress the intermittent nodal patterns associated with QD states. If the 

QD is too large, you may try to use a larger tip-to-sample distance than that 

used in Part 2 (e.g. 2.2 nm). Fig. C.1b shows an example of a quantum dot 

with strong asymmetry. It is very rare to find a QD with near perfect 

symmetry. However, a QD that shows strong asymmetry such as that shown 

in Fig. C.1b should not be used. At this point you may attempt to create a 

QD again after resetting the area (see Part 4). If the strong asymmetry 

persists, the shape of the macroscopic tip is likely asymmetric. If this is the 
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case, you must recalibrate the tip on Au(111). Finally, Fig. C.1c shows an 

example of an ideal MLG QD. If the QD appears shallow or deep (see Ch. 

6 for examples) but still displays the intermittent nodal patterns, then you 

may try to use different values of 𝑉𝐺 during the line scan to obtain a scan 

like that shown in Fig. C.1c 

 

Part 4. Reset the QD 

In the event that the QD created does not have the ideal qualities discussed in 

Part 3, you are able to reset the QD and attempt to create a new QD. To reset the QD 

follow these steps: 

- Place the STM tip at the center of the QD and change the setpoint to 𝐼 = 

500 pA and 𝑉𝑆 = +500 mV while in tunneling mode. 

- Lift the STM tip 1.2 nm off the surface of MLG and immediately change 

𝑉𝑆 to +5 V. 

- After two minutes, switch 𝑉𝑆 back to +500 mV and bring the tip back down 

by 1.2 nm. 

 

 




