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Human activity analysis in unconstrained environments using far-field sen-

sors is a challenging task. The fusion of audio and visual cues enables us to build

robust and efficient human activity analysis systems. Traditional fusion schemes

including feature-level, classifier-level and decision-level fusion have been explored

in task-specific contexts to provide robustness to sensor and environmental noise.

However, human activity analysis involves the extraction of information from au-

dio and visual cues at multiple levels of semantic abstraction. This naturally leads

to a hierarchical fusion framework.

In this dissertation, the limitations of existing fusion schemes are explored
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and new algorithms are developed to address some of these limitations. The itera-

tive decoding algorithm (IDA) fuses the audio and video modalities at the decision

level but unlike other schemes, it uses an iterative strategy to infer the joint likeli-

hood of the hidden states from the unimodal likelihoods. The iterative decoding is

advantageous to joint modeling and other decision level fusion schemes in terms of

ease of training of the models and the performance under low SNR scenarios. The

extension of the IDA to more complex tasks, such as audio-visual person tracking

and meeting scene analysis, leads to hierarchical fusion frameworks. The multi-

level iterative decoding framework for audio-visual person tracking (MID-AVT)

uses the iterative decoding framework for tracking multiple subjects using both

audio and visual cues from multiple cameras and microphone arrays. The local

sensor-level tracks are fused using the IDA to obtain globally consistent tracks.

The MID-AVT framework is robust to sensor calibration errors and requires only

a rough calibration step to learn the correspondences between different sensors.

The location specific speaker modeling (LSSM) framework for audio-visual meet-

ing scene analysis augments the tracking information with speaker recognition

information. Speaker recognition using far-field microphones is a challenging task.

The LSSM framework addresses this issue by using the speaker’s location infor-

mation to select the corresponding location specific speaker recognition model. In

practice, training such contextual models requires intensive labeling of audio-visual

datasets. Semi-supervised techniques for model learning and sensor calibration are

presented in this dissertation to address this issue. A particular case, learning the

LSSM models using face recognition information, is explored in detail and found

to perform well in practice. The overall contribution of this dissertation is the

exploration of various aspects of hierarchical fusion in audio-visual human activity

analysis and the extensive analysis of these hierarchical fusion frameworks on real

world audio-visual testbeds.
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Chapter 1

Audio visual human activity

analysis

1.1 Introduction

Human activity analysis is the process of inferring and interpreting the

identity, actions and intent of human subjects. Human activity analysis systems

fall under two main categories.

• Interactive systems such as natural human computer interfaces (HCI), in-

teractive gaming interfaces and interactive robots where the subject(s) co-

operate and interact with an intelligent system that responds to their actions

and intents.

• Passive observation systems such as surveillance systems, archival and re-

trieval systems and automatic transcription systems where the intelligent

system observes the human subjects .

In either case, the focus is on using sensors to collect information about

human subjects and analyzing this sensory data using a suitable mathematical

framework to extract relevant information. Historically, research in the field of

human activity analysis has drawn considerable inspiration from ability of the hu-

man brain to perform such an analysis in a natural and seamless manner. Since

1
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human perception is multimodal in nature, with speech and vision being the pri-

mary senses, significant research effort has been focussed on developing intelligent

systems with audio and video interfaces[19]. Humans are the ultimate intelli-

gent systems equipped with multimodal sensors and the capability to seamlessly

process, analyze, learn and respond to multimodal cues. Humans beings seem

to learn the cross-modal correspondences early on and use that along with other

techniques to combine the multimodal information at various levels of abstraction.

This seems to be the ideal approach to sensory information fusion as exemplified

by the success of hierarchical modeling schemes. However significant progress is

necessary before computers can begin to process multimodal information at the

level of humans. The models and algorithms used in intelligent systems need not

be motivated by human information processing alone. However, human cognition

can provide valuable insight into the what and how of intelligent systems.

Human activity and interaction is inherently multimodal. Vision and hear-

ing are the primary senses used by humans to comprehend the complex world

as well as to communicate with each other. Several psychological studies have

outlined the fusion of audio and visual information by humans for performing par-

ticular tasks. A classic example is that of lip reading. Another example is that

of audio source localization. These studies provide the basis for intelligent system

researchers to incorporate either audio or visual or both the modalities in order

to accomplish a particular task. It is necessary while designing such systems to

evaluate the benefits and costs associated with using both audio and visual sensory

modalities as opposed to using just one of them.

1.2 Benefits of audio-visual fusion

The traditional interfaces such as keyboard, mouse and even close-talking

microphones are considered too restrictive to facilitate natural interaction between

humans and computers. Research efforts have been focussed on developing non-

intrusive sensors such as cameras and far field microphones so that humans can

communicate through natural means like conversational speech and gestures, with-
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out feeling encumbered by the presence of sensors. In other words, the computer

has to fade into the background, allowing the users of the intelligent systems to

conduct their activities in a natural manner. This necessitates the use of multi-

modal, especially audio-visual systems. Audio-visual systems are not restricted to

human computer interfaces (HCI) alone. In several applications such as meeting

archival and retrieval and human behavioral studies, audio-visual fusion can be

applied as a post processing step. The techniques discussed in this thesis are also

applicable in this context and not restricted to real-time interfaces.

Though different sensors might carry redundant information as suggested

in the previous paragraph, these sensors are rarely equal, in the sense, they carry

complementary information too, making it advantageous to use certain sensors

over others for certain tasks. This is clearly demonstrated in the case of speech

and gesture analysis for HCI applications, where the information carried through

gestures complements the information presented through speech. Utilizing both

these cues leads to a system that can understand the user more completely than

using just one of the modalities.

As a consequence of committing to non-intrusive and natural interfaces,

the audio and visual sensors are usually deployed in unconstrained environments

and operated in a far-field configuration. In such a setting, background noise

and environmental factors significantly affect the performance of the systems. A

significant benefit of using multimodal sensors is the robustness to environment

and sensor noise that can be achieved through careful integration of information

from different types of sensors. This is particularly true in cases where a particular

human activity can be deduced from two or more different sensory cues, like for

example, audio and lip movements in the case of human speech. Many other tasks

like person tracking, head pose estimation, affective state analysis also exhibit

significant overlap in the information conveyed over multiple modalities, especially

audio and video.

Audio-visual information fusion is not restricted to fusing cues from two

sensor streams. Multiple sensors are used in practice in the form of microphone

arrays and camera networks. Accurate calibration of such a sensor network is a
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difficult task and audio-visual fusion can be used to solve this problem[90][30][72].

Systems designed to analyze multiple human subjects have to cope with yet

another complexity. In multi-sensor multi-subject analysis systems, audio-visual

cues can be integrated at multiple semantic levels. This leads to hierarchical fusion

strategies. However, more complex fusion frameworks require a more elaborate

training procedure with additional demands on the size and nature of training

datasets. Since it is expensive to collect such labeled datasets, there is signifi-

cant advantage to using audio-visual systems that can adapt in a semi-supervised

manner. Using cross-modal correspondences, it is possible to use the cues from

one modality to generate labeled training data for another task. This enables the

audio-visual systems to evolve over time and adapt to changing scene and sensor

configurations.

1.3 Application domains

As discussed in the previous section, the selection of audio-visual fusion

strategies is specific to the scene and sensor configuration. In this section we will

briefly outline a few practical application domains.

The most extensively researched domain is that of meeting scenes. The

challenge here is to use far-field cameras and microphones to analyze the human

activity in a meeting scene, which typically has multiple subjects. A practical ex-

ample of meeting analysis can be seen in [49]. Far-field sensors are necessitated for

developing an unobtrusive system. Tasks such as person tracking, speech recogni-

tion, speech enhancement and person identification are performed using audio and

visual cues.

Natural human computer interfaces are another domain where audio-visual

fusion is critical. Here again, far-field sensors are used, however, the subject is

usually co-operative and frequently adapts to the system.

Health smart homes and assisted living for people with disabilities is yet

another area where audio-visual systems are needed [32]. This includes passive

surveillance of the scene for detecting certain events of interest such as an individual
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losing consciousness/mobility as well as active interaction with the subjects.

Intelligent vehicles have advanced significantly and include several driver

assistance technologies [100][98]. Such driver assistance systems and the interaction

with the car’s infotainment system could benefit significantly by the use of both

audio and visual cues[96]. Speech recognition, person identification, affect analysis

are tasks of interest in this context.

Several psychoanalytical studies involve the segmentation and labeling of

audio-visual recording of subjects. Using audio-visual fusion framework to develop

segmentation algorithms has a great potential in making this process more efficient

and affordable.

In figure 1.1, we present audio-visual testbeds involving meeting scenes,

natural HCI and intelligent vehicles. Though audio-visual fusion is not commonly

employed in the real-world applications at present, there is a lot of potential that

needs to be explored and these testbeds are a first step in that direction.

1.4 Challenges in audio-visual information fusion

• Synchronization of audio and video sensors is a primary challenge in devel-

oping audio-visual systems for human activity analysis. In some tasks, such

as speech recognition, synchronization of audio and video frames is critical.

In other tasks, such as person tracking, the synchronization requirements

can be relaxed. In any case, cameras and microphones need to capture the

signals from the scene in a time synchronous manner. This challenge is acute

in systems that require multiple audio-visual sensors.

• Multiple cameras and multiple microphones are needed to design systems

that can observe human activity in an unconstrained scene. Cameras and

microphones in such a system need to be calibrated with respect to each

other and with respect to the world co-ordinates. This poses a significant

challenge, especially in practical deployment of systems.

• Suitable mathematical models are needed to infer human activity from noisy

sensory observations of the scene. Most of the research in computer vision
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Figure 1.1: Audio-visual testbeds involving a meeting scene, natural HCI and an
intelligent vehicle. These are some of the examples where the benefits of audio-
visual fusion are being demonstrated in real-world situations.

and speech processing has evolved independently. Audio-visual fusion re-

quires the integration of audio and visual modeling techniques and in many

cases new mathematical models have to be developed for this purpose.

• Standard audio-visual datasets are necessary for developing fusion strategies,

training the audio-visual models and evaluating their performance. Such

datasets are very difficult to collect, even harder to annotate and conse-

quently not readily available. Also, given the broad scope of human activity

analysis, datasets collected for one specific task are not well suited for other

tasks.



7

1.5 Research contributions

Cameras and microphones are ubiquitous and the current challenge is no

longer the cost of deploying these sensors. Computational resources necessary

to process the multiple data streams might be a limitation in some applications

such as in mobile devices. However, the ongoing trends indicate that computa-

tional power will not be a bottleneck either. In order to be successful, an audio-

visual system needs to use effective fusion strategies. As outlined in the later

chapters, several audio-visual tasks, their corresponding suitable feature sets and

fusion strategies have been explored by the research community. However, the

selection of a suitable fusion strategy for a particular task at hand is non-trivial

and requires domain expertise. This is a significant hurdle in the widespread de-

ployment of audio-visual systems. Future research needs to address this challenge

by developing adaptive and context based fusion strategies. Online learning and

automatic sensor calibration strategies will play a major role in the next generation

of audio-visual systems.

In this thesis, the challenges outlined in Section 1.4 are addressed in detail.

Audio-visual testbeds and the corresponding techniques for synchronized capture

of audio and video signals are described in detail. The challenges and techniques

in calibrating such sensor networks are presented. Fusion schemes of varying levels

of complexity for audio-visual fusion in a wide range of tasks are developed.

• Iterative decoding algorithm (IDA) for the fusion of temporal streams of

audio and visual information.

• Multi-level iterative decoding algorithm (MID) for hierarchical fusion of au-

dio and visual cues in more complex tasks.

• Contextual modeling framework for fusion of audio and visual information

at different levels of semantic abstraction.

• A semi-supervised learning framework for learning the contextual models.

The Iterative decoding algorithm (IDA) for the fusion of temporal streams

of audio and visual information is based on the principle of iterative decoding used
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in turbo codes. The IDA fuses the audio and video modalities at the decision level

but unlike other decision level fusion schemes, it uses an iterative scheme to infer

the joint likelihood of the hidden states from the unimodal likelihoods obtained

from the audio and video models. The IDA is advantageous to joint modeling

and other decision level fusion schemes in terms of ease of training of models

and performance under low SNR scenarios. However, the utility of the iterative

decoding algorithm is limited by the fact that the multiple observation streams

need to correspond to the same underlying hidden state sequence for effective

inference. In practice however, audio-visual human activity analysis includes the

observation of multiple subjects using multiple sensors. In such a situation, further

steps are required to associate data with the respective source before iterative

decoding based inference can be applied.

The multi-level iterative decoding framework for audio-visual person track-

ing (MID-AVT) scheme uses the iterative decoding framework for tracking multiple

subjects using both audio and visual cues from multiple cameras and microphone

arrays. The MID-AVT framework extends the iterative decoding algorithm by in-

cluding a data association step to select appropriate track hypotheses from different

sensor views. The performance of the MID-AVT tracker is similar to the popular

particle filter based audio-visual tracker. However there are distinct advantages

to the MID-AVT framework. It is modular and hence easy to expand to more

number of cameras and microphone arrays or any other sensors that can localize

persons. It is also applicable to sensors with overlapping and non-overlapping field

of ’view’. Since the placement of the sensors is assumed to be arbitrary but fixed,

only a rough calibration scheme is necessary to establish the correspondence be-

tween sensors. Moreover, the performance of the MID-AVT tracker is robust to

small errors in sensor calibration.

However, tracking human subjects is only the first step in analyzing human

activity in an intelligent space. The situational awareness needed in an intelligent

space is developed by fusing information at multiple levels of semantic abstraction.

When audio-visual fusion is explored in the context of such co-performed tasks, not

only is an hierarchical integration of audio and video cues necessary, but it is also
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beneficial to the performance of the individual tasks because the output of one kind

of human activity analysis task contains valuable information for another such task

and by interconnecting them, a robust system results. The location specific speaker

modeling (LSSM) framework for audio-visual meeting scene analysis augments the

tracking information with speaker recognition information. Speaker recognition

using far-field microphones is a challenging task. The LSSM framework addresses

this issue by using the speaker’s location information to select the corresponding

location specific speaker recognition model.

Training the contextual models requires extensive amounts of densely la-

beled training data. A framework to train the contextual models using minimum

amount of supervision will make the hierarchical fusion frameworks more applica-

ble in practice. A particular case, learning the LSSM models using face recognition

information, is explored in detail and found to perform well in practice.

1.6 Thesis outline

In Chapter 2 we present a review of existing audio-visual fusion schemes.

In Chapter 3 we develop the iterative decoding algorithm (IDA) - a probabilistic

fusion framework for fusing information from time sequences of audio and video

observations based on the theory of turbo codes. The utility of IDA is demon-

strated on speech segmentation as well as speech recognition tasks. In Chapter 4

we extend the iterative decoding to solve the problem of person tracking by includ-

ing a data association framework. This results in the multi-level iterative decoding

based audio-visual tracking (MID-AVT) framework. In Chapter 5 we discuss more

elaborate hierarchical fusion schemes and explore the utility of contextual fusion

schemes in building robust audio-visual meeting analysis systems. Specifically the

location specific speaker modeling framework and the role of head pose estimation

in speech acquisition from far field microphones is explored. The utility of these

fusion schemes on a real world problem of meeting scene analysis is analyzed and

evaluated on an extensive set of real world meeting recordings. The details of the

real world testbeds are presented in Appendix A. In Chapter 6, we present a semi-
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supervised learning scheme to train the location specific speaker models. Finally

we present the concluding remarks and future directions in Chapter 7.



Chapter 2

Audio-visual information fusion

schemes: A survey

The varied application domains of multimodal human activity analysis sys-

tems have always presented a challenge to the systematic understanding of their

information fusion models and algorithms. The traditional approach to informa-

tion fusion schemes classifies them based on early, late and intermediate fusion

strategies and describes their associated merits. Achieving robustness to environ-

mental and sensor noise is the traditional motivation for audio-visual information

fusion. This category includes the major part of the multimodal fusion strategies

studied so far. The most widely accepted notion of sensory information fusion

applies to these systems. Those tasks which involve redundant cues in multiple

modalities due to the nature of the human activity, fall under this group. Audio-

visual speech recognition is the classic example of such a task. It is also one of the

earliest areas to generate considerable research interest in multimodal information

fusion techniques. In earlier literature[78][47], fusion strategies have been classified

as follows -

• Signal enhancement and sensor level fusion strategies.

• Feature level fusion strategies.

• Classifier level fusion strategies.

11
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Figure 2.1: Information fusion at various levels of signal abstraction is depicted
here.

• Decision level fusion strategies.

• Semantic level fusion strategies.

2.1 Signal enhancement and sensor level fusion

strategies

This includes signal enhancement techniques such as beamforming using

microphone arrays. It is conceivable that video information could be useful in the

beamforming process as in [89][87][57]. Also, camera networks could benefit from

the source localization and pan-tilt-zoom cameras might be able to capture better
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images of the scene. However such schemes are rarely described in isolation and

are usually part of hierarchical fusion approaches (Section 2.7).

2.2 Feature level fusion strategies

Cognitive scientists refer to this as the early fusion strategy. This is also

referred to as the data to decision fusion scheme in literature[99][84]. Some tasks

such as automatic speech recognition, person tracking, affect analysis etc produce

cues in multiple modalities in a temporally correlated manner. Note that an up-

sampling or a down-sampling stage is sometimes necessary in order to align the

streams to each other. A representative example is the case of audio signals and

lip movements carrying the information about the spoken word in the audio and

visual modality respectively. In these cases, an early fusion strategy is feasible.

In this case, one concatenates the feature vectors from the multiple modalities to

obtain a combined feature vector which is then used for the classification task.

Figure 2.2 is a schematic representation of typical feature fusion schemes.

This early fusion has the advantage that it can provide better discrimina-

tory ability for the classifier by exploiting the covariations between the audio and

video features[99]. However, the larger dimensionality of the combined feature vec-

tor presents challenges for the classifier design. In order to overcome this, standard

dimensionality reduction techniques such as DCT, PCA, LDA and QDA are ap-

plied. LDA and QDA based systems are know to out-perform PCA based systems

in classification tasks. However, in the presence of limited training data, PCA is

more stable than LDA[58]. The optimal dimensionality reduction technique also

depends on the nature of the classifier used. Theoretically, kernel based classifiers

like SVMs do not require an explicit dimensionality reduction step. However, most

multimodal systems adopting an early fusion strategy are based on HMM based

classifiers and do benefit from dimensionality reduction.

As an example, [70] presents an elaborate scheme for early fusion of audio-

visual information for speech recognition which includes both early and late fusion.

The early fusion consists of the DCT and multiple PCA steps to reduce the di-
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Figure 2.2: Signal and information flow in feature level fusion strategy

mensionality of the audio-visual feature vector. Early fusion strategy with a HMM

based classifier is also explored in [59] for the purpose of analyzing group actions

in meetings. 39 features including 18 audio features and 21 visual features are con-

catenated and used to recognize group actions in meeting recordings. This early

fusion scheme is second in performance only to an intermediate fusion strategy us-

ing asynchronous HMMs (10% vs 9.2% error rates), revealing that the simple early

fusion strategy is quite effective if used in the right task. Another example of early

fusion for audio-visual tracking can be seen in [72]. Here the microphone arrays

and cameras are treated as generalized directional sensors and treated equivalently.

[36] proposes an iterated extended Kalman filter (IEKF) for audio-visual source

tracking by concatenating audio and visual features.

The early fusion technique has the advantage of being the simplest to im-

plement and is suitable for those applications which require very fast processing of
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cues. However, it cannot be applied to most tasks where strictly temporally syn-

chronized cues are not present. Also, the feature concatenation performs poorly

when the reliability of the different modalities during the training phase differ from

the actual operation phase.

2.3 Classifier level fusion strategies

Cognitive scientists refer to this as the intermediate fusion strategy. This is

typically encountered in cases where HMMs (and their hierarchical counterparts)

and Dynamic Bayesian networks are used to model individual streams. In such

cases, the information can be fused within the classifier, but after processing the

feature vectors separately. Thus a composite classifier is generated to process the

individual data streams. The intermediate fusion strategy is an attempt to avoid

the limitations of both early and late fusion strategies . Unlike early fusion, fusion

at the classifier level does allow the weighted combination of different modalities

based on their reliability[33]. These weighted combinations however are taken on

each frame, allowing for a much finer combination of cues than in late fusion. Such

fusion schemes are widely used in audio-visual speech recognition systems. Figure

2.3 is a schematic representation of typical intermediate fusion schemes.

Asynchrony between the different streams can be modeled to some extent.

This is critical in cases such as audio-visual speech recognition where the audio and

video asynchrony is of the order of 100ms whereas the frame duration is typically

25ms[38][78]. Different degrees of asynchrony are allowed at the cost of complexity

and speed. The multistream HMM[27][62] assumes perfect synchrony between

the different streams. On the other extreme is the model that allows complete

asynchrony between the streams. This is however infeasible due to the exponential

increase in the number of state combinations possible due to the asynchrony. An

intermediate solution is given by the product HMM [103] or the coupled HMM

[68]. In case of audio-visual speech recognition, this corresponds to imposing phone

synchrony as opposed to the frame synchrony of the multistream HMM.

The coupled hidden Markov model and the multistream hidden Markov
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model have been used to improve the performance of audio-visual speech recogni-

tion [27, 68, 86]. These schemes have also been applied in other areas of research

such as biometrics[29], audio-visual head pose estimation using the particle filter

framework[16], audio-visual person tracking[95][88][71][6], audio-visual aggression

detection[110]. However, in the real-world situations, the reliability of the different

streams varies with time. For example, the video channel in audio visual speech

recognition might be completely unreliable if the speaker covers the mouth with

the hand or turns away from the camera[85]. In this case, it is useful to be able to

estimate the reliability of each channel continuously and weight them accordingly.

Stream weight estimation and its adaptive counterparts have been presented in

literature[78][40]. The iterative decoding algorithm [85] solves this problem by us-

ing techniques burrowed from turbo codes [9]. The iterative decoding algorithm

has been applied to the problem of audio visual speech recognition[86] on the

GRID audio-visual speech corpus[21] and to the problem of person tracking using

the audio-visual cues in [88].
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2.4 Decision level fusion strategies

Late or decision level fusion involves the combination of probability scores

or likelihood values obtained from separate uni-modal classifiers to come up with

a combined decision. In cases where strictly temporally synchronized cues are

absent, late integration is still feasible. Typically late fusion involves using inde-

pendent classifiers, one for each modality and combining the likelihood scores based

on some reliability based weighting scheme. The training and decoding these uni-

modal models scales linearly in the number of streams which makes these schemes

particularly attractive. The reliability of the streams is typically used by expo-

nentially weighting the probability scores from individual streams before taking

their product. Such a combination scheme with appropriate weighting scheme has

been used for audio-visual speech recognition[27]. However, in case of audio-visual

speech recognition, the late fusion strategy has been shown to be inferior to the

intermediate fusion strategy discussed in the previous section[27]. Figure 2.4 is a

schematic representation of typical decision fusion schemes.

The weighting scheme used in late fusion draws upon the work in combina-

tion theory to estimate the best weighting factors based on the training data. This

is however a limitation when there is a mismatch between the training database

and the actual operation. As with the intermediate fusion strategy, decision fu-

sion allows for separate weighting of the different streams based on the reliability.

However the fusion is not at the level of frames but at a higher levels. For exam-

ple, in the audio-visual speech recognition context, the decision level fusion could

take place at the utterance level. Decision level fusion allows maximum flexibil-

ity in the choice of individual classifiers. [56] explores the use of decision level

fusion for audio-visual person identification. The lack of state correspondences

in the text independent person ID task imposes the late fusion strategy in this

case. The authors also acknowledge the importance of optimal weighting in the

decision fusion. [92] is another audio-visual person identification system based on

decision level fusion. [112] describes an audio-visual affect recognition which uses

decision level fusion to combine facial expressions and prosodic cues for affective

state recognition.
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Figure 2.4: Signal and information flow in decision level fusion strategy

2.5 Hybrid fusion strategies

A combination of the above mentioned fusion strategies is also reported in

literature. In [78] a combination of feature level fusion with decision level fusion

is used in the context of an audio-visual speech recognition task. The audio and

visual feature are combined early on through a discriminatory feature selection

process and the discriminatory features are used again as one of the streams in

a multi-stream based decision fusion technique. There is no theoretical basis for

such a scheme, however in practice, it is shown to improve the recognition accu-

racy. Canonical correlation analysis (CCA) is a statistical approach that combines

linear dimensionality reduction and fusion by computing linear projections that

are maximally correlated. It is a combination of early and late fusion strategies.

[83] applied CCA to a open-set speaker identification problem. More recently, a

spectral diffusion framework has been proposed to provide a uniform embedding

of data for multisensory fusion [52].
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2.6 Semantic level fusion strategies

It is conceivable that higher level information can be merged after the se-

mantic interpretation of the sensory information. This is beyond the scope of our

survey because usually such fusion schemes will involve other modalities like text,

webpages and other such sources of information that are amenable to semantic

interpretation.

2.7 Hierarchical fusion strategies

Traditional fusion schemes, as described so far, have mostly focussed on task

based fusion schemes. Audio-visual fusion for speech recognition, person tracking,

person identification, emotion recognition have been explored and are also areas of

active research. However, in practice, several such tasks have to be co-performed to

provide the situational awareness that is required by an effective intelligent system.

For example, an intelligent robot will be expected to simultaneously perform the

tasks of speaker localization, speech recognition, speaker identification and emotion

recognition in order to provide a wholesome communication experience. Similarly,

a meeting scene analysis system requires the tracking of human subjects, person

identification, speaker localization and speech recognition to automatically analyze

meeting scenes.

One of the early research studies in observing human activities in an instru-

mented room is described in [101]. A graphical summary of the human activity

was generated. The audio and visual information was used in identifying the cur-

rent speaker based on a rule based decision fusion. [11] and [39] describe another

meeting room analysis system which also fuses audio-visual stream for person iden-

tification, in addition to using the audio for automatic transcription and archival

purposes. [79] investigates speech, gaze and gesture cues for high level segmenta-

tion of a discourse into topical segments based on a psycholinguistic model. In [73],

the authors propose a hierarchial HMM framework for modeling human activity.

More recent hierarchical fusion strategies include [113][74][23][8]. In [8], the au-

thors develop a probabilistic integration framework for fusion of audio visual cues
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Figure 2.5: Flowchart summarizing the exchange of audio and visual cues at
multiple levels of semantic abstraction in a meeting analysis system.

at the track and identity levels. This is an example of fusion at multiple levels of

abstraction. Similarly, in [87], the utility of head pose estimation and tracking for

speech recognition from distant microphones is explored.

When audio-visual fusion is explored in the context of such co-performed

tasks, not only is an hierarchical integration of audio and video cues necessary,

but it is also beneficial to the performance of the individual tasks because the

output of one kind of human activity analysis task contains valuable information

for another such task and by interconnecting them, a robust system results. The

interconnected blocks in a hierarchical fusion framework is illustrated in Figure

2.5.

In hierarchical fusion schemes, audio-visual information fusion can involve

the following scenarios



21

• Reduce the search space in classification tasks - Audio or visual cues

can be used to restrict the search space for classification tasks using the

corresponding other modality. In case of parametric statistical model based

classification, this can be achieved by having specially trained models for

different contexts and switch between these models using the audio or visual

cues. Typically, the statistical models are easier to train and have better per-

formance for individual contexts. The task of audio-visual fusion in this case

is to robustly identify the particular context based on complimentary cues.

In other cases where classification models are based on minimum distance or

maximum likelihood, the audio and visual cues can be used to restrict the

set of possibilities over which the minimum/maximum is evaluated.

• Semi-supervised/unsupervised learning of classification models -

The audio and visual cues can be used to select a training set for training sta-

tistical models for the classification tasks. This is particularly necessary for

the contextual modeling stated above, to be successful. The audio-visual fu-

sion reduces the effort to label the training sets and leads to a semi-supervised

or in certain cases, unsupervised learning algorithms that can automatically

update the contextual models. The challenge lies in identifying the cues

based on their ease and robustness of detection and the minimum supervi-

sion needed in labeling the data.

• Calibration of sensors - In cases where multiple cameras and microphones

are used to collect audio and visual cues, the calibration of the sensors with

respect to each other and with respect to the room co-ordinates is an im-

portant issue. One solution is to develop algorithms that work in the sensor

co-ordinates. Another approach is to develop sensor calibration techniques

that use the cameras and microphones together to calibrate each other.

• Traditional fusion strategies (as describes in earlier sections) - The

most commonly encountered examples of audio visual fusion in literature are

cases where the audio and visual modalities carry complimentary information

from the same underlying process as in the case of acoustic waveforms and lip
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movements conveying information about the underlying speech segment. The

fusion challenge is to develop inference algorithms to decipher the underlying

process based on the audio and visual observations. This is achieved by fusing

the cues at the feature, classifier or decision levels.

In the following chapters we present several fusion frameworks illustrating

these fusion paradigms on real world human activity analysis tasks.
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Chapter 3

A Probabilistic framework for

audio-visual information fusion

3.1 Introduction

Fusion of information from different streams is a big challenge in multimodal

systems. So far, there has not been any standard fusion technique that has been

widely accepted in the published literature. Graphical models have been widely

discussed as the most suitable candidates for modeling and fusion information in

multimodal systems[47]. Since human activity is usually a temporal sequence of

events and activities, dynamic Bayesian networks and hidden Markov models are

commonly employed to model human activity.

Information fusion can occur at various levels of a multimodal system. A

sensor level fusion of video signals from a normal and an infrared camera is used

for stereo analysis in [55]. At a higher level is the feature level fusion. The audio

and visual features used together in the ASR system built at the John Hopkins

University, 2000 workshop [69] is a good example of feature level fusion. Fusion

at higher levels of abstraction(decision level) have also been proposed. Graphical

models have been frequently used for this task[46]. Fusion at the sensor level is

appropriate when the modalities to be fused are similar. At the feature level,

fusing more disparate sources becomes possible. At the decision level, all the

23
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information is represented in the form of probabilities and hence it is possible

to fuse information from a wide variety of sensors. In this chapter we develop a

general fusion algorithm at the decision level.

In this chapter, we develop a fusion technique in the Hidden Markov model

(HMM) framework. HMMs are a class of Graphical models that have been used

traditionally in speech recognition and human activity analysis[73].

3.2 Advantages of the iterative decoding scheme

A good fusion scheme should have lower error rates than those obtained

from the unimodal models. Both the joint modeling framework and the itera-

tive decoding framework have this property. Multimodal training data is hard

to obtain. Iterative decoding overcomes this problem by utilizing models trained

on unimodal data. Building joint models on the other hand requires significantly

greater amounts of multimodal data than training unimodal models due to the

increase in dimensionality or complexity of the joint model or both. Working with

unimodal models also makes it possible to use a well-learned model in one modality

to segment and generate training data for the other modalities, thus overcoming

the problem of lack of training data to a great extent.

In many applications like ASR, well-trained unimodal models might already

be available. Iterative decoding utilizes such models directly. Thus, extending the

already existing unimodal systems to multimodal ones is easier. Another common

scheme used to integrate unimodal HMMs is the product HMM [43]. Simulations

show that the product rule performs as well as the joint model. But the product

rule has the added disadvantage that it assumes a one-one correspondence between

the hidden states of the two modalities. The generalized multimodal version of the

iterative decoding algorithm in section 3.4.2, relaxes this requirement. Moreover,

the iterative decoding algorithm performs better than the joint model and the

product HMM in the presence of background noise, even in cases where there is a

one-one correspondence between the two modalities.

In noisy environments, the frames affected by noise in different modalities
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are at best non-overlapping and at worst independent. The joint models are not

able to separate out the noisy modalities from the clean ones. Because of this rea-

son, the iterative decoding algorithm outperforms the joint model at low SNR. In

the case of other decision level fusion algorithms like the multistream HMMs [111]

and reliability weighted summation rule [28], one has to estimate the quality(SNR)

of the individual modalities to obtain good performance. Iterative decoding does

not need such apriori information. This is a very significant advantage of the

iterative decoding scheme because the quality of the modalities is in general time-

varying. For example, if the speaker keeps turning away from the camera, video

features are very unreliable for speech segmentation. The exponential weighting

scheme of multistream HMMs requires real time monitoring of the quality of the

modalities which in itself is a very complex problem.

3.3 Turbo codes and the iterative decoding algo-

rithm

Turbo codes are a class of convolutional codes that perform close to the

Shannon limit of channel capacity. The seminal paper by Berrou et al.[9] intro-

duced the concept of iterative decoding to the field of channel coding. Turbo codes

achieve their high performance by using two simple codes, working in parallel to

achieve the performance of single complex code. The iterative decoding scheme

is a method to combine the decisions from the two decoders at the receiver and

achieve high performance. In other words, two simple codes working in parallel

perform as well as a highly complex code which in practice cannot be used due to

complexity issues.

An analogy can be drawn between the redundant information of the two

channels of a turbo code and the redundant information in the multiple modalities

of a multimodal system. Based on this a modified version of the iterative decoding

algorithm to extract and fuse the information from parallel streams of multimodal

data can be developed.

Consider a multimodal system to recognize certain patterns of activity in an
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intelligent space[102]. It consists of multimodal sensors at the fundamental level.

From the signals captured by these sensors, one can extract feature vectors that

encapsulate the information contained in the signals in finite dimensions. Once

the features are selected, one can model the activity to be recognized, statistically.

For an activity that involves temporal variation, Hidden Markov models(HMM)

are a popular modeling framework[73].

3.3.1 Hidden Markov Models

Let λ = (A, π, B) represent the parameters of a HMM with N hidden

states, that models a particular activity. The decoding problem is to estimate the

optimal state sequence QT
1 = {q1, q2 . . . qT} of the HMM based on the sequence of

observations OT
1 = {o1, o2 . . . oT}.

The Maximum aposteriori probability state sequence is provided by the

BCJR algorithm[3]. The MAP estimate for the hidden state at time t is given by

q̂t = arg max P (qt, O
T
1 ). The BCJR algorithm computes this using the forward and

backward recursions.

Define,

λt(m) = P (qt = m, OT
1 )

αt(m) = P (qt = m, Ot
1)

βt(m) = P (OT
t+1|qt = m)

γt(m
′, m) = P (qt = m, ot|qt−1 = m′), m = 1, 2 . . . N, m′ = 1, 2 . . . N

Then establish the recursions,

αt(m) =
∑
m′

αt−1(m
′) · γt(m

′, m)

βt(m) =
∑
m′

βt+1(m
′) · γt+1(m, m′)

λt(m) = αt(m) · βt(m)
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Figure 3.1: Illustrating the forward recursion of the BCJR algorithm

These enable us to solve for the MAP state sequence given appropriate

initial conditions for α1(m) and βT (m).

3.3.2 Multimodal scenario

For the sake of clarity, consider a bimodal system. There are observations

OT
1 from one modality and observations ΘT

1 = {θ1, θ2 . . . θT} from the other modal-

ity. The MAP solution in this case would be q̂t = arg max P (qt, O
T
1 , ΘT

1 ). In order

to apply the BCJR algorithm to this case, concatenate the observations(feature

level fusion) and train a new HMM in the joint feature space. Instead of building

a joint model, one can develop an iterative decoding algorithm that allows us to

approach the performance of the joint model by iteratively exchanging information

between the simpler models and updating their posterior probabilities.
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3.4 Iterative Decoding Algorithm

This is a direct application of the turbo decoding algorithm[9]. In this

section, it is assumed that the hidden states in the two modalities have a one-one

correspondence. This requirement is relaxed in the generalized solution presented

in the next section.

In the first iteration of the iterative algorithm, decode the hidden states

of the HMM using the observations from the first modality, OT
1 . The aposteriori

probabilities, λ
(1)
t (m) = P (qt = m, OT

1 ) are obtained.

In the second iteration, these aposteriori probabilities, λ
(1)
t (m) are utilized

as extrinsic information in decoding the hidden states from the observations of

the second modality ΘT
1 . Thus the aposteriori probabilities in the second stage

of decoding are given by λ
(2)
t (m) = P (qt = m, ΘT

1 , Z(1)T

1 ) where Z
(1)
t = λ

(1)
t is the

extrinsic information from the first iteration. In order to evaluate λ
(2)
t , the BCJR

algorithm is modified as follows.
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3.4.1 Modified BCJR algorithm for incorporating the ex-

trinsic information

λ
(2)
t (m) = P (qt = m, ΘT

1 , Z(1)T

1 )

α
(2)
t (m) = P (qt = m, Θt

1, Z
(1)t

1)

β
(2)
t (m) = P (ΘT

t+1, Z
(1)T

t+1|qt = m)

γ
(2)
t (m′, m) = P (qt = m, θt, Z

(1)
t |qt−1 = m′)

Then the recursions do not change, except for the computation of γ
(2)
t (m′, m).

Since the extrinsic information is independent of the observations from the

second modality, γ
(2)
t (m′, m) = P (qt = m|qt−1 = m′) ·P (θt|qt = m) ·P (Z

(1)
t |qt = m)

Here Z
(1)
t = [z

(1)
1t z

(1)
2t . . . z

(1)
Nt ]

′ is a vector of probability values. A histogram



30

0 0.2 0.4 0.6 0.8 1
0

50

100

z 1t

0 0.2 0.4 0.6 0.8 1
0

20

40

z 2t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

z 3t

0 0.2 0.4 0.6 0.8 1
0

50

100

z 4t

Histograms of different components of Z
t
 for q

t
 = 2 and N=4
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of each component of Z
(1)
t for qt = 2 in a N = 4 state HMM synthetic problem

is shown in figure 3.4. From the histogram, one can see that a simple parametric

probability model for P (Z
(1)
t |qt = m) is obtained as

P (Z
(1)
t |qt = m) = f(1 − z

(1)
mt ; ρ) ·

∏
i6=m

f(z
(1)
it ; ρ)

where,

f(x; ρ) =

{
1
ρ
e−x/ρ , x ≥ 0,

0 , x < 0.

is an exponential distribution with rate parameter 1
ρ
. Other distributions

like the beta distribution could also be used. The exponential distribution is chosen

due to its simplicity.
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In the third iteration, the extrinsic information to be passed back to decoder

1 is the aposteriori probabilities λ
(2)
t (m). But part of this information (λ

(1)
t (m)),

came from decoder 1 itself. If one were to use λ
(2)
t as the extrinsic information in the

third iteration, it would destroy the independence between the observations from

the first modality and the extrinsic information. This difficulty can be overcome by

choosing another formulation for the extrinsic information based on the following

observation,

λ
(2)
t (m) = α

(2)
t (m) · β(2)

t (m)

α
(2)
t (m) =

∑
m′

α
(2)
t−1(m

′) · γ(2)
t (m′, m)

λ
(2)
t (m) =

∑
m′

α
(2)
t−1(m

′) · γ(2)
t (m′, m) · β(2)

t (m)

λ
(2)
t (m) = P (Z

(1)
t |qt = m)

∑
m′

α
(2)
t−1(m

′) · P (qt = m|qt−1 = m′) ·

P (θt|qt = m) · β(2)
t (m)

λ
(2)
t (m) = P (Z

(1)
t |qt = m) · Y (2)

t

Note that Y
(2)
t does not depend on Z

(1)
t and is hence uncorrelated with ot . This

argument follows the same principles used in Turbo coding literature [9]. Hence,

Y
(2)
t is normalized to sum to 1 and the normalized vector is considered to be the

extrinsic information passed on to decoder 1 in the third iteration.

The normalized extrinsic information Z
(2)
t (m) =

λ
(2)
t (m)/P (Z

(1)
t |qt=m)

P
m′ λ

(2)
t (m′)/P (Z

(1)
t |qt=m′)

is

passed back to decoder 1.

The iterations are continued till the state sequences converge in both the

modalities or a fixed number of iterations are reached.

3.4.2 General multimodal problem

In the previous section, it was assumed that the hidden states in the two

modalities of a multimodal system are the same. In this section, this restriction

is relaxed to allow the hidden states in the individual modalities to just have a

known prior co-occurrence probability. In particular, if qt and rt represent the
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hidden states in modality 1 and 2 at time t, then the joint probability distribution

P (qt = m, rt = m′) is assumed to be stationary and known.

This corresponds to the case where there is a loose but definite interac-

tion between the two modalities as seen very clearly in the case of phonemes and

visemes, in audio-visual speech recognition. There in no one-one correspondence

between visemes and phonemes. But the occurrence of one phoneme corresponds

to the occurrence of a few specific visemes and vice-versa.

3.4.3 Iterative decoding algorithm in the general case

This is an extension of the iterative decoding algorithm as presented in the

turbo coding scenario. At the jth iteration in the modified BCJR algorithm, in

the computation of γ
(j)
t (m′, m) = P (qt = m, θt, Z

(j−1)
t |qt−1 = m′), one needs to
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compute

γ
(j)
t (m′, m) = P (rt = m, θt, Z

(j−1)
t |rt−1 = m′)

γ
(j)
t (m′, m) = P (rt = m|rt−1 = m′) · P (θt|rt = m) · P (Z

(j−1)
t |rt = m)

γ
(j)
t (m′, m) = P (rt = m|rt−1 = m′) · P (θt|rt = m)

·
∑

n

{P (Z
(j−1)
t |qt = n)P (qt = n|rt = m)}

which can be computed from the joint probability distribution P (qt = m, rt = m′).

The rest of the iterative algorithm remains the same as before.

3.5 Experimental evaluation of the iterative de-

coding algorithm

3.5.1 Performance evaluation on a synthetic dataset

In this section the results of applying the iterative decoding algorithm to

a synthetic problem are presented. A synthetic problem is better suited to iso-

late the performance characteristics of the iterative decoding algorithm from the

complexities of real world data, which are dealt with in section 3.5.2.

Observations are generated from an HMM with 4 states and whose ob-

servation densities are 4 dimensional Gaussian distributions. A joint model is

constructed by concatenating the feature vectors. The goal of the experiment is to

decode the state sequence from the observations and compare it with the true state

sequence in order to obtain the error rates. The experiment is repeated several

times and the average error rates are obtained.

In the first case, the joint model with 8 dimensions and 4 states is used to

generate the state and observation sequences. The joint model is used to decode

the state sequence from the observations. Next, the observations are assumed to

be generated by two modalities with 4 dimensions each. The product rule [43] is an
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alternative modeling strategy to the joint model. But in the simulations, it is found

that its error rates are the same as that of the joint model. Hence the joint model

is considered to be the baseline. The iterative decoding algorithm described in

section 3.4 is applied to decode the state sequence and compared to the true state

sequence. The results are shown in figure 3.6. The iterative decoding algorithm

converges to the baseline performance and it reduces the error rate by almost 50%

compared to the unimodal case (iteration 1). Figure 3.6 also shows the standard

deviation of error from which it can be seen that the performance is indeed close

to the baseline performance. Since the two modalities have similar unimodal error

rates, the error dynamics of the iterative algorithm are independent of the starting

modality.

In the second example, the observations are generated from two indepen-

dent HMMS such that the state sequence follows a known joint distribution. The

generalized iterative decoding algorithm described in section 3.4.2 is then applied

to decode the hidden states. The results are shown in figure 3.7. In this case

there is no baseline experiment for comparison as the two streams are only loosely

coupled but the general trend in average error rate with each iteration is similar

to the case shown in figure 3.6.

In the presence of noise, the iterative algorithm outperforms the joint model

as shown in figure 3.8. Based on the standard deviation of error, a standard t-

test reveals that the difference between the joint model and the iterative decoding

algorithm is statistically significant after the third iteration. In this case additive

white Gaussian noise is added to the features of one of the modalities. No apriori

information about the noise statistics is assumed to be available. Note that in this

case, the individual modalities have varying noise levels and hence the convergence

of the iterative algorithm is dependent on the starting modality. But in both the

cases, the iterative algorithm converges to the same performance after the third

iteration. This illustrates the advantage of iterative decoding over joint modeling

as mentioned in section 3.2.
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Figure 3.6: Error rate at different iterations for a 4 state HMM problem with
one-one correspondence between the two modalities. Note the convergence of the
error rate to that of the joint model.

3.5.2 Speech segmentation experiment

In order to evaluate the performance of the iterative decoding algorithm

on a real world problem, a simplified version of the meeting room conversation is

considered, with one speaker. The goal of the experiment is to segment the speech

data into speech and silence parts. The traditional approach to the problem is to

use the energy in the speech signal as a feature and maintain an adaptive threshold

for the energy of the background noise. This is not accurate in the presence of

non stationary background noise like overlapping speech from multiple speakers.

In this experiment, the audio and visual modalities to build a multimodal speech

segmentation system , that is robust to background noise and performs better than

the audio only model or the joint model.
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Data collection

The audio-visual testbed used for this experiment is described in detail

in Appendix A.2. 4 minutes of audio-visual data was collected from 20 different

speakers. This included 12 different head poses and 2 different backgrounds as

shown in figure 3.9 We used 1 minute of data from each speaker, that is a total

of 20 minutes of audio visual data to estimate the HMM model parameters. The

remaining 3 minutes from each speaker were included in the testing set. That is,

a total of 60 minutes of testing data was used.

Feature extraction

Each time-step corresponds to one frame of the video signal. The cameras

capture video at 15 fps. The energy of the microphone signal in time window

corresponding to each frame is the audio feature. The face of the speaker is detected
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Figure 3.8: Error rate at different iterations in the case of noisy modalities. Note
that the iterative algorithm performs better than the joint model at low SNR.

Figure 3.9: Different head poses and backgrounds for one subject out of 20
subjects in the dataset

and tracked using the Viola-Jones face detector [105]. Figure 3.10 shows some

sample frames from the face detector output for different subjects. The mouth
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Figure 3.10: Face detection using the Viola-Jones face detector with various
subjects.

Figure 3.11: Some snapshots of the lip region during a typical utterance. Observe
the variations in pose and facial characteristics of the three different subjects, which
limits the performance of a video-only system.

region is considered to be the lower half of the face. The motion in the mouth

region is estimated by subtracting the mouth region pixels from consecutive frames

and summing the absolute value of these differences. This sum is the video feature

vector. Thus a smooth and stable face tracker is essential for accurate video feature

extraction. Figure 3.11 shows the different positions of the lips during a typical

utterance.
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Figure 3.12: Audio waveform of speech in background noise. The short pauses
between words which can be confused by an audio-only system for background
noise will be detected as speech by the video modality, based on the lip movement.

Model training and results

HMMs in the audio and video domains are trained using labeled speech

and silence parts of speech data. The joint model by is also trained by concate-

nating the features. The results of the experiment on a typical noisy segment of

speech is shown in figure 3.14. The ground truth is shown in figure 3.13. From

the numerical results in figure 3.15, one can see that by the third iteration, the

iterative decoding algorithm performs slightly better than the joint model. This

improvement however, is not statistically significant because the background noise

in the audio and video domains is not so severe. Though building the joint model

is straightforward in this case, it is not so easy in more complex situations, as

explained in the introductory sections. Thus the iterative algorithm appears to be

a good fusion framework in the multimodal scenario.
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Figure 3.13: Audio waveform from a typical utterance in background noise. The
speech and silence parts are hand labeled to be used as ground truth.

3.5.3 Audio visual speech recognition experiment

Database, feature extraction and modeling

A more involved application of the iterative decoding algorithm is in the au-

tomatic speech recognition (ASR) domain. Audio-visual fusion by way of fusion of

lip reading and acoustic features for ASR has received considerable attention in the

research community. The GRID audio-visual speech corpus [21] is a recently col-

lected audio-visual dataset for the evaluation of audio-visual ASR systems (AVSR).

The results correspond to a speaker dependent AVSR system. The GRID corpus

is a 51 word small vocabulary speech corpus of six word long sentences. 1000

sentences are uttered by each speaker.

900 utterances are used to train the HMMs and the rest are used in the

test set. Each word is modeled by a three state HMM with a Gaussian mixture
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Figure 3.14: The decoded states of the HMM after each iteration. Note the errors
in the first iteration being corrected in the subsequent iterations.

model(GMM) observation density. There are 10 components in each GMM with

diagonal covariance matrices. The audio feature vectors are the 13 MFCC coeffi-

cients computed on 20ms windows of audio signal with a 10ms overlap. The video

rate is 25 frames per second. This corresponds to one video frame for every 4

audio frames. The video features are hence upsampled to match the audio and

video frame rates. In order to extract the video features, the face of the speaker is

detected and tracked using the Viola-Jones face detector[105]. The current frame

is subtracted from the previous frame to estimate the motion in the mouth region

of the face. The first 16 coefficients of the 2D-DCT of the mouth region motion

map are used as the components of the video feature vector .
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Figure 3.15: Results showing the error rates for the iterative decoding scheme
for the speech segmentation problem.

Results

In the noiseless environment the audio-only speech recognizer has a state

error rate of 12%. The state error rate is measured by comparing the decoded

hidden state sequence with the transcriptions. The state error rate is a better

estimate of the efficacy of the algorithm than the word error rate as the fusion of

information takes place at the state level. The video-only speech recognizer has

a state error rate of 27%. The iterative decoding algorithm converges to an error

rate of 13% after the third iteration. The audio modality is then corrupted with

white noise so the SNR is now reduced to 5dB. The error rate of the audio-only

speech recognizer is now 40%. But the iterative decoding algorithm converges to

an error rate of 25% after the third iteration. The results are summarized in Figure

3.16.

Note that the error rates presented here are highly dependent on the choice

of the audio and video features. Using better video features would naturally lead
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Figure 3.16: State error rates for an audio-visual speech recognition task on the
GRID speech corpus using the proposed scheme. After 3 iterations, the error rate
of the iterative decoding algorithm converges close to the error rate of the best
modality.

to a better performance in the video-only speech recognizer and hence the iterative

decoding framework would perform better in the presence of audio noise.

3.6 Concluding remarks on the iterative decod-

ing algorithm

In this chapter a general information fusion framework based on the prin-

ciple of iterative decoding used in turbo codes has been presented. The iterative

decoding algorithm has been extended to the generalized multimodal case and its

performance has been evaluated on synthetic experiments as well as on the real

world tasks of speech segmentation and speech recognition. The iterative decoding
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is advantageous to joint modeling and other decision level fusion schemes in terms

of ease of training of models and performance under low SNR scenarios. However,

the utility of the iterative decoding algorithm as presented here is limited by the

fact that the multiple observation streams need to correspond to the same underly-

ing hidden state sequence for effective inference. In practice however, audio-visual

human activity analysis includes the observation of multiple subjects using multi-

ple sensors. In such a situation, further steps are required to associate data with

the respective source before iterative decoding based inference can be applied. In

the next chapter, a hierarchical framework is presented that uses iterative decoding

and data association to track multiple persons using audio and visual cues.
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Chapter 4

Multilevel iterative decoding

based audio-visual person

tracking (MID-AVT) framework

4.1 Introduction

In the previous chapter, the iterative decoding algorithm was described for

the fusion of audio-visual information at the classifier level. In this chapter, a

hierarchical fusion framework is presented which combines the iterative decoding

algorithm with a data association scheme. This enables the benefits of the iter-

ative decoding scheme to be applied to the case where multiple human subjects

are present in the scene which leads to multiple streams of audio and visual ob-

servations. The multilevel iterative decoding based audio-visual person tracking

(MID-AVT) framework presented in this chapter is an embodiment of such a hi-

erarchical fusion framework.

4.2 Person tracking using audio-visual cues

Robust person tracking is the first step in facilitating detection and anal-

ysis of human activity in a monitored space. It is also an integral component of

45
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intelligent spaces, for facilitating seamless interaction between humans and com-

puters. Tracking humans using audio-visual cues can provide robustness to back-

ground noise and visual clutter. Tracking based on visual sensors has been widely

researched[106]. Microphone array based trackers that track sound sources have

also been studied by some researchers[13]. In this chapter the iterative decoding

algorithm is developed further to formulate a general fusion framework for mul-

timodal person tracking and applied to track people in an indoor environment

with multiple cameras and microphone arrays. Extensive experimental evaluation

of the framework is also presented. The evaluation is carefully designed to bring

forth the true strengths of the framework and its weaknesses. In section 4.2.1, a

survey of related research and the comparative advantage of the MID-AVT frame-

work is presented. In section 4.3, the mathematical formulation of the hidden

Markov model based MID-AVT framework is developed. In section 4.4, the labo-

ratory testbed with multiple cameras and microphone arrays which was used for

extensive experimentation and evaluation studies is outlined.

4.2.1 Existing audio-visual person tracking schemes

In this section a brief survey of related research activities in the field of mul-

timodal person tracking is presented. Also, the motivation behind using iterative

decoding framework to solve the tracking problem is clearly outlined.

Person tracking has been a computer vision problem that received consid-

erable attention[106]. An good review of multi-camera trackers can be found in

[45]. Audio source localization is also a well researched field [41][25]. Localizing

and tracking individuals using audio-visual information has recently received much

attention.

Early effort in tracking speakers using both audio and video cues involved

camera epipolar constraints and audio cross correlation. In [77] one camera and

two microphones were used and a single person was tracked. Spatial probability

maps were used in [75] to track a single speaker using two cameras and three

microphones. [104] used a particle filter to track one subject using one camera two

microphones. [67] used auditory epipolar geometry and face localization to track
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multiple people in the camera view using four microphones. Bayesian network

based feature concatenation scheme was explored in [5] using one camera and

two microphones. Audio-visual synchrony and correlation have been exploited to

locate speakers in [22][31][42]. These early efforts were constrained by the number

of sensors used (usually one or two cameras and two to three microphones) and

the scene complexity (usually one speaker was tracked).

Subsequent researchers have used Bayesian networks with the particle fil-

tering based inference technique in audio-visual tracking [104] [114] [76] [5] [20]

[17] [71] [36] [35] [6]. Approximate inference in the dynamic Bayesian network

framework, necessitated by the complexity and non-Gaussianity of the joint mod-

els, is performed by the use of particle filters [35],[17]. In the recent past, the

CLEAR 2006 and CLEAR 2007 evaluation workshops [95][94] have been a sig-

nificant research effort in evaluating audio-visual person tracking in meeting and

lecture scenes. A wide variety of frameworks were developed and evaluated in these

workshops on datasets collected under the initiative of the European CHIL (Com-

puters in Human Interaction Loop) consortium. Among the techniques presented

in CLEAR 2006 and CLEAR 2007, [6][1][51] are the closest matching schemes to

the MID-AVT framework.

[51] describes an audio-visual 3-D person tracker that uses face detectors

as the visual front-end and fuses detections from multiple views to obtain the 3-D

location of the person’s head. If a speaker is active, the audio localization results

are matched to the closest video track and continued to be tracked. If there is

no match with the video tracks, the audio track is tracked separately. The results

indicate that though the video face detection yields consistent results, the fusion

of audio localization information does not perform well. In fact with the addition

of audio information the results are worse than the video-only results.

[1] describes an elaborate 3-D voxel based video tracker augmented by the

audio localization information. Views from multiple cameras are combined to

construct a 3-D voxel representation of the subjects and this 3-D object is then

tracked over time. One problem with such an approach is that it relies heavily on

the calibration of the cameras to obtain the 3-D co-ordinates of object pixels. This
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sensitivity is a recurring feature in other schemes too. Another shortcoming in

[1] is that the audio localization information is associated to the video detections

using data association techniques. Details of the data association technique used

are not provided and one can assume that proximity based data association is

one possible solution. This could lead to many false detections because the audio

detections are quite noisy. The results do indicate that the audio-visual tracker

performs only as well as the video-only tracker. In section 4.4.1, this is explored

in more detail.

[6] presents a state-space based fusion strategy for associating audio lo-

calization information with the video tracks. 3-D tracks are maintained using a

particle filter based tracker. If audio detections are close to video tracks, they are

associated with each other. If not, new tracks are created to explain the audio

detections till a matching video track is found. The 3-D video tracker described

here has the same sensitivity to camera calibration mentioned above. In addition,

a separate particle filter is used for each person and hence an estimate of the num-

ber of people in the scene is necessary. Also, even when the number of subjects is

known accurately, if some subjects are not detected, the tracker tends to initialize

false tracks to explain the given number of subjects.

[35] presents an interesting particle filtering framework which incorporates

the audio and visual detections into the particle filtering framework. However the

tracking framework presented in [35] does not correspond to a 3-D tracker. The

camera views are stitched to obtained a panoramic view of the room in which

subjects are tracked. An advantage of this system is that the cameras need not

be accurately calibrated. However this setup places restrictions on the positions

that the subjects can occupy and is difficult to generalize to new scenes especially

when larger number of people participate in meetings and lectures.

[17] uses particle filtering to fuse audio and video detections. This is the

closest approach to the MID-AVT framework. In [17], two overlapping camera

views are used along with a microphone array to localize and track subjects. Oc-

clusions are handled by multi-view and audio localizations. However the evaluation

is limited to a simple scene and does not give much insight into the strengths and
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weaknesses of the framework. Also, the 3-D tracking relies on accurate calibration

of the cameras.

4.2.2 Proposed framework - MID-AVT

The MID-AVT framework is an alternative approach to fusion of audio-

visual cues based on iterative decoding for tracking multiple people in a space

instrumented with multiple sensors - cameras and microphone arrays. One impor-

tant requirement of this scheme is that the overlapping fields of view should provide

robustness to occlusions. Another goal of the MID-AVT framework is to overcome

two major disadvantages with some of the existing schemes outlined above, namely

sensitivity to accurate sensor calibration and the necessity to know the number of

subjects in the scene. The framework is based on a rough calibration step simi-

lar to [35] but unlike [35] there is no constraint on the scene complexity and the

tracking process actually incorporates multiple overlapping views which allows for

successful tracking through occlusions in some views. Unlike [17], the MID-AVT

framework is robust to sensor calibration errors. In Section 4.4.1, the performance

of the MID-AVT framework is compared with that of the particle filter framework

suggested in [17] on the same dataset. Also the robustness to sensor calibration is

demonstrated.

The MID-AVT framework is based on iterative decoding. The iterative de-

coding scheme as described in the previous chapter is not applicable to tracking as

we need to solve the data association problem[4] before using iterative decoding.

In the next section a hidden Markov model (HMM) based tracking framework is

presented which specifies the tracking problem in a hierarchical manner, allowing

the local sensors (camera/microphone array) to maintain track hypotheses and the

global tracker to fuse the local tracks from various sensors to generate a robust

estimate using iterative decoding. The same framework is also applicable to situa-

tions where multiple sensors are used to monitor disjoint spaces. In this case, one

cannot expect robustness to sensor limitations as one would in the overlapping-

field-of-view case.

The calibration of multimodal sensors is an important issue in tracking. In
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the MID-AVT framework, the system only requires a rough calibration step. After

this initial calibration, the system can continue tracking even if the sensors are

disturbed because we are tracking in the sensor co-ordinate system and not in the

3-D world co-ordinate system. If the calibration is accurate, one can, in addition,

infer the 3-D co-ordinates of the subjects. This 3-D location information is not

necessary for the tracking algorithm to work. The experimental evaluation results

support this claim. This is an advantage over the particle filter based tracking

schemes because the particle filters are tracking in the 3-D world co-ordinates and

a mismatch in calibration of the sensors is not tolerable.

Also, the MID-AVT framework does not need to know the number of people

in the scene. Every individual who presents a signature on any of the sensors is

detected and tracked. This is yet another advantage over [35] which assumes that

the number of subjects in the scene is known and [6] which assumes that the

maximum number of subjects to be tracked is three.

In summary, the MID-AVT framework has several distinct advantages. It

is modular and hence easy to expand to more number of cameras and microphone

arrays or any other sensors that can localize persons. It is also applicable to sensors

with overlapping and non-overlapping field of ’view’. Since the placement of the

sensors is assumed to be arbitrary but fixed, only a rough calibration scheme is

necessary to establish the correspondence between sensors. The unimodal models

considered in this framework are simple and intuitive.

4.3 Computational framework and algorithms

The goal of the MID-AVT framework is to provide a framework for track-

ing multiple targets(people) in a space instrumented with multiple cameras and

microphone arrays. Each sensor detects the subjects in its field of view and main-

tains an exhaustive list of possible track hypotheses. For example, if one tracked

object occludes another, it involves two tracks converging and they may diverge

again at a later stage. However, when two tracks converge and diverge there are

four possible track hypotheses as shown in the first column of Figure 4.3. Human
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motion in indoor environment is highly non-linear and hence at the sensor level

there is not enough information to reject the false hypotheses. Once the infor-

mation from other sensors is also available, a composite tracker can evaluate the

likelihood of each hypothesis, incorporating the information from the other sensor

and the hypotheses with high likelihood are selected and tracked in the subsequent

time frames. This process is graphically depicted in the second and third columns

of Figure 4.3. Here, there are two distinct tracks in sensor 2, because there in

no occlusion in its view. When the 4 hypotheses from sensor 1 are evaluated

with the two distinct tracks from sensor 2, only two hypotheses survive with high

likelihood. These surviving tracks are tracked in subsequent time frames. This

hypothesis selection process described in Figure 4.3 is intuitive and the iterative

decoding algorithm provides a statistical framework to implement it. In Figure 4.3

the flowchart of the MID-AVT framework is provided.

4.3.1 Feature extraction for the cameras

The video features are obtained from a simple foreground object detection

scheme. The foreground pixels in a frame are detected by background subtraction.

They are then fused into reliable blobs by morphological operations. A bounding

rectangle is fit to each distinct blob. The pixel co-ordinates of the center of the

ith rectangle, (xit, yit) and the area of the rectangle [ait] are the components of the

observation vector oT
it = [xityitait]. For every frame at time t, for the jth camera,

a list of the Mj detected foreground objects oj
it, 1 ≤ i ≤ Mj is generated.

4.3.2 Feature extraction for the microphone arrays

The audio features are based on the time delay of arrival(TDOA) estimates

between pairs of microphones in an array to estimate the location of the sound

source. The generalized cross correlation based phase transform (GCC-PHAT)

framework [54][12] is used to locate sound sources if present. This technique has

been the preferred method of TDOA estimation in established literature[35][72] as

it has shown to be robust to reverberations. For simplicity, the TDOA estimates are
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Figure 4.1: The disambiguation of confusable hypotheses using the iterative de-
coding scheme is illustrated here. The first graph shows the tracks as seen in one of
the sensors. The next four images in the first column present the possible hypothe-
ses that are plausible according to the first sensor alone. The second and third
columns have two tracks in the field of view of sensor 2. Note that both the second
and third column correspond to the same sensor. The extrinsic information that
these tracks provide sensor 1 are shown in the next eight images, superimposed
with the four hypotheses from sensor 1. The two surviving hypotheses are marked
in red.

computed on time windows of audio samples corresponding to the interval between

the camera frames. A vector of TDOA values between each microphone i and the

reference microphone r is given by ~τ = (τ1r, τ2r . . . τmr). The TDOA estimates

form the observation vector o1,t corresponding to the microphone array. Thus a

microphone network behaves like a 3-d localizer similar to a camera. Note that the

use of the SRP-PHAT technique [25] would allow the detection of multiple sound

sources simultaneously. There would be Mt detected sources at each time instance
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Figure 4.2: The MID-AVT framework involving the local and global track hier-
archies along with the groundtruth estimation procedure.

and a list of observations, oi,t, 1 ≤ i ≤ Mt. In the current chapter, it is assumed

that there is only one sound source active at any particular time. This audio

setup however differs from [72] in the arrangement of microphones. Traditional

microphone arrays (linear/planar/spherical) have only angular resolution because

the total span of the array is small compared to the source location. Large aperture

microphone arrays have much wider total span and provide better resolution in the

TDOA space. However such large aperture microphone arrays also require larger

audio frames to accurately estimate the TDOA.

After the observations are extracted for each frame of audio, the cameras

and the microphone arrays are treated equivalently as in [72]. In the next section

the camera or the microphone array in general are referred to as a sensor.
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4.3.3 Multiple hypotheses generation - local tracking

The object detection module associated with each sensor detects the fore-

ground objects (or sound sources) in each frame. In the presence of multiple objects

of interest, all distinguishable objects are detected by each camera. False positive

errors could occur in the presence of background noise or clutter. False negative

errors could occur due to occlusions. The tracking framework will address both

these issues.

Consider frames from time t = 1 . . . T . Start with a list of features of de-

tected objects oi,t, 1 ≤ i ≤ Mt at time t, where Mt is the number of detected

objects at time t. In the current setup, oi,t are image coordinates of the detected

objects. More elaborate features such as size, color can also be added under the

same framework. To start with let the initial track value for track j be lj,0. At each

time step, the tracks are updated according to the rule lj,t = {oi,t|d(lj,t−1, oi,t) ≤ r},
where d(x, y) is the Euclidean distance between x and y. If more than one obser-

vation lies within Euclidean distance r from lj,t−1, the old track is split to account

for each such observation. If no observation lies within radius r, we assign the

past value lj,t−1 to the track. This corresponds to occlusions or the object leaving

the field of ’view’ of the sensor. This is a very simple data association framework

and would result in a lot of false positives, as it maintains tracks corresponding to

all the possibilities in case of any occlusions or merging and diverging of tracks.

Only those possibilities are discarded where the data association can be completed

without ambiguity based on nearest neighbors. In the next step, using the infor-

mation from other tracks, the hypotheses that are unlikely under a probabilistic

joint model are rejected.

4.3.4 Multiple hypotheses selection and filtering- global

tracking

Consider the set of all hypotheses hk = lj|1 ≤ j ≤ Nk from sensor k which

has Nk hypotheses. In the global tracking step, all possible combinations of these

hypotheses, one from each sensor are considered. There are
∏

k Nk such combina-
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Figure 4.3: The HMM for smoothing the observations from sensor k. Note that
the hidden states q + t are described in the same feature space as the observations
ot and hence they are referred to as the temporally smoothed observations.

tions. The likelihood of each combination C = (l1j1 , l
2
j2

. . . lNjN
) under the iterative

decoding framework with HMM λk for sensor k is evaluated. Spurious tracks have

a low likelihood and are discarded. The remaining tracks are then passed down to

the local trackers to use as initial tracks for the next time window.

Since the MID-AVT framework is based on specific audio and video features

and also includes an extra data association step, the iterative decoding algorithm

is presented again in the next section as opposed to borrowing the same notation

from the previous chapter.

4.3.5 Iterative decoding algorithm

Consider a hidden Markov model Λk for sensor k with N hidden states (see

Figure 4). For clarity of presentation, the sensor index k is dropped. Λ has a

parametric transition density. The hidden state qt corresponds to the true location

of the object at time t in the same feature space as the observation vectors of

sensor k. Thus the hidden states are, in a Bayesian sense, the temporally smoothed

observations. The conditional distribution of the observation ot when the hidden

state is qt is assumed to be Gaussian. Now, the decoding problem is to estimate

the optimal state sequence QT
1 = {q1, q2 . . . qT} of the HMM based on the sequence

of observations OT
1 = {o1, o2 . . . oT}.

The Maximum aposteriori probability (MAP) state at time t is calculated

using the BCJR (Bahl Cocke Jelinek and Raviv) algorithm[3] which is also re-
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ferred to as the forward-backward sum-product algorithm in the graphical models

community. Note that any other inference technique can also be used. The MAP

estimate for the hidden state at time t is given by q̂t = arg max P (qt, O
T
1 ). The

BCJR algorithm computes this using the forward and backward recursions.

The forward recursion variable αt(m), the backward recursion variable βt(m),

the joint likelihood of the hidden state and the observation sequence λt(m) and

the recursion variable γt(m
′, m) are defined as follows,

λt(m) =P (qt = m, OT
1 ) (4.1)

αt(m) =P (qt = m, Ot
1) (4.2)

βt(m) =P (OT
t+1|qt = m) (4.3)

γt(m
′, m) =P (qt = m, ot|qt−1 = m′) (4.4)

where, m = 1, 2 . . . N, m′ = 1, 2 . . . N

Then establish the recursions,

αt(m) =
∑
m′

αt−1(m
′) · γt(m

′, m) (4.5)

βt(m) =
∑
m′

βt+1(m
′) · γt+1(m, m′) (4.6)

λt(m) =αt(m) · βt(m) (4.7)

At the first sensor HMM, the hidden states are decoded using the obser-

vations from the first sensor. The following aposteriori probabilities are obtained,

λ
(1)
t (m) = P (qt = m, OT

1 ).

In the second sensor HMM, these aposteriori probabilities, λ
(1)
t (m) are uti-

lized as extrinsic information in decoding the hidden states from the observations

of the second sensor. Thus the aposteriori probabilities in the second stage of

decoding are given by λ
(2)
t (m) = P (qt = m, OT

1 , Z(1)T

1 ) where Z
(1)
t = λ

(1)
t is the

extrinsic information from the first sensor.

λ
(2)
t (m) =P (qt = m, OT

1 , Z(1)T

1 ) (4.8)

α
(2)
t (m) =P (qt = m, Ot

1, Z
(1)t

1) (4.9)

β
(2)
t (m) =P (OT

t+1, Z
(1)T

t+1|qt = m) (4.10)

γ
(2)
t (m′, m) =P (qt = m, ot, Z

(1)
t |qt−1 = m′) (4.11)
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In order to distinguish the hidden states of sensor 1 from those of sensor

2 at time t, denote them as q1,t and q2,t respectively. Similarly the observations

are denoted by o1,t and o2,t. Then the recursions do not change, except for the

computation of γ
(2)
t (m′, m).Since the extrinsic information is independent of the

observations from the second modality,

γ
(2)
t (m′, m) =P (q2,t = m, o2,t, Z

(1)
t |q2,t−1 = m′)

γ
(2)
t (m′, m) =P (q2,t = m|q2,t−1 = m′)

· P (o2,t|q2,t = m) · P (Z
(1)
t |q2,t = m)

γ
(2)
t (m′, m) = P (q2,t = m|q2,t−1 = m′) · P (o2,t|q2,t = m)

·
∑

n

{P (Z
(1)
t |q1,t = n)P (q1,t = n|q2,t = m)}

where q2,t and o2,t correspond to the hidden state and observation at time t for

modality 2.

Assuming that P (Z
(1)
t |q1,t) = 1 if q1,t = arg maxn Z

(1)
t,n and 0 otherwise,

where Z
(1)
t,n is the nth component of the vector Z

(1)
t , which corresponds to a hard

decision rule, the missing piece in the framework is only the evaluation of P (q1,t =

n|q2,t = m). In section 4.3.6, the process of sensor calibration is described by which

this distribution is estimated.

Alternatively, one can visualize the iterative decoding as follows. Consider

the HMM based tracker for each sensor k. The observation model for this HMM

which defines the conditional distribution of the observation ok,t when the hidden

state is qk,t is assumed to be Gaussian. Now, the iterative decoding algorithm

involves incorporating extrinsic information from sensor k − 1 while decoding the

hidden states of sensor k. In order to do so, augment the observation model to

include the extrinsic information as well. The extrinsic information from sensor

k − 1 is denoted by Z
(k−1)
t . The augmented observation model is now represented

as
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P (ok,t, Z
(k−1)
t |qk,t) =P (ot|qt) · P (Z

(k−1)
t |q2,t)

P (ok,t, Z
(k−1)
t |qk,t) =P (ot|qt) · P (Z

(k−1)
t |q1,t) · P (q1,t|q2,t)

Assuming that P (Z
(k−1)
t |qk−1,t) = 1 if qk−1,t = arg maxn Z

(k−1)
t,n and 0 otherwise,

where Z
(k−1)
t,n is the nth component of the vector Z

(k−1)
t , which corresponds to a

hard decision rule, one is now left with the evaluation of P (qk−1,t = n|qk,t = m).

In section 4.3.6, we describe the process of sensor calibration is described by which

this distribution is estimated.

We proceed to sensor k + 1 with the extrinsic information Z(k) from sensor

k. We proceed likewise till we decode the hidden states of the last sensor from

the extrinsic information of the previous sensor. In the next iteration, we use

the extrinsic information of the last sensor to decode the hidden states of the

first sensor. Then the second iteration proceeds as the first, with updated state

sequences. Finally we threshold the overall log-likelihood of the track combinations

to select the surviving tracks in each sensor ’view’.

4.3.6 Sensor Calibration

The camera and microphone locations are assumed to be arbitrary but fixed.

Hence only a rough calibration step is needed to establish a relationship between

the state space of different sensors. In the iterative decoding algorithm presented

in section 4.3.5, the missing piece of the framework is the problem of estimating

P (q1,t = n|q2,t = m) for sensor pair (1, 2). There are efficient ways of learning and

storing this distribution by using decision trees, piecewise linear approximations

and kernel based density estimation techniques [24]. In this chapter a simple

kernel density estimation scheme is used to estimate the conditional distribution

P (q1,t = n|q2,t = m), by first estimating the joint distribution P (q1,t = n, q2,t = m)

from a set of training points collected during the calibration step. In order to collect

training points, an initial calibration step where a single person carrying a sound

source walks around the space monitored by the sensors is required. Tracking is
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now trivial as there is only one object. The observations from several frames are

used to estimate the joint distribution P (q1,t = n, q2,t = m) using a Gaussian kernel

of appropriate bandwidth for smoothing.

During the initial calibration phase, a person carrying a sound source walks

around the room. From the audio signals, the TDOA vector corresponding to the

sound source is computed and from the video frames, the (x, y) pixel co-ordinate

of the foreground object is obtained. Note that the calibration step establishes

correspondences between sensors in the sensor co-ordinate system. The calibration

of the cameras and microphone arrays to the world co-ordinate system is not

required for the MID-AVT framework. However this is required to measure the

ground truth for evaluating the accuracy of the tracker and to compare it with

other tracking schemes.

4.4 Experimental evaluation

The MID-AVT framework is evaluated on two different datasets MID-

AVT-UCSD-1 and MID-AVT-UCSD-2 collected in the Audio-visual testbed at the

Smartspaces laboratory at CALIT2, UCSD. The sensor and scene configuration as

well the nature of these datasets is described in Appendix A.3. Also, the ground

truth related to the actual location of the human subjects is also collected for both

the datasets.

4.4.1 Evaluation Results

The MID-AVT framework and the particle filter based tracker from [17]

were compared on the MID-AVT-UCSD-1 dataset. For the HMMs in the MID-

AVT framework, 500 hidden states per sensor were used and 100 particles for each

subject were used in the particle filter. All four cameras and the four cross shaped

microphone arrays were used as sensors. Neither algorithm was implemented in

real-time, however the iterative decoding algorithm was 2.5 times slower than the

particle filtering approach. Moreover, the iterative decoding was carried out on

blocks of length 5 seconds and hence there is a minimum delay of 5 seconds in
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generating the global tracks. However there are applications such as automatic

meeting summarization where such a delay is tolerable.

The tracker is evaluated by counting the number of frames a subject is

tracked correctly (tracker output matches ground truth location by 500 mm). The

MID-AVT scheme had an average accuracy of 76% on the MID-AVT-UCSD-1

dataset while tracking all the subjects in the meeting scene. The errors were

mostly missed detections involving subjects who blended in with the background

due to dark clothing and remained silent for most of the meetings. In Figure 4.4.1

the different views of one of the meeting scenes is shown. Note that one of the

subjects is completely missing in the tracker output. Also, the active speaker was

tracked using the audio detections alone and associating this detection with the

corresponding global track during the course of the meetings and it was found that

the active speaker was accurately found in 85% of total frames. In Figure 4.4.1

snapshots from the global tracking process as seen from one of the camera views is

shown. Note that the active-speaker tracking tracks the different active speakers

as they take turns in the conversation. However in the meeting scenes there is

only one dominant speaker and hence the audio observations do not improve the

localization accuracy of the tracker. Also, there is not much movement of the

seated participants which is not a very challenging tracking scenario. The average

root mean-squared error of the speaker location was 21cm. The particle filter based

tracker was evaluated and was found to perform with an accuracy of 74%. There

is no appreciable difference between the performance of the two trackers.

MID-AVT-UCSD-2 dataset involves a more challenging tracking scenario.

In Figure 4.4.1 a snapshot of a scene from this dataset is shown. In Table 4.3,

the fraction of times the global tracker successfully resolves the ambiguity during

occlusions and noisy detections based on the information from the other sensors

is presented. In Figure 4.4.1, one of the tracks from a clip and the associated

groundtruth is shown. The root mean squared error between the track and the

ground truth is 11cm. Again, the performance of the particle filter scheme is very

similar to that of MID-AVT framework.
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Figure 4.4: A snapshot showing the different views from the tracker. Note that
at the moment the snapshot was taken, one subject was missed by the tracker
due to lack of contrast with the background. He also remained silent during the
meeting and was not picked up by the audio localizer either.

4.4.2 Sensitivity to sensor calibration

In order to demonstrate the robustness of the iterative decoding scheme, the

calibration mismatch is simulted by applying a small fixed random rotation trans-

formation to each camera view. This corresponds approximately to the case where

the camera calibration is inaccurate. In this new configuration the experiments

were repeated on the MID-AVT-UCSD-2 dataset and the results are presented

in Table 4.4. Five random rotation transformations ( and in each case different

cameras were perturbed by different angles ) were applied to the videos. Each

rotation was selected randomly to lie between −10o and 10o around the camera

axis. The average results are shown in Table 4.4. The performance of the particle

filter tracker degrades considerably while the proposed framework maintains the
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Frame 150 Frame 255

Frame 350 Frame 380

Frame 450 Frame 465

Figure 4.5: Different snapshots during a meeting illustrate the active speaker
tracking that highlights the current active speaker by drawing a circle around the
head of the associated track.

tracking accuracy. The particle filter maintains the tracks in the 3-D co-ordinates

and hence the mismatched calibration affects the tracking process. However, in

the proposed MID-AVT framework, local tracking occurs in the image co-ordinates

and is robust to calibration errors. Note that here only a small perturbation to

the sensor configuration has been applied.
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Figure 4.6: A snapshot from the tracking process on data set 2 which involves
subjects moving continuously and hence resulting a lot of occlusions, with tracks
merging and diverging in camera views.

4.5 Concluding remarks on the MID-AVT frame-

work

In this chapter the MID-AVT framework is developed and evaluated for

tracking multiple subjects in a space instrumented with multiple cameras and

microphone arrays. The MID-AVT framework extends the iterative decoding al-

gorithm by including a data association step to select appropriate track hypotheses

from different sensor views. The performance of the MID-AVT tracker is similar

to the popular particle filter based audio-visual tracker. However there are dis-

tinct advantages to the MID-AVT framework. It is modular and hence easy to

expand to more number of cameras and microphone arrays or any other sensors

that can localize persons. It is also applicable to sensors with overlapping and

non-overlapping field of ’view’. Since the placement of the sensors is assumed to

be arbitrary but fixed, only a rough calibration scheme is necessary to establish
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Figure 4.7: A track and its associated ground truth in world co-ordinates.

the correspondence between sensors. Moreover, the performance of the MID-AVT

tracker is robust to small errors in sensor calibration. However, tracking human

subjects is only the first step in analyzing human activity in an intelligent space.

The situational awareness needed in an intelligent space is developed by fusing

information at multiple levels of semantic abstraction. In the next chapter, an ad-

vanced hierarchical framework is presented to extract different kinds of information

apart from tracking to facilitate the development of situational awareness in intel-

ligent spaces. Audio-visual fusion is explored in the context of such a hierarchical

framework.

4.6 Acknowledgments

The text of Chapter 4, in full, is a reprint of the material as it appears

in: Shankar T. Shivappa, Bhaskar D. Rao, and Mohan M. Trivedi, “Audio Visual



65

Fusion and Tracking With Multilevel Iterative Decoding: Framework and Experi-

mental Evaluation”, IEEE Journal of Selected Topics in Signal Processing, Special

issue on Speech Processing for Natural Interaction with Intelligent Environments,

July 2010. The dissertation author was the primary investigator and author of

this paper.



66

Table 4.1: Summary of fusion strategies in audio-visual person localization and
tracking

Fusion strategy for

audio-visual per-

son localization and

tracking

Sensors Scene

com-

plex-

ity

Model Publication

and Year

Proximity based

speaker association

1,2 S Camera epipolar

geometry and audio

cross-correlation

Pingali et.

al. [77]

1999

SNR based weighted

average of SPMs

2,3 S Spatial probability

maps

Aarabi [75]

2001

Feature concatena-

tion without weight-

ing

1,2 S Probabilistic track-

ing with particle

filters

Vermaak

et. al.

[104] 2001

Proximity based as-

sociation of audio and

visual events

1,4 M Auditory epipolar ge-

ometry and face lo-

calization

Nakadai et.

al. [67]

2001

Product rule 2,14 M Probabilistic track-

ing with particle

filters

Zotkin et.

al. [114]

2002

Importance sampling

and product rule

2,14 M Probabilistic track-

ing with particle

filters

Gatica-

Perez et.

al. [76]

2003

Speaker detection us-

ing audio

1,3 M Skin tone based face

detection in omni-

camera

Kapralos

et. al. [50]

2003

Feature concatena-

tion without weight-

ing

1,2 M Bayesian network Beal et. al.

[5] 2003
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Table 4.2: Summary of fusion strategies in audio-visual person localization and
tracking (contd.)

Fusion strategy for

audio-visual per-

son localization and

tracking

Sensors Scene

com-

plex-

ity

Model Publication

and Year

Weighted addition

of proposal distri-

butions from each

sensor

5,2 M Probabilistic track-

ing with particle

filters

Chen and

Rui [20]

2004

Product rule 2,16 M Probabilistic track-

ing with particle

filters

Checka et.

al. [17]

2004

Sequential state up-

date using audio and

video

4,16 M Iterated extended

Kalman filter

Gehrig et.

al. [36]

2005

Feature concatena-

tion without weight-

ing

2,14 M Markov Chain Monte

Carlo particle filter

Gatica-

Perez et.

al. [35]

2007

Feature concatena-

tion without weight-

ing

4,14 M Particle filter Bernardin

et. al. [6]

2007

Finite state ma-

chine for appropriate

weighting

1,14 M Particle filter Bernardin

et. al. [6]

2007

Iterative decoding al-

gorithm

2, 8 M Hidden Markov

Model

Shivappa

et. al. [90]

2010
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Table 4.3: Results from MID-AVT-UCSD-2 - percentage of occlusions that are
correctly resolved by the MID-AVT framework in comparison with the Particle
filtering based tracker. Note that the performance of the two schemes is very
similar.

1 cam-

era

Mics. 1 cam-

era and

mics.

2 cam-

eras

2 cam-

eras and

mics.

MID-AVT

framework

1 subject 95% 76% 95% 98% 98%

2 subjects 53% 42% 68% 85% 87%

3 subjects 38% 40% 65% 80% 83%

4 subjects 33% 34% 55% 69% 73%

Particle

filter based

tracker

4 subjects 30% 20% 35% 69% 74%

Table 4.4: Results from MID-AVT-UCSD-2 dataset (4 subject case) when a ran-
dom rotation transformation is applied to the camera views - percentage of oc-
clusions that are correctly resolved by the tracker is shown in the table. This
demonstrates that the MID-AVT framework is robust to small camera calibration
errors.

1 camera Mics. 1 camera

and mics.

2 cameras 2 cameras

and mics.

MID-AVT

framework

33% 34% 55% 68% 70%

Particle

filter

based

tracker

20% 20% 35% 49% 54%



Chapter 5

Hierarchical frameworks for

audio-visual information fusion in

meeting scenes

5.1 Introduction

Audio visual fusion has been recognized as a critical component in the de-

sign of intelligent systems. Traditional fusion schemes have focussed on feature,

classifier and decision level fusion[91]. More recently, hybrid as well as hierarchi-

cal fusion schemes have been explored to extend the benefits of fusion to more

complex tasks such as meeting scene analysis, smart health homes and intelligent

automobiles. Traditional fusion schemes have mostly focussed on task based fu-

sion schemes. Audio-visual fusion for speech recognition, person tracking, person

identification, emotion recognition have been explored and are also areas of ac-

tive research. However, in practice, several such tasks have to be co-performed to

provide the situational awareness that is required by an effective intelligent sys-

tem. For example, an intelligent robot will be expected to simultaneously perform

the tasks of speaker localization, speech recognition, speaker identification and

emotion recognition in order to provide a wholesome communication experience.

Similarly, a meeting scene analysis system requires the tracking of human subjects,

69
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person identification, speaker localization and speech recognition to automatically

analyze meeting scenes.

It can be shown that when audio-visual fusion is explored in the context of

such co-performed tasks, not only is an hierarchical integration of audio and video

cues necessary, but it is also beneficial to the performance of the individual tasks

because the output of one kind of human activity analysis task contains valuable

information for another such task and by interconnecting them, a robust system

results. In this chapter we focus our attention on a meeting scene analysis sys-

tem and present the results of our research in hierarchical fusion schemes in this

context. A meeting scene involves complex interaction between multiple human

subjects in an environment that feels natural to the participants. Hence the com-

plete understanding of a meeting scene involves information at multiple levels of

semantic abstraction. Hence a hierarchical fusion strategy is very relevant in this

context. A hierarchical scheme is presented to infer the structure and dynamics of

a meeting scene. Several competing methods for fusion are compared. Immediate

application areas of such a meeting analysis system include meeting archival and

teleconferencing. The robust methods to analyze and interpret meeting scenes that

are developed in this chapter lead to efficient archival and retrieval of information

hidden in hours of audio-visual recordings of meeting scenes. In a broader sense,

we also believe that the fusion schemes developed in the context of meeting scenes

can help design such hierarchical fusion schemes in other application domains such

as intelligent vehicles, smart homes and natural human-computer interaction. In

Figure 5.1, the interconnected blocks in the hierarchical fusion framework for meet-

ing scene analysis are illustrated. Though the specific details will be brought out

in later sections, it can seen from Figure 5.1 that a task such as person tracking

can be accomplished by fusing audio and video cues whereas a task such as speaker

identification can be assisted by face recognition which in turn can use information

from the person tracking block. Thus, audio-visual fusion can occur at different

levels and hence the name hierarchical fusion.

In Section 5.2, we present a brief summary of research in the field of audio-

visual analysis of meetings and hierarchical fusions schemes. The advantages of
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Speech 
Recognition
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Figure 5.1: Flowchart summarizing the exchange of audio and visual cues at
multiple levels of semantic abstraction in our meeting analysis system.

hierarchical fusion schemes are examined and various possible fusion paradigms

are analyzed in Section 5.3. In Sections 5.9.1, 5.5.1 and 5.6, several individual

components that make up the meeting analysis system are described. In each of

these sections, we motivate the utility of the respective task, the challenges and

existing algorithms. We then describe how contextual constraints as well as the

fusion of information from other tasks can simplify and improve these algorithms

and compare the performance before and after fusion. The meeting room and

sensor configurations in the testbed in Appendix A. Though the contextual con-

straints and fusion strategies explored in this chapter and the next chapter are in

the domain of meeting scene analysis, possible extensions to other domains and

applications where such a hierarchical fusion might be beneficial are presented in

Section 6.6.
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5.2 Literature review in meeting scene analysis

In this section we will present a very brief overview of existing work in the

area of hierarchical schemes for human activity analysis as well as recent research

in meeting analysis systems.

One of the early research studies in observing human activities in an instru-

mented room is described in [101]. A graphical summary of the human activity

is generated. The audio and visual information is used in identifying the cur-

rent speaker based on a rule based decision fusion. [11] and [39] describe another

meeting room analysis system which also fuses audio-visual stream for person iden-

tification, in addition to using the audio for automatic transcription and archival

purposes. [79] investigates speech, gaze and gesture cues for high level segmenta-

tion of a discourse into topical segments based on a psycholinguistic model. In [73],

the authors propose a hierarchial HMM framework for modeling human activity.

More recent hierarchical fusion strategies include [113][74][23][8]. In [8], the au-

thors develop a probabilistic integration framework for fusion of audio visual cues

at the track and identity levels. This is an example of fusion at multiple levels

of abstraction. Similarly, in [87], the utility of head pose estimation and tracking

for speech recognition from distant microphones is explored. In [97] the role of

contextual fusion in emotion recognition is explored.

Recently, there has been a lot of interest in developing smart meeting room

technologies. [109] is a recent survey of techniques and existing challenges in the

domain of smart meeting rooms. Also, a number of multimodal meeting rooms

equipped with multimodal sensors have been established by various research groups

and consortiums. Annotated audio-visual corpora have been collected and stan-

dard evaluations have been organized to compare existing frameworks on specific

tasks. Though our work in this chapter does not closely align with the existing

frameworks, it is necessary to view its practical implications in comparison to ex-

isting schemes for meeting analysis. A recent effort in collecting and organizing

multimodal corpora is presented in [53]. Recent evaluations of meeting scene anal-

ysis systems include the CLEAR 2006 evaluation [93] and CLEAR 2007 evaluation

[94].
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In our previous study, we presented the MID-AVT framework for tracking

persons using audio and visual cues [90] which included extensive evaluation in

real world meetings. However, a person tracking framework is only the first step

in analyzing a meeting scene. More cues such as person identity, active speaker

location and clean speech for recognition need to be extracted. The main challenge

is to perform this cue extraction in a robust manner using far field sensors under

unconstrained conditions in a typical real-world meeting scene. In [82], the authors

present a multimodal fusion approach for speaker localization and segmentation.

This corresponds to a classifier level fusion of audio-visual cues. In contrast, the

hierarchical fusion framework presented here is shown to address this challenge

using a different approach - using the information from different tasks to assist

other tasks, it is possible to design simple yet effective algorithms at each step

of the hierarchical framework. Further simplification can be achieved by utilizing

the domain knowledge or the typical scene configuration. This is also illustrated

in the current chapter. In order for the fusion strategy to be practical, it needs

to be applicable in different sensor and scene configurations as well as adapt to

changes in the same. To this end we present a semi supervised learning scheme

which allows the classifications models to be updated in an online manner, with

minimum supervision, needed only when training models for new subjects.

5.3 Hierarchical fusion schemes

In general, audio-visual information fusion can involve the following scenar-

ios (as illustrated with examples in Figure 5.2.)

• Reduce the search space in classification tasks - Audio or visual cues

can be used to restrict the search space for classification tasks using the

corresponding other modality. In case of parametric statistical model based

classification, this can be achieved by having specially trained models for

different contexts and switch between these models using the audio or visual

cues. Typically, the statistical models are easier to train and have better per-

formance for individual contexts. The task of audio-visual fusion in this case
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is to robustly identify the particular context based on complimentary cues.

We provide two specific examples of such contextual modeling in figure 5.2.

In other cases where classification models are based on minimum distance or

maximum likelihood, the audio and visual cues can be used to restrict the

set of possibilities over which the minimum/maximum is evaluated. In Fig-

ure 5.2, a speaker localization framework based on video based search space

reduction is given as an example of such a fusion strategy.

• Semi-supervised/unsupervised Learning of classification models -

The audio and visual cues can be used to select a training set for training sta-

tistical models for the classification tasks. This is particularly necessary for

the contextual modeling stated above, to be successful. The audio-visual fu-

sion reduces the effort to label the training sets and leads to a semi-supervised

or in certain cases, unsupervised learning algorithms that can automatically

update the contextual models. The challenge lies in identifying the cues

based on their ease and robustness of detection and the minimum supervi-

sion needed in labeling the data. In Figure 5.2, we provide a specific example

of using face recognition to train speaker recognition models.

• Calibration of sensors - In cases where multiple cameras and microphones

are used to collect audio and visual cues, the calibration of the sensors with

respect to each other and with respect to the room co-ordinates is an im-

portant issue. One solution is to develop algorithms that work in the sensor

co-ordinates. Another approach is to develop sensor calibration techniques

that use the cameras and microphones together to calibrate each other.

• Traditional fusion strategies - The most commonly encountered exam-

ples of audio visual fusion in literature are cases where the audio and vi-

sual modalities carry complimentary information from the same underlying

process as in the case of acoustic waveforms and lip movements conveying

information about the underlying speech segment. The fusion challenge is

to develop inference algorithms to decipher the underlying process based on

the audio and visual observations. This is achieved by fusing the cues at the
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Figure 5.2: Different fusion paradigms apart from the traditional audio-visual
fusion scenario are presented here with examples.

feature, classifier or decision levels.

5.4 Speaker identification using location specific

speaker models (LSSM)

In the next few sections, we describe the various blocks of our meeting

analysis system and present specific cases of the fusion paradigms described above.
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5.5 Person Tracking and Speaker Localization

Tracking the subjects of the meeting is the fundamental step in a meeting

analysis system [7][45]. In earlier systems, person tracking has been mostly ex-

plored in the context of video surveillance systems. In our previous work, [91], we

have addressed the issue of tracking multiple subjects using cues from microphone

arrays and cameras. The MID-AVT framework presented in [91] is a probabilis-

tic framework and its performance is compared with the other audio-visual person

tracking schemes. The MID-AVT framework has been shown to be robust to sensor

calibration errors which is a major issue in practical systems.

Typically, in a meeting scene, there is minimal movement of the subjects

and varying lighting conditions during presentations which affects the robustness

of the background subtraction schemes. Also, during the course of a meeting, the

focus is on the active speaker and thus it is necessary to robustly track the current

active speaker. Also, in a meetings scene, we have certain constraints that can help

us simplify and improve the performance of the person tracking block. Specifically,

we can use planar microphone arrays positioned on the table as the participants are

seated around the table. However such a planar microphone array provides angular

resolution of the speakers and this restricts their applicability to scenes where all

the participants are seated around the table and no participant is obstructed by

another participant such that they are at the same angular position relative to the

center of the microphone array on the table. The problem of speaker localization

can be further simplified by discretizing the search space as the participants are

likely to occupy certain specific locations around the table. These locations can

be learned from earlier meeting recordings as in [63] or can be assigned at the

beginning and refined as more meetings take place as in our framework presented

here.
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5.5.1 Discrete speaker location based active speaker local-

ization

We assume that the participants of a meeting are likely to occupy certain

locations, usually where the chairs are placed, around a table. We start with an

exhaustive list of possible locations L = {l1, l2, . . . lM}. A further simplification is

to select a best view camera for each location and denote the bounding box for each

location lj in the camera co-ordinates as V (lj). We shall also denote the microphone

array’s time difference of arrival (TDOA) vector for location lj as T (lj). A simple

approach to localizing the active speaker is to estimate the current TDOA vector

and compute the nearest location based on Euclidean distance in the TDOA space.

The current active speaker location is thus given by lt = arg minj |T (t) − T (lj)|2.
An inherent assumption in this case is that more than one speaker is not active

at a particular time. However, if a robust algorithm can be developed for locating

multiple simultaneous speakers, it can be used in our framework to remove this

restriction. Since the main focus of this thesis is to explore the nuances of audio-

visual fusion, we have not explored more complex algorithms for localizing multiple

speakers.

5.5.2 Visual cues to reduce the speaker localization search

space

Audio based speaker localization can be further improved by using video

cues to restrict the search space. It is a relatively simple task in the video domain

to detect the presence or absence of a foreground at a specific location. We use

a simple background subtraction followed by thresholds to detect the presence of

a human subject at a particular location. For this purpose, the bounding box

for each location B(lj) from the best view camera is used and the percentage of

foreground pixels within the bounding box F (lj) are estimated and the particular

location is used in the search for the active speaker only if this percentage exceeds a

threshold. lt = arg minj|F (lj)>t |T (t)−T (lj)|2. The overall algorithm is summarized

in Figure 5.3.
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Table 5.1: Comparative performance of active speaker localization with and with-
out visual fusion on our meeting dataset.

Number of Sub-

jects Present

Number of Pos-

sible Speaker Lo-

cations Searched

Accuracy with-

out visual cues

Accuracy with

visual cue fusion

3 5 85% 97%

3 6 78% 96%

3 7 70% 96%

4 5 85% 94%

4 6 82% 94%

4 7 73% 94%

In Figure 5.4 we illustrate the advantage of using the visual cues in reducing

the search space in a sample meeting scene with three speakers. We observe that

by restricting the nearest speaker location search to the set of locations that are

actually occupied by subjects, instead of an exhaustive search over all the possible

locations around the table, the localization accuracy improves by 21% on our

dataset consisting of a typical 5 minute meeting clip involving three subjects. We

evaluated the visual cue fusion for the speaker localization task on our real meeting

dataset collected in our audio visual testbed described in Appendix A. The dataset

consists of 10 meetings each of 5 minute duration. There are 3 to 4 subjects

in the meetings and the results are shown in Table 5.1. The improvement in

performance is very critical in our current set up because the active speaker location

is a fundamental cue that is used in further tasks and any loss of performance here

is propagated to the higher semantic levels. This is an example of audio-visual

fusion where easily extractable visual cues are used to reduce the search space and

increase the robustness of an audio processing task.

As we shall see in the next few sections, active speaker location is a funda-

mental piece of information for the other tasks in the meeting analysis framework

and any error at this step is likely to be propagated to the higher levels of analysis.
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Figure 5.3: Flowchart summarizing the fusion of visual cues in the speaker local-
ization task.

By utilizing robust and simple visual cues we have succeeded in obtaining a very

low error rate in the speaker location estimates which significantly improves the

overall performance of our meeting analysis systems.

5.6 Speaker Identification

In the previous section, we described an audio-visual fusion approach to

detect the active speaker in a meeting scene. In this section we will focus our

attention on the next important step in a meeting analysis system which is the

identification of the active speaker. The main challenge is to recognize the current

speaker using far-field microphones. The alternative is to have all the meeting

participants wear lapel microphones which contradicts the non-intrusive nature of
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Figure 5.4: A typical meeting segment with three subjects where the search over
all five possible subject locations leads to more errors than when the search is
limited to the occupied spots based on visual cues.

the intelligent space design. We will first explore a standard speaker identification

schemes based on Gaussian mixture models (GMMs).

5.6.1 Gaussian Mixture Models

In this section we describe a Gaussian mixture model (GMM) based text-

independent speaker recognizer for a single microphone[81]. The speech signal

from the microphone is windowed into frames of approximately 25ms duration

with a 10ms overlap between windows. A energy threshold is used to detect speech

frames and discard silence frames. 12 Mel-spaced cepstral coefficients (MFCC) are

extracted for each speech frame and these constitute the feature vector for the

GMM classifier. At frame index t, let the MFCC feature vector be denoted by xt.
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The GMM defines the likelihood for xt as

p(xt|λ) =
M∑

m=1

wmN(xt|µm, Σm)

where wm are the mixture weights and N(xt|µm, Σm) is a multivariate Gaussian

density function with mean µm and co-variance matrix Σm. The Expectation max-

imization algorithm is used to choose the GMM parameters for each speaker based

on maximum likelihood (ML). Note that to train the GMM, the training obser-

vations X = {x1, x2 . . . xτ} are used frame-wise. The GMM does not model the

inter-frame dependence that is characteristic of speech waveforms. Some existing

work suggest to augment the feature vector with ∆ and ∆ − ∆ (velocity and ac-

celeration) components to better model the inter-frame dependence. We do not

consider this issue here. However, the inclusion of these features should if any,

increase the performance of our proposed scheme.

For a matched training-testing speaker location in our experimental setup,

the average recognition accuracy was 94%. When the test sequence was from a

new location, the accuracy dropped to 62%. This rapid degradation in recognition

accuracy can be attributed to the varying channels between the test and the train-

ing sets. In a reverberant room, the far-field microphone receives the speech signal

s(n) directly from the speaker along with considerable reflections from the walls

and other surfaces in the room. These can be encapsulated in the form of a trans-

mission channel h(n) between the speaker and the microphone. Hence the received

signal at the microphone is y(n) = s(n)∗h(n). Expressed in the frequency domain

for each frame at time t, one can represent this as Yt(e
jω) = St(e

jω).H(ejω). Note

that the channel is a function of the speaker location and hence the degradation

in performance for mismatched training and testing speaker locations.

Two main approaches have been explored in existing literature to address

this issue which we will review now.

5.6.2 Cepstral Mean Subtraction

The MFCC feature vector computation involves taking the log of the mag-

nitude of the frequency spectrum of each frame of speech which can be represented



82

as log(|Yt(e
jω)|) = log(|St(e

jω)|) + log(|H(ejω)|). Note that an average of Yt with

respect to time t yields an estimate of log(|H(ejω|) + some long term characteristic

of speech signal which can be discarded to retain only the relevant information in

log(|St(e
jω)|). This is the basis of Cepstral mean subtraction (CMS) technique.

One issue in using (CMS) directly in a reverberant environment is that the CMS

cannot account for the channel response that is longer than the 25ms frame. This is

usually the case in typical medium sized meeting rooms. [48] proposes a spectrum

subtraction technique to undo the effects of the long channel response by treating

the long tail of the channel response akin to noise that needs to be incorporated

in the model. However even such a modeling does not give us the performance

close to a matched situation. In our experiments, we performed CMS over 10s

time window and the results are summarized in Table 5.2.

Thus we see that the CMS technique provides improvement over the mis-

matched speaker location scenario (75% instead of 62%) but the accuracy is not

comparable to that of the matched situation. Also, CMS results in slightly worse

performance even in the matched scenario.

5.6.3 Microphone Array Beamforming

Another approach to deal with the reverberation is to enhance the quality of

speech using a beamformer[37][60]. Here multiple microphones are used to enhance

the quality of the speech signal. A beamformer works by enhancing the signal from

the location of interest while suppressing signals from other locations. We use the

speaker localization results from section 5.5.1 in a delay and sum beamformer with

a six channel microphone array. The output of beamformer is used to train and

test the speaker recognition system. The results are summarized in Table 5.2.

Though the beamformer improves the performance in the presence of background

noise, it is not so effective in dealing with reverberation.
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5.6.4 Location Specific Speaker Modeling

We see that while using techniques such as CMS provides us some im-

provement, even using a microphone array instead of a single microphone does not

provide us performance close to the matched speaker location condition for train-

ing and testing. We propose a novel approach to use different models trained for

specific speaker locations along with a microphone array based speaker location

estimate to choose the appropriate model for speaker recognition. The general

flow of the scheme is explained in Figure 5.6. We train speaker models for specific

locations j = 1, 2, . . . M in the room. Each location corresponds to a specific seat

around the table or a presentation position as shown in Figure 5.5. In a typical

meeting room there are a few such positions which makes this training feasible.

Only one of the microphones from the microphone array is chosen to train the

speaker models. Though it makes intuitive sense to use the microphone closest to

the speaker location, in our testbed, the circular microphone array is located at

the center of the table and there is no clear advantage in choosing one microphone

over the other. A separate GMM λij is trained for each speaker i for each loca-

tion j in the meeting space. Even though a single microphone is used for training

the models, we do need the entire microphone array during runtime to locate the

current speaker as described in Section 5.5.1. Based on the speaker’s location, the

appropriate model is chosen for the speaker recognition task which provides us

with the speaker ID.

At time t, if the speaker location is estimated to be location j(t), then

the models λij(t) are used to estimate the likelihood of the MFCC vectors. This

location specific speaker modeling (LSSM) technique provides an accuracy of 92%

on our meeting dataset as shown in Table 5.2.

A further improvement in accuracy of speaker recognition is possible by

joint detection based on multiple observations corresponding to the same loca-

tion. Specifically if Y (t) = {y1, y2 . . . yT} correspond to the MFCC vectors for

the audio frames around time t which correspond to the same location j(t), then

logP (Y (t)|λij(t)) =
∑T

k=1 logP (yk|λij(t)) and the speaker identity id(t) is the ML

estimate id(t) = arg maxi logP (Y |λij(t)). This corresponds to a maximum likeli-
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Figure 5.5: The Meeting room and the sensor configurations showing the possible
speaker locations around the table.

hood based decision rule at the conversation side level as opposed to the frame

level which further improves the performance of the speaker recognition system.

The improvement is based on the length of the conversation segments.

The LSSM technique would be impractical in a real world setting as it

requires the training of the speaker model for each possible location around the

meeting table. However, in the next chapter we develop a semi-supervised speaker

model training technique which can automatically update and train the models

starting from audio-visual meeting recordings.

In the following sections of this chapter, yet another hierarchical fusion

framework is explored that utilizes the video from the cameras to estimate the head

pose of the meeting participants and use this contextual information to select the

appropriate beamformer taps for reconstruction of speech from far-field microphone
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Table 5.2: Comparative performance of the LSSM, CMS and beamforming tech-
niques for matched and mismatched speaker locations

Approach Matched MisMatched

Baseline 94% 62%

CMS 87% 75%

Beamforming 78% 78%

LSSM 92% 92%

Speaker ID

S l   L i   MSelect 
Model

Location 
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Figure 5.6: Flowchart summarizing the Location specific speaker modeling which
involves the fusion of the speaker location cue to select the appropriate model for
speaker recognition.

for robust speech and speaker recognition.
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5.7 Role of head pose in speech and speaker recog-

nition systems

Speech acquisition from distant microphones in a reverberant environment

is a challenging task [41][86]. The signal at the distant microphone is distorted due

to echoes and techniques based on SNR measurements cannot be employed to select

the best set of microphones. Existing approaches to acquiring clean speech from

distant microphones include microphone array based beam-forming techniques. In

such systems, recent research has focussed on augmenting the microphone array

based system with information from video cameras which are used to track the

speakers and provide accurate location information. The sensitivity of the speech

acquisition systems to location errors has been studied in [57]. In the next few

sections we explore the sensitivity of distant speech acquisition systems to the

orientation of the speaker’s head in addition to speaker location. Speech recog-

nition accuracy can be significantly improved by using the correct beamforming

parameters for the particular location and the orientation of the speaker’s head.

The orientation of the speaker’s head can be estimated using both the audio and

video modalities. An audio-visual head pose estimation system is presented in

[16]. A detailed survey of video-only head pose estimation can be found in [66]. In

our system we use the head orientation estimates and location estimates from the

video modality, to improve the quality of speech enhancement by the microphone

array. We adopt a delay, filter and sum strategy and report the improvement in

the speech recognition accuracy on a large vocabulary speaker dependent speech

recognition task.

5.7.1 Room Acoustic Transfer Function

Let microphone i be at location (xi, yi, zi) and the head of the speaker be

centered at (xs, ys, zs) and oriented in the direction (φs, θs) in the polar co-ordinates

relative to the original co-ordinates. The location and directivity of the micro-

phones is assumed to fixed and we do not model changes in those parameters. Let

us assume that the source signal s(t), measured using a close talking microphone,
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Figure 5.7: Room acoustic impulse response, for two source locations 6” apart.
The impulse response is estimated by assuming that s(t), measured using a close
talking microphone, is the input and hi(t), the signal received at microphone i, is
the output of the channel. The same measurements are then repeated for another
location of the speaker, 6” away from the first.

encounters a channel whose impulse response is hi. The transfer function corre-

sponding to this channel will be referred to as the room acoustic transfer function.

If we represent the signal received at microphone i by yi(t), then, yi(t) = s(t) ∗ hi.

In Figure 5.7, we see an example of hi(t) for two different source locations.

We claim, hi depends on xi, yi, zi, xs, ys, zs, φs and θs. Since the microphone

is assumed to be fixed, we could reduce the dependence to xs, ys, zs, φs and θs. It

is easy to see why this is indeed the case. The location of the speaker relative to

the microphone and the room determines the relative delay and amplitude of the
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Figure 5.8: Room acoustic impulse response, for same location but three different
speaker head orientations, estimated as in Figure 5.7. Note that the impulses
responses are very different, indicating the sensitivity to head pose.

reflections from the walls and other surfaces in the room, contributing to the tail

of the impulse function. The human vocal tract acts as a directed source. This

is especially true for frequencies greater than 4kHz. In [16], the head radiation

pattern is discussed in detail. From the directional nature of head radiation pattern

one can deduce the dependence of the room acoustic transfer function on φs. In

Figure 5.8, the dependence of hi on the orientation of the speaker’s head confirms

this deduction. In the next Section we present a framework to utilize the head

pose information for effective speech acquisition from distant microphones.
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Figure 5.9: The ratio of energy in the high(> 4kHz) and low frequency bands(<
200Hz) vs the angle φ around the speaker’s head, as shown in Figure 5.11. We can
see that the human vocal tract is highly directional for frequencies above 4kHz,
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attenuation at the rear of the head.

5.8 Speech acquisition from distant microphones

Current research on speech acquisition using distant microphones implicitly

or explicitly model speaker location. Speaker location is implicitly used in aligning

the signals from different microphones with one another [13]. In more advanced

schemes, in addition to the proper alignment of the signals using the appropriate

delay, location specific parameters are used in beamforming [57]. However, to date,

no research has included the orientation of the speaker’s head in the beamforming

techniques. This is mainly due to the difficulty of estimating the orientation of the

head. Using video, however, we can estimate the head pose of the speaker[66] and

use this information in acquiring clean speech from distant microphones. This can

be done in one of the following ways,

• Use specific microphone array beamformer coefficients for the current loca-

tion and orientation of the speaker.
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• Use a subset of the microphones for acquiring the speech by selecting those

microphones that have a strong direct path from the speaker.

• Use the best microphone for the present speaker location and orientation.

Note that the later options are specific instances of the earlier ones. How-

ever, they are also easier to implement in practise. Thus there is a trade-off between

generality and convenience. In Section 5.9, we present results that provide prac-

tical insights to this trade-off. The other issue that is addressed in Section 5.9 is

that of the sensitivity of automatic speech recognition to the orientation of the

speaker’s head in each of the three situations considered above. This allows us to

implement a practical system by training beamformers for particular orientations

of the speaker’s head. In more specific instances, such as meeting rooms, the par-

ticipants tend to face each other while speaking and this would allow the training

of beamformers for these particular cases. These cases are also explored in Section

5.9. Also note that energy/SNR based selection of the ’best’ microphones does not

convey the same information as a microphone that has a dominant direct path and

register clearer signals from the speaker.

5.9 Computational Framework and Algorithms

In Figure 5.10, we present the framework of our proposed scheme. The

configuration of the sensors and the layout of the room are shown in 5.11

5.9.1 Audio-visual person tracking

The localization of speaker is based on our earlier work. We refer the

reader to [88] for details. The audio localization includes the time difference of

arrival (TDOA)estimation as a first step and these TDOA estimates are used in

the beamformer for aligning the signals from different microphones.
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Figure 5.10: The overall system flowchart that uses the head pose information
to select the appropriate beamformer taps.

5.9.2 Audio-visual head pose estimation

In section 5.1, we discussed some aspects of audio-visual head pose estima-

tion. Our video head pose estimation algorithm using calibrated video cameras is

based on the algorithm discussed in [65]. The audio head pose estimation is not

incorporated in the present system, but could be a future addition.

5.9.3 Filter and sum beamformer

In our experiments we use a filter and sum beamformer to reconstruct the

speech signal from the distant microphones . The signal si(t) from the ith micro-

phone is delayed by the appropriate delay Ti to align all the microphones with one

another. During the training phase, they are aligned with a reference microphone

sr(t) that is placed close to the speaker and the filter taps are trained by a stochas-
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tic gradient descent algorithm. Note that by explicitly constraining a subset of the

filters to have all zero taps, we can select a subset of the microphones. And in the

extreme case, select only one of the microphones. These cases correspond to the

three options mentioned in Section 5.8

5.9.4 Automatic Speech Recognition

A commercially available speech recognition software, the dragon naturally

speaking system is used for recognizing the acquired speech signal. The recognition

system is adapted for each speaker separately, using a close talking microphone.

This is the same microphone used as the reference microphone in training the

beamformer taps (Section 5.9.3). The results correspond to a person dependent

large vocabulary continuous speech recognition task based on the standard dicta-

tion mode of the speech recognizer.

5.10 Experimental Evaluation

In this Section we describe the experimental setup in the Smartspace lab at

UCSD. We present the details of the system used to evaluate the theory presented

above. The results presented in Section 5.10.1 are from this setup. Figure 5.11

shows the layout of the room in which the audio-visual system is deployed. There

are 2 rectilinear cameras and 8 omnidirectional microphones deployed in the room

as shown in Figure 5.11. The cameras and microphones are calibrated with respect

to the room co-ordinates. The setup is close to a typical meeting with 4 participants

and a presenter. Thus each participant has 4 foci of attention, corresponding

to the 4 other participants in the meeting. For each orientation of the speaker,

corresponding to the speaker facing one of these foci, we present the following

results.
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Figure 5.11: Layout of the audio-visual testbed at the Smartspace lab at UCSD.

5.10.1 Results

• Case A: A filter and sum beamformer is trained using all 8 microphones for

that particular orientation and speaker location.

• Case B: A filter and sum beamformer is trained using a subset of microphones

”in front of” the speaker, for that orientation.

• Case C: The single best microphone, based on speech recognition accuracy,

is selected and the signal is directly used for speech recognition.

The baseline results to compare the performance of our scheme are as fol-

lows.

• Case D: Close talking microphone.
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• Case E: A filter and sum beamformer is trained using all 8 microphones,

with the training data including all possible orientations at the given speaker

location (orientation agnostic).

• Case F: A filter and sum beamformer is trained using all 8 microphones for

a ”forward” orientation at the given speaker location.

The results are presented in Table 6.2. From these results, it is clear that

by training the beamformer for particular head orientations in any of the three

cases A, B, C, one can achieve an improvement over cases E and F.

Table 5.3: Comparisons of speech recognition accuracies for the beamformers
described above. Note that the first three cases require the estimation of the head
pose of the speaker, the last two cases represent the best one can do in the absence
of such information.

Location Case A Case B Case C Case D Case E Case F

With head pose Baseline No

head

pose

1 85% 87% 85% 90% 77% 78%

2 84% 85% 84% 91% 78% 77%

3 81% 82% 81% 85% 72% 71%

4 85% 87% 85% 90% 77% 78%

In Figure 5.12, we present the results of head orientation mismatch on the

speech recognition accuracy. The baseline for comparison is the accuracy of the

close-talking microphone. Then there is the beamformer trained for the correct

orientation of the speaker along with the beamformer trained for the nominal

orientation (angle zero) and used for other orientations of the head. From this

we can conclude that using the right head orientation in selecting the beamformer

improves the speech recognition accuracy by 10% in some cases.
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5.11 Concluding remarks

We have presented an audio-visual system to effectively acquire speech sig-

nals from far-field microphones in a meeting room scenario and demonstrated the

improvement in speech recognition accuracy obtained by training beamformers for

particular head pose of the speaker. In the more general problems, where the

speakers are not constrained to occupy certain locations and face particular di-

rections as in a meeting room, there are open issues that have to be addressed

regarding the practicality of storing and using different beamformers for different

positions and speaker head orientations. Future work could explore reducing the

constraints in our system and demonstrating the improvement in speech quality,

speech recognition and speaker recognition tasks in a general setting.
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Chapter 6

Crossmodal learning in

hierarchical audio-visual fusion

schemes

6.1 Introduction

In the previous chapter, hierarchical fusion frameworks were presented, to

extract information in a robust manner from audio and visual cues. Training the

contextual models requires extensive amounts of densely labeled training data. A

framework to train the contextual models using minimum amount of supervision

will make the hierarchical fusion frameworks more applicable in practice. This

area of audio-visual information fusion has not been explored in detailed. In the

next section, we provide some background and literature review of supervised and

unsupervised learning schemes in human activity analysis systems. In the rest

of this chapter we develop a framework for learning the location specific speaker

models in a semi supervised manner using face recognition information.
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6.2 Background

Significant progress has been made in designing systems that fuse audio and

visual information to achieve better accuracy and robustness to background noise.

A very commonly seen paradigm in fusion schemes is the appropriate weighting of

input streams according to their reliability. The assessment of the quality of indi-

vidual streams is a challenging task in itself and needs further research. Common

measures like SNR are useful but there is a necessity for other measures to quan-

tify the reliability of extracted cues from audio and video streams. As an example,

consider a speaker whose lips are sometimes partially or fully occluded from the

camera due to his changing orientation on an audio-visual speech recognition sys-

tem. How to enable the system to weight the audio and visual cues appropriately

in this case?

The question can be reposed as, how to build a system that can adapt to

changing situations? This leads us to the bigger problem of learning. Most of the

systems described in this survey learn model parameters in a supervised fashion.

This requires a lot of annotated training data and also places the restriction that

the conditions during the deployment of the system cannot be significantly different

from the training conditions. This highlights the utility of semi-supervised and

unsupervised methods for learning parameters. Semi-supervised learning allows

one to learn model parameters from a small amount of annotated training data

and large amounts of non-annotated training data. Unsupervised learning has also

been used in ambient intelligence systems to classify previously unseen activities

[14]. Existing research has addressed the problem of learning at several levels.

Multimodality has an advantage in unsupervised learning through the presence of

cross-modal correspondences.

Recent work in cognitive sciences has led to the design of systems that can

learn primitive correspondences across different modalities in a manner similar to

the learning experiences of a human child. More specifically, systems that ground

language in perceptual cues have been proposed. From the previous sections we

can conclude that there are a very large number of strategies for fusion of informa-

tion in human activity analysis systems. Humans are extremely competent at such
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tasks and seem to employ an near-optimal fusion strategy for each situation. How-

ever, most approaches to automatically recognize multimodal actions are based on

having a annotated training set[107]. To quote the authors,

. . . However, no matter based on feature or semantic fusion, most sys-
tems do not have learning ability in the sense that developers need to
encode knowledge into some symbolic representations or probabilistic
models during the training phase. Once the systems are trained, they
are not able to automatically gain additional knowledge even though
they are situated in physical environments and can obtain multisensory
information. . . .

Yu and Ballard[108] present a unified framework to learn perceptually

grounded meanings of spoken words without transcriptions. This is the first step

towards building a system that can learn for perceptual cues without the neces-

sity to encode the knowledge in some symbolic representation. The perceptually

grounded words provide the symbolic representation[107]. The opposite process

where visually-guided attention helps in understanding a complex auditory scenes

has also been studied in literature [10].

Modeling schemes influence the fusion strategy used and the modeling

schemes are themselves are heavily task oriented, as seen in the preference of the

speech recognition community in using HMMs and the tracking community in us-

ing particle filters. An intelligent system will have to simultaneously perform these

tasks in order to perform tasks like a human. A framework to fuse the different

systems would have to be developed. Learning such a framework by starting with

a certain amount of pre-programmed intelligence, but streamlining the models and

adding extra functionalities both by supervised learning and observing multimodal

data for cross-modal correspondences in a manner similar to the development of

human cognition is a challenge towards which the research community is making

advances towards.

Finally, the entire meeting analysis system as a whole as well as the results

from extensive evaluation are presented in Section 6.4.
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6.3 Face recognition for learning location specific

speaker models

In this section we will present a framework for learning the location specific

speaker models in a semi supervised manner using face recognition information.

6.3.1 Face recognition using eigenfaces

Person identification using face recognition techniques have been extensively

researched. However, in a meeting setting, face recognition is much more compu-

tationally expensive compared to speaker recognition. Hence face recognition is

not preferable to speaker recognition for realtime meeting analysis systems. More-

over, face recognition in unconstrained scenarios has challenges of its own such as

illumination changes, varying head pose as well as background clutter [109][102].

However, face recognition can be still be useful in validating training data for train-

ing location specific speaker models. Since the focus of this chapter is to explore

the significance of audio-visual fusion, we select a simple face recognition scheme.

However, for a practical system, one still needs the face recognition system to work

with far-field cameras. For this purpose, we use a face detection and tracking sys-

tem based on the OpenCV implementation of the Viola and Jones’ face detector.

The face detection step is followed by a principal component analysis (PCA) based

Eigen-face model for extracting the most relevant features for face recognition [44].

We use a k-nearest neighbor classifier in the PCA space to classify the incoming

face as being from one of the existing faces in our dataset. On our meeting dataset,

this approach provides an average of 59% accuracy on a 15 person training set on

a per-frame basis. However, by taking majority decisions on segments of multiple

frames, we can significantly improve the accuracy of the face recognition system.

Table 6.1 shows the variation of face recognition accuracy for groupings of different

number of frames. We can infer from the table that if we can base our decision on

23 frames or more, we can achieve more than 95% accuracy.



101

Table 6.1: Performance of the Eigenface based face recognition system on a 15
subject dataset.

Number of frames averaged 1 3 11 23

Accuracy 59% 67% 81% 95%

6.3.2 Semi-supervised learning scheme for location specific

speaker models

If we assume that our face recognition models are accurate, one can learn

the location specific speaker models from meeting recordings in an unsupervised

manner with the following algorithm. At each time t for which an audio frame is

available, let j(t) be the location of the active speaker as determined in Section

5.5.1. For the entire length of the meeting recording, collect the audio frames that

correspond to active speaker location j. These frames are added to the training set

for training models for location j. In order to label these frames with the correct

speaker ID, we use the face recognition system. The video frames corresponding

to the best view for location j are passed to the Viola and Jones face detector and

the detected faces are used in the face recognition system. A joint decision is made

on the complete set of detected faces, ensuring a high degree of confidence in the

recognition result. The output of the face recognition system is the label for the

audio frames. After the new frames are added, the location specific speaker models

are re-estimated using the EM algorithm. The overall algorithm is summarized in

Figure 6.1.

Thus the supervision required in the training of the models is limited to

adding new face images for new subjects in the dataset. Once this is completed,

the system can continually update and refine the location specific speaker models.

Note that when a particular location model is not available for a particular speaker,

the first run of the meeting analysis system will be error prone.
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Figure 6.1: Flowchart summarizing the fusion of face recognition results for la-
beling the audio frames resulting in a semi-supervised approach for the LSSM
framework.

6.4 Implementation of the meeting analysis sys-

tem

In this section we describe the overall setup of the meeting analysis system.

The sensors consist of the six element circular microphone array and four rectilinear

cameras as described in Section A.4.1. The audio is sampled at 44.1kHz and

analyzed in frames that are 25 milliseconds in length and have an overlap of 15

milliseconds. The video frames are captured at 15fps. For the sake of clarity, the

results of the meeting analysis are presented at a resolution of one second. Note

that this choice of time scale is for convenience and clarity of presentation and can

be modified without affecting the results as long as the audio sampling rate and
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video frame rates are consistent.

The apriori information that is necessary for the meeting analysis system

is the set of all possible seating positions around the table, the best view camera

and bounding box corresponding to each of these positions and the expected time

difference of arrival (TDOA) vectors for each location. Also, we provide a labeled

face dataset on which the face recognizer is built using a k-nearest neighbor clas-

sifier in the eigenface space. Also, one of the microphones in the array is selected

to construct the speaker recognition models.

The first step in the meeting analysis is to capture the audio and video

frames in a synchronous manner. The technique involved in synchronizing the

audio and video streams is beyond the scope of our work. Also, the methods for

estimating the best view camera, the bounding box and estimated TDOA vector

for the different locations are standard techniques used in computer vision [102]

and microphone array analysis [90] and we do not analyze them in detail in the

current chapter.

• For each video frame, average number of pixels that are different from the

background pixels with in the bounding boxes for each location are computed.

If this average is greater than a certain threshold, the location is declared as

occupied.

• For each audio frame, the TDOA vectors are computed. The nearest video

frame is queried for occupied locations. The distances from the estimated

TDOA vectors for occupied locations to the current TDOA vector are com-

puted and the location with the minimum distance is declared as the active

speaker location.

• The meeting is broken down into conversation sides within which the active

speaker location does not change. Each conversation side is of varying length

in time.

• The MFCC feature vectors are computed for the audio frames of the micro-

phone selected for the speaker recognition task. For each conversation side
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which corresponds to one speaker location by definition, the average likeli-

hood of the MFCC feature vectors under available speaker GMMs for the

particular location is computed. The speaker whose GMM that achieves the

maximum average likelihood is the speaker for the given conversation side.

• Note that to begin with, there are no speaker models for any locations. In

order to train the models, the face recognition results are used to gener-

ate a labeled dataset. Again, the conversation sides are considered and the

face detector is implemented within the bounding box of the best view cam-

era’s frames corresponding to the active speaker location for the conversation

side. The detected faces are recognized using the labeled face dataset and

a majority decision is taken. In order to achieve a high order of confidence,

conversation sides that are shorter than 2 seconds or have less than 24 de-

tected faces are dropped. The MFCC vectors from the selected microphone

are labeled with the face recognition output and added to the training set to

train the speaker recognition GMMs for the particular location.

• We experimented with the possibility of using the detected faces to improve

the face dataset. However, several non-faces are detected as faces by the face

detector and hence adding these false positives into face dataset degrades the

performance of the face detector. Hence the supervised labeling of the face

examples is necessary. However this is considerably simplified compared to

the effort involved in collecting and training audio frames for each speaker

for each possible location.

• Also, note that the training of the speaker models will automatically adapt

the GMMs to any small changes in the speaker seating locations with respect

to the original seating locations. One can update the expected TDOA vectors

and bounding boxes periodically for the different seating locations.

• The result of the meeting analysis system is the meeting recoding organized

in the form of conversation sides each of which has a location and speaker

ID associated with it as well as the audio data and the best view video

frames associated with it . This is extremely useful to support querying for
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Table 6.2: Performance of the meeting analysis system with retraining from the
face recognition.

Meeting

clip

Cumulative

number of

minutes

analyzed

Number

of speaker

models

Number of

new speak-

ers

accuracy

before

training

Accuracy

after train-

ing

1 4 3 3 - 92%

2 8 3 0 91% 90%

3 13 3 0 91% 92%

4 17 5 2 35% 89%

5 20 5 0 87% 89%

6 24 6 1 61% 86%

7 28 6 0 89% 89%

8 33 8 2 32% 86%

9 38 8 0 86% 87%

specific speakers, locations, interactions as well as other criterion. Also, if

implemented in an online manner, this system will be very valuable to an

intelligent teleconferencing system.

6.5 Evaluation results

We evaluated the meeting analysis and the semi supervised speaker model

learning scheme on a sequence of meeting recordings. Our face dataset consisted

of 15 subjects. The meeting recordings were held in a natural setting with three to

4 subjects and typically consisted of 4 minute long clips. In Table 6.2 we present

the overall results of the meeting analysis and training process. The accuracy

is computed by comparing the active speaker recognition results with the actual

active speaker on a per second basis.

Note that whenever a new speaker comes into the meeting scene, the recog-
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Table 6.3: Performance of the Eigenface based face recognition system on a 15
subject dataset.

Meeting clip 2 3 5 7 9

Number of speaker models 3 3 5 6 8

Accuracy 90% 92% 89% 89% 87%

nition accuracy declines. However, retraining the system using the face recognition

results in improved performance. In a steady state, meeting analysis system will

perform with the accuracies denoted in Table 6.3.

Finally, we apply our meeting analysis system to the set of recorded meet-

ings and organize the conversation sides based on speaker location and speaker

ID. Such an analysis allows to browse through meetings in an intelligent manner,

allowing us to query for specific speakers. Also, the audio and video clips for each

conversation side can be retrieved upon query in an efficient manner. In Figure 6.2

we illustrate one such meeting clip which has been tagged by our meeting analy-

sis system. Note that the conversation sides that were identified earlier based on

speaker location have now been tagged with speaker ID as well.

6.6 Concluding remarks

In the current and the last chapter we have presented an analysis of the hi-

erarchical fusion of audio visual cues for building practical intelligent systems. We

have analyzed the different fusion paradigms which are apart from the traditional

fusion strategies. We have described how cues can be fused to reduce the search

space and also to enable contextual modeling, both resulting in an increased perfor-

mance and simplified modeling. We have also described a semi-supervised learning

scheme that uses cross-modal interaction to generate labeled training datasets, re-

ducing the effort involved in training the contextual models. The current chapter

illustrates these principles in the context of a meeting analysis system.
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Figure 6.2: The result of analysis of a meeting recording allows us to organize the
meeting based on the location of the speaker and speaker identity. This facilitates
intelligent archival and browsing of meeting recordings. Note that the audio and
video clips corresponding to each conversation side is indexed with the speaker
location and speaker ID.
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Chapter 7

Concluding remarks and future

directions

Audio-visual information fusion is an important area in the design and

implementation of intelligent systems that need to analyze and interpret human

activity. In this thesis, several key aspects of audio-visual information fusion has

been explored in the context of several tasks such as audio-visual speech recogni-

tion, person tracking and meeting scene analysis. The benefits of fusion are most

evident in the robust and efficient performance of hierarchical fusion schemes. In

the area of semi-supervised and unsupervised learning using crossmodal corre-

spondences, we have barely scratched the surface and there is a huge potential for

further research.

In practice there are several situations where such a hierarchical fusion

model can be very effective. Natural human computer interaction can benefit sig-

nificantly from a hierarchical fusion framework. Applications in the areas of smart

health homes, assisted living technologies and intelligent automobiles are all rel-

evant in this context. The proliferation of smart phones and mobile computing

platforms has opened up increasing application areas for audio-visual fusion. The

audio and visual information captured on a phone are usually noisy and will need

specific fusion framework to achieve the robustness required for most of the ap-

plications. The specific interaction between the different audio and visual cues is

domain specific and needs to be researched in the individual domains. However,

109
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the fusion paradigms outlined in this thesis will be applicable in these application

areas and enable the development of intelligent audio-visual systems.



Appendix A

Audio-visual testbeds

A.1 Review of existing audio-visual meeting cor-

pora, testbeds and evaluations

Audio-visual analysis of human activity in meeting rooms for meeting scene

understanding, segmentation, archival and retrieval has received a lot of attention

in the recent past. Systematic comparison of the different fusion approaches in

meeting scene analysis is extremely challenging due to varying scenarios consid-

ered by different groups. Moreover, many of the systems described above (ASR,

biometrics, tracking, emotion detection etc.) are used as subsystems of the meeting

analysis system.

One of the early research studies in observing human activities in an instru-

mented room is described in [101]. A graphical summary of the human activity

is generated. The audio and visual information is used in identifying the cur-

rent speaker based on a rule based decision fusion. [11] and [39] describe another

meeting room analysis system which also fuses audio-visual stream for person iden-

tification, in addition to using the audio for automatic transcription and archival

purposes. [79] investigates speech, gaze and gesture cues for high level segmenta-

tion of a discourse into topical segments based on a psycholinguistic model.

More recent work in [59] models the action of the group of individuals in a

meeting instead of individual actions. HMMs are used to statistically model the
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state of the group using audio and video features and the interactions between indi-

viduals are inherently accounted for in the model. Using this formulation, meetings

are segmented into five categories: Discussions, Monologues, Note-Taking, Presen-

tations and White-Board presentations. Different fusion schemes were evaluated

and the early integration strategy performed the best followed closely by the asyn-

chronous HMM. The feature concatenation scheme could suffer from the curse of

dimensionality. Intuitively, there is a certain amount of asynchrony between the

audio and visual streams in a meeting scene and this hints at the possible inade-

quacy of using simple HMMs to model the meeting scenes. [113] describes a two

layered HMM model to segment the meeting at the individual and group levels

respectively. In this case, the asynchronous HMM performs best at the lower level

as expected. Dynamic Bayesian networks were explored for suitability in modeling

meetings in [26]. An comparison of various modeling techniques is provided in [2].

A number of multimodal meeting rooms equipped with multimodal sensors

have been established by various research groups and consortiums. Annotated

audio-visual corpora have been collected and standard evaluations have been or-

ganized to compare existing frameworks on specific tasks. Table A.1 lists the

details of a few important meeting corpora. Another recent effort in collecting and

organizing multimodal corpora is presented in [53].

Recent evaluations of meeting scene analysis systems include the CLEAR

2006 evaluation [93] and CLEAR 2007 evaluation [94].

A.2 UCSD-CVRR audio-visual testbed 1

In this section we describe an experimental testbed that is set up at the

Computer Vision and Robotics Research(CVRR) lab at University of California,

San Diego. The goal of this exercise is to develop and evaluate human activity

analysis algorithms in a meeting room scenario. Figure A.1 shows a detailed view

of the sensors deployed.
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Cameras

Microphone Array

Figure A.1: Testbed and the associated audio and video sensors

A.2.1 Audio sensors

The sensors consist of a microphone array. The audio signals are cap-

tured at 16kHz on a Linux workstation using the Advanced Linux Sound Archi-

tecture(ALSA) drivers. JACK is a useful audio server that is used here to capture

and process multiple channels of audio data in realtime(as required).

A.2.2 Video sensors

We use a synchronized pair of wide angle cameras to capture the majority

of the panorama around the table. The cameras are placed off the center of the

table in order to increase their field of view as shown in the enlarged portion of

figure A.1.
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A.2.3 Synchronization

In order to facilitate synchronization, the video capture module generates

a short audio pulse after capturing every frame. One of the channels in the micro-

phone array is used to record this audio sequence and synchronize the audio and

video frames.

A.3 UCSD-CALIT2 audio-visual testbed 2

A.3.1 Test bed details

In this section we present the details of our laboratory testbed with multiple

cameras and microphone arrays. The testbed is located in the Smartspaces lab at

CALIT2 in the University of California, San Diego. The testbed is equipped with

24 microphones and 4 cameras. The layout is shown in Figure 6. The cameras

have significantly overlapping field of view and different perspectives. The cameras

have a resolution of 640x480 pixels and capture frames, synchronously, with each

other and the microphones, at 7.5 fps. The audio signal is sampled at 44.1kHz.

There are four microphone arrays with 4 microphones each, arranged in the form

of a cross with dimensions 40cm x 40 cm. In addition there is a circular array with

6 microphones in the center of the table and two microphones at the end of the

table. The cameras have a overlapping field of view with different perspectives.

A.3.2 Ground truth estimation

In order to obtain the ground truth, we use standard chessboard pattern

based camera calibration techniques to calibrate the cameras with respect to the

world co-ordinates. The microphones are manually located in the camera view and

their location is estimated by triangulation. A sound source with a bright source

of light is moved around the monitored space. By triangulation, the position of

the light is accurately determined at each frame. The positions of the microphones

are then optimized to match the TDOA values obtained at each frame with those

computed from the sound source co-ordinates. This calibration allows us to obtain
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Figure A.2: A track and its associated ground truth in world co-ordinates.

visual-marker based ground-truth estimates for comparison of our results. The

location estimate from the triangulation procedure was compared with the actual

location measurement. The standard deviation of the error was 2.4 cm on a test

set that involved 100 different spots distributed in the room .

A.3.3 Datasets

Meetings among the lab members were recorded for the evaluation of the

MID-AVT framework. The meetings consist of 4 to 6 subjects. There are clips

where the subjects are either involved in a discussion or one person is giving a

presentation. In collecting this dataset (MID-AVT-UCSD-1), we have tried to

keep the sensor configurations comparable to the CHIL meeting rooms [64] which

were used in the CLEAR 2006 and CLEAR 2007 evaluation workshops. During

presentations and meetings, there is not much movement among the participants

and usually only one speaker is active at a particular time, which is true for a
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majority of the time in many meetings. The individual segments range from 5

minute to 15 minutes in duration. Some meeting segments were annotated by

manually marking the position of the subjects’ head once every second for a total

for a total of 1200 seconds. This corresponds to 9000 frames and these frames were

used in our evaluation.

In addition we also have a separate dataset (MID-AVT-UCSD-2) of scenes

involving 1-4 subjects that involves a lot more movement of the subjects. This

dataset involves multiple subjects who are involved in a continuous conversation

with mostly one active speaker at any time, moving around in the room. This

dataset has significant number of occlusions and tracks converge and diverge fre-

quently. This dataset has shorter clips ranging from 1 to 5 minutes and the evalua-

tion is presented on a total of 3000 frames which involve about 30 occlusions which

were manually detected and marked for evaluation. There are only two cameras

and a total of 8 microphones in this dataset.

A.4 UCSD-CALIT2 audio-visual testbed 3

A.4.1 Scene and sensor configuration

In the current section we focus our attention on an intelligent meeting space

and explore the hierarchical fusion in the context of meeting analysis system. Our

results are based on the analysis of real-world meetings collected in our audio-visual

testbed in the Smart spaces lab at CALIT2, UCSD. In this section we describe the

physical set up of this meeting room and the sensors deployed in it.

The meeting room testbed is 23’ long and 13’ wide. A six element circular

microphone array is located at the center of the table. There are four rectilinear

cameras that cover the meeting scene from different vantage points such that every

location has a best viewing camera associated with it.

The meeting analysis system described in its entirety in Section 6.4 is

trained and tested on a set of real world meeting scenes collected in the above

described testbed.
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Figure A.3: The configuration of the meeting room for data set 1. The 4 cam-
eras and 24 microphones are shown with their approximate fields of view. The
dimensions of the room are approximately 360 cm x 800 cm.
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Table A.1: Standard audio-visual meeting scene corpora and their sensor, scene
and participant information.

ISL [15] : The Interactive System Labs of CMU, Pittsburgh has collected

a database consisting of more than 100 diverse meetings, combined total of

103 hours (4.3 days). Each meeting lasted an average of 60 minutes. The

meetings have an average of 6.4 participants. The meetings have been collected

since 1999. A meeting in the database is a minimum of three individuals

speaking to one another. The results are presented in a maximum of eight

mono audio files in WAV format, so-called speaker and recording protocol

files containing information about the participants, equipment, environment

and scenario, three video tapes, one transcription file of the entire meeting,

so-called marker file containing begin and end time stamps for conversation

contributions, and a list of the meetings vocabulary. The meeting scenarios

include ProjectWork Planning, Military Block Parties, Games, Chatting, and

Topic Discussion.

ICSI [61] : International Computer Science Institute, Berkeley, California has

collected a 75-meeting corpus with audio and transcripts of natural meetings

recorded simultaneously with head-worn and tabletop microphones. The cor-

pus contains 75 meetings of 4 main types and 53 unique speakers. The data

totals to over 70 meeting-hours and up to 16 channels for each meeting. The

ICSI effort is predominantly an audio scene analysis and meeting transcription

effort.

NIST [34] : NIST has constructed a Meeting Data Collection Laboratory

(MDCL) to collect corpora to support meeting domain research, development

and evaluation. The NIST Smart Data Flow architecture, developed by the

NIST Smart Spaces Laboratory, streams and captures all of the sensor data

from 200 mics and 5 video cameras on 9 separate data collection systems in a

proprietary time-indexed SMD format.
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Table A.2: Standard audio-visual meeting scene corpora and their sensor, scene
and participant information. (contd.)

The NIST architecture also ensures that all data streams are synchronized

(via the Network Time Protocol and NIST atomic clock signal) to within

a few milliseconds. The NIST Meeting Room Pilot Corpus consists of 19

meetings/15 hours recorded between 2001 and 2003. In total, the multi-sensor

data comes to 266 hours of audio and 77 hours of video.

CHIL [64] : The CHIL (Computers in the Human Interaction Loop) consor-

tium is an European reserach effort with the participation of 15 partner sites

from nine countries under the joint coordination of the Fraunhofer - IITB and

the Interactive Systems Labs (ISL) of the University of Karlsruhe, Germany.

Five smart rooms have been set up as part of the CHIL project, and have

been utilized in the data collection efforts. Two types of interaction scenarios

constitute the focus of the CHIL corpus: lectures and meetings. The CHIL

corpus is accompanied by rich manual annotations of both its audio and visual

modalities. In particular, it contains a detailed multi-channel verbatim ortho-

graphic transcription of the audio modality that includes speaker turns and

identities, acoustic condition information, and name entities for part of the

corpus. Furthermore, video labels provide multi-person head location in the

3D space, as well as information about the 2D face bounding box and facial

feature locations visible in all camera views. In addition, head-pose informa-

tion is provided for part of the corpus. Each smart room contains a minimum

of 88 microphones that capture both close-talking and far-field acoustic data.

There exists at least one 64-channel linear microphone array, namely the Mark

III array developed by NIST. The video data is captured by five fixed cameras.

Four of them are mounted close to the corners of the room, by the ceiling, with

significantly overlapping and wide-angle fields-of-view.
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Table A.3: Standard audio-visual meeting scene corpora and their sensor, scene
and participant information. (contd.)

VACE [18] : Under this research effort, Air Force Institute of Technology

(AFIT) modified a lecture room to collect multimodal, time-synchronized au-

dio, video, and motion data. In the middle of the room, up to 8 participants

can sit around a rectangular conference table. 10 camcorders and 9 Vicon

MCam2 near-IR cameras, driven by the Vicon V8i Data Station record the

video data. For audio, the participants wear Countryman ISOMAX Earset

wireless microphones to record their individual sound tracks. Table-mounted

wired microphones are used to record the audio of all participants (two to six

XLR-3M connector microphones configured for the number of participants and

scenario, including two cardioid Shure MX412 D/C microphones and several

types of low-profile boundary microphones (two hemispherical polar pattern

Crown PZM-6D, one omni-directional Audio Technica AT841a, and one four-

channel cardioid Audio Technica AT854R). For the VACE meeting corpus,

each participant is recorded with a stereo calibrated camera pair. The Vicon

system is used to obtain more accurate tracking results to inform subsequent

coding efforts, while also providing ground truth for video-tracking algorithms.

AMI & AMIDA [80] : The AMI and AMIDA projects are EU projects con-

cerned with the recognition and interpretation of multiparty meetings.Three

standardized meeting rooms were constructed at IDIAP, TNO and University

of Edinburgh. Each room consisted of at least 6 cameras and 12 microphones.

The different recording streams are synchronized to a common timeline. The

corpus consists of 100 hour annotated corpus of meetings, with speech anno-

tations aligned to the word level. Also, manual annotations of the behavior of

the meeting participants are provided at various levels namely dialogue acts,

topic segmentation, extractive and abstractive summaries, named entity, gaze

direction etc.
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