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1 Department of Cognitive Science, Indiana University, 1001 E. 10th Street, Bloomington, IN 47405 USA

Abstract

A quantum walk model is developed for emotion transmission
in serial reproduction of narratives. The readers’ emotions are
represented by density operators, and the influences of the nar-
ratives on the readers’ emotions are modeled by applying the
controlled unitary operators to the density operators. The per-
formance of the quantum model is evaluated on a large cor-
pus of narratives, compared to that of the Bayesian Markov
chain model. The quantum model not only outperforms the
Bayesian model for all five emotion transmissions presented
in the corpus but can also account for order effects in serial
reproductions. These results suggest a promising first step to-
wards extending quantum-like models to explain group-level
cognition.

Keywords: computational modeling; serial reproduction;
quantum cognition; emotion transmission;

Introduction
Numerous empirical findings in cognitive psychology have
exhibited anomalies concerning the classical benchmark de-
fined by Kolmogorovian probability axioms and the rules of
Boolean logic, triggering a whole new scope of research:
the development of models for decision-making based on
the quantum formulation of probability theory (Busemeyer
& Bruza, 2012; Haven, Khrennikov, & Khrennikov, 2013;
Khrennikov, Basieva, Dzhafarov, & Busemeyer, 2014; Pothos
& Busemeyer, 2013, 2022). Although these quantum mod-
els provide deep insights into the cognitive anomalies, their
scopes are typically confined to the individual level. The next
stage of this line of research is to extend quantum models
of cognition to the group level. This is very important in un-
derstanding anomalies at the group level and how information
processing could affect information propagation in social net-
works and group decision making.

Serial reproduction is an experimental scheme where par-
ticipants are asked to reproduce a stimulus (e.g. narratives,
images), and the reproduced stimulus will then be repro-
duced by the next participant in a chain. Serial reproduction
is chosen as the starting point of developing quantum mod-
els in group-level for two reasons: (1) Serial reproduction is
an information path of a social network; (2) Large amount
of research works, both experimental (Lyons & Kashima,
2003; Lee, Gelfand, & Kashima, 2014; Breithaupt, Li, Lid-
dell, Schille-Hudson, & Whaley, 2018) and theoretical (Xu &
Griffiths, 2010; Hemmer & Steyvers, 2009; Meylan, Nair, &
Griffiths, 2021), have been done.

In the remainder of this paper, we will first summarize the
Bayesian Markov chain model (Xu & Griffiths, 2010), and
present our new quantum model for serial reproduction. We
will then compare the performance of the quantum model
with the Bayesian model in explaining emotion transmission
in a large corpus of serial reproduction of narratives. We fi-
nally discuss how the quantum model can account for poten-
tial order effects in serial reproduction.

Bayesian model for serial reproduction
According to Xu & Griffiths (2010), the outcome of serial re-
production is a sequence of memory reconstructions by the
participants in a chain. At step n+1, the model assumes that
the participant An+1’s previous experience establishes a prior
of the true state of the world µ, with µ ∼ N(µ0,σ

2
0), and that

the noisy observation xn has a Gaussian distribution with µ as
its center, xn|µ ∼ N(µ,σ2

x). The reconstructed true state given
the noisy observation µ|xn then follows the Gaussian distri-
bution N(λxn + (1 − λ)µ0,λσ2

x), where λ = 1/(1 + σ2
x/σ2

0)
(Gelman et al., 2013). Since the reproduced stimulus with
attribute values xn+1 (e.g. length of a fish in a drawing) only
depends on the previous xn, the process is a Markov chain
with transition probability

p(xn+1|xn) =
∫

p(xn+1|µ)p(µ|xn)dµ, (1)

where xn+1|µ ∼ N(µ,σ2
x). Using the above results, serial re-

production for stimuli with one-dimensional attribute can be
seen as a first-order autoregressive process, denoted as AR(1):

xn+1 = (1−λ)µ0 +λxn + εn+1 (2)

where εn+1 ∼ N(0,σ2
x +σ2

n) with σ2
n = λσ2

x .

Quantum model for serial reproduction
The quantum walk model for serial reproduction is illustrated
in Figure 1. The model is developed from a more general
quantum walk model for idea propagation in social network
(Zhang & Busemeyer, 2021).

The opinion of the nth participant An conveyed in the stim-
ulus they generate, denoted as Sn, is modeled by a quantum
state |ψn⟩ with density operator ρAn = |ψn⟩ |ψn⟩†, where †
denotes the Hermitian conjugation. The initial opinion state
of participant An+1 is modeled by a quantum state |Xn+1⟩2477
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with density operator XAn+1 = |Xn+1⟩ |Xn+1⟩†. For binary
attributes, |ψn⟩ and |Xn+1⟩ are two-dimensional states with
norm 1 (with respect to the L2 norm), and thus can be writ-
ten as a linear combination of two orthonormal basis choice
states |0⟩ and |1⟩, where |0⟩ represents answering ”Yes” for
the attribute with probability 1, and |1⟩ represents answer-
ing ”No” with probability 1. The above construction could
also work for one-dimensional attributes measured by ratings
(Ashtiani & Azgomi, 2015; Martı́nez-Martı́nez & Sánchez-
Burillo, 2016), where |0⟩ now represents the maximum of the
rating scale, and |1⟩ represents the minimum. The ratings are
then encoded by a linear mapping from the probabilities of
|0⟩ and |1⟩. For example, on a rating scale with range [0,5],
the state 1√

2
|0⟩+ 1√

2
|1⟩ corresponds to a rating of 2.5.

Figure 1: Quantum model for serial reproduction. The opin-
ion state in this example is modeled by a two-dimensional
vector containing the probability amplitudes of answering
“Yes” or “No” for some attributes of the stimulus. The influ-
ence of the opinion of participant An+1 by the opinion of An
expressed in the stimulus Sn is modeled by applying a con-
trolled unitary operator Un+1 on the An-An+1 joint system,
where the An part of the joint system represents the controller
state, and the An+1 part represents the target state. The opin-
ion state expressed in the reproduced stimulus Sn+1 is ob-
tained by taking partial trace to trace out the An component
from the joint system, after An+1 has processed Sn. The re-
produced stimulus Sn+1 will then be received and reproduced
by the next participant in the chain.

In step 1, we form a joint system of the opinion of partic-
ipant An conveyed in stimulus Sn, and the initial opinion of
An+1 who receives Sn. The joint system is modeled using a
tensor product:

ρn,n+1 = ρAn ⊗XAn+1 . (3)

In step 2, we model how, after processing stimulus Sn,
the opinion of participant An+1 is influenced by An’s. For
one-dimensional attributes, we first define the following con-
trolled unitary operator:

Un+1 = M0 ⊗R(b0,n+1θ0,n)+M1 ⊗R(b1,n+1θ1,n) (4)

In Equation 4, R(φ) is the two-dimensional rotation operator
that models how processing stimulus Sn changes the opinion
of An+1. The rotation angle φ for An+1 is determined by the
product of the content power of Sn regarding choice repre-
sented by choice state |i⟩, denoted as θi,n, and the reading
bias of An+1 regarding choice represented by |i⟩, denoted as
bi,n+1. M0 and M1 are projections onto the choice states |0⟩
and |1⟩ correspondingly. The controlled unitary operator is
then applied to the joint system operator ρn,n+1:

ρn+1 =Un+1 ·ρn,n+1 ·U†
n+1, (5)

where ρn+1 represents the joint system of An’s opinion con-
veyed in stimulus Sn and An+1’s opinion after An+1 has pro-
cessed Sn. When applying the controlled unitary operator,
the ρAn part of the joint system density operator ρn,n+1 acts
as the controller state, and the XAn+1 part acts as the target
state (see Equation 3). The controller state is not altered by
applying Un+1, and it controls how the target state XAn+1 is
changed by Un+1. We adopt the control unitary operator, be-
cause the opinion of participant An in stimulus Sn can control
how An+1’s initial opinion, encoded in XAn+1 , is changed after
An+1 has processed Sn , but the opinion in Sn is not altered by
An+1 processing Sn.

Finally, in step 3, we model how, after processing Sn, par-
ticipant An+1 reproduces stimulus Sn+1 that conveys their
opinion. To do so, we take the partial trace of ρn+1 to trace
out the components involving the opinion of An:

ρAn+1 = TrAn(ρn+1). (6)

The reproduced stimulus Sn+1 with state ρAn+1 will then be
reproduced by An+2 and so on.

In short, there are two theoretical advantages of the quan-
tum walk model over the Bayesian model for serial reproduc-
tion. First, the quantum walk model can predict nonlinear re-
lations between xn and xn+1, which are the measured values of
attributes for Sn and Sn+1 correspondingly. This non-linearity
arises naturally from quantum probability theory. Second, the
quantum walk model can be easily generalized into a model
that explains order effects in serial reproductions. We will
discuss these advantages in more detail later.

Emotion transmission in narratives
Emotion plays a central role in serial reproduction of narra-
tives (Nabi & Green, 2015; Bilandzic, Kinnebrock, & Klin-
gler, 2020; Breithaupt, Li, & Kruschke, 2022). Emotion
transmission refers to how the intensity of emotions con-
veyed in narratives develops during serial reproductions. Pre-
vious research (Thompson & Griffiths, 2021; Stubbersfield,
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Figure 2: The scatter plots of models’ predictions and the data. For all sequences whose heads are the selected original
narratives displayed in the titles, the ratings xn+1 from the data, the predicted rating of x̂n+1 given data xn by the best version
of the Bayesian model (in terms of lowest mean BIC for the emotion), and that by the best version of the quantum model, are
all plotted against xn from the data. The predictions are computed as the means of the best-fitted normal distributions for the
sequences before the distributions are truncated to [0,7]. The first five columns show x4 vs x3, while the last two show x3 vs x2,
and each row corresponds to one emotion. As observed above, the quantum model can sometimes produce nonlinear predictions
of xn+1 as a function of data xn, while the Bayesian autoregressive model only generates linear predictions. This non-linearity
of the quantum model arises from computing quantum probabilities from the complex-valued probability amplitudes.

Tehrani, & Flynn, 2015; Breithaupt et al., 2022) found that
different emotions can transmit very differently and that the
transmission, as a function of the steps of the serial reproduc-
tion process, is systematic. We consider emotion transmis-
sion as the starting point to examine our quantum model for
serial reproduction because (1) emotion transmission is im-
portant and systematic in narratives; (2) the intensity of emo-
tions is often measured by a one-dimensional rating variable;
(3) a recent study (Breithaupt et al., 2022) develops a large
corpus (https://osf.io/tpw5e/) about emotion transmis-
sion (19,086 retellings; 12,840 participants). The specific
dataset examined in this work is a subset of the data in Bre-
ithaupt et al., (2022). In this dataset, there are 96 original
narratives, denoted as S1, and a total number of 8243 se-
quences developed from these original narratives (different
original narratives might be the heads of a different number
of sequences). In each sequence, there are three retellings be-
sides the original narrative, denoted as S2, S3, and S4, and the
retelling Sn is generated by the participant who reads the pre-

vious retelling Sn−1. For each original narrative, the transmis-
sion of one of the five emotions: happiness, sadness, risk, dis-
gust, or embarrassment, is examined. The intensity of emo-
tions is measured using a rating scale from 0 to 7, with ”7”
meaning the emotion is strongly presented in the narrative and
”0” meaning the emotion is not presented at all (a slider was
used that recorded and displayed the ratings to one decimal).
The ratings are performed by another group of participants
who do not participate in the serial reproduction, and the fi-
nal rating xn for retelling Sn is computed as the mean of all
ratings given to Sn. On average, each first retelling was rated
by an average of 5.62 raters, each second retelling by 3.27
raters, and each third retelling by 4.52.

Bayesian model for emotion transmission
We develop four versions of Bayesian models: (1) [BS3]1

is the same as the model in Xu & Griffiths (2010), where a

1The texts in ”[]” are the version names of the models. The
reason for naming is explained in the caption of Figure 3.
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uniform prior µ ∼ N(µ0,σ0) and a uniform observation noise
σ2

x are assumed for each participant in the same sequence
(for one-dimensional attributes, the model is the AR(1) pro-
cess shown in Equation 2); (2) [BSA5] is the same as the
first version except that we assume a changing observation
noise for each participant; (3) [BSB5] is the same as the
first version except that rather than a uniform prior, we as-
sume that each participant uses either the reconstruction prior
µ1 ∼N(3.5−φ,σ0) with probability ω, or µ2 ∼N(3.5+α,σ0)
with probability 1−ω, where φ,α ∈ [0,3.5] and ω are free
parameters; (4) [BSAB7] is the same as the third version
except that we assume each participant has different obser-
vation noises. In practice, since participants are not trained
on a specific prior before serial reproduction, the number
of reconstruction priors of the participants for this between-
participant serial reproduction task could potentially be more
than two. However, the main focus of this work is to compare
the quantum and the Bayesian models, and thus it is more
important to ensure that the quantum model and the Bayesian
model share the same assumptions as of the above versions.

Quantum model for emotion transmission
For emotion transmission, we adopt a special controlled uni-
tary operator:

Un+1 =

{
M0 ⊗R(κnP0,n +βn)+M1 ⊗ I2 P0,n ≥ 0.5
M0 ⊗ I2 +M1 ⊗R(κnP0,n +βn) P0,n < 0.5

(7)

where P0,n ∈ [0,1] is the (1,1) entry of ρAn that encodes the
probability of the emotion being presented in narrative Sn,
I2 is the two-dimensional identity matrix, and κn and βn are
rotation parameters. The reason for adopting this special uni-
tary is that the unitary operator Un in Equation 4 is designed
for narratives with contents of various attributes and readers
with different biases to these attributes. When the narratives
are of a single one-dimensional attribute, the bias parameter
bk,n can be lumped into the content parameter θk,n.

We develop four versions of quantum models correspond-
ing to each version of the Bayesian model: (1) [Q4] is the
four-parameter version of the quantum model which contains
an initial opinion state X = cosφ |0⟩+ sinφ |1⟩ with free pa-
rameter φ that is the same for each participant in the same se-
quence, a reconstruction noise σ0 which is constant for each
participant, and two rotation parameters β,κ where κn = κ

and βn = β for all n; (2) [QA6] is the same as the first ver-
sion except that, rather than assuming a constant reconstruc-
tion noise, we set a separate σn for each participant An; (3)
[QB6] is the same as the first version except that participants
either use initial opinion state X = cosφ |0⟩+ sinφ |1⟩ with
probability ω, or use Y = cosα |0⟩+ sinα |1⟩ with probability
1−ω, where φ,α and ω are free parameters, and cos2 φ ≤ 1

2
and cos2 α ≥ 1

2 (cos2 α = cos2 φ = 1
2 corresponds to the rating

3.5); (4) [QAB8] is the same as the third version, except that
we set a separate σn for each An. We assume that all of κn,βn
are the same to reduce the fitting complexity. Since the emo-
tion ratings are in the scale [0,7], the predicted nth rating by

the quantum model is given by

x̂n = 7×P0,n. (8)

Similarly, the initial state for the nth narrative Sn is set to be
the two dimensional vector,

|ψn⟩=
√

xn/7 |0⟩+
√

1− xn/7 |1⟩ , (9)

where xn is the rating from the data. Finally, the predicted
value x̂n will be the mean of a normal distribution with stan-
dard deviation σn for computing the likelihood of data xn
given the model.

Figure 3: Mean BICs over all initial narratives, for each of
the five emotions and each version of the models. The mod-
els’ names are shown in the x axis, where ”BS” stands for
Bayesian, and ”Q” stands for quantum, ”A” stands for ver-
sions with a changing observation noise, and ”B” stands for
versions with two initial beliefs (”AB” means both are pre-
sented). The numbers at the end of the names show the num-
ber of parameters of the models. The dashed lines represent
the lowest BIC scores for the emotion corresponding to the
color of the line. The name of the model with the lowest BIC
for each emotion and the lowest BIC are labeled in the y axis.

Fitting the models
We fit one set of parameters for all sequences of retellings
with the same original narrative S1. By this, we assume that
the rating xn+1 of any sequence with the same previous nar-
rative Sn follows the same probability distribution and that
all sequences starting at the same S1 transmit emotion in the
same way. The models are compared using the Bayesian In-
formation Criterion score (BIC). Since both models use Gaus-
sian likelihood functions while the emotion ratings are in the
range [0, 7], we truncate the Gaussian functions to [0, 7] when
computing the BICs. The fitting is performed using the par-
ticle swarm algorithm in Matlab global optimization toolbox
with a swarm size of 320 and a maximum iteration of 2000.
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The fittings are performed 3 times to check for any conver-
gence to a local minimum since multiple local minimums can
exist for the quantum model.

Results and discussions
Figure 3 shows the results of the BIC fittings. Overall, we
found that at least one version of the quantum model provides
a better fit of the data compared to any version of the Bayesian
model in terms of mean BIC scores over all initial narratives
for each emotion.

One reason why the quantum model achieves a better per-
formance is that it can predict a nonlinear relationship be-
tween the emotion rating xn of the narrative Sn and rating
xn+1 of Sn+1, while the AR(1) Bayesian model assumes a lin-
ear relationship between xn and xn+1. Figure 2 shows how
this non-linearity might explain the data better. The non-
linearity here is a natural effect in any quantum probability
model, as quantum probability models are based on complex-
valued probability amplitudes, whose magnitude squares are
the probabilities. In our model, probability amplitudes are
converted into probabilities in Equation 5, where both the
controlled unitary that encodes the transition probability am-
plitudes and its Hermitian conjugate are applied to the joint
state. And because of this nonlinear conversion from proba-
bility amplitudes to probabilities, the model can produce non-
linear predictions even if the controlled unitary operator itself
is a linear operator. Except for this part of the model, any
other operations including tensor products, partial traces, and
the mapping from quantum probabilities to ratings are linear.

Another potential reason could be that for data with a
multi-modal distribution, the quantum model could be more
sensitive to the multi-modality. As evident in the examples
shown in Figure 4, the quantum model can detect some multi-
modalities that the Bayesian model doesn’t detect.

Figure 4: Example original narratives where the quantum
model detects a multi-modal distribution and thus produces
a better fit, while the Bayesian model does not. The distribu-
tion is over the rating x2 of all sequences starting from these
original narratives. The best-fitted quantum model, in terms
of the lowest mean BIC, is of version ”QB6”, and the best-
fitted Bayesian is of version ”BSB5”.

Order effects in serial reproduction
In the previous sections, we examine a simple case of serial
reproduction: reading and rewriting a narrative where only a
one-dimensional attribute (one type of emotion) of the nar-
rative is measured. However, in practice, serial reproduc-
tion might also involve making judgments about the received
stimulus before or after reproducing the stimulus, and mea-
surement of multiple attributes of the received stimulus. For
example, in Lee et al., (2014), participants are first asked to
rate both the extent of guilt and the extent of favor of two
conflicting parties (strangers and friends) about the received
stimulus, and then to reproduce this stimulus. It is a well-
known phenomenon (Hogarth & Einhorn, 1992; Krosnick &
Alwin, 1987; White, Pothos, & Busemeyer, 2014) that when
multiple judgments are made and multiple attributes are mea-
sured, the order of judgments and measurements could affect
participants’ judgments and opinions. In serial reproduction,
since the reproduced stimulus is related to the opinions of the
participants, changing the order of tasks and attributes could
potentially change the reproduced stimulus. A very important
feature of the quantum model is that it can be easily general-
ized into a model that captures these order effects, and we will
briefly discuss examples of two types of order effects that the
quantum model accounts for.

Figure 5: An illustration of the first type of order effect. Par-
ticipants either first rate how strong an emotion conveyed in
the received narrative is, and then reproduce the narrative, or
rate after reproducing the narrative. The order effect in the re-
produced narrative is a result of the state after processing the
previous narrative ρAn+1 collapsing into an eigenstate ρR,An+1

after rating the emotion.

The first type of order effect is produced by making a
choice before/after reproducing a narrative. Consider asking
the same participant to both rate how happy the received nar-
rative is, and reproduce the narrative, as illustrated in Fig-
ure 5. To explain this order effect, we first need to ex-
tend the existing two-dimensional quantum model into a five-
dimensional one. The same as in the two-dimensional case,
after processing the narrative from An, participant An+1 ’s ini-
tial state XAn+1 is evolved into ρAn+1 through Equation 5 and
Equation 6, assuming an extended controlled unitary opera-
tor. If a rating of happiness R is made before the narrative
reproduction, participant An+1 ’s opinion states will collapse
into an eigenstate ρR,An+1 corresponding to the rating R. In
this case, the reproduced narrative is modeled by the col-
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lapsed state ρR,An+1 . On the other hand, if the ratings are
made after reproducing the narrative, the reproduced narra-
tive is modeled by the state ρAn+1 . An order effect is then
predicted by the quantum model when ρR,An+1 ̸= ρAn+1 .

The second type of order effect is produced by a similar
experimental paradigm as that of the first, except that instead
of asking a single conceptual rating question either before or
after writing, we ask two questions about two different at-
tributes of the received narratives, one before and one after
rewriting (see Figure 6). For example, let the two attributes
be happy and disgusting contents of the received narratives.
Measuring the happy content first would potentially guide
the participant towards writing a happy story, and vice versa
if we were to measure disgusting content first. The quan-
tum model explains this order effect as follows. We first ex-
tend the model to five-dimensional, and obtain ρAn+1 using
the same stimuli processing procedure as in Equation 5 and
Equation 6. Let ρRh,An+1 and ρRd ,An+1 be the eigenstates ρAn+1

will collapse into after rating happiness as Rh and rating dis-
gust as Rd respectively. For rating happy content first, the
reproduced narrative will have state ρRh,An+1 , and vice versa
for rating disgusting content first. When ρRh,n+1 ̸= ρRd ,n+1,
the states of reproduced narratives for the two different or-
ders will therefore be different. Conceptually, this means that
the opinion of participant An+1 changes differently when dif-
ferent content is measured first. As a result, the reproduced
narratives for the two different orders might convey different
intensities of happiness and disgust.

Figure 6: An illustration of the second type of order effect.
Participants are asked to rate two attributes about the received
narrative (e.g. happy and disgusting contents), and we ma-
nipulate the order of measuring these two attributes. The or-
der effect in the reproduced narrative is modeled by different
changes to the state of the reproduced narrative in the two
different orders.

Conclusions
We develop a quantum walk model for serial reproduction.
The quantum model was compared with a linear Bayesian
model on a large dataset about emotion transmission in nar-
ratives. The quantum model not only produces a lower mean
BIC than the Bayesian model for all five types of emotion
transmissions examined but can also account for order effects
in serial reproduction. Our results suggest that the quantum-
like features of human cognition remain in human communi-
cation and affect the idea propagation in group-level cogni-

tion.
Future work will focus on different types of order effects

in serial reproductions. We will compare the quantum walk
model’s performance with that of other existing models for
order effects in group decision making. Besides, as men-
tioned, participants may have a wide range of initial beliefs
about the strength of an emotion presented in their writings.
Thus, a hierarchical model with a distribution of initial be-
liefs, either quantum or Bayesian, could be developed to bet-
ter explain the data examined in this work.
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