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Abstract

Valuable items are often remembered better than less valuable items, 

but research on the mechanisms supporting this value effect is limited. In the

current study, we sought to determine how items might be differentially 

encoded based on their value. In Experiment 1, participants studied words 

associated with point-values which were followed by a cue to either 

“Remember” the word for a later test or “Forget” the word. While to-be-

forgotten words were recognized at a lower rate than to-be-remembered 

words, there was a significant effect of value for to-be-forgotten words when 

the “Forget” cue was presented immediately after the word, suggesting a 

relatively automatic enhancement of encoding by value. In Experiment 2, we

examined to what extent subjects engage in more effective encoding 

strategies for high-value items. Subjects studied a list of words with different 

point-values, and were instructed either to construct a mental image of the 

item, use rote rehearsal to learn the items, or were not given any study 

strategy. There were significant effects of value for items that were studied 

under rote rehearsal or when no strategy instruction was given. However, 

effects of value were nearly eliminated when subjects used a mental imagery

strategy for all items as this strategy boosted memory for low-value items. In

Experiment 3, we sought to replicate Experiment 2 with a different deep 

encoding manipulation. Subjects were instructed to generate and say aloud a

sentence containing each item. Consistent with Experiment 2, this 
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manipulation eliminated the effects of value on recognition memory. Thus, it 

appears that subjects engage in more effective encoding strategies for high-

value words because the benefit of value was substantially reduced when 

subjects were instructed to use deep encoding strategies. Together, these 

results suggest that valuable items are encoded more effectively due to both

automatic and strategic mechanisms. 

Keywords: recognition; memory; value; recollection; strategy; directed-

forgetting

Word Count: 6576
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When more information is present than can be remembered, learners 

typically selectively encode valuable items at the expense of less important 

ones (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 2006; Ariel, 

Price, and Hertzog, 2015). Selective encoding is used frequently in everyday 

life, such as attempting to remember one’s grocery list or focusing on 

important information in a textbook chapter. In free recall and recognition 

testing, items are more likely to be remembered when paired with a high 

monetary-value or point-value at study (i.e., where goal is to earn a high 

score) (Adcock et al., 2006; Castel, Murayama, Friedman, McGillivray, & Link,

2013; Cohen, Rissman, Suthana, Castel, & Knowlton, 2016; Mason, Farrell, 

Howard-Jones, & Ludwig, 2017; Shigemune, Tsukiura, Kambara, & 

Kawashima, 2014; Spaniol, Schain, & Bowen, 2013; Stefanidi, Ellis, & Brewer,

2018; Wolosin, Zeithamova, & Preston, 2012). This phenomenon has been 

labeled value-directed remembering (e.g., Castel, Benjamin, Craik, & 

Watkins, 2002). On one hand, people may be strategic and engage in 

deeper, more effective encoding of information they deem to be important to

remember. For example, after a delicious meal one may try to “make a 

mental note” of the restaurant so it can be revisited. On the other hand, 

valuable information may be automatically strengthened in memory through 

effects of reward on memory representations. For example, a delicious meal 

may be remembered well because of the rewarding and pleasurable aspects 

of the experience even if no effort is made to encode the memory 

effectively. This more automatic effect of value is supported by a wide 
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literature showing that valuable items are better remembered even when 

encoding is incidental (Madan & Spetch, 2012; Mather & Schoeke, 2011; 

Murayama & Kitagami, 2014) or an implicit memory test is administered 

(Madan, Fujiwara, Gerson, & Caplan, 2012). These two mechanisms are not 

mutually exclusive, and it is possible that the two contribute differentially 

depending on the circumstances. 
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Potential Mechanisms Supporting Value-Directed Remembering

Research on explicit strategy use during the selective encoding of 

valuable material is somewhat limited. In Ariel, Price, and Hertzog (2015) 

both younger and older adults reported using more elaborative encoding 

strategies when learning high-value word pairs (i.e., mental imagery, putting 

items in a sentence), and using these strategies was associated with better 

recall than simple rote rehearsal. These elaborative strategies use deeper 

semantic and associative processing, which produces a stronger memory 

trace (Craik & Lockhart, 1972; Richardson, 1998). In Cohen, Rissman, 

Hovhannisyan, Castel, and Knowlton (2017), a large proportion of 

participants also reported using different mnemonic strategies based on 

item-value. Interestingly, many of these participants reported that they did 

not even attempt to selectively learn valuable items, but despite this 

supposed indifference to value, they still exhibited better memory for 

valuable material. This suggests that although learners often differentially 

employ mnemonic strategies based on item-value, some of the benefits of 

value are likely independent of strategy use. 

Although it is possible value enhances memory primarily due to 

deeper, elaborative encoding, another possibility is that valuable items are 

selectively-attended, resulting in increased mental rehearsal. Indeed, when 

participants are given a limited time to study items differing in value, they 

will allocate a substantially disproportionate amount of time to studying the 

highest-value items (Ariel, Dunlosky, & Bailey, 2009; Ariel, Price, & Hertzog, 
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2015; Castel et al., 2013). This allocation of study-time coincides with 

enhanced retrieval of the valuable items (Castel et al., 2013), and suggests 

that this value-related selective-attention is often intentional. According to 

the agenda-based regulation framework of study-time allocation, time, 

resources and effort are allocated based on a goal-oriented agenda that aims

to maximize performance (Ariel, Dunlosky, & Bailey, 2009; Dunlosky & Ariel, 

2011). Thus, if one can only remember a subset of the items being studied, 

the agenda will favor allocation of these things towards the most valuable 

items. In line with this framework, a commonly reported strategy is to ignore 

low-value items resulting in higher scores (Ariel, Price, & Hertzog, 2015; 

Robison & Unsworth, 2017). Additionally, valuable items may benefit from 

enhanced semantic processing. High-value cues have been shown to result 

in increased activity in ventrolateral prefrontal cortex (VLPFC), pre-

supplementary motor area, and posterior lateral temporal cortex (Cohen, 

Rissman, Suthana, Castel, & Knowlton, 2014; Cohen et al., 2016). These 

three regions have all been associated with deep semantic processing 

(Binder et al., 2009; Binder and Desai, 2011). In Cohen et al. (2016), younger

adults who effectively increased activity in these regions for valuable items 

showed the strongest benefits of value, whereas older adults who decreased 

activity for low-value items performed best. It has not yet been determined 

whether such semantic processing differences are due to conscious strategy 

use.
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Whereas the above literature suggests that value’s effect on memory 

is supported by learners’ intentional use of agenda-based encoding 

strategies and selective direction of attention, other researchers have 

focused on mechanisms that may support value’s effect on memory in a 

relatively automatic fashion based on proximity to reward or value. Much of 

this work follows from studies of the mesolimbic reward system, suggesting 

that activity in these dopaminergic regions is increased for valuable items 

compared to less valuable items, which promotes the consolidation of 

memory for valuable items (Adcock et al., 2006; Carter, MacInnes, Huettel, &

Adcock, 2009; Spaniol, Schain, & Bowen, 2013). More specifically, the 

nucleus accumbens and ventral tegmental area (VTA) are activated in 

response to high-value cues and this response is thought to underlie 

anticipation of large gains and losses (Carter et al., 2009). According to one 

popular hypothesis, dopaminergic signaling from the VTA in response to 

rewarding stimuli modulates hippocampal activity, and this signaling strongly

influences whether new learning is persistently stored in long-term memory 

(Bethus, Tse, & Morris, 2010; Rossato, Bevilaqua, Izquierdo, Medina, & 

Cammarota, 2009; see Sugrue, Corrado, & Newsome, 2005 for a review). 

Overview of the Current Experiment

In the current study, we sought to determine the contributions of 

strategic and automatic encoding mechanisms in value-directed recognition. 

One method of examining the relative contribution of different encoding 

mechanisms was devised by Gardiner, Gawlik, and Richardson-Klavehn 
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(1994), who used a directed-forgetting procedure with a cue to remember or 

forget the word presented either immediately or a few seconds after the 

word was presented. In this way, the effects of directed-forgetting could be 

measured, as well as the effects of elaborative encoding, which occurred 

when participants received a cue to remember immediately after the item 

was presented. When the cue was delayed, participants appeared to engage 

in maintenance rehearsal until the cue was presented, with little time for 

further elaborative rehearsal before the next item appeared. In Experiment 1

we used a similar directed-forgetting paradigm where each item was 

designated as to-be-remembered (TBR) or to-be-forgotten (TBF) after a 

variable delay during study, and then both TBR and TBF items were 

presented at test. The learn cue was either presented immediately after the 

word or after a 5 s delay, and value was manipulated by pairing each item 

with a point-value (3 or 12 pts.) that would be earned for later recognition. 

Delaying the cue leads participants to primarily keep an item in mind 

through maintenance rehearsal, as it is not in their interest to expend 

cognitive resources elaborately encoding the item when a forget cue may 

appear (Gardiner, Gawlik, & Richardson-Klavehn, 1994; Woodward, Bjork, 

Jongeward, 1973). Thus, trials with a delayed cue encourage increased 

maintenance encoding at the expense of elaborative encoding. In contrast, 

an immediate “Remember” cue encourages elaborative encoding, as 

evidenced by improved recollection (Gardiner, Gawlik, and Richardson-

Klavehn, 1994). Thus, if value’s effect on recognition is primarily due to 
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increased maintenance rehearsal, valuable items should be remembered 

relatively better when the directed-forgetting cue is delayed, whereas if 

participants engage in more elaborative encoding for high-value items, this 

effect should be greatest for items with an immediate Remember cue. 

Finally, if value’s effect on recognition is largely automatic, this would be 

observable by value enhancing memory despite an immediate forget cue. 

Based on the findings of Ariel, Price, and Hertzog (2015) and Cohen et al. 

(2017), we hypothesized that value effects would be most pronounced on 

trials supporting elaborative encoding.  

Experiment 1

Method

Participants

Data from 34 undergraduate students from University of California, Los

Angeles (UCLA) were collected. Two participants were excluded from all 

analyses for having recognition sensitivity (see Data Analysis section) more 

than 2.5 standard deviations below average, resulting in a total sample size 

of 32 (23 women and 9 men). Their age range was 18-38 (M = 21.50, SD = 

3.46). This sample size was selected as it would allow for an approximate 

power of .81 to detect a medium-sized effect, as computed using GPower 

(version 3.0; Heinrich Heine Universität Düsseldorf; 

http://www.gpower.hhu.de/en.html). These participants completed the study 

for course credit. Informed consent was acquired and the study was 

completed in accordance with UCLA’s Institutional Review Board. 
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Materials

Stimuli consisted of 96 six-letter English words, including nouns, 

adjectives, and verbs. These words were selected to have a similar 

frequency (M = 4466.12 occurrences per million, SD = 237.11) in the 

Hyperspace Analogue to Language corpus (Lund & Burgess, 1996). During 

encoding, 48 of these words were randomly presented and paired with a 

point-value of 3 or 12 presented to the right of the word (e.g., “rivers 3”). 

These values were chosen to maximize the difference between low (3 pts.) 

and high (12 pts.) value items while only having two options for later source 

retrieval. Each word was printed in either red (RGB value: 255, 0, 0) or blue 

(RGB value: 0, 0, 255). Participants were not asked to memorize the point-

value or word color; these details were used to assess incidental memory. 

Finally, each word was associated with either a learn (“LLLL”) or forget 

(“FFFF”) cue. Of the 48 study items, each possible point-value x word color x 

learn cue combination was assigned an equal number of trials, and all words 

were randomly assigned to each of these variable combinations or to be a 

new item at testing. During the recognition test all 96 words (half new) were 

presented in random order without a point-value and printed in black ink. All 

materials were designed and presented on a desktop computer using the 

Collector program (Gikeymarcia/Collector, n.d.; 

https://github.com/gikeymarcia/Collector). All words were printed in 29 pt. 

Open Sans font with a white background. 

Procedure
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Participants completed the study individually in a private computer lab.

They were told they would view a large number of words, each paired with a 

point-value they would earn if they could remember the item, and that their 

goal was to maximize their score. They were told that items paired with a 

learn cue (“LLLL”) were to be learned for a later memory test and items 

paired with a forget cue (“FFFF”) could be forgotten. Each of the 48 study 

items were split into two cue delay blocks. In the short cue delay block, all 

items were presented individually for 2 s each, a learn/forget cue was 

presented for 1 s, and then there was a fixation cross for 5 s (Figure 1). In 

the long delay block, the order of the learn/forget cue and fixation cross were

reversed, though the total duration of encoding was equal. Whether the long 

delay or short delay block was presented first was counterbalanced across 

participants. After encoding, a brief distractor task was completed to reduce 

additional rehearsal, which consisted of 10 simple multiplication and division 

problems. 

Finally, a self-paced recognition test was completed. Participants were 

informed that they should disregard that some items were previously paired 

with a forget cue, as they would still earn their associated points. 

Additionally, to discourage them labeling all items as old, they were told they

would lose 2 points for incorrect responses and to answer as accurately as 

possible. Participants first rated how confident they were that each item was 

or was not presented before on a 6-point scale: 1 “Definitely NEW”, 2 

“Probably NEW”, 3 “Maybe NEW”, 4 “Maybe OLD”, 5 “Probably OLD”, or 6 
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“Definitely OLD”. For items rated as old (4-6), they then reported whether 

each item was worth 3 or 12 points and whether it was printed in red or blue 

ink. For items rated as new (1-3), they completed a filler question where they

rated the pleasantness of the word.  

Data Analysis

Data were analyzed using SPSS (ver. 22) and ANOVAs were 

Greenhouse-Geisser corrected. Recognition performance was examined 

using the signal detection sensitivity measure Az. Recognition sensitivity, Az, 

measures one’s ability to distinguish old items from new ones and ranges 

from 0 to 1 with chance performance at 0.5. Unlike most measures of 

recognition performance, this measure is largely unaffected by response bias

and is computed as the area under the hit rate by false alarm rate curve 

where each confidence response from highest to lowest confidence is treated

as an “old” response (Stanislaw & Todorov, 1999). Memory performance for 

incidental details (i.e., color and point-value) was near chance, thus these 

data were excluded from analysis. 

Results

Recognition Performance and Directed-Forgetting

Participants achieved a relatively high overall recognition sensitivity, 

measured with Az (M = .81, SD = .07), due to having a fair hit rate (M = .72, 

SD = .13) and a low false alarm rate (M = .21, SD = .11). A robust main 

effect of cue was observed, F(1,31) = 83.51, p < .001, ηp
2 = .73, such that 

TBR items (M = .82, SD = .07) were recognized with higher sensitivity than 
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TBF items (M = .73, SD = .07). Thus, the cue was effective in modifying 

encoding. Item-value was also effective in modifying encoding, as high-value 

TBR items (M = .83, SD = .08) were recognized with higher sensitivity than 

low-value TBR items (M = .81, SD = .07), F(1,31) = 4.78, p = .037, ηp
2 = .13. 

Effects of Elaborative Encoding

To determine the extent that elaborative encoding contributed to 

value-directed remembering, we next examined the effects of Cue and Delay

for high-value and low-value items (Figure 2). A significant Value x Cue x 

Delay interaction was observed, F(1,31) = 5.19, p = .030, ηp
2 = .14. For high-

value items, most importantly, the Cue x Delay interaction was not 

significant, F(1,31) = 0.06, p = .802, ηp
2 < .01, though a substantial main 

effect of Cue was observed, F(1,31) = 50.69, p < .001, ηp
2 = .62, such that 

TBR items were better remembered than TBF items. Sensitivity did not 

significantly differ between valuable TBR items paired with an immediate or 

delayed learn cue, t(31) = 0.91, p = .371, d = 0.17. These results indicate 

that participants better remembered valuable items associated with a learn 

cue, but that having that cue immediately after learning, thus allowing for 

the maximum amount of elaborative encoding, did not significantly affect 

later retrieval. 

When examining low-value items, a significant main effect of Cue was 

again observed, F(1,31) = 46.84, p < .001, ηp
2 = .60, such that TBR items 

were better remembered than TBF items. Although a significant Cue x Delay 

interaction was observed, F(1,31) = 8.14, p = .008, ηp
2 = .21, this was 

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273



 FORGET ME NOT  15

largely due to performance differences for TBF items as no significant 

difference was observed between low-value items given an immediate or 

delayed learn cue, t(31) = 1.04, p = .306, d = 0.21.

Automatic Effects of Value on Memory

Relatively automatic contributions to value-directed remembering were

examined by looking at performance for items paired with an immediate 

“Forget” cue (Figure 3). Greater recognition sensitivity was observed for 

high-value items than low-value items followed by an immediate forget cue, 

t(31) = 2.87, p = .007, d = 0.51. Note that both high-value items, t(31) = 

14.38, p < .001, d = 2.54 and low-value items, t(31) = 7.78, p < .001, d = 

1.38 were recognized with better than chance performance. 

Discussion

Participants showed strong directed-forgetting, suggesting that this 

manipulation was effective in altering encoding. Perhaps most importantly, 

we observed a strong value-directed remembering effect for items paired 

with an immediate forget cue. As deliberate encoding is substantially 

reduced with an immediate forget cue (Bjork, 1989; Wylie, Fox, & Taylor, 

2008), this suggests that a relatively automatic process is contributing to 

value’s effect on memory. One candidate mechanism is that valuable items 

are producing increased activity in reward-related dopaminergic systems, 

and this activity enhances encoding of these items. Prior work in healthy 

subjects has shown enhanced memory for items presented in temporal 

proximity to rewards (Murayama & Kitagami, 2014), consistent with the idea 
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that the presentation of unexpected reward increases dopamine release in 

hippocampus, enhancing encoding of proximal material. In a neuroimaging 

study of value-directed remembering, younger adults were shown to have 

increased activity in midbrain dopaminergic regions in response to the value 

cue (Cohen et al., 2016) consistent with the hypothesized role of this system 

in value effects on memory.

Contrary to our predictions, we did not observe a significant increase in

recognition sensitivity when participants were given an immediate cue to 

remember the word, thus prolonging the period for elaborative encoding. 

Although TBR items were much more likely to be remembered than TBF 

items, performance did not significantly differ whether the cue came 

immediately after the word or after a 5 s delay. When the cue was presented

after the delay, there was only 1 s until the next word appeared. It seems 

unlikely that 1 s of encoding was enough to fully use more complex 

elaborative strategies such as mental imagery or putting items into a 

sentence. Although studies involving multiple study-test lists with feedback 

find that participants selectively apply elaborative strategies based on item-

value (Ariel, Price, & Hertzog, 2015; Cohen et al., 2017) it may be that such 

differences in elaboration are less pronounced when learning a single list 

without intermittent feedback. This feedback may help them develop more 

selective encoding strategies (Cohen et al., 2017). Thus, participants may 

have engaged primarily in maintenance rehearsal in all conditions except the

immediate forget condition. We also only observed a significant benefit of 

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319



 FORGET ME NOT  17

increased maintenance rehearsal for low-value items (see Supplemental 

Data); this manipulation may have counteracted the common strategy of 

deliberately ignoring items of low value during the study phase (Ariel, Price, 

& Hertzog, 2015; Robison & Unsworth, 2017).   

Experiment 2

In Experiment 1, we found evidence of relatively automatic 

enhancement of encoding of high-value words, in that these words were 

recognized better than low-value words after an immediate “Forget” cue. 

Effects of value were relatively small for conditions in which participants 

were instructed to remember items, suggesting that value did not affect 

encoding strategies. However, a limitation of Experiment 1 was that the 

directed-forgetting manipulation may have discouraged participants from 

differentially engaging in effortful encoding strategies. Participants may have

focused attention on whether or not the items were TBR or TBF and they 

may have found it too demanding to also vary encoding strategy by value. In

order to assess whether participants are able to engage in elaborative 

encoding of high-value items, in Experiment 2 we removed the directed-

forgetting manipulation and instead simply instructed participants to learn 

using different encoding strategies. In three between-subjects groups, 

participants were either given no instruction regarding what strategy to use 

or they were instructed to use a mental rehearsal strategy or a mental 

imagery strategy for all learned items. After recognition testing, participants 

reported whether they adhered to their assigned strategy. We hypothesized 
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that if differences in recognition accuracy between high- and low-value items

were due in part to differences in the depth of encoding, instructing 

participants to encode all learned items with an elaborative mental imagery 

strategy would mitigate these differences. Our previous work has shown that

high-value items are more likely to be recollected at test (Hennessee, Castel,

& Knowlton, 2017; Hennessee, Knowlton, & Castel, 2018). Thus, if 

participants were achieving superior recollection of high-value items because

of differential use of elaborative encoding strategies, we predicted that 

instructing participants to use a mental imagery strategy for all learned 

items would reduce this difference in recollection. Alternatively, if the effects 

of value are restricted to automatic strengthening of memory 

representations, there may continue to be a difference between high-value 

and low-value items, even though overall recognition may be better when 

this elaborative encoding task is used. To assess recollection, we used a 

Remember-Know-Guess design where participants introspected whether 

each item they classified as “old” was accompanied by recollection of the 

study episode including associated details (Remember response), a strong 

sense of familiarity (Know response), or whether their recognition response 

was a guess (Gardiner & Ramponi, 1998; Tulving, 1985). We also assessed 

memory for the highest confidence responses (‘Definitely Old’) as there are 

appreciable differences between confidence and recollection (Gardiner & 

Java, 1990) that may also lead these responses to be differentially affected 

by encoding strategy. In this way, we were able to assess whether value 
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affected the quality of recognition and how this compared with the effect of 

encoding instruction.

Method

Participants

Data from 108 UCLA undergraduate students were collected for this 

experiment. 

Participants in the rehearsal and imagery conditions who reported using the 

pertinent strategy less than 50% of the time were excluded from all 

analyses, leaving 36 participants in the No Instruction condition, 20 

participants in the Mental Rehearsal condition, and 24 participants in the 

Mental Imagery condition. Our key findings for Experiment 2 were largely 

replicated when using a stricter exclusion criteria of 80% strategy use 

(Supplemental Data). This final sample of 80 students (59 females and 21 

males) had an age range of 18-27 years (M = 20.20, SD = 1.64). This sample

size was selected as it would allow for an approximate power of .85 to detect

a medium-sized instruction condition by value interaction, as computed 

using GPower. These participants completed the study for course credit. 

Informed consent was acquired and the study was completed in accordance 

with UCLA’s Institutional Review Board. 

Materials

Stimuli included 96 English nouns, and the first letter of each word was

capitalized. All words were drawn from clusters 7 and 8 of the Toglia and 

Battig (1978) word norms, as these clusters were high in imagability. Words 
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were selected to have similar imagability (M = 5.66, SD = 0.40, range: 4.75-

6.61), concreteness (M = 5.75, SD = 0.37, range: 4.50-6.48), and number of 

letters (M = 5.78, SD = 0.73, range: 5-7). During encoding, 48 of these words

were randomly presented and paired with a point-value of 1, 2, 3, 10, 11, or 

12 to the right of the word. These values were chosen to maintain a large 

difference between low-value (1-3 pts.) and high-value (10-12 pts.) items and

yet to provide a larger range of values than Experiment 1. This wider 

selection of point-values was also used to make the work more comparable 

to recent examinations of value and memory (Cohen et al., 2016; 

Hennessee, Knowlton, & Castel, 2018). Whether an item was assigned to be 

low-value, high-value, or a new item at test was counterbalanced across 

participants. During the recognition test all 96 words (half new) were 

presented in random order in black on a white background screen without a 

point-value. All materials were presented on a desktop computer with the E-

prime 2.0 software (Psychology Software Tools Inc., Pittsburgh, PA; 

https://www.psnet.com). All words were presented in 32 pt. Arial font.     

Procedure

Participants completed the study individually in a private computer lab.

They were told they would view a large selection of words, each paired with 

a point-value they would earn if they could remember the item, and that 

their goal was to earn a high score. Instructions regarding how they should 

learn items were varied between-subjects. The No Instruction condition was 

not provided instruction as to which strategy to use, the Mental Rehearsal 
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condition was instructed to think of the word repeatedly (e.g., “Knight, 

Knight, Knight, . . .”), and the Mental Imagery condition was asked to picture 

in mind what the item looks like. During the encoding phase, participants 

were presented with 48 words that were each on screen for 2 s and with a 1 

s fixation cross between words. After encoding, participants completed seven

multiplication and division problems as a distractor task. Afterwards, they 

were instructed regarding the meaning of Remembering, Knowing, and 

Guessing with instructions adapted from Gardiner and Java (1990; see 

Appendix A). Participants were asked to explain what Remembering meant in

the context of this study, and corrected if their response was deemed 

unsatisfactory.  

Finally, participants completed a self-paced recognition test including 

96 words (half new). Participants were told they would lose 2 points for 

incorrect responses to discourage labeling all items as old. Participants first 

rated how confident they were that each item was presented before on the 

6-point scale described in Experiment 1 (1 “Definitely New” to 6 “Definitely 

Old”).  For items rated as old (4-6), they reported whether they recognized 

the item due to Remembering, Knowing, or Guessing. For items rated as new

(1-3), they completed a filler question where they rated the pleasantness of 

the word. This filler question was added to prevent participants from rating 

items as new to reduce the duration of the experiment. At the end, 

participants were asked to rate the proportion of time (0-100% in 10-percent 

increments) they used the following strategies: (a) mental imagery, (b) 
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mental rehearsal, (c), putting items into a sentence. These three ratings 

were made independently, so the proportion of time spent using these 

strategies was not required to sum to 100%. These strategies were targeted 

because Ariel, Price, and Hertzog (2015) found that they were commonly 

used.  

Results

Strategy Use

First, the reported proportion of time participants used each strategy 

was examined to determine how well they followed instructions (Figure 4). 

The relationship between the encoding condition and use of the three 

strategies was examined using a 3 x 3 repeated measures ANOVA. A 

significant Condition x Strategy interaction was observed, F(4, 145) = 6.86, p

< .001, ηp
2 = .15. In the Rehearsal condition, using rehearsal was 

significantly more common than the other two strategies (all p’s ≤ .002). 

Likewise, in the Mental Imagery condition, using imagery was significantly 

more common than the other two strategies (all p’s ≤ .005). Finally, the No 

Instruction condition was examined to better understand normal strategy use

on this value-directed remembering task. In this condition, rehearsal was the

most common strategy (all 

p’s ≤ .034), though mental imagery was also quite common and was used 

more frequently than putting items into a sentence, t(34) = 3.03, p = .005, d

= 0.51.

Memory Performance
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The influences of encoding condition and item-value on recognition 

sensitivity (Az) were examined using a 3 x 2 repeated measures ANOVA 

(Figure 5; Table 1). The Condition x Value interaction only showed a trend, 

F(2, 77) = 2.54, p = .085, ηp
2 = .06. However, a follow-up ANOVA comparing 

sensitivity between the No Instruction and Mental Imagery condition did 

show a significant Condition x Value interaction, F(1, 58) = 4.41, p = .040, 

ηp
2 = .07. In the No Instruction condition, sensitivity was considerably higher 

for high-value items than low-value items, t(35) = 4.38, p < .001, d = 0.74. 

In the Rehearsal condition, sensitivity was also significantly higher for high-

value items than low-value items, t(19) = 3.61, p = .002, d = 0.82. In the 

Mental Imagery condition, the value effect on sensitivity was smaller though 

still significant, t(23) = 2.11, p = .046, d = 0.47. Differences in sensitivity by 

value were considerably reduced in the Mental Imagery condition largely 

because although the sensitivity to low-value items significantly improved 

compared with the No Instruction condition, t(58) = 3.43, p = .001, d = 0.91,

high-value items only showed a trend for improvement, t(58) = 1.93, p = .

058, d = 0.51.

We then examined influences of encoding condition and item-value on 

the proportion of items given the highest confidence response (‘Definitely 

Old’). The 3 x 2 repeated measures ANOVA showed a significant interaction 

of value and condition, F(2, 77) = 4.31, p = .017, ηp
2 = .10. In the No 

Instruction condition, ‘Definitely Old’ responses were given to a significantly 

higher proportion of high-value items (M = .54, SD = .21) than low-value 
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items (M = .34, SD = .20), t(35) = 5.17, p < .001, d = 0.86. Likewise, in the 

Rehearsal condition, ‘Definitely Old’ responses were more common for high-

value items (M = .55, SD = .23) than low-value items (M = .34, SD = .17), 

t(19) = 3.72, p = .001, d = 0.84. However, in the Mental Imagery condition, 

the proportion of items given a ‘Definitely Old’ response did not significantly 

differ between high-value (M = .67, SD = .20) and low-value items (M = .62, 

SD = .19), t(23) = 1.47, p = .156, d = 0.30. Unlike recognition sensitivity, the

highest confidence responses increased in frequency in the imagery 

condition both for low-value items t(58) = 5.53, p < .001, d = 1.46, and 

valuable items, t(58) = 2.43, p = .018, d = 0.65.     

Experiences of Remembering, Knowing, and Guessing

To examine whether the proportion of correctly recognized old items 

given a Remember, Know, or Guess response differed as a function of item-

value and encoding condition (Figure 6; Table 1), a 3 x 2 x 3 repeated 

measures ANOVA was computed. The Memory type (R-K-G) x Condition x 

Value interaction was not found to be significant, F(2, 77) = 1.54, p = .221, 

ηp
2 = .04. A significant Memory type x Condition interaction was observed, 

F(2, 77) = 11.01, p < .001, ηp
2 = .22. Additionally, a significant Memory Type

x Value interaction was observed, F(1, 77) = 7.32, p = .008, ηp
2 = .09. 

Posthoc analyses revealed that valuable items were more likely than low-

value items to receive a Remember response at test, t(79) = 3.85, p < .001, 

d = 0.43, and less likely to receive a Guess response, t(79) = -3.92, p < .001,
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d = -0.46. The proportion of recognized items that received a Know response

did not significantly differ by value, t(79) = 1.31, p = .193, d = 0.15.   

Next, we examined how the proportion of items given a Remember 

response in the Mental Imagery condition compared with the No Instruction 

condition. We observed a significant Value x Condition interaction, F(1, 58) =

4.15, p = .046, ηp
2 = .07. More specifically, in the No Instruction condition, 

recognized high-value items were more likely to receive a Remember 

response than low-value items, t(35) = 3.71, p = .001, d = 0.62. But, the 

frequency of Remember responses did not significantly differ by value in the 

Mental Imagery condition, t(23) = 0.74, p = .467, d = 0.15. Interestingly, the

Mental Imagery condition showed higher rates of remembering than the No 

Instruction condition both for high-value items, t(58) = 3.52, p = .001, d = 

0.96 and low-value items, t(58) = 5.53, p < .001, d = 1.47.    

Discussion

A key finding was that instructing participants to learn all items using 

mental imagery mitigated value’s enhancement of recognition. In contrast, 

valuable items were recognized and recollected at significantly higher levels 

than less valuable words when participants primarily used a less effective 

mental rehearsal strategy. Value-based differences in recognition sensitivity 

were substantially reduced in the Mental Imagery condition, and the 

frequency of highest confidence responses and recollection did not differ 

significantly by item-value because performance was sharply enhanced for 

low-value items. These results support the idea that participants are 
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engaging in more elaborative encoding of high-value words, as the value 

effect was nearly eliminated when participants were instructed to engage in 

elaborative encoding of low-value words as well. The small effect of value 

that remained may have resulted from automatic effects of value as 

described in Experiment 1. In the other conditions, subjects reported 

primarily using a less effective rehearsal strategy, and recognition was 

significantly better for high-value words, and this effect of value was much 

greater than for the mental imagery condition. It is possible that in these 

conditions, an automatic enhancement of encoding occurred for high-value 

words. It is also possible that participants did engage in some elaborative 

encoding for high-value words, as they reported using deeper encoding 

strategies for some of the time. This interpretation is consistent with our 

prior neuroimaging work showing that participants with high value-related 

selectivity in memory show increased activity in left hemisphere semantic 

processing regions when encoding valuable items (Cohen et al., 2014). 

Experiment 3

To further examine the role of differential encoding in value-directed 

remembering, we replicated Experiment 2 using a new encoding 

manipulation. Our primary goal was to determine whether using another 

type of deep encoding, such as putting all items into sentences, would also 

mitigate value’s effect on recognition. Additionally, one limitation of 

Experiment 2 was that there was some ambiguity as to how well participants

followed their encoding instructions, so we incorporated a more easily 
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monitored encoding strategy manipulation. To examine value effects when 

all items are shallowly encoding, we replaced the Mental Rehearsal condition

with a Consonant Counting condition where participants had to report out 

loud whether each word at encoding had an even or odd number of 

consonants. To examine value effects during deep encoding, the Mental 

Imagery condition was replaced with a Sentence Generation condition where 

participants had to generate and say aloud a sentence incorporating the 

current word. Consonant counting and sentence generation were selected as

manipulations as they have previously been shown to encourage shallow and

deep encoding, respectively, as evident by recognition performance (Smith, 

MacLeod, Bain, & Hoppe, 1989). Importantly, experimenters can easily 

monitor participant engagement in these two encoding methods.  

Method

Participants

Data from 108 UCLA undergraduate students were collected for this 

experiment. Seven participants were excluded for failing to count consonants

or generate sentences out loud for at least 80% of encoding trials, resulting 

in a final sample size of 101. There were 36 participants in the No Instruction

condition, 31 in the Consonant Counting condition, and 34 in the Sentence 

Generation Condition. This sample included 78 females and 23 males with an

age range of 18-36 (M = 20.85, SD = 2.36). Participants gave informed 

consent and completed the study for course credit.

Materials and Procedure
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Experiment 3 was designed using the same materials and procedure 

as Experiment 2 but with new encoding instructions. As in Experiment 2, 

participants viewed 48 words at encoding and 96 words at test (half old). At 

encoding, items were paired with either a low-value (1-3 pts.) or high-value 

(10-12 pts.). Item-value and whether each word was presented at encoding 

or as a new item during testing was counterbalanced across participants. 

Participants were told that they would view a large series of words and to 

remember words with the goal of earning a high score. Stimulus presentation

time was increased from 2 s per word to 3 s per word in order to provide 

sufficient time to complete the assigned encoding task. As before, we 

collected confidence judgments and Remember, Know, and Guess responses 

at test. 

Prior to encoding, participants were given one of three sets of encoding

instructions that were manipulated between-subjects. In the No Instruction 

group, participants received no further instruction after being told their goal 

was to earn a high score. In the Counting Consonants group, participants 

were told to mentally tally how many consonants were in a word and say out 

loud whether that number was odd or even (e.g., rivers, “four”). In the 

Sentence Generation group, participants were asked to use the word in a 

short sentence. For these last two conditions, participants were given a 

single practice trial to ensure they understood the instructions. The 

experimenter reminded participants to follow this encoding procedure when 
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necessary and recorded instances of participants not saying their answers 

aloud for at least 80% of encoding trials.  

Results

Memory Performance

A 3 x 2 ANOVA indicated that there was a Condition x Value interaction

in predicting recognition sensitivity (Az; Figure 7; Table 2), F(2, 98) = 5.55, p 

= .005, ηp
2 = .10. In the No Instruction condition, sensitivity was significantly 

higher for high-value items relative to low-value items, t(35) = 3.45, p = .

001, d = 0.58. However, sensitivity did not significantly differ between high-

value and low-value items for the Consonant Counting condition, t(30) = 

0.08, p = .937, d = 0.01, nor for the Sentence Generation condition, t(33) = 

0.73, p = .471, d = 0.13. Compared with the No Instruction condition, 

Consonant Counting produced worse memory for high-value items, t(65) = 

-4.06, p < .001, d = -0.99, but not low-value items, t(65) = -1.37, p = .176, d

= -0.33. Compared with the No Instruction condition, Sentence Generation 

produced both better sensitivity for high-value items, t(68) = 3.54, p = .001, 

d = 0.87, and low-value items, t(68) = 5.03, p < .001, d = 1.23.

Next, we examined influences of encoding condition and value on the 

proportion of items recognized with highest confidence (‘Definitely Old’). A 3 

x 2 repeated measures ANOVA indicated that there was a significant 

Condition x Value interaction, F(2, 98) = 11.39, p < .001, ηp
2 = .19. In the No 

Instruction condition, ‘Definitely Old’ responses were given to a significantly 

greater proportion of high-value items (M = .56, SD = .24) than low-value 
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items (M = .38, SD = .24), t(35) = 4.09, p < .001, d = 0.68. In the Consonant

Counting condition, the proportion of ‘Definitely Old’ responses did not differ 

between high-value (M = .29, SD = .21) and low-value items (M = .29, SD = .

23), t(30) = -0.29, p = .772, d = -0.03. Lastly, in the Sentence Generation 

condition, the proportion of ‘Definitely Old’ responses also did not differ 

between high-value (M = .89, SD = .16) and low-value items (M = .88, SD = .

16), t(33) = 0.58, p = .567, d = 0.10. As with recognition sensitivity, the 

highest confidence responses became much more frequent in the Sentence 

Generation condition, both for low-value items, t(68) = 10.06, p < .001, d = 

2.47, and valuable items, t(68) = 6.66, p < .001, d = 1.63.     

Experiences of Remembering, Knowing, and Guessing

A 3 x 2 x 3 repeated measures ANOVA was computed to determine 

how the proportion of correctly recognized old items given a Remember, 

Know, or Guess response was affected by item-value and encoding condition 

(Figure 8; Table 2). The Memory Type (R-K-G) x Condition x Value interaction 

was significant, F(2, 98) = 4.86, p = .001, ηp
2 = .09. Significant two-way 

interactions were observed for Memory Type x Condition, F(2, 98) = 31.12, p 

< .001, ηp
2 = .39, and Memory Type x Value, F(2, 98) = 7.68, p = .001, ηp

2 

= .07. As was observed in Experiment 2, high-value items were more likely 

to receive a Remember response than low-value items, t(100) = 3.26, p = .

002, d = 0.33, and less likely to receive a Guess response, t(100) = -3.08, p 

= .003, d = -0.31. The frequency of Know responses did not significantly 

differ by item-value, t(100) = 0.55, p = .587, d = 0.05.   
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The proportion of items given a Remember response was then 

compared between the Sentence Generation and No Instruction conditions. A

significant Value x Condition interaction was observed, F(1, 68) = 8.47, p = .

005, ηp
2 = .11. In the No Instruction condition, recognized high-value items 

were more likely to receive a Remember response than low-value items, 

t(35) = 3.50, p = .001, d = 0.59. In contrast, in the Sentence Generation 

condition rates of Remember responses did not significantly differ between 

the two item values, t(33) = 0.79, p = .434, d = 0.14. The Sentence 

Generation condition showed higher rates of Remember responses than the 

No Instruction condition both for high-value items, t(68) = 5.87, p < .001, d 

= 1.42 and low-value items, t(68) = 7.78, p < .001, d = 1.89.    

Discussion

The primary goal of Experiment 3 was to determine whether a different

deep encoding strategy (sentence generation) would also mitigate value’s 

effect on recognition, as mental imagery was found to do in Experiment 2. 

Recognition sensitivity, frequency of highest confidence responses, and 

frequency of recollection did not differ significantly by item-value when 

participants were instructed to generate sentences for both low- and high-

value items, supporting the idea that differences in recognition accuracy 

based on value are likely due to differences in depth of encoding. The results

from the Counting Consonants condition support this idea as well. In this 

condition, participants had limited ability to employ deep encoding strategies

for high-value items, and their recognition memory for high-value items was 
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not significantly better than their recognition memory for low-value items. 

Recognition memory for both high- and low-value items in the Consonant 

Counting condition was similar to recognition memory for low-value items in 

the No Instruction condition, suggesting this level of performance is 

supported by simply reading the words without engaging with them on a 

deeper semantic level. In contrast, the level of performance for both high- 

and low-value items in the sentence generation condition was markedly 

higher than the level of performance for the high-value items in the No 

Instruction condition. This suggests that sentence generation is a more 

effective encoding strategy than participants typically use for learning high-

value items, consistent with the relatively low levels of self-reported use of 

this strategy in the No Instruction condition in Experiment 2.

General Discussion

Relatively Automatic Contributions to Value-Directed Remembering

Across three experiments, the contributions of relatively automatic and

elaborative encoding processes to value–directed remembering were 

examined. A key result of this study was that value can enhance recognition 

in a relatively automatic fashion, even when subjects are immediately told 

that the item is irrelevant. In Experiment 1, when items were paired with an 

immediate forget cue, participants showed stronger recognition sensitivity 

for valuable items than low-value items. The large directed-forgetting effect 

observed in this study suggests that an immediate forget cue effectively 

reduced intentional encoding of items; thus, the most plausible explanation 
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for these results is that a less deliberate and relatively automatic process is 

enhancing the learning of valuable items. 

One plausible mechanism by which valuable items may be 

automatically strengthened in memory is that these items activate midbrain 

dopaminergic circuitry that can enhance hippocampal activity (Bethus, Tse, 

& Morris, 2010; Rossato et al., 2009). High-value cues elicit activity in 

dopaminergic regions and this dopamine release appears to signal the 

anticipation of rewards (Adcock et al., 2006; Carter et al., 2009). 

Furthermore, this dopaminergic signaling has been shown to act directly on 

the hippocampus to upregulate the storage of information in long-term 

memory (Lisman & Grace, 2005; Otmakhova, Duzel, Deutsch, & Lisman, 

2013; Rossato et al., 2009). Neuroimaging of value-directed remembering 

has revealed that activation of bilateral nucleus accumbens, a component of 

the midbrain dopaminergic reward system, does coincide with high point-

value cues (Cohen et al., 2014). In a previous study, the presentation of 

rewards strengthened subsequent memory for information that was proximal

to these rewards, consistent with the idea that value can automatically 

enhance memory independent of motivation to remember (Murayama & 

Kitagami, 2014). In a similar vein, Cohen et al. (2017) showed that effects of 

value were present on a free recall task, even when subjects reported that 

they did not attend to value and attempted to encode all items in a similar 

fashion. 
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One difference between the current study and much of previous work 

showing activation of the midbrain dopamine system is that these previous 

effects were mainly apparent after a delay of at least 12 hours, suggesting 

that the effect of dopamine is to enhance memory consolidation (Bethus, 

Tse, & Morris, 2010; Rossato et al., 2009; Spaniol, Schain, & Bowen, 2013). In

the present study, small effects of value were seen on a recognition test that

occurred shortly after study, and these immediate effects of value have been

observed in previous research (Hennessee, Castel, & Knowlton, 2017; 

Hennessee, Knowlton, & Castel, 2018). In the current study, we used a fairly 

sensitive measure of recognition, and thus it is possible that we were able to 

detect relatively subtle value effects on memory strength. It may be that 

there would be larger value effects with a long delay due to enhanced 

consolidation of these items. Thus, relatively small differences in memory 

strength due to value may become magnified if there is differential 

consolidation of higher-strength items. 

Contributions of Elaborative Encoding

Other work has suggested that high-value cues promoted increased 

elaborative semantic processing of items which leads to better subsequent 

memory. Research by Cohen et al. (2016) suggests that value-directed 

remembering promotes increased activity in left VLPFC, pre-supplementary 

motor area, and posterior lateral temporal cortex, and these regions have 

been implicated in deep semantic processing (Binder et al., 2009; Binder and

Desai, 2011). In Experiment 1, we did not observe a significant effect of 

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730



 FORGET ME NOT  35

prolonged elaborative encoding on recognition for high- or low-value words. 

More specifically, when the learn cue was presented immediately, 

participants had the maximal amount of time (6 s) to use any encoding 

strategy they preferred, but this was not shown to improve performance 

relative to seeing the cue only 1 s before the next item. At first glance, this 

seems at odds with prior research showing that people selectively use 

effective strategies for valuable word-pairs (Ariel, Price, & Hertzog, 2015) 

and they alter their strategy use based on item-value (Cohen et al., 2017). 

Likewise, this seems to go against the agenda-based regulation model (Ariel,

Dunlosky, & Bailey, 2009), as the longer study time should allow for larger 

differences in allocating time, resources, and effort based on item-value. 

However, as shown in Cohen et al. (2017), participants often require multiple

study-test lists with feedback on their performance to fully develop this 

value-related selectivity in encoding. Ariel, Price, and Hertzog (2015) and 

Cohen et al. (2017) used multiple lists with feedback, whereas the present 

study did not. Thus it is possible that our participants did not have sufficient 

feedback on performance to develop selective encoding strategies observed 

in studies with multiple study-test lists. The contribution of elaborative 

encoding strategies on value-directed remembering may be relatively small 

when studying a single recognition list without intermittent feedback. 

Nevertheless, in Experiment 2, there was evidence of differential 

encoding strategies for valuable items. Unlike in Experiment 1, participants 

in Experiment 2 did not have to engage in directed-forgetting, and thus it 
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may have been easier to adopt different encoding strategies depending on 

value. A strong value effect on recognition was observed in the maintenance 

rehearsal condition, and this value effect was not significantly different than 

when no instruction was present. In these conditions, valuable items may 

have been automatically encoded more effectively, or participants may have 

strategically engaged in more effective encoding of these items. Even when 

participants were instructed to engage in rehearsal, it is possible that they 

were able to also engage in more semantic encoding of some items, as 

participants generally reported using more than one strategy during the 

encoding session. In support of the idea that participants engage in more 

semantic encoding strategies for high-value items, instructing participants to

encode all learned items using a mental imagery strategy improved memory 

for low-value items to the point that value-based differences in sensitivity 

were reduced and differences in the rates of highest confidence response 

and Remember responses were eliminated. In a recent study, item-value was

associated with increased experiences of recollection but the frequency of 

high confidence responses was not significantly affected by value 

(Hennessee, Castel, & Knowlton, 2017). The current findings suggest that 

value can alter the frequency of these high confidence responses and that 

mental imagery during encoding may increase both confidence and 

recollection similarly at test.  

The results of Experiment 3 support and extend the results of 

Experiment 2. A limitation of Experiment 2 was that use of the instructed 
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encoding strategy was reported by participants at the end of the experiment 

rather than monitored directly. Therefore, in Experiment 3, we required 

participants in the Sentence Generation and Counting Consonants conditions

to respond aloud, which allowed us to monitor whether they were following 

the encoding instructions they had been assigned. Under these 

circumstances, we did not observe any effects of value on recognition, 

supporting the idea that differential encoding makes a strong contribution to 

value effects. It is possible that we were not able to detect automatic effects 

of value in the Sentence Generation condition because recognition sensitivity

was near ceiling; however, we observed a similar pattern of results when 

looking at the proportion of items rated as Remembered, which was quite 

high but not at ceiling. It is also possible that the numerical task of counting 

consonants interfered with processing of word values. Replication of this 

result with a non-numerical task that similarly limits differential strategy use 

would provide additional support for our findings.

In Cohen et al. (2014), neuroimaging data indicated differences in 

activation in semantic processing regions between high-value and low-value 

items, and we observed that differences in performance were mitigated 

when participants increase their semantic processing of low-value items 

through mental imagery and sentence generation. Taken together, these two

studies suggest that differences in semantic processing based on item-value 

contribute to value-directed remembering, though this contribution is likely 

greater when participants receive feedback through multiple lists. 
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Conclusions

Across three experiments we demonstrated that value can improve 

recognition in both a relatively automatic fashion as well as by inducing 

participants to engage in more effective encoding. The current findings, 

together with prior research, suggest that valuable items receive increased 

semantic processing. Further research may determine how learners adjust 

and apply encoding strategies to maximize memory efficiency.
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Appendix A

Remember-Know-Guess Instructions (Adapted from Gardiner & Java,

1990)

Soon you will be shown a series of individual words and asked if you 

recognize the word from the studying phase or if it is a new word. For words 

you recognize, you will also be asked whether you recognized it due to 

remembering, knowing, or guessing. Now, I will describe what we mean by 

remembering and knowing:

Often, when remembering a previous event or occurrence, we 

consciously recollect and become aware of aspects of the previous 

experience.  At other times, we simply know that something has occurred 

before, but without being able consciously to recollect anything about its 

occurrence or what we experienced at the time.  For example, if seeing a 

hammer reminds you that you nailed up a picture frame a few days ago, and 

you can remember what it was like nailing up that picture, you would label 

that remembering. In contrast, if someone asks you what a hammer is, and 

you are certain you know what hammers are, but you can’t remember any 

specific experiences with a hammer, you would call that knowing. The key 
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distinction, again, is that in remembering you can recall a specific 

experience, whereas in knowing you cannot.

Before we go on, can you tell me what it means to remember given my

earlier definition?

Today, remembering means that you consciously recall having seen 

the word previously in this study, and this can include any details related 

with that experience. This could be visual, such as being able to remember 

vividly what the word looks like. Also, if seeing the word earlier made you 

think of anything, and you can remember that on the recognition task, we 

will label that remembering. Now, please only give a remember response if 

you are sure that you have this conscious experience. In contrast, knowing 

means that you are certain you saw the word before, but you are unable to 

consciously remember the experience. A third response, guessing, will 

indicate that you are uncertain that you saw the word before.
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