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Abstract
Micromechanical modeling of geomaterials is challenging because of the complex geometry of discontinuities and potentially
large number of deformable material bodies that contact each other dynamically. In this study, we have developed a numerical
approach for micromechanical analysis of deformable geomaterials with dynamic contacts. In our approach, we detect contacts
among multiple blocks with arbitrary shapes, enforce different contact constraints for three different contact states of separated,
bonded, and sliding, and iterate within each time step to ensure convergence of contact states. With these features, we are able to
simulate the dynamic contact evolution at the microscale for realistic geomaterials having arbitrary shapes of grains and inter-
faces. We demonstrate the capability with several examples, including a rough fracture with different geometric surface asperity
characteristics, settling of clay aggregates, compaction of a loosely packed sand, and failure of an intact marble sample. With our
model, we are able to accurately analyze (1) large displacements and/or deformation, (2) the process of high stress accumulated at
contact areas, (3) the failure of a mineral cemented rock samples under high stress, and (4) post-failure fragmentation. The
analysis highlights the importance of accurately capturing (1) the sequential evolution of geomaterials responding to stress as
motion, deformation, and high stress; (2) large geometric features outside the norms (such as large asperities and sharp corners) as
such features can dominate the micromechanical behavior; and (3) different mechanical behavior between loosely packed and
tightly packed granular systems.

Keywords Dynamic contacts . Bonded and sliding . Cohesion and tensile strength . Fracture asperities . Granular systems .

Numerical manifoldmethod

1 Introduction

Numerical modeling of microscale mechanical behavior of
geomaterials (soils and rocks) is of great importance for un-
derstanding and predicting material constitutive and
geomechanical behavior at larger scales in subsurface engi-
neering activities such as unconventional hydrocarbon pro-
duction [22], nuclear waste disposal [23], and CO2 sequestra-
tion [21]. Some unique features of geomaterials are that they
are naturally stressed and heated to variable degrees, and often

fluid filled. The microscale structure of geomaterials contains
minerals, pores, and fractures of complex shapes that evolve
as a result of coupled fluid, heat, mechanics, and chemical
reactions. In order to understand such dynamic multiphysics
problems, in the past decade, new technologies have been
developed for visualization and characterization of the
multiphysics processes of geomaterials at the pore scale, mi-
croscale, and even smaller scales [16, 20, 31, 33, 38].

However, numerical modeling of mechanical processes in
geomaterials at the microscale is challenging because of the
computational geometry associated with (1) complex evolv-
ing geometric features that are discontinuous, and (2) multiple
deformable material bodies with dynamic contacts. At the
microscale, geomaterials exhibit more complex geometric fea-
tures that cannot be simplified easily and therefore lead to
discontinuities in physical fields (i.e., displacements and stress
for mechanics). Moreover, in addition to the force balance,
microscale mechanical processes may involve large deforma-
tion, large translational or rotational displacements, and
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dynamic contacts. The grand challenge of computing contacts
is to identify when and where contacts occur among many
blocks [27]. This is complicated by the fact that these blocks
are moving, deforming, and in some cases breaking apart. In
turn, motion, deformation, and breakage of blocks are impact-
ed by contact forces, thus constituting a serial process.
Inaccurate calculation of contacts, therefore, can lead to
completely erroneous overall system behavior.

For systems involving both continua and discontinua such
as single fractures at the asperity scale, various models have
been developed to simulate fluid flow [1, 39], heat transfer
[18], reactive transport [28], or their couplings [3]. But numer-
ical models that fully address contacts and deformation in
combination are much rarer due to the aforementioned chal-
lenges. For computation of granular materials, a number of
numerical approaches based on the discrete element method
(DEM) have been developed, including those of Cundall [5],
Houlsby [8] and Andrade et al. [2]. Though DEM is designed
for computation of discontinuous bodies with dynamic con-
tacts, the assumption of rigid bodies, the use of explicit time
iteration, and the limitation of interpolation fields for contin-
uum mechanics limit its accuracy for dealing with realistic
geometric features or dynamic contacts. These limitations
are in addition to its potentially high computational cost. On
the other hand, a number of approaches have been developed
using the finite element method (FEM) to enable contact cal-
culations (Puso and Laursen, [40]; [24]). Though FEM is
powerful for continuum mechanics possibly involving large
deformation, the common contacting algorithms developed in
those approaches assume that contacts are along prefixed con-
tact pairs, or generally do not involve multi-body system or a
large number of contacting pairs. Some other approaches have
been developed for contacts in granular systems, but these do
not overcome the fundamental limitations associated with
prefixed contact pairs, a limited number of contacts, or the
limited accuracy for either continuum or discontinuum calcu-
lations. Therefore, there is a need to develop a powerful
toolset that can accurate capture both continuous and discon-
tinuous behavior involving dynamic contacts that may involve
a large number of interacting material bodies.

The numerical manifold method (NMM, [25, 26]) is a
promising method for analyzing both continuous and discon-
tinuous media involving dynamic contacts. NMM is based on
the theory of mathematical manifolds. The numerical meshes
of NMM consist of mathematical covers and physical covers.
The mathematical covers overlay the entire material domain
and the physical covers are divided from the mathematical
covers by boundaries and discontinuities. Based on this
dual-mesh concept, both continuous and discontinuous prob-
lems can be rigorously solved by flexibly defining physical
covers. In the past two decades, NMM has been successfully
applied to mechanics analysis of both continuous and discon-
tinuous geologic media [17], involving higher-order

interpolation [4], fracture propagation [36], wave propagation
through fractured media [6], analysis of slope stability [7, 19],
and microscale-macroscale modeling of fracturing of sand-
stone [34]. Most recently, the authors developed a number
of models for analyzing flow and fully coupled hydro-
mechanical processes of fractured porous media at different
scales ([13–15], [9]).

In this paper, we present development of an approach with
rigorous treatment of dynamic contacts in deformable geoma-
terials for microscale mechanical analysis based on the NMM.
We first present a general mathematical description of the
problem of deformable geomaterial bodies with dynamic con-
tacts in Section 2. Then, we introduce the approach of model-
ing continuum and discontinuum mechanics based on the
NMM, including the fundamentals for global continuous
and discontinuous interpolation, and a rigorous multi-step ap-
proach for contact calculations in Section 3. In Section 4, we
apply this approach to a number of examples at the micro-
scale, including a single fracture at the asperity scale, granular
systems of aggregated clay settling, compaction of a loosely
packed sand, and failure of a cemented marble sample. In
Section 5, we conclude and provide perspectives for future
directions.

2 Mathematical statement of deformable
geomaterial bodies with dynamic contacts

A single continuum or discontinuum material body in dynam-
ic states satisfies force balance:

∇ � σþ f¼ρ
∂2u
∂t2

ð1Þ

where σ is the stress tensor, f is the body force vector, ρ is the
density of the material body, u is the vector of displacements,
and t is time. At steady state, the right-hand side representing
the inertia terms = 0.

The force term is not only a result of loading (Fl), but is
also present whenmaterial bodies are discontinuous and are in
contact (i.e., the contact force, Fcontact). Thus, the complete
expression of the force includes both terms as follows:

F ¼ Fl þ Fcontact ð2Þ

In order to include continuum and discontinuummechanics
in a unified way, we express the displacement as:

u ¼ ∫εdsþ utr þ ur ð3Þ
where the displacement includes not only the term that is due
to deformation ∫εds, but also the translational utr and rotation-
al ur displacements. When the deformation is assumed small,
strain is known as the spatial derivative of displacements.
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With introduction of translational and rotational displace-
ments, the motion of a material body can be described.

When a material body does not interact with other material
bodies, in response to loading, it may move or deform before
the stress reaches the strength of the material. Various types of
continuum constitutive laws with different stress-strain rela-
tionships have been developed to describe the continu-
um behavior of a material body, which can be
expressed generally as:

σ ¼ g εð Þ ð4Þ
where g is a general function, which can be linear,
nonlinear, or rate-dependent. For example, Hooke’s
law is most widely used law to describe the linear elas-
tic relationship between the stress and strain tensors.

When a material body interacts with other material bodies,
conventional continuum constitutive laws are not sufficient to
describe the relationships between contact forces and dis-
placements and/or deformations associated with contacts.
Between different material bodies, it is more natural to use
the distance d and the relative displacement in the direction
along the contacting face ⟦us⟧ to describe their state of con-
tacts. Here the distance d is the distance between a contact pair
(i.e., the exact contacting vertices and/or surfaces between two
material bodies). The distance d includes time-dependent in-
fluences of relative displacement and relative deformation of
the twomaterial bodies between the potential contacting faces.
Thus, a general expression of contact force as a function of d
and ⟦us⟧ can be expressed as:

Fcontact ¼ h d;〚us〛ð Þ ð5Þ
where ⟦us⟧ denotes discontinuity of displacements (i.e., rela-
tive displacements) between a contact pair in the direction
along the contacting face, and h is a function of d and ⟦us⟧,
both of which may be dynamically changing before reaching
equilibrium.

With or without considering motion or deformation of ma-
terial bodies, there are always three possible relative positions
between two material bodies A and B: (1) A and B are sepa-
rated (no contact anywhere); (2) A and B are bonded to each
other on the vertices or surfaces of the body; and (3) A is
moving along B while A is in contact with B, and such a
motion is sliding. For these three different contact states, their
respective functions h are different.

When A and B are separated, in most cases there are no
contact forces between them. Thus, we have:

h ¼ 0 ð6Þ

In rare cases, for example when there is an electrical double
layer, there are forces between A and B, but this effect is not
currently included in this study.

When A and B are bonded, the distance between A and B
on the contacting pair (vertices and/or edges in 2D) should be
zero, and the relative displacement along the contacting face
⟦us⟧ should be zero as well, satisfying:

d ¼ 0 ∩〚us〛¼ 0 ð7Þ

Note that in Eq. (7), we still consider the situations when A
and B are moving and deforming, but remaining bonded to
each other.

When A is sliding along B while A is in contact with B, the
contact occurs at the sliding face. On this face, there is no
distance between A and B, while the sliding satisfies certain
friction laws. We use the Coulomb’s law of friction to de-
scribe sliding along the contact face for the sliding state:

d ¼ 0 ∩ Fs ¼ F
0
ntanφsgn〚us〛ð Þ ð8Þ

where Fs denotes the contacting force in the direction of the

sliding face, F
0
n denotes the effective contact force in the

direction normal to the contact face (here effective means
eliminating force associated with water pressure), φ is the
friction angle, and sgn(⟦us⟧) means the direction of Fs that
depends on the direction of relative shear displacement.

Although in Eqs. (7)–(8) there is no explicit description of
the contact forces, the distance and/or relative displacement
constraints function like implicit boundary conditions. These
constraints on the contact faces can be imposed with different
approaches, such as with a penalty method [25], Lagrange
multiplier method [11], and the most advanced approach
based on the variational inequality method [37], leading to
force terms as contact forces. Numerical implementation of
these boundary constraints will be introduced in more detail
in the next section.

So far, we have described two individual material bodies in
separated, bonded, and sliding contact states. In dynamic con-
ditions, these contact states may be changed as follows:

If material bodies A and B were not in contact (separat-
ed), but become bonded later, constraints in Eq. (7)
should be added. If A and B were not in contact, but then
they are in sliding state, constraints in Eq. (8) should be
added.
If material bodies A and B were bonded but become
separated later, we need to consider one condition: In
order to separate A from B, the effective force in the

direction normal to the contacting face F
0
n needs to be

larger than the force associated with the tensile strength
T. That is because in a rather long geological period as a
result of thermal-hydro-mechanical-chemical
(THMC) processes, adhesion and/or tensile bond
strength can be gained between A and B along their
contacting faces. This criterion for separating two
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bonded bodies in the direction normal to their con-
tact face can be expressed as:

F
0
n > T ð9Þ

If Eq. (9) is satisfied, the two material bodies are no lon-
ger in contact; therefore, the constraints in Eq. (8) should
be removed.
If material bodies A and B were bonded but transfer to a
sliding state, we need to consider one condition: In order
to initiate sliding of A and B against each other, the force
in the direction of contacting face Fs needs to be larger
than the shear strength S. The shear strength could be
gained as a result of THMC processes, consisting of fric-
tional force (satisfying Coulomb’s law of friction) and
cohesive force Fcohe. This criterion for shearing two
bonded bodies in the direction along their contact face
can be expressed as:

Fs > S ¼ F
0
ntanφ

0 þ Fcohe ð10Þ
where φ′ is the internal friction angle. If Eq. (10) is satis-
fied, the two material bodies are transferred from bonded
to sliding state. Comparing Eq. (7) and (8), we find that
the constraint in the direction normal to contacting face
should be retained, while in the sliding direction, the con-
straint needs to be changed.
If A and B slide on each other but become separated,
constraints in Eq. (9) should be removed. If they become
bonded, the constraints should be modified in the direc-
tion of the contacting face so that no relative shear dis-
placement will occur.
With Eqs. (6)–(10), we are able to describe the three
different contact states of two material bodies, dynamic
changes of these contact states, and criteria that need to be
satisfied for changes of the contact states.

3 Modeling continuum-discontinuum
mechanics with NMM

3.1 Fundamentals of NMM: global approximation

The numeral manifold method (NMM) [25] is based on the
concept of a “manifold” in topology. In NMM, independent
meshes for interpolation and integration are defined separately.
Based on this unique definition, a non-conforming mesh (not
necessarily conforming with the physical boundaries) can be
used as a mathematical mesh. Different local approximation
functions can be constructed and averaged to establish global
approximations for both continuous and discontinuous analysis.

In NMM, independent mathematical and physical covers
are defined. A mathematical cover is a set of connected

patches that cover the entire material domain Ω. For example,
we can use a quadrilateral patch, a circular patch, or a rectan-
gular patch as a mathematical cover (such as the A, B, C in
Fig. 1). Features such as density, shape, and sizes of these
mathematical patches define the precision of the interpolation.
The physical patches are mathematical patches divided by
boundaries and discontinuities, determining the integration
fields. The union of all the physical patches forms a physical
cover. For example, mathematical patches B and C become
smaller areas as physical patches B1 and C1 divided by the
exterior boundaries of the material domain Ω, while mathe-
matical patch A is divided into physical patches A1 and A2 by
the inner discontinuity and the boundaries of Ω. The overlap-
ping areas by multiple physical patches are defined as ele-
ments. As a result, the model domainΩ is discretized into five
elements: A1B1C1 (the overlap of physical patches A1, B1, and
C1), A1C1, A2C1, B1C1, and C1. From Fig. 1, we can see that
the shape of the mathematical patches can be flexible; the
relative location of the mathematical patches within the model
domain can also be arbitrary (only if satisfying Ω ⊂A ⋃B ⋃
C), and the number of physical patches on each element can
be flexible.

On each physical patch, a local function is assigned, such
as one that is constant, one that is linear, or any function that is
able to capture the behavior of the solution on the patch. The
weighted average of the local patch functions constitutes the
global approximation. For example, if using linear local func-
tions, we can construct a global second-order approximation
(Fig. 2a, [32]). If using a local function with a jump of the first
derivative of the physical variable, we can simulate the weak
discontinuity crossing patches and elements (Fig. 2b, [12]). Or
most commonly, if using discontinuous local functions, we
can simulate fractures (Fig. 2c, [13, 15]). With this dual-
mesh concept, the NMM is capable of simulating both con-
tinua and discontinua with explicit geometric representation
and flexible numerical approximation.

With the concept of global approximation, NMM can be
related to other numerical methods as shown in Fig. 3. If using
a bilinear weight function on a rectangular patch with a

Fig. 1 NMM mathematical and physical meshes
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constant local function, NMM simplifies to the finite element
method (a detailed comparison was recently conducted by
[35]). If using a piecewise linear weight function in all direc-
tions (such as on a rectangular patch) with a constant local
function, NMM simplifies to the finite volumemethod [9, 10].
If using a constant weight function on an arbitrarily shaped
patch with a constant local function, NMM simplifies to the
discrete element method. If using a constant weight function
on an arbitrarily shaped patch with a linear patch function
(resulting in a notable difference from DEM with con-
stant patch function), NMM simplifies to the DDA.
Here we do not attempt to compare all aspects of nu-
merical methods including (1) interpolation/approximation,
(2) construction of global equilibrium (transforming differen-
tial to integral equations), (3) approaches of integration,
and (4) solving of linear or nonlinear global equations.
We only compare aspect (1), i.e., approximation/
interpolation as it defines fundamentals of a numerical
method. In this respect, NMM provides a flexible and general
approach to include continuous and discontinuous methods in
a unified form.

In this study, constant patch functions and linear weight
functions composed of shape functions of mathematical trian-
gular meshes are used to approximate the physical fields,
which are generally expressed as follows:

φ ¼ wTφpc ð11Þ

where φ, w, and φpc are field variables (such as displace-
ments), weight function, and physical patch functions.

The definition of independent mathematical and physical
covers lays the basis for NMM to be able to simulate contin-
uum mechanics (deformation) with sufficient accuracy and to
simulate discontinuum behavior of blocks that can be flexibly
discretized. This dual-mesh concept in combination with the
contact algorithms (Section 3) makes it possible for the mi-
croscale NMM approach to model both continuum and
discontinuum mechanical processes with a broad range of
processes. This will be shown in Section 4.

3.2 Continuum-discontinuum geomechanics
calculation

In order to analyze the microscale mechanics associated with
complex geometric features involving both continuous and
discontinuous features, it is important to have a rigorous treat-
ment for both continuum mechanics and discontinuum me-
chanics. Based on the dual-mesh system in NMM and flexible
choices of local patch functions, NMM is fundamentally de-
signed for both continuum and discontinuum analyses, includ-
ing large deformation, large displacements, and multi-body
movement and contacts. In a previous paper, the authors de-
scribed the details of NMM modeling of continuum mechan-
ics with nonlinear features and its full coupling with fluid flow
[14]. Here in this paper, we focus on calculations of dynamic
contacts among multiple material bodies.

In order to carry out contact calculations, simplifications
are often made, for example by using simple shapes such as
spheres or rectangles to approximate. The mechanisms in-
volved are shown in Fig. 4, as well as the errors caused by

Fig. 3 Relating NMM to other
numerical methods

Fig. 2 Flexible choice of local approximation functions. a Linear function [32]. b A jump junction for a weak discontinuity [12]. c A discontinuous
function for a fracture [13, 15]
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these geometric approximations. For example, it is easy to
detect if two spheres are in contact by comparing the distance
of their centers with the summation of the radii of the
two spheres. But when using a sphere to approximate
an angle of a polygon, the sphere cannot capture the
case when the angle already enters the boundary of
another material body. Such an error leads to an unre-
alistic series of dynamic contacts that are far from the
real world. Similar simplification based on rectangles
for contacts is also used, leading to similar types of
errors. Another common simplification for contact cal-
culations is to use predefined and fixed contact pairs.
With this assumption, the problem is significantly sim-
plified because contacts only occur at those predefined
contact pairs. With such simplifications, however, inac-
curate calculation of contacts can lead to completely
erroneous overall system behavior.

Depending on the states of contact, different con-
straints may apply, such as Eqs. (6)–(8). The grand
challenge of computing contacts is to identify when
and where contacts occur among many blocks, which
is further complicated by the fact that these blocks are
moving, deforming, and in some cases breaking apart.
In NMM, a multi-step approach is developed, including
detection of dynamic contact pairs, enforcement of con-
tact constraints, and iteration for contact state conver-
gence. Figure 5 shows the schematic of such a contact
calculation.

3.2.1 Detection of dynamic contact pairs

First, we detect possible contacting blocks among a number of
material bodies, considering they might be moving or
deforming, or some of them might be already contacting with

Fig. 4 Simplified contact
calculation using a spheres and b
rectangles for contacts

Fig. 5 Schematic of contact calculation for microscale mechanical analysis
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other material bodies. This involves a bit of an estimation
because the motion and deformation of blocks may occur
continuously. Setting a range of possibilities enables precise
and complete detection of all possible block contacts. By find-
ing the smallest and largest coordinates in horizontal and ver-
tical directions, all the arbitrarily shaped material bodies can
be contained in rectangles (shown in Fig. 5). By comparing
the shortest distance between each two rectangles and the
distance thresholds of contacts, possible contacts between ev-
ery two material bodies can be detected.

After detecting every two possible contacting material
bodies, it is critical to identify contact pairs, i.e., to
calculate where exactly contacts could possibly occur
between these two material bodies. All of these possi-
bilities of contact pairs are accounted for in the NMM
code. In 2D, contact pairs are categorized into three
possibilities: vertex-to-vertex, vertex-to-edge, and edge-
to-edge contacts. An edge-to-edge contact is a special
case of a vertex-to-edge contact where one edge of the
vertex is parallel to the edge of another material body.
On the other hand, a vertex-to-vertex contact can be
transformed to a vertex-to-edge contact. In Fig. 5, we
list all the possibilities of vertex-to-vertex contacts
where the thicker lines represent the faces of contacts.
In the top row, these include possible contacts of two
acute angles, one acute and one obtuse angle, two acute angles
with parallel edges. In the bottom row, these include possible
contacts of two obtuse angles with parallel edges, two obtuse
angels, and one obtuse and one reflex angles. With these pos-
sibilities, we are able to consider material bodies in any shapes
with any types of corners. Because (1) a vertex-to-vertex contact
can be transformed to a contact between a vertex and a contact
face, and (2) an edge-to-edge contact is a special case of vertex-
to-edge contact, in the code we uniformly record each contact
pair with the vertex of onematerial body and the contact face on
the other material body.

3.2.2 Enforcement of contact constraints

After contact pairs are identified at each time step, we calcu-
late the normal distance and relative distance along the contact
face to pre-estimate the contact state for each contact pair.
Then, we enforce the constraint depending on the contact state
accordingly. A contact pair may be separated, bonded, or slid-
ing, as described by Eqs. (6)–(8). Because there are no con-
straints for the separated state, it is naturally calculated by the
code.

The distance and displacement constraints for bonded
and sliding states can be imposed by using penalty
methods [25] or Lagrange multiplier methods [11].
Lagrange multiplier approaches need to introduce addi-
tional topology or to relate the Lagrange multiplier to
the contact stress. Introducing additional topology

associated with Lagrange multipliers is rigorous, but
could lead to an ill-conditioned matrix that dramatically
slows down the computation [11]. Using contact stress to
represent Lagrange multiplier requires the use of current-
step displacements to calculate the stress, which is rigor-
ous but not straightforward. In the current model, we use
the penalty method to enforce the constraints associated
with distance and displacement. The penalty method is
based on the concept of constructing a penalty function
g to penalize the deviation from the displacement con-
straint c(u). The key to effectively using a penalty method
is to choose a reasonable value of the penalty parameter.
We assume a significantly stiff spring applied to the de-
viation of a constraint associated with displacements.
Therefore, the stiffness of the spring becomes the penalty
parameter p. Minimization of deviation of the displace-
ment constraint can be achieved by minimizing the poten-
tial energy associated with the work done by the penalty
spring. The potential energy Πc by the penalty spring to
enforce the constraint can be generally expressed as:

Πc ¼ gc uð Þ ¼ 1

2
pc2 uð Þ ð12Þ

The second constraint, i.e., Coulomb’s law of friction, is
imposed directly by constructing the potential energy:

Πfriction ¼ gc uð Þ ¼ −Fs � us ð13Þ

Note that (1) because Eq. (13) includes a dot product, it
requires calculation of projecting shearing force on the sliding
face, and (2) on the two sides of the sliding face, the absolute
shear displacements are different due to sliding (as a relative
displacement).

With the above formulae, we are able to consider separated,
bonded, and frictional sliding states of contacting material
bodies. Dynamic transformation of contact states can be com-
puted by adjusting contact constraints between time steps, or
within a single time step before convergence of the iterations
is achieved. In some cases, we also need to use criteria de-
scribed by Eqs. (9)–(10) to judge whether such changes from
one contact state to another would happen before switching to
the other contact state.

3.2.3 Iteration for contact state convergence

Within each time step, iterations may be carried out several
times and pre-estimated contact states may be adjusted until
the enforced contacts reach convergence. In a dynamic pro-
cess, contact pairs may change continuously. For the same
contact pair, the three possible states may change dynamical-
ly. Thus, for every iteration within a time step, the global
equilibrium equations are solved with enforcement of contact
constraints from the pre-estimated contact states. At this point,
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the contact states are re-evaluated to check for consistency
with the pre-estimated contact states as shown in Fig. 5. If
they are consistent for each contact pair, the calculation pro-
ceeds to the next time step. If they are not consistent, the
contact states will be adjusted according to the criteria in
Eqs. (9)–(10) and the calculation is looped back to re-solve
the equilibrium equations until such consistency (i.e., conver-
gence) is achieved.

4 Examples

The above formulation based on NMM for contact calculation
considering large displacements, deformation, and different con-
tact states in dynamic situations was implemented into a new
numerical simulator. Here we show a number of examples to
demonstrate the capability of the simulator. We first show an
example involving rough fractures with explicit geometric rep-
resentation of their surfaces and asperities with different bound-
ary conditions. Then, we show relocation, compaction, and frac-
turing of granular systems including clay, loosely packed sand,
and cemented marble.

4.1 Calculation of rough fractures with explicit
geometric representation

In this example, we calculate mechanical compression of
rough fractures with explicit representation of their asperities
for different degrees of lateral confinement. We first consider
a rough fracture with no lateral confinement and then three
cases with differing roughness characteristics: (1) The fracture
is relatively smooth with small asperities (Fig. 6a); (2) the
fracture is relatively rough with larger asperities (Fig. 6b);
(3) the fracture has two dominant asperities and a few smaller

asperities, leading to an uneven distribution with dominant
outliers (Fig. 6c). The sizes of the domains are the same:
10 mm× 5 mm. The meshes that are used for the calculation
are shown in Fig. 6a–c.

In the first scenario, we apply a vertical loading of
0.42 MPa on the top of the domain. In this scenario, the lower
portion of each fracture is fixed, while the upper portion can
move freely. We assume a Young’s modulus of 400 MPa and
a Poisson ratio of 0.3. Figure 6d–f show calculated results of
vertical stress. For the first case when the loading is applied,
the upper portion of the fracture moves toward and makes
contacts with the lower segment on the asperities. As the as-
perities are relatively small and evenly distributed across the
sample, there is not much shearing or sliding on individual
asperities. When static equilibrium has been reached, the frac-
ture has closed evenly without much displacement laterally.
We can see that high compressive stress concentration occurs
at the three contacting areas (Fig. 6d). For the second case in
which the fracture has larger asperities, the contact occurs first
on the left, leaving an open space on the right side. Then, the
entire upper portion slides toward the left as a response to the
stress on the right until the entire upper portion contacts with
the lower portion and reaches stability, leading to uneven clo-
sure and a large offset. Stress concentration is observed at the
three contacting areas (Fig. 6e). For the last case, we see that
the upper portion first contacts with the lower portion at the
dominant asperity on the right, and then the right portion
bends as a response to the stress. When the shear stress ex-
ceeds the threshold at this dominant asperity, the entire upper
part starts to slide along this asperity to the right until it finds
the next contacting point as a supporting point to be stabilized.
Such a contact point is the top point of the asperity on the right
of the lower point (Fig. 6f). As we can see, the concentration
of stress is mostly at the dominant asperities.

Fig. 6 a–c Fractures with
different types of asperities. d–f
Calculation results of vertical
stress for the three types of rough
fractures with red color being the
highest compressive
vertical stress
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This example involved a very soft system without lateral
confinement in order to demonstrate the capability of the sim-
ulator to deal with complex micromechanical fracture closure
involving large displacement, deformation, and multiple
evolving contacts. From this example, we conclude that (1)
when single fractures do not have confinement, they tend to
move and deform before developing high contacting stress in
responding to loading; (2) large asperities dominate contacts
and can lead to highly heterogeneous closure of fractures and
stress distribution.

In the second scenario, we apply loading on the top of the
domain and laterally confine the fracture with stiff columns on
each side of a fracture. In this case, we assume a Young’s
modulus of 4 GPa and a Poisson ratio of 0.3. We assume a
Young’s modulus for the columns of 40 GPa. Figure 7 shows
the vertical and shear stress for each case. We do not observe
large displacements in this case because of the confinement,
while rather high shear stress is observed at the contacting
surface between the fracture and the columns. The average
values of closure for these three cases are 0.8 mm, 0.5 mm,
and 0.5 mm, respectively. Figures 7 shows that both the
vertical stress and the shear stress concentrate at the
contacting areas evenly through the fracture for case
(1), whereas for cases (2) and (3), the dominant
contacting asperities govern the closure as well as stress
concentrations. Such a high stress for cases (2) and (3)
could lead to a number of responses such as fracture initiation,
plastic deformation, or pressure solution if the chemical-
mechanical conditions are satisfied.

With this example, we have shown the capability of the
NMM code to model the mechanical behavior of fractures
with realistic surface geometry at the microscale. Our model-
ing illustrates that on the local scale, the dominant

asperities, which may not be uniformly distributed, gov-
ern the closure and stress of a rough fracture. Such
asperities may be outliers not captured by the statistical
distribution or average roughness.

4.2 Settling of aggregates due to a body force

In this example, we calculate settling of suspended clay ag-
gregates induced by a body force. The simulation might be
viewed as analogous to dehydration-driven clay shrinkage
[29] or to gravitational settling. Considering a hydrostatic sit-
uation in which water is drained from the bottom, the clay
particles gradually settle due to loss of water. We set up such
a problem with the initial structure and geometry shown in
Fig. 8a. The domain is 10 μm× 5 μm. The Young’s modulus
of the clayminerals (suggested by [30]) is 20 GPa and Poisson
ratio is 0.3. The mesh that is used for the calculation is shown
in Fig. 8a.

Because the particles are not subjected to loading and
are loosely packed, we do not see a significant stress
developed on the contacts. Such a system forms an un-
confined, large-displacement, multi-body system. From
Fig. 8 b–c, we see that the system reaches static equilib-
rium when all the particles settle and the maximum verti-
cal displacement reaches 2.5 μm. We estimate the loss of
porosity in this simple case is 60%. In a realistic situation
in which the clay is completely dehydrated, depletion of
water would cause more complex mechanical-chemical
processes (e.g., pressure solution) to occur, rather than
resulting in the relatively simple process of mechanical
settling. But this example demonstrates the capability for
such an application with the key component of modeling
multi-body reorganization.

Fig. 7 Calculated vertical and shear stress for three different types of rough fractures (Pa) in the case of lateral confinement
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4.3 Compaction of a loosely packed sand

In this example, we extract an image of an assembly of grains
from a high-porosity sandstone reservoir image [33]. A natu-
ral sandstone is cemented along the grain boundaries.
However, in order to demonstrate the capability to model
grain reorganization, we neglect cementation between grains
apparent in the image and calculate compaction of a loosely
packed system with drained conditions during the compac-
tion. Our computational domain is 1 mm× 1 mm with left,
right, and bottom boundaries fixed and a 1.0 MPa loading on
the top. The image and approximated geometric representa-
tion of the sand aggregates in NMMwith the mesh are shown

in Fig. 9. As we can see, such a system consists of grains that
have various types of realistic shapes. In our NMM simula-
tion, we consider that all the minerals are 100% quartz with a
Young’s modulus 50 GPa and a Poisson ratio of 0.3. The
friction angle between grains is 30°.

As the system here is rather loosely packed, the particles
first move from top to the bottom as a response to loading. The
particles on the top contact with neighboring particles stabilize
and then the contact force drives the lower particles to move
downward until the entire system reaches static equilibrium.
Figure 10 shows the horizontal and vertical displacements.
Because the loading is vertical, horizontal displacements oc-
cur mostly due to rotation of particles induced by contact

Fig. 9 a Image of high-porosity
sandstone [33]. b Approximated
representation of the image in the
numerical modeling with the
NMM mesh

Fig. 8 a Initial condition, geometry, and calculation mesh for the clay aggregates. b–c Calculated horizontal and vertical displacements (unit: micron)
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forces. The largest vertical compaction occurs on the right side
of the domain because the system is looser on the right and
there is more space to accommodate particle movements.

We also show the calculated vertical and shear stresses in
Fig. 11. As is apparent, both vertical and shear stresses are the
highest at grain contact areas, especially those with sharp cor-
ners. Because we use a relatively coarse mesh, we see discon-
tinuity of stress (as a result of linear displacement interpola-
tion) at individual elements, especially when the size of a grain
is small relative to its boundary area that is contacting with
other grains. This example demonstrates the capability of the
model for analyzing a granular system in a dynamic
contacting process, and where the shapes of the grains are
realistic and can be arbitrary and may contain a number of
sharp corners. In this dynamic process, the grains first move

with possible large displacement, and then gradually form a
tightly packed systemwhile high stress is developed along the
contacting boundaries.

4.4 Failure of cohesive geomaterial at grain scale

In this example, we extract a picture of an intact marble sam-
ple [20] with its pattern of grains (Fig. 12) and simulate the
failure of this sample. The simulated domain is 1 mm× 1 mm.
We approximate the geometry of all the grain boundaries and
generate the NMM mesh shown in Fig. 12, right. In our sim-
ulation, we consider that the sample contains 100% calcite
with a Young’s modulus of 85 GPa, a Poisson ratio of 0.3,
and a friction angle of 40°. As marble typically has relatively
strong bonds between grains, we set the cohesion as 18 MPa

Fig. 11 Calculated vertical (left)
and shear (right) stress (unit: Pa)

Fig. 10 Calculated displacements
in horizontal (left) and vertical
(right) directions (unit: mm)

Fig. 12 Left: images of intact
marble [20]; right: approximated
representation of the image in the
numerical modeling with the
NMM mesh
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and tensile strength of grain boundaries as 28 MPa. We sim-
ulated vertical loading from the top while the left and right
boundaries are free to move and the bottom boundary is fixed.
We carried out a number of simulations with two different
magnitudes of loading, 11 MPa and 110 MPa, with different
scenarios to investigate impacts of cohesion and tensile
strength of grain boundaries.

Figure 13 shows the simulation results of vertical and shear
stress when the loading is 11 MPa without considering cohe-
sion or tensile strength of grain boundaries (Fig. 13a) and
considering both effects (Fig. 13b). For the case of no cohe-
sion or tensile strength of grain boundaries, the fractures open
easily and slide when contacting forces in the direction of the
sliding faces reach the threshold of the Coulomb’s law of
friction represented by Eq. (8). We can see that a fracture is
developed on the left of the sample from the top to the bottom
along the grain boundaries (Fig. 13a). On the right of the
sample, because of a lack of confinement, the calcite grains
break into individual grains along their boundaries, forming a
granular system that is free to move. For the case when cohe-
sion and adhesion are applied, we see that the sample remains
intact with unbroken grain boundaries (Fig. 13b). Comparing
stress for two cases, we find that in the case with no bond
strength, a higher vertical stress occurs at the left boundary
as a result of the nearby vertical fracture.

Figure 14 shows the results of stress when the loading is
110 MPa. As is apparent, the fracture openings for the case
with no strength for grain boundaries are larger when the

loading is increased (Fig. 14a). For the case with high cohe-
sion and tensile strength of grain boundaries, the sample still
breaks as the stress exceeds the cohesive and tensile strengths
on the right side, but remains intact on the left side. Except for
these two effects, we do not see significant difference in terms
of patterns of initiated fracture or stress distribution for this
higher loading case.

Using this example, we have demonstrated the capability
of the model for handling compressive failure of rocks
consisting of strongly cemented grains, from intact to post-
failure fragmentation at the microscale. As expected, the intact
rock breaks after the stress reaches strengths at the grain
boundaries, forming fractures and possibly becoming a gran-
ular system when no confinement is present.

4.5 Computational efficiency

The simulation time of the code varies depending on the com-
plexity of problems (e.g., the number of contact pairs, the
number of contact iterations that is required to reach conver-
gence, and dynamic changes of these factors). For example,
for loosely packed granular systems, dynamic changes of con-
tact pairs and contact states may be significant. This requires
more loops in the code to detect contact pairs among a number
of blocks, and more iterations to reach convergence of contact
states within each time step. The simulation time for the ex-
amples provided in this paper ranges fromminutes to hours on
a standard laptop computer.

Fig. 13 Calculated results of
vertical (left) and shear (right)
stresses when loading is 11 MPa.
a Without considering cohesion
or tensile strength of grain
boundaries. b Considering both
strengths (unit: Pa)
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5 Conclusions and perspectives

Micromechanical modeling of geomaterials is challenging
because of the complex geometry of discontinuities and
multiple deformable bodies that contact each other dynam-
ically. In this study, we developed a numerical approach
based on the NMM to tackle these challenges. The NMM
approach enables us to simulate continuous and discontin-
uous problems with flexible choices of physical cover
functions. In order to calculate dynamic contacts, we con-
sider contacts in separated, bonded, and sliding states that
may dynamically change during multi-body movement
and deformation. With a multi-step contact calculation in-
volving detection of contacts among multiple blocks with
arbitrary shapes, enforcement of different contact con-
straints for three different contact states, and iteration for
contact state convergence, we are able to implicitly calcu-
late dynamic contact behavior rigorously. With these fea-
tures, our model is capable of simulating geomaterials
with arbitrary shapes of grains and interfaces with dynam-
ic contacts at the microscale. We demonstrate the capabil-
ity with several examples, including a rough fracture with
different geometric surface asperity characteristics, settling
of clay aggregates, compaction of a loosely packed sand,
and failure of an intact marble sample. With our model, we
are able to accurately analyze (1) large displacements at a
single fracture which is not confined, at loosely packaged
granular systems (such as settling of the clay aggregates,
the early stage of sand compaction), and at the post-failure
stage of geomaterials without confinement (such as the

failure of the marble); (2) processes of accumulating high
stress at the geomaterial contacting areas, such as at major
asperities of a single fracture, and in a confined and tightly
packed granular system (the later stages of sand compac-
tion), at grain boundaries of an intact marble before fail-
ure; (3) failure of an intact sample due to high stress such
as in a mineral cemented marble sample; and (4) post-
failure fragmentation such as in the marble sample.

With our simulations, we found the following common
features in these different types of mechanical processes of
geomaterials:

& When geomaterials are not confined, they tend to move
and deform before developing high contacting stress in
responding to loading. Because of this feature, we can
use different types of numerical interpolation for different
stages of calculation. For example, when the system is
undergoing large displacements of individual grains with
dynamic contact alteration, we can use coarser meshes
with fewer degrees of freedom to enable efficient calcula-
tion of contacts without sacrificing the accuracy, as the
stress is relatively small in this case. Once the system
reaches a stable contact state and develops high stress,
we can use denser meshes to compute the stress
accurately.

& Large geometric deviations from norms (such as large
asperities of a rough fracture and sharp corners in a gran-
ular system) dominate contacts and can lead to rather sig-
nificant heterogeneity of displacement, deformation, and
stress distributions in the systems.

Fig. 14 Calculated results of
vertical (left) and shear (right)
stresses when loading is
110 MPa. a Without considering
cohesion or tensile strength of
grain boundaries. b Considering
both strengths (unit: Pa)
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& For loosely packed granular systems, large displacements
may be the dominant response to stress. After large dis-
placements and deformation, such loosely packed systems
become tightly packed and high stress can develop at con-
tact areas.

Future work will involve combination of the NMM ap-
proach with laboratory experiments for analyzing deformation
and contacts of geomaterials with realistic geometric represen-
tation, possibly with extension of being coupled with fluid
flow, heat transfer, and chemical reaction for multiphysics
analysis in complex geosystems at the microscale.
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