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Abstract

Cognitive impairments are a common consequence of traumatic brain injury (TBI). The hippo-

campus is a subcortical structure that plays a key role in the formation of declarative memories

and is highly vulnerable to TBI. The α7 nicotinic acetylcholine receptor (nAChR) is highly

expressed in the hippocampus and reduced expression and function of this receptor are

linked with cognitive impairments in Alzheimer’s disease and schizophrenia. Positive allosteric

modulation of α7 nAChRs with AVL-3288 enhances receptor currents and improves cognitive

functioning in naïve animals and healthy human subjects. Therefore, we hypothesized that

targeting the α7 nAChR with the positive allosteric modulator AVL-3288 would enhance cogni-

tive functioning in the chronic recovery period of TBI. To test this hypothesis, adult male Spra-

gue Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery.

At 3 months after recovery, animals were treated with vehicle or AVL-3288 at 30 min prior to

cue and contextual fear conditioning and the water maze task. Treatment of TBI animals with

AVL-3288 rescued learning and memory deficits in water maze retention and working mem-

ory. AVL-3288 treatment also improved cue and contextual fear memory when tested at 24 hr

and 1 month after training, when TBI animals were treated acutely just during fear conditioning

at 3 months post-TBI. Hippocampal atrophy but not cortical atrophy was reduced with AVL-

3288 treatment in the chronic recovery phase of TBI. AVL-3288 application to acute hippo-

campal slices from animals at 3 months after TBI rescued basal synaptic transmission deficits

and long-term potentiation (LTP) in area CA1. Our results demonstrate that AVL-3288

improves hippocampal synaptic plasticity, and learning and memory performance after TBI in

the chronic recovery period. Enhancing cholinergic transmission through positive allosteric

modulation of the α7 nAChR may be a novel therapeutic to improve cognition after TBI.

Introduction

There are an estimated 3.17 million people in the US coping with long-term disabilities due to

TBI, resulting in an economic burden exceeding $56 billion annually [1, 2]. Nearly 80% of
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people who have sustained a TBI report learning and memory impairments in the months to

years after the initial brain trauma [3]. The hippocampus, an area of the brain important for

declarative memory formation, is highly vulnerable and exhibits a significant degree of pathol-

ogy after TBI [4, 5]. Although there is some understanding of the changes within the hippo-

campus as a consequence of TBI, no FDA-approved pharmacological therapies are available to

ameliorate cognitive deficits in the chronic recovery phase of TBI [6]. The development of a

robust, efficacious therapeutic to target these alterations in the hippocampus and improve

learning and memory is an area that needs investigation.

Neuronal circuits involved in cognition, attention and concentration contain nicotinic cho-

linergic synapses [7, 8]. These circuits are altered with age and are associated with cognitive

decline and Alzheimer’s disease [9, 10]. The most abundant nAChRs in the brain are the α7 and

α4β2 subunit-containing receptors [11, 12]. In particular, the α7 nAChR is found both pre- and

post-synaptically on excitatory neurons in the hippocampus as well as on interneurons [13, 14].

The α7 nAChR modulates fast synaptic transmission, neurotransmitter release and synaptic

plasticity due to its ability to gate calcium flux [15–17]. Activation of α7 nAChRs converts

short-term potentiation into LTP, which is particularly relevant for experimental TBI, where

short-term potentiation typically remains intact, but maintenance of LTP is impaired [18–21].

Numerous preclinical studies have established that in the days to weeks after TBI, there is a

decrease in cholinergic signaling [22–24]. There is reduced high-affinity choline uptake [25],

decreased choline acetyltransferase activity [26], acute reductions in vesicular acetylcholine

transporter [27] and transient depression of cholinesterase activity in the hippocampus [28].

At the receptor level, there is a loss of up to 50% of α7 nAChRs after controlled cortical impact

[29, 30]. This decrease is accompanied by a bilateral loss of cholinergic neurons and their axo-

nal projections [31]. Decreased cholinergic signaling has been reported in human TBI studies

as well, lasting for at least one year after trauma [32, 33]. Although cholinergic signaling is

decreased chronically after TBI, it is not completely absent. This suggests that therapeutics that

enhance the remaining endogenous cholinergic activity may be efficacious.

It is well established that agonists of cholinergic receptors rescue memory impairments in pre-

clinical models of TBI [34–36]; however, results with cholinesterase inhibitors have had mixed suc-

cess [37–46]. Cholinesterase inhibitors act by blocking the hydrolysis of acetylcholine which in

turn increases acetylcholine levels. Chronic administration of either full or partial agonists, or cho-

linesterase inhibitors may be limited by the natural adaptation (e.g., receptor desensitization) of the

brain to increased levels of agonist. A method to preserve spatial and temporal integrity of cholin-

ergic signaling is to utilize allosteric modulators. Positive allosteric modulators of the α7 nAChR

bind the receptor, but only enhance receptor current when the receptor is bound to its agonist.

Positive allosteric modulators for α7 nAChRs are divided into two types, depending on whether

they have no effect on receptor desensitization kinetics (type I) or slow desensitization (type II).

This differentiation of mechanism is important since the α7 nAChR gates calcium flux and natu-

rally desensitizes rapidly. In this study, we investigated the actions of a type I positive allosteric

modulator of the α7 nAChR, AVL-3288, on outcome in the chronic recovery phase of TBI [47].

Materials and methods

Animals

All animal procedures were in compliance with the NIH Guide for the Care and Use of Labora-

tory Animals and approved by the University of Miami Animal Care and Use Committee. Adult

male Sprague-Dawley rats (n = 94 total, 2–3 months old, Charles Rivers Laboratories) were

maintained on a 12/12 hr light/dark cycle and had free access to food and water. To determine

the minimum number of animals needed for these studies, a power analysis was prospectively
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performed to detect a 20% difference in water maze probe trial performance between groups at

80% power with a significance level of 0.05 [19]. A sample size of 11 animals/group was obtained.

The effect size for our observed differences in the water maze probe trial was 1.28, recent recall

of contextual fear conditioning was 1.39, remote recall of contextual fear conditioning was 0.92

and LTP expression at 30–60 post-tetanization was 1.27. These large effect sizes indicate that our

sample size was adequate for the main objective of this study, to determine if AVL-3288

improved hippocampal learning and memory and LTP in TBI animals.

Fluid-percussion injury surgery

Animals were randomly assigned prior to the experiment to receive either moderate parasagit-

tal fluid-percussion injury (FPI) or sham surgery, and either treatment with vehicle or AVL-

3288. Under deep anesthesia (3% isoflurane, 70% N2O, and 30% O2, maintained at 1–2% iso-

flurane, 70% N2O, and 30% O2), a 4.8 mm craniotomy was made at 3.8 mm posterior to

bregma, 2.5 mm right from midline and a beveled 18 gauge syringe hub was secured to the cra-

niotomy site. At 12–16 hr after the craniotomy, animals were re-anesthetized, intubated and

mechanically ventilated (Stoelting) with 1–2% isoflurane, 70% N2O, and 30% O2. All animals

received a catheter in the tail artery for physiological monitoring. Rocuronium (10 mg/kg) was

administered through the tail artery to facilitate ventilation, and penicillin G potassium

(20,000 IU/kg, intramuscular) was given during the surgery. A moderate (1.9±0.1 atm) fluid-

percussion pulse (14–16 msec duration) was delivered to the right parietal cortex. Sham-oper-

ated rats received all surgical manipulations except for the fluid pulse. Anesthesia duration

during the surgeries was monitored to ensure that the cumulative duration of anesthetic was

consistent across treatment groups. Each animal received two anesthesia rounds. The anes-

thetic duration for each surgery was less than 1 hr, and animals were not behaviorally tested

until 3 months after the final surgery. Rectal and temporalis muscle thermistors were used to

maintain body and head temperatures between 36.6–37.2˚C. Mean arterial blood pressure

(MAPB) was monitored continuously during the surgery with a transducer connected to the

tail artery catheter and LabChart 7 software (ADInstruments). Blood gases and blood pH were

measured from blood harvested from the tail artery with a blood gas analyzer (ABL800 Flex,

Radiometer America). Atmospheres of pressure were measured using a transducer connected

to the fluid percussion injury shaft and LabChart 7 software. Blood gases (pO2 and pCO2),

blood pH and MABP were maintained within normal physiological ranges (Table 1). No sig-

nificant differences were observed in these physiological measures (body weight, MABP, blood

pO2, blood pCO2, blood pH, body temperature, head temperature) between Sham+Vehicle,

Sham+AVL-3288, TBI+Vehicle or TBI+AVL-3288 treated animals. Buprenorphine (0.01 mg/

kg, subcutaneously) was administered at the completion of the surgery. Exclusion criteria

were: mortality, >15% loss of body weight, non-resolving infection at a surgical site, inability

to feed or drink, motor paralysis, listlessness, self-mutilation, excessive grooming leading to

loss of dermal layers, excessive spontaneous vocalization when touched, or poor grooming

habits. Animals were monitored daily after surgery for the first 2 days, then evaluated and

weighed every 2 weeks until perfusion or decapitation. Attrition for sham surgery was 0% and

for TBI surgery was 1% (1 animal, which died at the time of surgery due to lung edema). Inves-

tigators were blind to the animal surgery allocation and drug treatment for all behavior,

electrophysiology and histology analyses.

Drug administration

AVL-3288 was synthesized as described [48]. AVL-3288 (0.3 mg/kg) or vehicle (2% DMSO,

8% Solutol and 90% saline, 1 ml/kg) were administered intraperitoneally at 30 min prior to:
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training on cue and contextual fear conditioning, water maze training days 1–4, both testing

days for working memory, and shock threshold testing. Each animal received a total of 8 vehi-

cle or AVL-3288 treatments. Retention at 24 hr after cue and contextual fear conditioning and

the probe trial of the water maze were assessed without drug treatment to evaluate whether

AVL-3288 had effects on memory retention beyond the acute treatment period. Hippocampal

slices were treated with AVL-3288 (1 μM) or vehicle (0.01% DMSO) for 10 min prior to high-

frequency tetanization and for 30 min after LTP induction.

Pharmacokinetic analysis

Naïve, non-injured animals received AVL-3288 (in 2% DMSO, 8% Solutol, 90% saline, 0.3

mg/kg, intraperitoneally) and then were deeply anesthetized (3% isoflurane, 70% N2O, and

30% O2) from 15 min to 24 hr after treatment. Whole brain tissue and trunk blood were col-

lected. Plasma was prepared with 0.5M K+-EDTA, and centrifuged at 3000 x g for 10 min at

4˚C. The brains were extracted with ethyl acetate. AVL-3288 levels were measured by LC-MS/

MS. The chromatographic separation was performed using a Luna, C8, 2.0 x 150 mm 5 μm col-

umn (Phenomenex) with 75:25 acetonitrile:0.1% formic acid in water mobile phase with a flow

rate of 0.3 ml/min at 40˚C with an Agilent 1100/1200 HPLC and an Agilent 6410B QQQ Mass

Spectrometer (Agilent Technologies). The mass spectrometer parameters were: FV 100, CE 8,

with positive ion monitoring. The pharmacokinetic data were analyzed by standard methods

using Agilent Mass Hunter Software Version 4.0, SAS JMP Version 7 and Microsoft Excel.

Table 1. Physiological data.

Parameter Treatment At surgery At perfusion Parameter Treatment 15 min

prior to FPI

15 min

post-FPI

Weight

(gm)

Sham+Vehicle 359.3±10.8 666.0±22.6 ��� MABP

(mmHg)

Sham+Vehicle 121.3±3.6 121.6±2.2

Sham+AVL-3288 363.4±16.5 643.5±19.0 ��� Sham+AVL-3288 122.8±4.1 111.2±4.2

TBI+Vehicle 349.5±10.8 623.5±20.9 ��� TBI+Vehicle 115.7±3.5 113.0±2.2

TBI+AVL-3288 360.3±13.0 614.8±22.0 ��� TBI+AVL-3288 116.8±4.5 110.8±3.8

ATM Sham+Vehicle N/A Blood pO2

(mmHg)

Sham+Vehicle 153.4±6.6 150.7±5.0

Sham+AVL-3288 N/A Sham+AVL-3288 158.0±9.9 147.8±6.9

TBI+Vehicle 1.9±0.0 TBI+Vehicle 153.9±6.8 136.3±5.0 �

TBI+AVL-3288 1.9±0.0 TBI+AVL-3288 149.8±6.5 134.5±5.6 ��

Parameter Treatment 15 min

prior to FPI

15 min

post-FPI

Parameter Treatment 15 min

prior to FPI

15 min

post-FPI

Blood pCO2

(mmHg)

Sham+Vehicle 41.9±1.1 40.2±0.9 � Head

temperature

(ºC)

Sham+Vehicle 36.6±0.0 36.8±0.0��

Sham+AVL-3288 39.8±0.9 38.1±0.7 � Sham+AVL-3288 36.7±0.0 36.8±0.0 ��

TBI+Vehicle 38.5±0.8 36.8±0.5 � TBI+Vehicle 36.7±0.0 36.8±0.0

TBI+AVL-3288 39.0±0.7 37.2±0.5 � TBI+AVL-3288 36.6±0.1 36.7±0.0

Blood pH Sham+Vehicle 7.4±0.0 7.5±0.0 �� Body

temperature

(ºC)

Sham+Vehicle 36.8±0.0 36.7±0.0

Sham+AVL-3288 7.5±0.0 7.5±0.0 Sham+AVL-3288 36.7±0.0 36.8±0.0

TBI+Vehicle 7.4±0.0 7.5±0.0 TBI+Vehicle 36.8±0.1 36.8±0.0

TBI+AVL-3288 7.5±0.0 7.5±0.0 TBI+AVL-3288 36.8±0.1 36.8±0.0

ATM: atmospheres of pressure, MABP: mean arterial blood pressure, N/A: not applicable, pO2: partial arterial oxygen pressure, pCO2: partial arterial carbon dioxide

pressure.

�p<0.05

��p<0.01

���p<0.001 vs. at surgery or 15 min prior to FPI, repeated measures two-way ANOVA with Tukey’s HSD post-hoc test. Mean±SEM, n = 10 Sham+Vehicle, n = 8 Sham

+AVL-3288, n = 11 TBI+Vehicle, n = 11 TBI+AVL-3288.

https://doi.org/10.1371/journal.pone.0223180.t001

α7 nAChR modulation for treating TBI

PLOS ONE | https://doi.org/10.1371/journal.pone.0223180 October 3, 2019 4 / 20

https://doi.org/10.1371/journal.pone.0223180.t001
https://doi.org/10.1371/journal.pone.0223180


Fear conditioning

At 3 months post-surgery, animals were trained and tested for cue and contextual fear condi-

tioning [19]. Animals were first habituated for 10 min to a cage equipped with a shock grid

floor (Coulbourn Instruments). At 24 hr after habituation, animals were trained by being

placed in the apparatus for 120 s, and then a 30 s tone (75 dB, 2.8 kHz) was delivered that co-

terminated with a 1 mA, 1 s foot shock. Animals remained in the apparatus for 60 s after the

foot shock. At 24 hr and 1 month after training, animals were placed in the apparatus and

freezing was measured for 5 min to assess contextual fear conditioning. Cue fear conditioning

was evaluated 1 hr after assessment of contextual fear by placing the animals in an altered

chamber. The tone (75 DB, 2.8 kHz) was played for 60 s and freezing was measured. Freezing

behavior was quantified by video analysis (FreezeFrame 3.32, Coulbourn Instruments). Shock

threshold was assessed 1 day after final cue and contextual fear conditioning testing (4 months

post-surgery). Animals received a 1 s foot shock every 30 s in increments of 0.02 mA beginning

at 0.1 mA. Minimum shock intensity to elicit a flinch, jump, or vocalization was measured.

Water maze

At 1 week after cue and contextual fear conditioning (13 weeks post-surgery), animals were

next trained in the water maze for 4 trials/day (60 s maximum trial duration) over 4 days with

an inter-trial interval of 4–6 min [19]. Path length to reach the platform was measured by

video analysis (EthoVision XT 10, Noldus Information Technology). At 24 hr after the final

acquisition day, a probe trial (60 s duration) was given with the platform removed. The

amount of time spent in each quadrant of the pool was measured.

At 1 week after water maze training and testing (14 weeks post-surgery), working memory

was assessed in the water maze [19]. Animals received 2 days of testing with the platform

remaining invariant between each pair of trials (5 s delay between trials, 60 s maximum trial

duration). Each day consisted of 4 paired trials (4–6 min between each trial pair). Path length

to reach the platform was measured. Data from day 2 were analyzed.

Histology

At the completion of behavioral testing (4–5 months post-surgery), animals were deeply anesthe-

tized (3% isoflurane, 70% N2O, 30% O2) and transcardially perfused with saline and 4% parafor-

maldehyde in 0.1M phosphate buffer, pH 7.4. Brains were paraffin-embedded and sectioned

(10 μm thick, 150 μm apart) and stained with hematoxylin and eosin (H&E) plus Luxol fast blue

as previously described [19]. Sections were imaged at 7200 dpi (3.5 μm/pixel) with a Quick Scan

PathScan Enabler IV 3.60.0.12 (Meyer Instruments). The cortex and hippocampus were con-

toured between bregma levels -3.3 to -6.8 mm using Neurolucida 11.11.2 (MicroBrightField).

Atrophy was quantified by subtracting the contralateral volume from the ipsilateral volume and

normalizing to the contralateral volume. Images were obtained on an Olympus BX51TRF micro-

scope (Olympus America) with a 20× objective and stitched with StereoInvestigator 5.65 software

(MicroBrightField). Three-dimensional projections were rendered in NeuroLucida 11.11.2. To

construct the 3-dimensional projections, the outer shells of the brain contours were aligned using

the rhinal fissures and the midline. Cortical contours were aligned using the retrosplenial granu-

lar area and hippocampal contours were aligned using the habenular nuclei and dentate gyrus.

Electrophysiology

At 3 months post-surgery, animals were deeply anesthetized (3% isoflurane, 70% N2O, and

30% O2), decapitated and the hippocampus was quickly isolated from the brain. Transverse

α7 nAChR modulation for treating TBI
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slices (400 μm thick) were prepared as previously described [19]. Recordings were made in

aCSF: 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 10 mM D-glucose, 2

mM CaCl2, 1 mM MgCl2, saturated with 95% O2/5% CO2 at room temperature. The Schaffer

collateral pathway was stimulated with a platinum-iridium cluster stimulating electrode (tip

diameter 25 μm, FHC). Field excitatory postsynaptic potentials (fEPSPs) and fiber volleys were

recorded from CA1 stratum radiatum with glass micropipettes filled with 2 M NaCl (1–3 MO)

using a Multiclamp 700B amplifier (Axon Instruments). Signals were low pass filtered at 2 kHz

and digitized at 20 kHz with a Digidata 1440A interface and analyzed with pClamp 11 (Axon

Instruments). Input-output (I-O) curves were generated by stimulating from 20–240 μA.

Paired-pulse facilitation (PPF) was measured with stimulus intervals from 12.5–250 msec,

with stimulation intensity set at 40–50% of the maximum fEPSP. Prior to LTP induction, base-

line responses were recorded at 40–50% of the maximum fEPSP at 0.033 Hz for at least 20

min. LTP was induced by high-frequency stimulation (HFS) using a single train of 100 pulses

delivered at 100 Hz at test stimulation intensity. AVL-3288 (1 μM) or vehicle (0.01% DMSO)

were bath-applied in aCSF beginning 10 min prior to HFS and for 30 min after HFS. The teta-

nization response was analyzed by integrating the entire HFS response and also by integrating

the depolarization during last 50 msec of the HFS to determine steady-state depolarization

[49]. Synaptic fatigue was calculated by measuring each fEPSP during the HFS and normaliz-

ing this to the first fEPSP of the HFS [50].

Statistical analysis

Data presented are mean ± SEM. Significance was designated at p<0.05. Statistical analyses

were performed in GraphPad Prism 7.0 and SigmaPlot 12.0. Two-way ANOVA and repeated

measures two-way ANOVA were used to determine group differences with the factors surgery

x drug treatment or animal group x time/trial/current intensity. Tukey’s HSD post-hoc tests

were used when significant interactions were observed. Simple linear regression fits were used

to evaluate the fiber volley amplitude and fEPSP slope and the slopes were compared with a

two-way ANOVA with the factors surgery x drug treatment.

Results

AVL-3288 levels in brain and plasma

AVL-3288 selectively enhances wildtype, human α7 nAChR currents evoked by nicotine in

Xenopus oocytes at a dose as low as 0.1 μM with an Imax of 3 μM [47]. To determine if AVL-

3288 could be singly administered systemically and reach levels in the brain that are effective

in modulating α7 nAChR currents, levels of AVL-3288 in the brain and plasma were measured

after intraperitoneal administration (Fig 1). Naïve, non-injured rats received AVL-3288 (0.3

mg/kg, intraperitoneally) and then plasma and brain tissue were analyzed using LC-MS/MS as

previously described [51]. AVL-3288 reached 3 μM in total brain tissue within 30 min of

administration and peaked at 4.6 μM by 90 min. Levels returned to baseline by 24 hr after

administration. Based on these results and a previous study demonstrating that the minimum

effective dose to improve radial arm maze memory in rats was 0.3 mg/kg AVL-3288, we chose

to use this dose in our TBI study [47].

Hippocampal-dependent learning and memory ability is improved with

AVL-3228 treatment after TBI

This preclinical model of TBI is characterized by persistent hippocampal-dependent learning

and memory deficits in contextual fear conditioning and the water maze task [19, 52]. To
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determine if AVL-3288 could rescue these cognitive deficits, animals were treated with AVL-

3288 or vehicle at 30 min prior to cue and contextual fear conditioning (Fig 2). Since activation

of α7 nAChRs converts short-term potentiation in hippocampal slices to LTP, we chose to

treat animals during training, but not during testing [18–21]. No significant differences were

observed in cue and contextual fear conditioning between sham animals treated with vehicle

versus AVL-3288. In TBI animals, AVL-3288 significantly improved both cue and contextual

fear conditioning when assessed 24 hr after training for recent recall (surgery x drug treatment

interaction: cue F(1,36) = 4.29, p = 0.045; context F(1,36) = 8.32, p = 0.007). The effects on fear

memory were persistent as shown by a significant improvement in remote recall assessed 1

month after training (surgery x drug treatment interaction: cue F(1,36) = 6.75, p = 0.013; context

F(1,36) = 6.59, p = 0.015).

Next, to determine if AVL-3288 improves other types of hippocampal-dependent learning,

animals were tested in the water maze to find a hidden platform using spatial cues (Fig 3A–

3E). Animals were pretreated with AVL-3288 at 30 min prior to water maze acquisition for 4

days. AVL-3288 treatment did not significantly reduce the path length to find the platform on

the final day of acquisition (day 4) in TBI animals as compared to vehicle-treated TBI animals.

Retention at 24 hr after the last acquisition day was assessed without drug treatment to deter-

mine if AVL-3288 needed to be present for an effect on memory retention. TBI animals treated

with vehicle demonstrated no significant preference for the target quadrant. In contrast, sham

animals treated with either vehicle or AVL-3288, and TBI animals treated with AVL-3288

searched the target quadrant significantly more than the other quadrants, indicating that spa-

tial memory was improved with AVL-3288 treatment (surgery x drug treatment interaction

for time in target quadrant: F(1,36) = 5.00, p = 0.032).

Assessment of spatial working memory revealed similar improvements with AVL-3288

treatment (Fig 3F). Animals were trained on a delay match-to-sample task in the water maze,

with 5 s between a location and match trial and the platform remaining in the same location

only during pairs of trials. Sham+Vehicle, Sham+AVL-3288 and TBI+AVL-3288 treated ani-

mals had significantly shorter path lengths to find the platform on the match trial as compared
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https://doi.org/10.1371/journal.pone.0223180.g001
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to the location trial, indicative of working memory, whereas TBI+Vehicle treated animals had

significantly longer paths to find the platform on the match trial (animal group x trial interac-

tion: F(3,32) = 3.25, p = 0.035).

Effects on hippocampal atrophy with AVL-3288 treatment after TBI

Previous studies have demonstrated that choline, nicotine and donepezil administration not

only improve cognition, but also reduce lesion volume and rescue CA1 neuronal loss after TBI

[34, 36, 53, 54]. At the completion of behavioral testing, we evaluated cortical and hippocampal

atrophy which is characteristic of this preclinical model of TBI at this recovery time point [55]

(Fig 4). Cortical atrophy in the ipsilateral parietal cortex was similar between TBI animals

treated with vehicle and AVL-3288. However, hippocampal atrophy on the ipsilateral side was

modestly reduced in TBI animals treated with AVL-3288 as compared to TBI animals treated

with vehicle (surgery x drug treatment interaction: F(1,36) = 5.81, p = 0.021).

Positive allosteric modulation of α7 nAChR enhances basal synaptic

transmission and LTP after chronic TBI

To assess electrophysiological changes with AVL-3288 treatment, a separate cohort of animals

received sham surgery or moderate FPI and then were allowed to recover without any
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Fig 2. Fear conditioning. Cue and contextual fear conditioning were improved with AVL-3288 treatment in TBI animals. A) Time course

of AVL-3288 treatment (arrows) and behavioral analyses. Animals were serially tested on fear conditioning and then on the water maze

tasks. Animals received AVL-3288 or vehicle treatment 30 min prior to training for fear conditioning (Fear cond), on the 4 training days of

the water maze, on each day of training for working memory (Work mem), and during shock threshold testing (ST) for a total of 8
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of fear conditioning at 24 hr and 1 month post-training (Fear ret) and on the probe trial for the water maze at 24 hr post-training. B)

Recent recall of fear conditioning at 24 hr after training. ��p<0.01, ���p<0.001 vs. Training, ap<0.05, cp<0.001 vs. TBI+Vehicle, repeated

measures two-way ANOVA with Tukey’s HSD post-hoc test. C) Assessment of fear conditioning at one month after training to evaluate

remote recall of fear memory. �p<0.05, ��p<0.01, ���p<0.001 vs. TBI+Vehicle, two-way ANOVA with Tukey’s HSD post-hoc test.

Mean ± SEM, n = 10 Sham+Vehicle, n = 8 Sham+AVL-3288, n = 11 TBI+Vehicle, n = 11 TBI+AVL-3288.

https://doi.org/10.1371/journal.pone.0223180.g002
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treatment. At 3 months post-surgery, the time point corresponding to the beginning of behav-

ioral testing, acute hippocampal slices were generated and recordings were made in stratum

radiatum of area CA1 (Fig 5). Hippocampal slices were treated with vehicle or AVL-3288

(1 μM). Afferent fiber excitability as measured by the fiber volley amplitude was unaltered

after TBI, but synaptic strength as assessed with the fEPSP slope was significantly depressed

(animal group x current intensity interaction: F(30,195) = 2.79, p<0.001). Analysis of the rela-

tionship between the fEPSP slope and fiber volley amplitude indicated a significant decrease of

the fEPSP response in relation to the fiber volley amplitude in TBI+Vehicle slices, and this was

rescued with AVL-3288 treatment (surgery x drug treatment interaction: F(1,20) = 4.45,
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Fig 3. Water maze. AVL-3288 treatment improved spatial memory in TBI animals. A) Representative swim tracks from acquisition day 4. B) Swim path length
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https://doi.org/10.1371/journal.pone.0223180.g003
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p = 0.0478). PPF was not significantly different between slices from sham animals or TBI ani-

mals treated with vehicle or AVL-3288 (S1 Fig). AVL-3288 treatment prior to and during high

frequency stimulation rescued the deficits in LTP maintenance. The initial phase of LTP, 1–5

min after high frequency stimulation (HFS), was similar across treatment groups. The mainte-

nance phase of LTP, 30–60 min after HFS, was significantly reduced in slices from TBI ani-

mals, and this was improved with AVL-3288 treatment (surgery x drug treatment interaction:

F(1,23) = 4.39, p = 0.047). No significant effects were observed with the level of depolarization

during HFS between treatment groups (S1 Fig). Additionally, synaptic fatigue during the HFS

was not significantly different between treatment groups (S1 Fig).

Discussion

In this study, we tested whether a positive allosteric modulator of the α7 nAChR, AVL-3288,

would reduce chronic cognitive deficits in a preclinical model of TBI. Using the moderate FPI

model in rats, we found that AVL-3288 treatment prior to training on several learning tasks

reduced memory deficits in cue and contextual fear conditioning, as well as spatial memory

retention in the water maze and spatial working memory. The effects of AVL-3288 were long-

lasting, with a short treatment of AVL-3288 during training on cue and fear conditioning
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Hippocampal atrophy was modestly reduced in TBI+AVL-3288 animals. Scale bar 1 mm. C) Quantification of atrophy of the ipsilateral parietal
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https://doi.org/10.1371/journal.pone.0223180.g004
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resulting in a long-lasting improvement in retention of fear memory at 1 month post-training.

AVL-3288 treatment of hippocampal slices from TBI animals also improved LTP and synaptic

transmission in area CA1. Hippocampal atrophy, but not cortical atrophy after TBI was

reduced with AVL-3288. These results demonstrate that AVL-3288 is a promising therapeutic

to treat cognitive deficits after TBI.

AVL-3288 is a type 1 positive allosteric modulator that has recently been evaluated in a

phase 1 clinical trial for safety and pharmacokinetics in healthy subjects [51]. AVL-3288 has an

EC50 of 0.7 μM for human α7 nAChR in Xenopus oocytes, a brain plasma ratio of 2-fold and

half-life of 7.5 hr with oral dosing in mice [47]. The cardiovascular and respiratory safety pro-

file in humans has been evaluated and no adverse effects have been observed at doses up to 30

mg which results in plasma levels over 4-fold greater than that observed in the current study

[51]. AVL-3288 is selective for α7 nAChRs, having minimal activity towards other nAChRs, or
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https://doi.org/10.1371/journal.pone.0223180.g005

α7 nAChR modulation for treating TBI

PLOS ONE | https://doi.org/10.1371/journal.pone.0223180 October 3, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0223180.g005
https://doi.org/10.1371/journal.pone.0223180


the homologous GABAA α1β2γ2L receptor and the 5-HT3A receptor [47]. In this study, we

found that single administration of AVL-3288 at 0.3 mg/kg intraperitoneally reached brain lev-

els of 3 μM within 30 min of administration. This dose is 4-fold higher than the EC50 for

enhancing human α7 nAChR currents in Xenopus oocytes [47]. These results suggest that the

drug may have achieved levels high enough to modulate α7 nAChR conductance, although an

important limitation of this study is that we did not directly measure α7 nAChR currents.

Another important limitation of this study is that AVL-3288 levels were measured in naïve,

non-injured animals, but not in TBI animals which may alter the brain distribution and levels

of AVL-3288. Although the elimination rate in plasma in humans is known to be 3 hr, the rate

of clearance within the rat brain has not yet been determined [51]. Future studies using PET

ligands would be highly useful to measure brain distribution, target engagement, and rate of

clearance [51].

Since systemically administered AVL-3288 reached levels in the brain that could potentially

alter α7 nAChR currents by 30 min after treatment, we chose to treat animals 30 min prior to

training on each learning task. Each behavior task took 1–2 hr to complete daily, therefore this

drug administration protocol was chosen to optimize availability of the drug within the brain

at the time of learning. Administering AVL-3288 to be on board at the time of learning, but

not during retention, resulted in a persistent memory enhancing effect, improving both water

maze retention in the probe trial at 24 hr post-training and cue and contextual fear condition-

ing at both 24 hr and 1 month post-training. These results are in accordance with a previous

study demonstrating that AVL-3288 treatment in naïve rats enhanced social preference of a

juvenile, novel rat when assessed 24 hr after drug administration [56]. Further studies are

aimed at determining the duration of the effects of AVL-3288 treatment on memory enhance-

ment after TBI.

However, in contrast to other previous studies, we did not observe any nootropic effects of

AVL-3288 on sham animals during acquisition or retention of either the water maze task or

cue and contextual fear conditioning [47, 57, 58]. In these prior studies, AVL-3288 administra-

tion to naïve rats improved performance in the radial arm maze at a similar dose to what was

used in this study [47]. Repeated dosing with a higher concentration of AVL-3288 in naïve rats

also enhanced novel social preference [56]. Our differing results may be due to the spaced

treatment protocol since the sham and TBI animals only received 8 doses of AVL-3288 distrib-

uted over a 1 month time period. Alternatively, the memory paradigms that we chose may not

have been sensitive enough to detect a memory enhancing effect in sham animals, or acetyl-

choline levels were sufficient for maximal memory encoding in sham animals with these par-

ticular tasks.

Beyond hippocampal effects, we also observed a significant improvement in cue fear condi-

tioning. This result suggested that positive allosteric modulation of α7 nAChRs in TBI animals

may have resulted in a generalized improvement in learning and memory ability. Alternatively,

direct effects within the amygdala may explain this result. Less is known about how α7

nAChRs are affected in the amygdala as compared to the hippocampus. There is evidence in a

mild TBI model that surface expression and currents of α7 nAChRs are actually upregulated in

the amygdala after mild controlled cortical impact injury in rats [59]. These changes were asso-

ciated with a loss of GABAergic interneurons and increased excitability in the basolateral

amygdala. In the FPI model or controlled cortical impact, acetylcholine or α7 nAChR levels

are unaltered in the amygdala, suggesting that changes in acetylcholine or α7 nAChRs after

TBI within the amygdala may be model-dependent [60–62]. Further experiments are needed

to determine if AVL-3288 altered α7 nAChR currents within the amygdala with this TBI

model.
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Consistent with our behavioral results and previous studies evaluating positive allosteric

modulators of α7 nAChRs in naïve rats, AVL-3288 did not significantly alter basal synaptic

transmission in area CA1 in sham, non-injured animals [20, 63]. In TBI animals, we found

that AVL-3288 rescued the depression in synaptic strength as indicated by an improvement in

the fEPSP–fiber volley relationship. In addition, we found that the decaying LTP in slices from

TBI animals was rescued with AVL-3288 treatment. Further studies are needed to determine

the duration of the enhancement in LTP. Positive allosteric modulators and partial agonists of

α7 nAChRs facilitate LTP induction and convert short-term potentiation into non-decaying

LTP [20, 21, 64]. This facilitation of LTP induction is due to both pre- and postsynaptic mech-

anisms, by increasing glutamate release as characterized by an increase in miniature excitatory

postsynaptic current frequency, as well as increased postsynaptic depolarization leading to the

activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-

binding protein (CREB) [64–66]. We observed no differences in PPF or the fiber volley ampli-

tude with TBI or AVL-3288 treatment, suggesting that the effects of AVL-3288 were post-syn-

aptic. These results are in partial accordance with a previous study using the controlled

cortical impact model that reported a recovery of the fiber volley amplitude by 7 days post-

injury [67]. Together, these results suggest that AVL-3288 may have improved learning and

memory ability in TBI animals by facilitating postsynaptic signaling, leading to the activation

of ERK1/2 and CREB, which are well known to be dysregulated and contribute to memory def-

icits after TBI [52, 68, 69].

An intriguing finding of our study is the reduction in hippocampal atrophy with AVL-3288

treatment of TBI animals. There are several potential mechanisms of why AVL-3288 had an

effect on hippocampal atrophy, but did not significantly alter cortical atrophy. There are

regional differences in the distribution of α7 nAChRs in the brain. α7 nAChRs are highly

expressed in the hypothalamus, moderately in hippocampus and striatum, and at low levels in

the midbrain, cortex and cerebellum [70, 71]. In the hippocampus, the α7 nAChR subtype is

the most highly expressed nAChR subtype, and the effects of nicotine are predominantly

through α7 nAChRs in the CA1 region [12, 16, 72, 73]. These studies suggest that AVL-3288

may have had a greater effect in the hippocampus than the cortex due to the distribution of

nAChR subtypes. In accordance with our results, a previous study found that intermittent nic-

otine administration rescued hippocampal-dependent learning impairments after controlled

cortical impact, but had no significant effects on reducing cortical lesion volume [34]. It is well

established that TBI results in chronic inflammation [74]. α7 nAChRs are expressed on micro-

glia and α7 nAChR agonists have known anti-inflammatory effects both within the brain and

the periphery [75–79]. We have observed a persistent upregulation of microglia within the

brain after 3–6 months post-injury and this increase was greater in the hippocampus than the

cortex [68]. Further experiments are needed to address the differential effects of AVL-3288 in

the hippocampus and cortex and determine if AVL-3288 may have reduced inflammation in

the hippocampus after TBI.

Several clinical trials for TBI have been implemented with limited success using the cholin-

esterase inhibitors rivastigmine, donepezil and galantamine [24, 40–42, 44, 80–83]. In Alzhei-

mer’s disease, cholinesterase inhibitors have also been tested in combination with memantine

with a few studies suggesting beneficial effects were greater with galantamine than with done-

pezil [84–87]. Donepezil is a cholinesterase inhibitor whereas galantamine is both a cholines-

terase inhibitor as well as a positive allosteric modulator of α4β2 and α7 nAChRs. These

studies support the possibility that the combinatorial treatment of AVL-3288 with memantine

may be a promising therapeutic approach for TBI [84, 88]. This approach has support at the

circuitry level given the cooperation of cholinergic and glutamatergic signaling to convert

short term plasticity into long-lasting LTP [89, 90]. Another approach that merits
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consideration is the FDA-approved smoking cessation drug varenicline. Varenicline is a high-

affinity partial agonist of the α4β2 nAChR and a full agonist of α7 nAChRs [91]. However, var-

enicline did not improve cognition in either patients with schizophrenia or mild-to-moderate

Alzheimer’s disease [92, 93]. This study and other studies solely targeting the α7 nAChR for

schizophrenia and Alzheimer’s disease further support the importance of considering combi-

natorial treatments [94]. Given the inflammatory processes still evident in the chronic recovery

phase of TBI, the combination of an anti-inflammatory treatment such as minocycline and

AVL-3288 may provide synergistic effects [68, 95, 96]. Minocycline in combination with N-

acetylcysteine (NAC) has shown efficacy in improving cognition in schizophrenia patients

[97].

AVL-3288 as a positive allosteric modulator of the α7 nAChR has a significant advantage

over clinically used cholinesterase inhibitors. Cholinesterase inhibitors result in homeostatic

changes within the brain due to increased levels of agonist by upregulation and/or downregu-

lation of receptor levels [54, 98–103]. An important advantage of AVL-3288 is that repeated

administration did not upregulate α7 nAChR levels, even when given once daily at 10 mg/kg

for 7 days [56]. Additionally, AVL-3288 has no effect on α7 nAChR currents unless an endoge-

nous agonist is present, preserving the endogenous spatial and temporal kinetics of cholinergic

modulation of learning and memory circuits [47]. As a type I positive allosteric modulator,

AVL-3288 does not affect the rapid desensitization kinetics of the α7 nAChR unlike type II

modulators [47]. Type II modulators block or slow desensitization and thus, have the potential

to be cytotoxic and disrupt synaptic/extra-synaptic plasticity mechanisms regulated by use-

dependent receptor desensitization [104, 105]. These advantageous properties of AVL-3288

and our findings indicate that positive allosteric modulation of α7 nAChRs with AVL-3288 is

a promising therapeutic strategy to facilitate cognitive recovery in chronic phase of TBI.

Supporting information

S1 Fig. PPF, depolarization levels during HFS, and synaptic fatigue during HFS were not

altered after TBI or AVL-3288 treatment. A) PPF ratio in response to stimulus intervals

from 12.5–250 msec. B) Total depolarization levels during HFS and steady-state depolarization

levels during the last 50 ms of HFS. C) Synaptic fatigue during HFS. Mean ± SEM, n = 5–6

slices/5-6 Sham+Vehicle animals, n = 5-6/5-6 Sham+AVL-3288 animals, n = 7 slices/6 TBI+-

Vehicle animals, n = 7–8 slices/7 TBI+AVL-3288 animals.
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