
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Quantum Operators in Gravity: from Geometric Entropies to Group-Averaged Observables

Permalink
https://escholarship.org/uc/item/2tk364hj

Author
Kaplan, Molly Elizabeth

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2tk364hj
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Quantum Operators in Gravity: from Geometric

Entropies to Group-Averaged Observables

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Physics

by

Molly Elizabeth Kaplan

Committee in charge:

Professor Donald Marolf, Chair
Professor Xi Dong
Professor Xiao Luo

September 2024



The Dissertation of Molly Elizabeth Kaplan is approved.

Professor Xi Dong

Professor Xiao Luo

Professor Donald Marolf, Committee Chair

August 2024



Quantum Operators in Gravity: from Geometric Entropies to Group-Averaged

Observables

Copyright © 2024

by

Molly Elizabeth Kaplan

iii



Dedicated to Michael, Sammie, Haley, and my parents—for their unconditional love and

support.

iv



Acknowledgements

Firstly, thank you to my advisor, Don Marolf, for his endless guidance. At the

start of graduate school I was new to high energy theory, and I will never forget how

he welcomed me to the field with open arms, always happy to explain even the most

basic concepts. Thank you for sharing your wealth of knowledge with all your PhD

students. I particularly appreciated your enthusiasm and encouragement of my art of

science projects.

Secondly, I would like to thank my collaborators: Jesse Held, Zhencheng Wang, Jie-

qiang Wu, Xuyang Yu, and Ying Zhao. Thanks especially to Jesse for many hours spent

at Old Town Coffee, puzzling through wormhole calculations, and to Ying Zhao for her

mentorship. I would also like to thank my other colleagues from UCSB and beyond: Ben

Concepcion, Elliott Gesteau, David Grabovsky, Brianna Grado-White, Sergio Hernandez

Cuenca, George Hulsey, Maciej Kolanowski, Xiaoyi Liu, Quim Lorens, Alexey Milekhin,

Kyle Ritchie, Jon Sorce, Marija Tomasevic, Diandian Wang, Wayne Weng, etc.

Thirdly, thank you to my support network, without whom I could not have made

it through graduate school. Thank you to the WiSE and WAGMIP communities; the
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Abstract

Quantum Operators in Gravity: from Geometric Entropies to Group-Averaged

Observables

by

Molly Elizabeth Kaplan

In this thesis, we first study the action of Hubeny-Rangamani-Takayanagi (HRT) area

operators on the covariant phase space of classical solutions in Einstein-Hilbert gravity.

We find that this action is a boundary-condition-preserving kink transformation, which

introduces a relative boost between the entanglement wedges on either side of the HRT-

surface but preserves the asymptotically Anti-de Sitter (AdS) boundary conditions. We

then perform a similar analysis for the ”geometric entropy”, i.e. the bulk dual to bound-

ary entanglement entropy, in topologically massive gravity (TMG). Here, the geometric

entropy is given by the HRT-area plus an anomalous contribution. We find that the

action of this geometric entropy on the covariant phase space of classical solutions agrees

precisely with the action of HRT-area operators in Einstein-Hilbert gravity.

In Einstein-Hilbert gravity, we show that HRT-areas do not generally commute. This

poses an obstruction to constructing random tensor networks (RTNs), which are most

analogous to fixed-area states of the bulk quantum gravity theory, with mutually commut-

ing HRT-areas. We probe the severity of such obstructions in pure AdS3 Einstein-Hilbert

gravity by constructing networks whose links are codimension-2 extremal-surfaces and

by explicitly computing semiclassical commutators of the associated link-areas. We find

a simple 4-link network for which all link-areas commute, but the algebra generated by

the link-areas of more general networks tends to be non-Abelian.

In the final chapter, we switch gears and explore perturbative quantum gravity around

viii



de Sitter space, where gauge-invariant observables cannot be localized and, instead, local

physics can arise only through certain relational constructions. In particular, we describe

a class of gauge-invariant observables which, under appropriate conditions, provide good

approximations to certain algebras of local fields. Our results suggest that, near any

minimal Sd in dSd+1, this approximation can be accurate only over regions in which

the corresponding global time coordinate t spans an interval of order ∆t ≲ lnG−1. In

contrast, however, we find that the approximation can be accurate over arbitrarily large

regions of global dSd+1 so long as those regions are located far to the future or past of

such a minimal Sd. This in particular includes arbitrarily large parts of any static patch.
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Chapter 1

Introduction

Physics has born witness to many paradigm shifts throughout history. Just over a hun-

dred years ago the theory of general relativity upended Newtonian gravity, and, over the

past century, quantum mechanics has been reconciled with special relativity, producing

quantum field theory. Still eluding us, however, is a theory of quantum gravity—the

weaving together of general relativity and quantum mechanics—which promises to trans-

form our current understanding of the nature of spacetime.

Despite the great difficulty of formulating a theory of quantum gravity, there has

been much progress made in recent years, even just over the course of my PhD. One

of the most fundamental advances during this time was a potential resolution to the

long-standing black hole information paradox: black holes radiate [6] and can eventually

radiate away into a thermal gas, losing information about the initial state of the black hole

and violating quantum-mechanical unitarity. In [7, 8, 9], a resolution was found in which

unitarity was restored. In particular, in [9], the calculation proceeded by introducing

special types of wormholes into a calculation of the black hole’s entropy (the “replica

trick”). These wormholes can be thought of as a calculational tool, but there was also

progress made over the last five years in understanding the stability and relevance of
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Introduction Chapter 1

physical wormholes, in, e.g., [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. There has also been

significant progress made in understanding, for example, low-dimensional gravitational

theories (see [20] and references therein, especially [21, 22, 23, 24, 25, 26, 27] among many

others); the application of tensor networks to holography (e.g., [28, 29, 30, 31, 32, 33]), as

will be reviewed in Section 1.1.2; and, most recently, algebras of observables in different

gravitational backgrounds, as in, for example, [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46]. This list is non-exhaustive, but gives a flavor of the amount of growth the field

has seen in recent years.

In this thesis, I present my work about different types of quantum operators in grav-

itational backgrounds. We first focus on the area operator, or more generally the “geo-

metric entropy” operator. To understand why these geometric entropies are important,

we will introduce in Section 1.1 the Anti-de Sitter/Conformal Field Theory (AdS/CFT)

correspondence, where, in the semiclassical limit of AdS/CFT, entropies of boundary

regions are described by this geometric entropy operator. In Chapters 2-4, we explore

the properties of this operator, studying commutators with this operator and the way

that the operator acts on semiclassical bulk geometries. The goal is to provide new (and

more geometric) tools with which to study entropy in quantum gravity.

Though the bulk of my work takes place in Anti de Sitter space, Chapter 5 of this

thesis is about quantum operators in de Sitter (dS) space. We will investigate the Hilbert

space of observables in dS, which must be defined relative to some reference state and

where we must carefully consider the effect of gauge symmetries in spacetime. We seek to

understand where the states in the observable Hilbert space can no longer be described

by the framework of QFT in curved spacetime, i.e. where leading-order quantum gravi-

tational effects become important. This gives important intuition behind the physics of

quantum operators in perturbative gravity about a dS background, with potential impli-

cations for the study of quantum operators in cosmology. To preface this work, in Section

2



Introduction Chapter 1

1.2 we will take a brief look into the importance and challenges of quantum gravity in

dS.

1.1 The Holographic Principle

The holographic principle is a proposal that the information contained in a region

of spacetime is completely reproduced on the boundary of that region. This principle is

known to be true for certain spacetime regions in (quantum) gravity. For example, it

has been known since the 1970s that the entropy of a black hole is given by the area of

its horizon: SBH = A
4G

[47, 6]. It was then conjectured that the holographic principle

should hold more generally [48, 49, 50]. A few years later came a concrete instance of

this principle, in which [51] conjectured a duality between an eleven-dimensional theory

of quantum gravity and a particular limit of a matrix quantum mechanics. Soon after

came the AdS/CFT correspondence [52], which is of vast importance to our field as it is

the only UV-complete theory of quantum gravity.

Starting with some number N of D3-branes, [52] showed that one can take a large N

and small string coupling limit to either get Type IIB string theory in AdS5×S5, orN = 4

supersymmetric Yang-Mills, a conformally invariant gauge theory. AdS is a spacetime

with an asymptotic boundary, and we can think of the CFT as being contained on this

boundary. This correspondence has also been shown to hold for AdS and CFTs in other

dimensions, and is expected to hold in general for AdSd+1 (times some hypersphere) dual

to CFTd. This is especially motivated by the fact that the isometry group of AdSd+1 is

the same as the conformal group in one lower dimension. The conjecture is also expected

to hold for general string coupling and N , though we often taken the large N limit,

where Newton’s constant G goes to zero. This gives us semiclassical gravity, where we

treat spacetime as classical but quantize any matter fields present. In this thesis we

3



Introduction Chapter 1

consider the semiclassical gravity approximation, or, in Chapter 5, we take the further

approximation of QFT in curved spacetime.

The Hilbert spaces of the theories on both sides of the duality should match, HAdS =

HCFT , but this does not a priori tell us which elements within each Hilbert space should

be equivalent. However, it has been shown that there is a dictionary between bulk fields

in AdS—or correlators of these fields—and (correlators of) boundary CFT operators,

though the boundary operators can only be reconstructed using bulk fields in certain

regions of spacetime [53, 54, 55, 56, 57, 58, 59, 60]. Additionally, like the Bekenstein-

Hawking entropy of black holes, it has been well established that there is a more general

duality between boundary entanglement entropies and areas of surfaces in the bulk theory,

which we will review shortly. Relatedly, another important tool for understanding the

mapping between spacetime geometry and boundary entanglement are tensor networks,

which we discuss in more detail below.

1.1.1 Geometric Entropies

The duality between bulk areas and boundary entropies started with the Ryu-Takayanagi

(RT) formula. Restricting to a time-symmetric slice of AdS, we have a boundary subre-

gion R, and a family of bulk surfaces which are anchored to the boundaries of R and are

homologous to R. If we use γ to label the bulk surface with minimal area, then the RT

formula states that the entanglement entropy of R is directly proportional to the area of

γ [61, 62]:

S[R] =
A[γ]

4G
. (1.1)

See Figure 1.1 for a diagram of an example R and γ.

The RT formula was then made covariant in the Hubeny-Rangamani-Takayanagi

(HRT) formula [63], in which we are no longer restricted to one achronal slice Σ of AdS.

4



Introduction Chapter 1

γ R

∂R

∂R

r

Figure 1.1: For R on the boundary of an AdS3 constant-time slice, the RT surface is
given by γ, the surface with minimal area that is anchored to ∂R. The surface γ divides
the slice into two regions, and we label the region between γ and the boundary as r.

Now, we find the surface γ by minimizing the surface’s area over some Σ containing R,

then maximizing its area with respect to different Σ [64]. Thus, the HRT surface is called

an extremal surface. The RT formula was proven by [65], using the same replica trick

we mentioned earlier, and in [66] the authors used a Lorentzian version of this trick to

prove the HRT formula.

If we are more careful, it turns out that the entanglement entropy of a boundary

subregion is not simply given by the area of an extremal surface. Instead, there are

quantum corrections to this formula, given by the entanglement entropy of quantum

fields in the region r, bounded by γ and R (as shown in Figure 1.1). There are also

so-called “Wald-like” corrections, which will be important when we consider a higher-

derivative theory of gravity in Chapter 3. In [67] the authors showed S[R] is dual to the

area of the extremal surface plus these quantum corrections; this was then revised in [68],

where it was shown that one must take the extremization after the quantum corrections

are included.

In this paper, and especially in Chapter 3, we will often call the bulk dual to bound-

ary entanglement entropy the “geometric entropy.” In situations where the quantum

5
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corrections are unimportant, we will instead refer to these bulk duals as HRT-areas.

1.1.2 Tensor Networks

Tensor networks (TNs) have played an important role across many disciplines in

physics and beyond. In our field, they can be used to model the AdS/CFT correspon-

dence. There have been many types of TNs that have been used to model AdS/CFT

(see, e.g., [69, 70, 71, 72]), but they all follow a version of the RT formula called the

“Swingle bound” [73, 74] where there exists a minimum area bulk graph that bounds the

entanglement entropy of a boundary subregion. TNs also have similar quantum error

correction properties to AdS/CFT, where bulk operators are protected from errors by

their encoding in the CFT.

Despite the similarities between tensor networks and the AdS/CFT correspondence,

[75] noted there is a potential obstruction to taking TN models too seriously: TNs have

a flat entanglement spectrum, i.e. their Renyi entropies Sn(ρ) = − 1
n−1

log Tr(ρn) for

any quantum state ρ are independent of n. This is not what is expected for typical

gravitational states. There are, however, less typical gravitational states that do have

a flat entanglement spectrum, as shown by [76, 77]. These are fixed-area states, where

the area of a surface in the bulk (e.g., an RT-surface) has been fixed to a certain value.

Taking this relationship between TNs and fixed-area states seriously, as in [78, 28], one

can construct a network of surfaces on a Cauchy slice, which then serves as the dual graph

to a tensor network. Each leg of the TN corresponds to a contracted index, determined

by the (exponential of) the area of the corresponding dual surface.

A drawback of this construction is that we must specify the area of many surfaces

at once, and this will not always be possible: if we take the area of these surfaces to

be a quantum operator, there may be nontrivial commutation relations between areas of

6
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different surfaces. The commutation relation between two HRT-areas will be computed

in Chapter 2. Then, in Chapter 4, we look at the commutation relations of more general

surfaces in gravity, particularly ones that make an intersecting network of surfaces that

could be used to define a tensor network. We find that these commutation relations

indeed pose a significant hurdle to constructing area networks.

1.2 Quantum Gravity without Holography

In Chapter 5, we will no longer rely on the AdS/CFT correspondence, and will instead

consider quantum operators in de Sitter (dS) space. Though quantum gravity in dS is

not as well understood as quantum gravity in AdS, it is much more relevant to our own

universe. In the distant past, our universe underwent a period of exponential expansion,

called inflation, which is well-modelled by dS. Additionally, our universe’s cosmological

constant is positive [79], indicating that we are approaching a de Sitter-like phase in the

future. It is thus important to understand quantum gravity in dS, despite the fact that

we do not have a well-established holographic principle in dS.

Though there have been many attempts to apply the holographic principle to de Sitter

[80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], there has yet to be a widely accepted,

string-theory derived proposal for a non-gravitational dual to dS space. The lack of a

timelike boundary makes this especially difficult. Furthermore, besides the absence of

a holographic principle, there are other hurdles to overcome in understanding quantum

gravity in de Sitter. Whether one can construct dS vacua in string theory remains an

open question [93, 94, 95], though there has been recent progress constructing candidate

vacua [96]. Additionally, a form of Gauss’s Law applies in perturbative gravity about

dS: since dS has compact Cauchy surfaces, there is nowhere for flux to escape, and so

the charges associated with the spacetime symmetries must vanish. This then means

7
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states have to be invariant under these symmetries, but since the symmetry group is

non-compact this leaves only the vacuum state.

Moreover, if we wish to consider a Hilbert space of observers and observables in de

Sitter, we run into two issues. The first is that dS observers cannot be separated from

the gravitational system (this is unlike in AdS when we can take observers to live on

the boundary, in the non-gravitating region). Second, at late times in dS, a virtual

observer can thermally fluctuate into existence and make an observation. This is called

the Boltzmann brain phenomenon [97, 98, 99, 100], and it means local observables are

not well defined as the Boltzmann brains will cause their two-point functions to diverge

[101, 102].

In Chapter 5, we introduce a framework that avoids many of these hurdles. To

create dS invariant states besides the vacuum, we use a technique called group averaging.

Additionally, we include an observer in our framework, and we make the observer non-

local to avoid the Boltzmann brain problem. Our research is part of a renewed interest in

the field to understand quantum observables in de Sitter and cosmology [39, 45, 46, 103].

1.3 Outline

In Chapter 2, we study HRT-area operators and their action on the surrounding

spacetime. It has been previously proposed that this action generates a transformation

which, roughly speaking, boosts the entanglement wedge on one side of the HRT surface

relative to the entanglement wedge on the other side. We give a sharp argument for a pre-

cise result of this form in a general theory of Einstein-Hilbert gravity minimally coupled

to matter, taking appropriate care with asymptotically Anti-de Sitter (AdS) boundary

conditions. The result agrees with direct computations of commutators involving HRT

areas in pure 2+1 dimensional Einstein-Hilbert gravity on spacetimes asymptotic to pla-

8
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nar AdS. We also clarify the sense in which this transformation is singular in the deep

UV when the HRT-surface is anchored to an asymptotically AdS boundary.

Then, in Chapter 3, we consider geometric entropies in topologically massive gravity

(TMG), a higher-derivative theory which is the gravitational dual to a chiral boundary

CFT. Due to the presence of a gravitational anomaly in TMG, the geometric entropy is no

longer simply the Hubeny-Rangamani-Takayanagi (HRT) area; instead, it is given by the

HRT area plus an anomalous contribution. We study the action of this geometric entropy

on the covariant phase space of classical solutions for TMG with matter fields whose

action is algebraic in the metric. We show that the action agrees precisely with the action

of HRT-area operators in Einstein-Hilbert gravity given in Chapter 2. Furthermore, we

show our result to be consistent with direct computations of semiclassical commutators

of geometric entropies in pure TMG spacetimes asymptotic to planar AdS, as computed

in [104].

In Chapter 4, we build on the results of Chapter 2, in which we showed area oper-

ators do not necessarily commute. As reviewed above, standard random TNs are most

analogous to fixed-area states of the bulk quantum gravity theory, in which quantum

fluctuations have been suppressed for the area of the corresponding HRT surface. This

is due to their flat entanglement spectra when discussing a given boundary region R and

its complement R̄. However, such TNs have flat entanglement spectra for all choices of

R, R̄, while quantum fluctuations of multiple HRT-areas can be suppressed only when

the corresponding HRT-area operators mutually commute. We probe the severity of

such obstructions in pure AdS3 Einstein-Hilbert gravity by constructing networks whose

links are codimension-2 extremal-surfaces and by explicitly computing semiclassical com-

mutators of the associated link-areas. Since d = 3, codimension-2 extremal-surfaces are

geodesics, and codimension-2 ‘areas’ are lengths. We find a simple 4-link network defined

by an HRT surface and a Chen-Dong-Lewkowycz-Qi [105] constrained HRT surface for

9



Introduction Chapter 1

which all link-areas commute. However, the algebra generated by the link-areas of more

general networks tends to be non-Abelian. One such non-Abelian example is associated

with entanglement-wedge cross sections and may be of more general interest.

Chapter 5 is quite different from the rest of this thesis, as we switch from considering

Anti-de Sitter to de Sitter. In de Sitter (dS), observers cannot be treated as separate from

the rest of spacetime, and hence observables are inextricably linked to their observers. We

emphasize here that observers must also be treated using QFT. We then explore how well

spaces of states and observables, each defined relative to a QFT observer, approximate

standard non-gravitating QFT in a fixed dS background. We take into account that

perturbative gravity in global dS requires states to be invariant under the dS isometries.

This, however, leaves too few states, and so we build a new Hilbert space using group

averaging. We study 1+1 dS with a one-particle observer in each static patch, where the

observers lie on a minimal S1. In this context we find that QFT in curved space is only

a good approximation in a spacetime volume proportional to 1/G. Adding additional

particles along a timelike path does not seem to increase the size of this “good” region,

and we find similar results in general dimensions. However, if we consider regions far to

the future or past of a minimal Sd in dSd+1, then we find that the approximation can be

accurate over arbitrarily large regions of global dSd+1.

Finally, Appendix G details two artistic projects related to my research, both sub-

mitted to UCSB CSEP’s Art of Science competition. The first, A Wormhole Lullaby,

is a painting and musical composition following some of the calculations computing the

entropy of a black hole in [9]. The second, The Dance of the Qutrits, is a painting and

musical composition on the three qutrit code [106], which is a simple quantum error

correcting code.
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1. The content of Chapter 2 and Appendix A is the result of a collaboration with Don-
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It is reproduced here with the permission of the International School of Advanced

Studies (SISSA): http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

2. The content of Chapter 3 has previously appeared in the Journal of High Energy

Physics [2]. It is reproduced here with the permission of the International School of

Advanced Studies (SISSA): http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

3. The content of Chapter 4 and Appendices B, C and D is the result of a collaboration

with Jesse Held, Donald Marolf, and Jie-qiang Wu, and has been accepted to

appear in the Journal of High Energy Physics [1]. It is reproduced here with

the permission of the International School of Advanced Studies (SISSA): http:
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4. The content of Chapter 5 is a work-in-progress, and is the result of collaboration

with Donald Marolf, Xuyang Yu, and Ying Zhao.
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Chapter 2

The Action of HRT-Areas as

Operators in Semiclassical Gravity

2.1 Introduction

A fundamental aspect of gauge-gravity duality is the relation between gauge the-

ory entropies and the areas of codimension-2 bulk extremal surfaces described by the

Ryu-Takayanagi (RT) correspondence [61, 62] and its covariant Hubeny-Rangamani-

Takayanagi (HRT) generalization [63]. The quantity AHRT [R] defined by computing

the area of the HRT surface associated with an appropriate boundary region R may thus

be expected to be of great interest in the bulk theory, even without reference to the gauge

theory dual.

At the classical level in the bulk, we can think of this AHRT [R] as a function on the

space of solutions or, equivalently, on either the canonical or covariant phase space. At

the quantum level, it should define a corresponding quantum operator. The purpose of

this work is to better explore the commutation relations of such operators, either with

themselves or with other objects of interest. We will work at leading order in the bulk
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semiclassical approximation, where such commutators are described by Poisson brackets,

or equivalently by Peierls brackets [107] up to the usual factor of i.

There is in fact a lengthy history of suggestions that taking brackets with AHRT [R]

should generate a transformation closely related to the boost symmetry of a Rindler

wedge in Minkowski space. Indeed, long before the days of gauge/gravity duality it was

noted in various contexts that the area of black hole horizons seemed to generate such

transformations; see especially [108], but similar observations are implicit in [109, 110,

111].

Later, in the context of gauge/gravity duality, analogous suggestions for general HRT-

areas AHRT [R] were motivated in [112, 113, 44, 114, 115] by comparison with modular

Hamiltonians, as the latter are again known to act as boosts in appropriate circum-

stances; see in particular [116] and [105]. In many cases this analogy was based on

the Jafferis-Lewkowycz-Maldacena-Suh (JLMS) relation explicitly relating bulk areas to

modular Hamiltonians in the gauge theory [117]. Furthermore, in a parallel series of

developments, various related results [118, 119, 120] were established in contexts where

boundary conditions are imposed at finite-distance boundaries. In particular, when the

boundary is an appropriate bifurcate null surface, the area of the bifurcation surface is

known to generate a boost-like symmetry of the associated gravitational system.

Nevertheless, despite the long list of closely related results and arguments given above,

it appears that a direct analysis of the action of AHRT [R] on the gravitational phase space

has yet to be performed. Here we are explicitly interested in the case where the relevant

HRT surface γR is determined dynamically and lives in the interior of the system, as

opposed to being specified by hand to live on a finite-distance boundary. Our work will

fill this gap and then study the implications for simple commutators involving HRT-areas.

In doing so, we will also give proper consideration to the asymptotically AdS boundary

conditions that are of primary interest in the RT and HRT correspondences. In partic-
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ular, in the presence of an asymptotically AdS boundary, the area of a codimension-2

surface anchored to the boundary will generally diverge. In order to discuss finite quan-

tities, in that context we use AHRT below to denote the renormalized HRT-area given by

introducing a cutoff ϵ, subtracting an appropriate covariant counterterm from the naive

area, and then sending ϵ → 0. Since the counter-term is a c-number, this object gen-

erates the same Hamiltonian flow as the naive (unrenormalized) HRT-area. One should

also be aware that, as a result of this renormalization, in even boundary dimensions our

AHRT will transform anomalously under conformal transformations. In contrast, when

the boundary anchors are the empty set, no renormalization is needed and we use AHRT

to denote the naive area of the HRT surface.

We begin in section 2.2 with a direct computation of the flow generated by AHRT [R]

using the canonical formalism of Einstein-Hilbert gravity with arbitrary minimally cou-

pled matter. We study the action of this flow on the initial data on a Cauchy slice Σ that

runs through the HRT surface γR, showing that it leaves the induced metric unchanged

and that it shifts one component of the extrinsic curvature by a delta-function at γR.

This result was predicted in [114, 115], where it was argued to correspond to an operation

that, in an appropriate sense, boosts the entanglement wedge of R relative to that of the

complementary region R̄. As a result, on such Cauchy surfaces HRT-area flow also agrees

in the bulk with the ‘kink transformation’ introduced in [115], though (as we review) the

two act differently in both the past and future of the HRT surface γR.

The above results and relations are then used in section 2.3 to derive explicit formulae

for the action of HRT-area flow on the AdS3 Poincaré vacuum, and in particular to study

the action on the boundary stress tensor and on other HRT areas evaluated on that

solution. A particular result is that, while an explicit such flow can be defined for any

HRT surface γR, the flow turns out to cause the total energy to diverge when γR has

non-trivial anchors on the AdS boundary. This is a concrete manifestation of the UV
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issues foreshadowed in [113, 44, 114].

For comparison, section 2.4 then provides an independent computation of the asso-

ciated commutators evaluated on general solutions of pure 2+1 Einstein-Hilbert gravity

asymptotic to Poincaré AdS3. Instead of using the canonical commutation relations in

the bulk, this latter approach is based on the fact that the above solutions can be con-

structed by acting on the Poincaré vacuum with boundary conformal transformations.

From this it follows that any observable can be expressed in terms of the boundary stress

tensor, so that the stress tensor algebra can be used to compute general commutators.

We close with some final comments and future directions in section 2.5.

2.2 HRT-area flow as a boundary-condition-preserving

kink transformation

We now derive the Hamiltonian flow generated by HRT-area operators by directly

computing Poisson/Peierls brackets in asymptotically AdSD Einstein-Hilbert gravity. In

the rest of this work we refer to such brackets as “semiclassical commutators” despite

the lack of a factor of i =
√
−1. The commutators for which such computations are

straightforward will in fact describe the effect of HRT-flow on certain Cauchy data for

the solution, whence the action on the full solution is to be determined by solving the

equations of motion. We thus begin by studying the effect on the desired Cauchy data

in section 2.2.1. Section 2.2.2 then addresses details of the boundary conditions which

determine the full solution. Finally, section 2.2.3 will discuss the relation to the kink

transformation of [115], which will be useful in deriving further explicit results in section

2.3.

As usual, we take the HRT surface γR to be defined by some region R on the asymp-
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totically AdSD boundary. In particular, R is an achronal surface on the boundary and γR

is a codimension-2 extremal surface in the bulk that is anchored to the boundary ∂R of

R. Since γR is an HRT surface, it is in fact the smallest such extremal surface satisfying

the homology constraint of [121]. The area of γR thus defines a function on the space of

solutions that we may call AHRT [R].

Equivalently, we may think of AHRT [R] as a function on the covariant or canonical

gravitational phase space. To maximize accessibility to most readers, we will take the

canonical perspective below. Since our argument in this section is based solely on the

canonical commutation relations of Einstein-Hilbert gravity, all results in this section

remain valid in the presence of arbitrary minimally-coupled matter fields.

2.2.1 HRT-area flow on a Cauchy surface containing γR

The object AHRT [R] is of course fully determined by the spacetime metric g. However,

in practice it can useful to evaluate AHRT [R] in two steps, first finding the extremal

surface γR and then computing the area of γR. In reference to this two-step process,

we will write AHRT [R] = A[γR, g]. In particular, in this way we can think of AHRT [R]

as a special case of a more general functional A[γ, g] which would compute the area of

an arbitrary surface γ, and where AHRT is obtained from A[γ, g] by choosing γ = γR as

defined by the given metric g. We can make this very explicit by writing

AHRT [R] = A[γ, g]|γ=γR[g]. (2.1)

The fact that γR is an extremal surface means that, if we fix the spacetime metric g
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and vary A[γ, g] with respect to γ, the result vanishes when evaluated at γ = γR:

δA[γ, g]

δγ

∣∣∣∣
γ=γR[g]

= 0. (2.2)

The relation (2.2) will enter in a critical way into our derivation of HRT-area flow

below. The key point that allows it to be useful is that semiclassical commutators are

defined by the Poisson Bracket (or equivalently by the Peierls Bracket [107]), which

satisfies the Leibniz rule

{B,C} = B,IC,J{ζI , ζJ}, (2.3)

where the ζI are any set of coordinates on phase space and where B,I and C,J denote

appropriate (perhaps functional) derivatives of B,C with respect to such coordinates.

Setting B = AHRT [R], we may evaluate its ζI derivatives by first separately varying

A[γ, g] with respect to γ and g and then using the chain rule to relate variations of γ and

g to variations of the ζI . We thus write

δ

δζI
AHRT [R] =

δA[γ, g]

δγ

∣∣∣∣
γ=γR[g]

δγR[g]

δζI
+
δA[γ, g]

δg

∣∣∣∣
γ=γR[g]

δg

δζI
. (2.4)

The notation implies an appropriate summation over the degrees of freedom associated

with the surface γ and the spacetime metric g. In particular, the last term in (2.4)

includes both a sum over components of g at each spacetime point and an integral over

spacetime points.

Since the first term in (2.4) vanishes due to (2.2), we are left only with the second.

This is precisely the statement that semiclassical commutators of AHRT can be computed

as if the surface γR were fixed and did not in fact depend on the phase space coordinates

ζI . In other words, it suffices to compute commutators with A[γ, g] for some fixed γ

(say, given by certain coordinate conditions) and then to simply set γ = γR at the
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end of the calculation. Note that the final result after setting γ = γR will describe a

flow generated by a diffeomorphism-invariant observable, and will thus necessarily map

solutions to solutions, even if this is not manifest in the intermediate steps. In particular,

in the language of the Hamiltonian formalism, the final flow will necessarily preserve all

constraints.

Indeed, since γR is spacelike, in the canonical formalism we are free to simply suppose

that we are given a Cauchy surface Σ and a fixed submanifold γ ⊂ Σ. We may then take

our phase space coordinates ζI to be the induced metric hij on Σ and the (undensitized)

gravitational momentum Πij = 1
16πG

(Kij−Khij), where Kij is the extrinsic curvature of

Σ and K = Kijhij. Such phase space coordinates have the standard Poisson Brackets

{hkl(x), hij(y)} =0,

{hkl(x),Πij(y)} =
1√
h(y)

δi(kδ
j
l)δ

(D−1)(x− y),
(2.5)

where xi (or equivalently yj) denotes D − 1 coordinates on Σ and we have used the

standard Dirac delta function in terms of the coordinates x, y.

Since we choose γ ⊂ Σ, our A[γ, g] will be independent of Πij and will depend only

on hij. Thus A[γ, g] commutes with hij at leading order in the semiclassical expansion,

and the leading semiclassical commutator of A[γ, g] with any function is determined by

{A[γ, g],Πij}, or equivalently by {A[γ, g], Kij}. We shall keep only such leading-order

terms below.

Let us consider the bracket with Kij, as it will turn out to yield a geometric inter-

pretation of the flow generated by AHRT [R]. Using

Kij = 16πG

(
Πij +

1

2−D
Πhij

)
(2.6)
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with Π = Πijhij, one finds

{hkl(x), Kij(y)} =
16πG√
h(y)

δ(D−1)(x− y)

(
δi(kδ

j
l) −

1

D − 2
δm(kδ

n
l)hmn(y)h

ij(y)

)

=
16πG√
h(y)

δ(D−1)(x− y)

(
δi(kδ

j
l) −

1

D − 2
hkl(y)h

ij(y)

)
.

(2.7)

We then need only combine this with a computation of derivatives of A[γ, g] with

respect to the induced metric. Proceeding in steps, we introduce the induced metric qAB

on γ and D − 2 coordinates wA on γ to write

AHRT =

∫

γ

dD−2w
√
q(w). (2.8)

Taking functional derivatives yields

δAHRT
δhkl(x)

=
1

2

∫

γ

dD−2w
√
q(w)qAB(w)

δqAB(w)

δhkl(x)
. (2.9)

Now, since qAB(w) = ∂xi

∂wA
∂xj

∂wB
hij(x) (with derivatives computed along γ), we can

rewrite qAB as

qAB(w) =

∫

γ

dD−2w̃
∂xi

∂w̃A
∂xj

∂w̃B
hij(x(w̃))δ

(D−2)
γ (w, w̃)

=

∫

Σ

dD−1x
∂xi

∂w̃A
∂xj

∂w̃B
hij(x) δ

(D−2)
γ (w, w̃(x)) δΣ(γ, x)

(2.10)

where δ
(D−2)
γ (w, w̃(x)) is a δ-function on the HRT surface that satisfies

∫

γ

dD−2w f(w)δ(D−2)
γ (w, w̃) = f(w̃), (2.11)

and where δΣ(γ, x) is a δ-function on the Cauchy slice that localizes x to the HRT

surface according to
∫
Σ
dD−1xf(x)δΣ(γ, x) =

∫
γ
dD−2wf(x(w)). We have also arbitrarily
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extended w̃ and ∂xi

∂w̃A
to smooth functions of the xi defined on all of Σ, though due to the

delta-functions the result does not depend on the particular extension chosen. We thus

find

δqAB(w)

δhkl(x)
=

∂xk

∂w̃A
∂xl

∂w̃B
δ(D−2)
γ (w, w̃(x)) δΣ(γ, x). (2.12)

Finally, combining equations (2.7), (2.9) and (3.10) yields

{
AHRT
4G

,Kij(x)

}
= 2π

√
q(w̃(x))√
h(x)

δΣ(γ, x)

(
qAB(w̃(x))

∂xi

∂w̃A
∂xj

∂w̃B
− hij(x)

)
(2.13)

= −2πδ̂Σ(γ, x) ⊥i⊥j . (2.14)

where ⊥i is the unit normal to γ in Σ and δ̂Σ(γ, x) =

√
q(w̃(x))√
h(x)

δΣ(γ, x) is a one-dimensional

Dirac delta-function of the proper distance between x and γ measured along geodesics

in Σ orthogonal to γ.

Equation (2.13) is our main result. Since the Poisson Bracket with hij vanishes, and

since the right-hand-side of (2.13) is the same for all solutions when expressed in terms

of proper distance, it is easy to integrate the above to yield the effect of a finite flow

by a parameter λ. We see that the Hamiltonian flow generated by AHRT changes the

initial data on any Cauchy surface Σ that contains γ by adding to the normal-normal

component K⊥⊥ of the extrinsic curvature a delta-function given by the right-hand-side

of (2.13) multiplied by λ, but that this flow leaves unchanged both the induced metric

hij and all other components of Kij.

The effect on the rest of the solution is then determined by the equations of motion.

Note that since there is no change in the initial data on Σ away from the HRT surface γR,

causality then implies that there can be no change in the part of the solution within the

entanglement wedge on either side of γR. Instead, the solution can change only within

the past and future light cones of γR. In these regions, the change in the solution is
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also influenced by boundary conditions. We thus now discuss the required boundary

conditions in detail.

2.2.2 Boundary Conditions for HRT-area flow

The result (2.13) fully defines the flow generated by AHRT . However, as is often

the case, the precise connection to boundary conditions can be subtle. We thus take a

moment to explore such issues here.

To this end, recall that (2.13) describes a flow within some particular notion of the

gravitational phase space. We have described this phase space in terms of a Cauchy

surface Σ. The bulk geometry and extrinsic curvature of Σ are dynamical and so can

change under HRT-area flow. But since Σ represents a definite instant of time, in a

context with an asymptotically AdS boundary ∂M on which the boundary metric has

been fixed, the intersection ∂Σ of Σ with ∂M will remain fixed. This is in precise analogy

with the familiar statement that the flow generated by a Hamiltonian on the phase space

at t = 0 does not actually change the value of t but, instead, changes the initial data in

the manner dictated by time-translations. As a result, the boundary conditions require

that neither the metric induced on ∂Σ by the boundary metric nor the corresponding

extrinsic curvature can change under the flow generated by AHRT . And this must be true

despite the transformation (2.13) of the initial data in the bulk.

The above may at first seem like a paradoxical state of affairs. However, any relation

between the extrinsic curvature of the surface Σ in the bulkM and the extrinsic curvature

of ∂Σ in the boundary ∂M will certainly depend on how ∂M is attached to M. This

allows extra degrees of freedom. In short, we believe that the situation is much like the

famous issue discussed in [122, 123, 65] wherein one may have conical singularities in the

bulk that end on smooth boundary metrics. We thus believe that there is an appropriate
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sense in which HRT-area flow is a well-defined transformation. Indeed, we will show this

explicitly below for spacetimes asymptotic to AdS3, though we leave full discussion of

the higher dimensional case for later work. In particular, the forthcoming work [124] will

show that our issue is precisely equivalent to whether one can have Lorentz-signature

bulk conical singularities in the presence of general smooth boundary metrics.

We also pause to warn the reader that, while we believe that HRT-area flow can be

defined, there is a sense in which it will be rather singular in the UV. In particular, we

will see in section 2.3 that in AdS3 it leads to a boundary stress tensor that involves

the square of a Dirac delta-function. The transformed solutions will thus have infinite

energy. If we are inspired by [117] to think of AHRT/4G as the leading semiclassical

term in the modular Hamiltonian of the dual CFT state, this UV-divergence is a con-

crete manifestation of the singular behavior predicted in [113] using results in algebraic

quantum field theory. (Though see [125] for further comments.) As noted in [113] (and

as further developed in [114, 115]), the UV behavior can be improved by simultaneously

acting with a second transformation associated with the (right) vacuum modular Hamil-

tonian. Following [115], we refer to the combined smoother transformation as the ‘kink

transform,’ whose details we describe below. See also the closely related discussions in

[112] and [44].

2.2.3 Relation to the kink transformation

As a brief but useful aside, we now discuss the relation of the flow generated by AHRT

to the kink transformation introduced in [115]. Indeed, the kink transformation was ini-

tially defined in [115] by using precisely the action (2.13) on Cauchy data, scaled by a

factor that controls the amount of the transformation to be applied.1 The transformation

1 We will discuss such normalizations in appendix A. Performing a finite transformation by an amount
λ simply adds λ times the left-hand-side of (2.13) to the extrinsic curvature. However, the astute reader
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on solutions then followed by solving the equations of motion. However, for asymptot-

ically AdS spacetimes the solution is unique only after boundary conditions have been

fully specified, and the boundary conditions chosen to define the kink transformation in

[115] turn out to differ from the HRT-area flow boundary conditions described in section

2.2.2. While the flow generated by AHRT preserves any boundary metric and leaves ∂Σ

invariant in ∂M, the kink transform of [115] was fully defined only when the metric

on ∂M has a Killing field ξ∂ that vanishes on the anchor set ∂R of the HRT surface,

and where ξ∂ acts locally as a boost about ∂R. In this setting the kink transformation

was declared to leave the boundary metric invariant, and also to leave the surface ∂Σ

invariant in the region spacelike separated from R. However, in contrast to the HRT-

area flow described above, the kink transformation moves the part of ∂Σ in the domain

of dependence of R. In particular, it shifts ∂Σ toward the past along the orbits of ξ∂

by a Killing parameter 2πλ/κ, where κ is the surface gravity of ξ∂ at ∂R. In all cases

below we take D(R) to be the right wedge and describe the left wedge as D(R̄) for some

complimentary achronal surface R̄ to R. See appendix A for verification of the above

sign and normalization factors.

In the presence of the boundary Killing field ξ∂, the kink transformation differs from

the flow generated by AHRT/4G only by whether or not ∂Σ is distorted relative to the

fixed boundary metric. We may thus refer to the flow generated by AHRT as a boundary-

condition preserving kink transform. Again, because this flow preserves the boundary

conditions precisely, it can be defined for any boundary metric. In particular, it does

not require the existence of the boundary Killing field ξ∂ that was needed to define the

original kink transform.

Since the above distortion involves a boost operation in the right (R) wedge but

will notice that the form of the normalization factor given in [115] is somewhat different. This difference
in presentation will be discussed at the end of appendix A.
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∂Σ

(a)

∂R

D(R̄) D(R)

ξ∂

ξ∂

ξ∂
∂Σ

ξ∂ 2πλ

(b)

∂R

D(R̄) D(R)

Figure 2.1: The conformal boundary of our spacetime, showing the domains of depen-
dence D(R) of R and D(R̄) of R̄. The boundary metric has a Killing field ξ∂ that acts as
a boost near ∂R. (a) The boundary ∂Σ of a smooth bulk Cauchy surface Σ in the original
spacetime. The surface ∂Σ and all boundary observables on that surface are preserved
by the flow generated by AHRTR. (b) The kink transformation with parameter λ moves
the part of ∂Σ in D(R) by sliding it toward the past along orbits of ξ∂ through a Killing
parameter 2πλ/κ. Near ∂R this acts as a past-directed boost with rapidity 2πλ.
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trivial action in the left (R̄) wedge, it was called a (boundary) one-sided boost in [115].

Note, however, that the action on observables in the future and past wedeges is again

determined by solving the equations of motion. If we let K[γ] denote the generator of

the kink transformation by λ, then we can define the difference HR := AHRT
4G

−K[γ] to be

(2π times) the generator of the boundary one-sided boost (taken to generate flow toward

the future in the right wedge). In the context of AdS/CFT, HR can be interpreted [115]

as the right modular Hamiltonian of the Hartle-Hawking state2 for the CFT associated

with the boundary Killing field ξ∂. Furthermore, the term AHRT
4G

was argued in [115] to

correspond at leading order to the modular Hamiltonian of the boundary dual of the

bulk spacetime. As a result, the kink transform was conjectured to be dual to a so-called

Connes cocycle flow in the CFT (generated by the difference between the right modular

Hamiltonian of the bulk state and the right modular Hamiltonian of the Hartle-Hawking

state for ξ∂). Some refinements of this correspondence will be discussed in [125].

It is useful to note that, even in the absence of a bulk Killing field, the action of AHRT

or K[γ] in the bulk can again be described in terms of a one-sided boost. This relationship

was described in detail in [115], having been foreshadowed in [112, 113, 44, 114]. The

essential point is to recall from [126] that the original solution can be reconstructed

from four pieces of data: boundary conditions as defined by the boundary metric, the

restriction of the solution to the left wedge, the restriction of the solution to the right

wedge, and the way that affine parameters along the future and past null boundaries of

each wedge are identified with those along the past and future null boundaries of the

other wedge. The idea is that if we are given the last three, the remainder of the solution

is uniquely determined by solving the equations of motion subject to the given boundary

conditions (the first ingredient above).

2There will be cases where HR is unbounded below as a CFT operator. In such cases the Hartle-
Hawking state is not well-defined, but the flow still exists. Such cases are the analogue of what occurs
for Kerr black holes in asymptotically flat spacetimes.
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The fourth piece of data above can be said to define the relative boost with which

the two wedges are attached. The desired operation is then defined by changing these

identifications in precisely the same way that they would be changed if there were an

appropriate bulk Killing field, and if we were to transform the right wedge by flowing

toward the past through a Killing parameter 2πλ/κ along the orbits of this Killing field.

As verified in appendix A, on a Cauchy surface through γ this generates precisely the

desired transformation on initial data (2.13).

Again, the transformed initital data can be extended to a full solution by choosing

boundary conditions and solving the equations of motion. And again, the result gives the

flow generated by either AHRT/4G (if one preserves the way that each wedge attaches to

the asymptotically AdS boundary), or by K[γ] (if there is a boundary Killing field ξ∂ and

one flows the right wedge appropriately under ξ∂). In all cases the solution in the past

and future of γ is determined by solving the equations of motion with an appropriate

choice of boundary conditions.3

2.3 Explicit results in vacuum Poincaré AdS3

We will now use the above relations to give a simple geometric description of the

flow generated by some AHRT [R] in pure 2+1 Einstein-Hilbert gravity (with negative

cosmological constant but without matter) for spacetimes asymptotic to Poincaré AdS3

that do not contain black holes. After deriving this description in section 2.3.1, explicit

results for the action of the transformation on the boundary stress tensor and on other

HRT-areas are given in sections 2.3.2 and 2.3.3.

3In particular, since the boundary metric is not dynamical, the boundary metric to the future and
past of ∂R cannot be determined by solving equations of motion. It must simply be specified by hand.
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2.3.1 Representation as a boundary conformal transformation

Bulk spacetimes of the specified form are always diffeomorphic to Poincaré AdS3. Let

us thus focus on obtaining explicit results when the spacetime is exactly Poincaré AdS3

with metric

ds2 =
1

z2
(
−dt2 + dx2 + dz2

)
=

1

z2
(
−dudv + dz2

)
. (2.15)

Here we have set the AdS scale ℓAdS to one and introduced u = t−x and v = t+x. Results

for any other spacetime in the above class can then be obtained by applying an appropri-

ate boundary conformal transformation. At least for infinitesimal such transformations,

this generalization will be described in section 2.4.

Now, any two HRT surfaces in Poincaré AdS3 are related by an AdS3 isometry. Thus

we may further simplify the discussion by taking the boundary region R to be the half-

line x ∈ [0,∞) at t = 0 on the boundary at z = 0. We will refer to this half-line as R0.

The HRT surface γR0 is then the bulk geodesic given by x = t = 0 for all z.

The geodesic γR0 is invariant under the manifest boost isometry ξ = x∂t + t∂x in the

x, t plane, and it is clear that ξ induces a related Killing field ξ∂ on the boundary at

z = 0. This feature makes it easy to apply the kink transformation K[γR0 ], as boosting

the right wedge leaves invariant all data in that wedge. The kink transformation also

leaves the boundary metric unchanged, though we remind the reader that it nevertheless

‘moves each Cauchy surface with respect to that metric’ as shown previously in figure

2.1. As a result, solving the equations of motion must precisely reproduce the original

spacetime (2.15). We conclude that the action of K[γR0 ] leaves Poincaré AdS3 invariant.
4

A similar conclusion clearly holds for Poincaré AdSd for any d. But what is special

4This is consistent with the conjecture of [115] that the kink transform is dual to the Connes cocycle
flow generated by the difference between the one-sided modular Hamiltonian of the dual CFT state
and the one-sided modular Hamiltonian of the CFT vacuum. Since Poincaré AdS3 is dual to the CFT
vacuum, the above difference clearly vanishes for this state and hence has trivial action. As usual, we
refer the reader to [125] for further comments
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about d = 3 is that we can also find a simple form for the transformation generated by the

HR of section 2.2.3. Combining this with the above will then give a closed-form expression

for the boundary-condition-preserving kink transformation defined by our HRT-area flow

on Poincaré AdS3.

To establish the desired result, recall first that HR generates a transformation that

leaves invariant the boundary metric. And since all solutions to pure 2+1 Einstein-

Hilbert gravity with such boundary conditions are diffeomorphic to Poincaré AdS3, HR

can act only by a boundary-metric-preserving diffeomorphism. In an asymptotically AdS

spacetime, this must be a boundary conformal transformation. Our task is thus simply

to identify the unique conformal transformation that acts on the right wedge of the

boundary as a boost of magnitude 2πλ and of the appropriate sign.5

For each λ we will describe this conformal transformation as a map (u, v) → (U(u), V (v))

on the boundary spacetime and an associated Weyl rescaling. After acting with the trans-

formation, our boundary conditions require the boundary metric to be

ds2∂ = −dUdV, (2.16)

so that the Weyl rescaling is determined by comparing (2.16) with −dudv.

In the left wedge we know that HR must act as the identity. And in order to undo

the action of K[γ] on a Cauchy slice (shown in figure 2.1), our conformal transformation

should boost the right wedge toward the future with rapidity 2πλ. Since it must preserve

continuity of each Cauchy slice, this uniquely singles out the transformation at each finite

λ to be

U = ue−2πλΘ(−u), V = ve2πλΘ(v). (2.17)

5While this conformal transformation is not smooth on the boundary spacetime, it nevertheless
corresponds to a diffeomorphism that is smooth at every point in the bulk.
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Since uδ(u) = 0 = vδ(v), (2.17) yields

−dUdV = −e2σ(U)e2σ̂(V )dudv (2.18)

with e2σ(U) = e−2πλΘ(−U), e2σ̂(V ) = e2πλΘ(V ). (2.19)

Thus we have −dUdV = −dudv in both the left and right wedges. But this is not

the case in either of the future or past wedges, so the σ and σ̂ define a non-trivial Weyl

rescaling relating (2.19) to (2.16).

On any solution, HR will be the generator of the boundary conformal transformation

(2.17). But since the kink transform acts trivially on Poincaré AdS3, we can also take

(2.17) to give the full finite-λ action flow of this solution under AHRT/4G. This in

particular allows us to explicitly compute the action of this flow on both the boundary

stress tensor and other HRT areas. We record these results below in sections 2.3.2 and

2.3.3 for later use in comparison with section 2.4.

2.3.2 HRT-area flow of Tij

The action of a general finite conformal transformation on the stress energy tensor of

a 1+1 dimensional conformal field theory is well known (see e.g. [127]) to give

Tabdx
adxb = T original

ab dxadxb+
c

12π

[
∂2Uσ+(∂Uσ)

2

]
dU2+

c

12π

[
∂2V σ̂+(∂V σ̂)

2

]
dV 2, (2.20)

where c is the central charge. For the boundary stress tensor of AdS3, we have c = 3/2G.

Since we are computing the effect on the planar vacuum, we have T original
ab = 0. The
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remaining terms in (2.20) then give

TUU =
1

8G

(
λδ′(U) + πλ2[δ(U)]2

)
, and (2.21)

TV V =
1

8G

(
λδ′(V ) + πλ2[δ(V )]2

)
. (2.22)

The final terms in (2.21) and (2.22) are sensible only in the presence of a UV reg-

ulator. This is consistent with comments in [113] on the singular nature of one-sided

modular flow. Interestingly, however, there is no problem at linear order in λ. This

makes clear that the infinitesimal action of HRT-area flow is well-defined on solutions

that are sufficiently smooth, but that flowing a finite distance under this transformation

creates UV divergences when the HRT surface γ is anchored to an asymptotically AdS

boundary. In all cases we nevertheless emphasize that the action of the flow on the bulk

solution is nevertheless given in closed form.

2.3.3 The action of the flow on other HRT-areas

Despite the divergence it creates in the boundary stress tensor components (2.21) and

(2.22), the finite flow generated by AHRT [R0]/4G yields a well-defined action on other

HRT areas. To write explicit formulae, recall that our AHRT denotes the renormalized

HRT-area, which in AdS3 with ℓAdS = 1 may be written

AHRT = Lgeodesic +
∑

anchors

Lct, (2.23)

where Lct is an appropriate c-number counterterm. In particular, in vacuum Poincaré

AdS3 we may introduce a regulated boundary at z = ϵ and write the renormalized area
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as [128]

AvacHRT = lim
ϵ→0

[−2 ln ϵ+ ln[(x1 − x2)
2 − (t1 − t2)

2] + 2 ln(2ϵ)]

= ln[(u1 − u2)(v2 − v1)] + 2 ln 2,

(2.24)

where we have identified Lct = ln(2ϵ). Since the endpoints of the HRT surface must be

spacelike separated on the boundary, without loss of generality we may take u1 > u2 and

v1 < v2 (i.e., we number the endpoints left-to-right as opposed to past-to-future).

Furthermore, under a Weyl rescaling ds2∂,new = e2σds2∂,old we have

AnewHRT = AoldHRT +
∑

anchors

σ. (2.25)

We can now apply the conformal transformation (2.19) to the AHRT anchored at

(U1, V1) and (U2, V2), which we write below as AHRT (U1, V1, U2, V2). First, however, it is

useful to note that any AHRT evaluated in the Poincaré vacuum remains invariant under

the conformal transformation defined by constant rescalings U = eαuu, V = eαvv of the

null coordinates. This is because the explicit expression (2.24) shifts by −αu− αv under

(u, v) → (U, V ), but this is then cancelled by the conformal anomaly term in (2.25) since

σ = 1
2
(αu+αv) at each anchor point. This result is of course clear for the case αu = −αv

(which describes a boost), but it also holds for e.g. αu = αv (which describes a dilation).

Since (2.19) is piecewise constant, the above observation makes it easy to apply the

conformal transformation (2.17) to AHRT (U1, V1, U2, V2). Non-trivial effects can occur

only when U1 and U2 have opposite signs or when V1, V2 have opposite signs so that the

end points correspond to distinct values of σ̂ and/or σ. When opposite signs do occur,

we can evaluate the effect of (2.17) by computing (2.24) at the new endpoints and adding

the anomalous term from (2.25). Again using spacelike separation of the anchor points
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to take U1 > U2 and V1 < V2, we may write the transformed result in the form

AHRT,λ(U1, V1, U2, V2) = AU(U1, U2) + AV (V1, V2) + 2 ln 2, (2.26)

with

AU =





ln(U1 − U2), U1, U2 < 0 or U1, U2 > 0

ln(e−2πλU1 − U2), U2 < 0 < U1

(2.27)

and

AV =





ln(V2 − V1), V1, V2 < 0 or V1, V2 > 0

ln(V2 − e2πλV1), V1 < 0 < V2.

(2.28)

As a result, we find

{
1

4G
AHRT [R0], AHRT (U1, V1, U2, V2)

}
(2.29)

=
d

dλ
AHRT,λ(U1, V1, U2, V2)

∣∣∣∣
λ=0

(2.30)

=− 2π

(
U1Θ(−U1U2)

U1 − U2

+
V1Θ(−V1V2)
V2 − V1

)
. (2.31)

2.4 Commutators from stress tensors

The previous section transformed the general arguments of section 2.2 into explicit

results in AdS3 for the particular choice of boundary region R0 given by the half-line

at t = 0 and when the area-flow acts on the Poincaré AdS3 vacuum. We now present

an independent calculation both to check the above results and as a means of general-

izing them to allow arbitrary boundary regions R and more general solutions of pure

2+1 Einstein-Hilbert gravity with negative cosmological constant and planar boundary.

In particular, the generalization will allow planar black holes. The key ingredients in
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this computation are (again) that all such solutions are related by boundary conformal

transformations, and that any two spacetimes with the same boundary stress tensor are

considered to be completely equivalent. Thus we may in principle express any observable

in terms of the boundary stress tensor and use the well-known 2-dimensional stress tensor

algebra to compute any commutators. This alternate technique may also be of interest

in its own right as a means of studying commutators of general quantities for which an

elegant geometric description of the flow is not known.

To follow this approach, one might like to proceed by finding an explicit expres-

sion in terms of the boundary stress tensor for the conformal transformation (u, v) →

(U(u), V (v)) that constructs an arbitrary solution in our class from the Poincaré AdS3

vacuum, and in particular for the associated conformal factor σ[Tij]. One could then

use the relevant conformal anomaly to write any observable in terms of σ and simply

substitute σ[Tij] to write the observable as a functional of the stress tensor. However,

it is not clear that a useful such closed-form solution σ[Tij] will exist. Luckily this work

focusses on semi-classical commutators, for which such an explicit relation will not be

needed. As in section 2.2, the key point is that the semiclassical commutator (aka the

Poisson or Peierls bracket) is a derivation, meaning that for any observables B and C we

may write the bracket in terms of the stress-tensor algebra using

{B,C} =

∫
d2x1d

2x′1
δB

δTij(x1)
{Tij(x1), Ti′j′(x′1)}

δC

δTi′j′(x′1)

=

∫
d2x1d

2x2d
2x′2d

2x′1
δB

δσ(x2)

δσ(x2)

δTij(x1)
{Tij(x1), Ti′j′(x′1)}

δσ(x′2)

δTi′j′(x′1)

δC

δσ(x′2)

=

∫
d2x2d

2x′2
δB

δσ(x2)
{σ(x2), σ(x′2)}

δC

δσ(x′2)
,

(2.32)

It is thus sufficient to know the functional derivatives of B,C with respect to σ and the

functional derivatives of σ with respect to the stress tensor, which in practice turns out

to be a manageable task.
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After computing such functional derivatives in section 2.4.1, we warm up with some

relatively simple commutators involving σ and Tij in sections 2.4.2 and 2.4.3 before finally

studying commutators of HRT areas in section 2.4.4.

2.4.1 Functional derivatives of σ with respect to Tij(x)

Recall that our basic strategy will be to think of the boundary stress tensor Tij(U, V )

as the fundamental observable in terms of which we will write all others. In particular,

we will define an observable σ as the conformal factor in (2.20) that generates Tij(U, V )

from the vacuum (in which Tij = 0), and which satisfies certain boundary conditions.

In practice, we will then write general observables in terms of σ, which then implicitly

expresses them in terms of Tij.

To this end, let us thus consider the boundary metric

ds2∂ = −dUdV = −e2σ(u,v)dudv, (2.33)

with σ(u, v) = σ(u) + σ̂(v) and

dU = e2σ(u)du

dV = e2σ̂(v)dv,

(2.34)

and where σ and σ̂ are chosen so that Tij(U, V ) can be written in the form (2.20) with

T originaluu (u) = 0 = T originalvv (v). Note that the coordinates u, v defined by (2.34) are

dynamical objects that will also be functions of the stress tensor Tij(U,V ). In particular,

we should think of the functions u(U) and v(V ) as being defined by integrating the

above equations subject to some boundary condition. These functions have range u ∈

(−∞, umax) and v ∈ (−∞, vmax), where umax = vmax = ∞ when solutions asymptote to
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Poincaré AdS3, and umax = vmax = 0 when solutions instead asymptote to an M > 0

planar black hole.

When solutions asymptote to Poincaré AdS3, it will be convenient to choose the

boundary conditions to be simply

u(U = 0) = 0, v(V = 0) = 0, (2.35)

allowing us to define

u(U) =
∫ U
0
dU ′e−2σ(U ′) (2.36)

v(V ) =
∫ V
0
dV ′e−2σ̂(V ′). (2.37)

We note in passing that u = ±∞ does not generally correspond to U = ±∞. In

particular, at this stage the SL(2, R)×SL(2, R) isometries of the Poincaré vacuum allow

us to introduce poles in the function u(U). When solutions asymptote to an M > 0

planar black hole, we will instead choose our boundary conditions to be

u(U = ∞) = 0, v(V = ∞) = 0, (2.38)

allowing us to define

u(U) =
∫ U
0
dU ′e−2σ(U ′) −

∫∞
0
dU ′e−2σ(U ′) (2.39)

v(V ) =
∫ V
0
dV ′e−2σ̂(V ′) −

∫∞
0
dV ′e−2σ̂(V ′). (2.40)

Again we note in passing that u = −∞ may not correspond to U = −∞.

Since the trace of Tij vanishes, the only non-trivial stress tensor components are

TUU(U) and TV V (V ). For the moment, let us focus on TUU since corresponding results
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for V will satisfy analogous expressions.

The functional derivative δσ(u(U))
δTUU (U ′)

can be computed by studying the variation of TUU :

δTUU =
c

12π
(∂2Uδσ + 2∂Uσ∂Uδσ)

=
c

12π
e−2σ∂U(e

2σ∂Uδσ).

(2.41)

δσ(U) =
12π

c

(∫ U

U0

e−2σ(U ′′)

∫ U ′′

U0

e2σ(U
′)δTUU(U

′)dU ′dU ′′

+ c1

∫ U

U0

e−2σ(U ′)dU ′ + c2

)
,

(2.42)

for any finite U0, and constants c1 and c2. This parametrization is somewhat redundant,

as changes in U0 can be absorbed into changes in c1 and c2.

The constants c1 and c2 are arbitrary and cannot influence the physics of our com-

putation. But it will be convenient to fix them by recalling that, as previously noted,

an overall scaling preserves the Poincaré vacuum. We are thus free to fix σ(U) to be

independent of the stress tensor for any one value U . We will choose this to be true

at U = U0, which imposes δσ(U0) = 0. Additionally, the Poincaré vacuum is invariant

under special conformal transformations, allowing us to fix ∂Uσ(U) to be independent

of the stress tensor for any one value U ; we will again choose U = U0, which imposes

∂Uδσ(U0) = 0. Implementing these boundary conditions sets c1 = c2 = 0, and estab-

lishes that our definition of σ depends on U0. As a result, we now change notation to

δσ(U) = δσU0(U), to make explicit the U0 dependence. We similarly take σ(U0) = 0 (and

σ(U) = σU0(U)).
6

Rewriting (2.42) slightly, we have

6Additionally, u(U) depends on σU0(U) through either Eq. (2.36) or (2.39), so we make explicit this
U0 dependence as u(U) = uU0

(U). Similarly with v(V ) = vV0
(V ).
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δσU0(U) =
12π

c

∫ ∞

−∞
dU ′e2σU0

(U ′)Θ(U − U ′)Θ(U ′ − U0)δTUU(U
′)

∫ U

U ′
dU ′′e−2σU0

(U ′′)

+
12π

c

∫ ∞

−∞
dU ′e2σU0

(U ′)Θ(U ′ − U)Θ(U0 − U ′)δTUU(U
′)

∫ U ′

U

dU ′′e−2σU0
(U ′′),

(2.43)

which yields

δσU0(U)

δTUU(U ′)
=

12π

c
e2σU0

(U ′)[uU0(U)−uU0(U
′)][Θ(U−U ′)Θ(U ′−U0)−Θ(U ′−U)Θ(U0−U ′)].

(2.44)

We now use the above results to compute a series of semiclassical commutators below.

2.4.2 A first warm up: {σ, Tij}

We begin by studying the semiclassical commutator

{σU0(U), TUU(Ũ)} =

∫ ∞

−∞
dU ′ δσU0(U)

δTUU(U ′)
{TUU(U ′), TUU(Ũ)}. (2.45)

Since our CFT is 2-dimensional, the stress tensor algebra can be determined from the

familiar relations

{Lm, Ln} = i(n−m)Lm+n −
ic

12
m(m2 − 1)δm+n,0, (2.46)

where Lm and TUU are related by

Lm = − 1

2π

∫

S1

dUeiUmTUU(U)

TUU(U) =
∞∑

m=−∞

e−iUmLm.
(2.47)
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These relations are well-known to yield

{TUU(U), TUU(U ′)} = 2TUU(U
′)δ′(U −U ′)−T ′

UU(U
′)δ(U −U ′)− c

24π
δ
′′′
(U −U ′). (2.48)

We can now compute the right-hand side of (2.45) using (3.88). After some manipu-

lation, (2.45) becomes

{σU0(U), TUU(Ũ)} =

[
−2TUU(Ũ)∂U ′

(
δσU0(U)

δTUU(U ′)

)
− T ′

UU(Ũ)
δσU0(U)

δTUU(U ′)

+
c

24π
∂3U ′

(
δσU0(U)

δTUU(U ′)

)]

U ′=Ũ

,

(2.49)

where we have used (2.44) to integrate by parts and to show that the associated boundary

terms vanish at U = ±∞. Using Eq. (2.44) then yields

{σU0(U), TUU(Ũ)} =σ′
U0
(Ũ)δ(U − Ũ)− 1

2
δ′(U − Ũ)

− σ′′
U0
(U0)[uU0(U)− uU0(U0)]δ(Ũ − U0)

+ σ′
U0
(U0)[uU0(U)− uU0(U0)]δ

′(Ũ − U0)

− σ′
U0
(U0)δ(Ũ − U0)−

1

2
δ′(Ũ − U0)

+
1

2
[uU0(U)− uU0(U0)]δ

′′(Ũ − U0).

(2.50)

We will use this result to calculate the commutator {σ(X), σ(X ′)} in the next section, and

we will use it again in Section 2.4.4 to calculate the commutator between an HRT-area

and the stress-energy tensor.
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2.4.3 The σ commutator

Our next step will be to compute {σ(X), σ(X ′)}. By the Leibniz rule as expressed in

Eq.(2.32), we have

{σU0(U), σŨ0
(Ũ)} =

∫ ∞

−∞
dŨ ′ δσŨ0

(Ũ)

δTUU(Ũ ′)
{σU0(U), TUU(Ũ

′)} (2.51)

where Ũ0 is finite. Inserting (2.50) and manipulating the result yields

{σU0(U), σŨ0
(Ũ)} =

6π

c

[
Θ(Ũ − U)

+ 2(σ′
U0
(U)− σ′

Ũ0
(U))e2σŨ0

(U)[uŨ0
(Ũ)− uŨ0

(U)]Θ(Ũ − U)

+ uŨ0
(Ũ)f1(U) + f2(U) + uU0(U)g1(Ũ) + g2(Ũ)

]
,

(2.52)

with an analogous expression for {σ̂V0(V ), σ̂Ṽ0(Ṽ )}, and we also note that any σU0(U)

commutes with any σ̂V0(V ). The functions f1,2(U) and g1,2(Ũ) can depend on U0 and

Ũ0, and can be computed explicitly. However, we will not do so here, as we will show

that their contribution can be ignored. This helpful, because the above expression (2.52)

is rather cumbersome. At least some part of this is due to the dependence on the

unphysical parameters U0, Ũ0 associated with the boundary conditions that define σU0

and σŨ0
. But physical observables cannot depend on these parameters, so the dependence

on U0, Ũ0 must cancel completely when computing (2.32). This suggests that for physical

observables B,C in (2.32), it should suffice to use a simplified version of (2.52) that is

manifestly independent of U0, Ũ0.

In particular, let us recall that, on the space of solutions we choose to study, any

physical observable can be written as a functional of the boundary stress tensor. Com-

paring the three lines of (2.32) then shows that we will obtain the correct commutator

{B,C} so long as we include some subset of terms from (2.52) that gives the correct
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expression for {Tij(x1), Ti′j′(x′1)}.

In the simple case where Ũ0 = U0 and Ṽ0 = V0, it turns out that the following effective

commutators suffice for this purpose:

{σU0(U), σU0(Ũ)}eff = 6π
c
Θ(Ũ − U), (2.53)

{σ̂V0(V ), σ̂V0(Ṽ )}eff = −6π
c
Θ(V − Ṽ ), . (2.54)

This is straightforward to verify by simply taking appropriate derivatives of (2.53) and

using (4.2) to compute

{σU0(U), TUU(Ũ)}eff =
c

12π

∂2

∂Ũ2
{σU0(U), σU0(Ũ)}eff +

c

6π
σ′
U0
(Ũ)

∂

∂Ũ
{σU0(U), σU0(Ũ)}eff

=
1

2
δ′(Ũ − U) + σ′

U0
(Ũ)δ(Ũ − U), (2.55)

and thus

{TUU(U), TUU(Ũ)}eff =
c

12π

∂2

∂U2
{σU0(U), TUU(Ũ)}eff +

c

6π
σ′
U0
(U)

∂

∂U
{σU0(U), TUU(Ũ)}eff

=
c

24π
δ′′′(Ũ − U) +

c

12π
σ′
U0
(Ũ)δ′′(Ũ − U)

− c

12π
σ′
U0
(U)δ′′(Ũ − U)− c

6π
σ′
U0
(U)σ′

U0
(Ũ)δ′(Ũ − U). (2.56)

Recall now the following easily verified identities that hold for any smooth functions

f1(Ũ , U) and f2(Ũ , U) that vanish at Ũ = U :

f1δ
′′(Ũ − U) = −2 (∂Ũf1) ∂Ũδ(Ũ − U)−

(
∂2
Ũ
f1
)
δ(Ũ − U) (2.57)

f2δ
′(Ũ − U) = − (∂Ũf2) δ(Ũ − U). (2.58)
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Using (2.57) with f1 = ∂ŨσU0(Ũ)− ∂UσU0(U) then yields

{TUU(U), TUU(Ũ)}eff =
c

24π
δ′′′(Ũ − U)− c

6π

(
σ′′
U0
(Ũ)
)
∂Ũδ(Ũ − U)

− c

12π

(
σ′′′
U0
(Ũ)
)
δ(Ũ − U)− c

6π
σ′
U0
(U)σ′

U0
(Ũ)δ′(Ũ − U)

=
c

24π
δ′′′(Ũ − U)− 2TUU(Ũ)∂Ũδ(Ũ − U)

− c

12π

(
σ′′′
U0
(Ũ)
)
δ(Ũ − U)

+
c

6π

(
[σ′
U0
(Ũ)]2 − σ′

U0
(U)σ′

U0
(Ũ)
)
δ′(Ũ − U)

=
c

24π
δ′′′(Ũ − U)− 2TUU(Ũ)∂Ũδ(Ũ − U)

− c

12π

(
σ′′′
U0
(Ũ)
)
δ(Ũ − U)

− c

6π

(
2σ′

U0
(Ũ)σ′′

U0
(Ũ)− σ′′

U0
(U)σ′

U0
(Ũ)
)
δ(Ũ − U)

=
c

24π
δ′′′(Ũ − U)− 2TUU(Ũ)∂Ũδ(Ũ − U)

−T ′
UU(Ũ)δ(Ũ − U)

− c

6π

(
σ′
U0
(Ũ)σ′′

U0
(Ũ)− σ′′

U0
(U)σ′

U0
(Ũ)
)
δ(Ũ − U), (2.59)

where the third step used (2.58) with f2 = [∂ŨσU0(Ũ)]
2 − ∂UσU0(U)∂ŨσU0(Ũ). Since the

final term in (2.59) vanishes, we see that (2.59) gives the standard stress tensor algebra

as desired.

2.4.4 The HRT-area algebra

We now we turn to the commutator of HRT-areas. Using the results from Sec-

tions 2.4.2 and 2.4.3, we can compute the semiclassical commutator of an HRT-area

operator with the boundary stress tensor, as well as that between two area operators

AHRT (U1, V1, U2, V2) and AHRT (U
′
1, V

′
1 , U

′
2, V

′
2). As in section 2.3.3, the arguments denote

the coordinates of the two anchor points that define ∂R. We again use the renormalized

area operator (2.23) whose dependence on σ is given both by the explicit term in (2.25)

and the dependence of (2.24) on σ through U(u) and V (v). Using ÃHRT to denote the
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renormalized area in the conformal frame where the stress tensor vanishes (and where

the boundary metric is −dudv), the second of these takes the explicit form

ÃHRT (U1, V1, U2, V2) = ln[4(u1 − u2)(v2 − v1)]

= ln

[
4

∫ U1

U2

dUe−2σ(U)

∫ V2

V1

dV e−2σ̂(V )

]
.

(2.60)

Taking functional derivatives with respect to σ yields

δAHRT (U1, V1, U2, V2)

δσ(U)
=− 2e−2σ(U)

∣∣∣∣
∫ U1

U2
dU ′′e−2σ(U ′′)

∣∣∣∣
Θ(max(U1, U2)− U)Θ(U −min(U1, U2))

=− 2e−2σ(U)

|u(U1)− u(U2)|
Θ(max(U1, U2)− U)Θ(U −min(U1, U2)),

(2.61)

with an analogous expression for the functional derivative of the area with respect to σ̂.

The area operator and stress-energy tensor commutator

We will now use the above results to understand the commutator of an HRT area

operator with the boundary stress tensor. We introduce the notation ÃHRT ≡ ÃU0,V0 ,

where U0 and V0 are the finite points at which σU0(U) and σ̂V0(V ) are independent of the

stress tensor. From Eq. (2.61), we find

{ÃU0,V0(U1, V1, U2, V2), TUU(U)} =

∫ U1

U2

dU ′ δÃU0,V0(U1, V1, U2, V2)

δσU0(U
′)

{σU0(U
′), TUU(U)}

=− 2

u(U1)− u(U2)

∫ U1

U2

dU ′e−2σU0
(U ′){σU0(U

′), TUU(U)}.

(2.62)
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Using Eq. (2.25), we see the full commutator is given by

{AU0,V0(U1, V1, U2, V2), TUU(U)} = {ÃU0,V0 , TUU(U)}+{σU0(U1), TUU(U)}+{σU0(U2), TUU(U)}.

(2.63)

Using the explicit form of {σU0(U
′), TUU(U)} as given in Eq. (2.50), most of the resulting

terms cancel among themselves after insertion into (2.63). The result reduces to

{AHRT (U1, V1, U2, V2), TUU(U)} =− 2

u(U1)− u(U2)

∫ U1

U2

dU ′e−2σU0
(U ′){σU0(U

′), TUU(U)}phys

+ {σU0(U1), TUU(U)}phys + {σU0(U2), TUU(U)}phys.

(2.64)

where

{σU0(U
′), TUU(U)}phys = σ′

U0
(U)δ(U ′ − U)− 1

2
δ′(U ′ − U). (2.65)

Plugging Eq. (2.65) into Eq. (2.64) gives the final results

{
AHRT (U1, V1, U2, V2)

4G
, TUU(U)

}
=

1

4G[u(U1)− u(U2)]
[e−2σU0

(U1)δ(U1 − U)− e−2σU0
(U2)δ(U2 − U)]

+
σ′
U0
(U)

4G
δ(U1 − U)− 1

8G
δ′(U1 − U)

+
σ′
U0
(U)

4G
δ(U2 − U)− 1

8G
δ′(U2 − U),

{
AHRT (U1, V1, U2, V2)

4G
, TV V (V )

}
=

1

4G[v(V1)− v(V2)]
[e−2σ̂V0 (V1)δ(V1 − V )− e−2σ̂V0 (V2)δ(V2 − V )]

+
σ̂′
V0
(V )

4G
δ(V1 − V )− 1

8G
δ′(V1 − V )

+
σ̂′
V0
(V )

4G
δ(V2 − V )− 1

8G
δ′(V2 − V ).

(2.66)
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While the right-hand side appears to depend on U0, the U0 dependence of σU0 (and thus of

u(U)) is determined by (2.20) and the boundary conditions that both σU0(U) and its first

U derivative vanish at U0. Using this result, a careful calculation shows the right-hand

side to be independent of U0.

Note that for the special case U1 = 0 = V1, U2 = −∞, V2 = ∞ with σU0(U) =

σ̂V0(V ) = 0, our (2.66) reduces to the λ-derivatives of (2.21) and (2.22) evaluated at

λ = 0. This establishes the consistency of the above with the results of sections 2.2 and

2.3.

The commutator between two area operators

Our final task will be to write the semiclassical commutator of two HRT area operators

in a similar fashion. As in section 2.3.3, we write any AHRT (U1, V1, U2, V2) in the form

AHRT (U1, V1, U2, V2) = AU(U1, U2) + AV (V1, V2) + 2 ln 2, (2.67)

and similarly ÃHRT = ÃU(U1, U2) + ÃV (V1, V2) + 2 ln 2. However, to make manifest the

dependence of the renormalized HRT-area on U0 and V0 as functionals of the stress tensor,

we will instead use the notation ÃU ≡ ÃU0 and ÃV ≡ AV0 , where U0 and V0 are defined

as above. Noting that the U parts are functionals of the right-moving stress tensor while

the V parts are functionals of the left-moving stress tensor, we see that the U and V

parts commute with each other. We may then focus on the commutator between two U

parts with the understanding that results for the V commutators can be recovered using

the symmetry U ⇄ V .
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For two HRT surfaces anchored respectively at (U1, U2) and (U ′
1, U

′
2), we have

{AU(U1, U2), AU(U
′
1, U

′
2)} ={ÃU0(U1, U2), ÃU ′

0
(U ′

1, U
′
2)}

+ {ÃU0(U1, U2), σU ′
0
(Ũ1)}

+ {ÃU0(U1, U2), σU ′
0
(Ũ2)}

+ {σU0(U1), ÃU ′
0
(U ′

1, U
′
2)}

+ {σU0(U2), ÃU ′
0
(U ′

1, U
′
2)}

+ {σU0(U1), σU ′
0
(U ′

1)}+ {σU0(U1), σU ′
0
(U ′

2)}

+ {σU0(U2), σU ′
0
(U ′

1)}+ {σU0(U2), σU ′
0
(U ′

2)}.

(2.68)

The first term in the above expression is given by

{ÃU0(U1, U2), ÃU ′
0
(U ′

1, U
′
2)} =

∫ U1

U2

dU

∫ U ′
1

U ′
2

dU ′ δÃU0(U1, U2)

δσU0(U)

δÃU ′
0
(U ′

1, U
′
2)

δσU ′
0
(U ′)

{σU0(U), σU ′
0
(U ′)},

(2.69)

and the next four terms will have forms analogous to

{ÃU0(U1, U2), σU ′
0
(U ′)} =

∫ U1

U2

dU
δÃU0(U1, U2)

δσU0(U)
{σU0(U), σU ′

0
(U ′)}. (2.70)

We can evaluate (2.69) and (2.70) using the effective σ-commutators (2.53) and (2.54),

as well as Eq. (2.61). We then use these results to solve for the full HRT are commutator

(2.68). Due to the step functions in (2.53) and (2.54), it is convenient to divide the

calculation into cases. Let us first consider the cases shown at left in figure 2.2, where

the intervals (U1, U2) and (U ′
1, U

′
2) either have no intersection or where one interval is

fully contained in the other. These two situations are equivalent due to the symmetry

under interchange of R with R̄. For this case, one finds that the various terms cancel to
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γ2

γ1

Planar boundary

U
V

γ3 γ2

γ1

Planar boundary

U
V

Figure 2.2: Various possible relative configurations for the anchor points of HRT surfaces.
In the left panel, the U coordinates of the anchors of γ2 define an interval that is fully
contained in the corresponding U interval for γ1, while the anchors of γ3 define a U
interval that does not intersect that defined by γ1. In such cases the U parts of the
HRT-areas commute. The same statements hold with U replaced by V . In contrast, in
the right panel the U intervals defined by γ1 and γ2 intersect without one being fully
contained in the other. In this case the commutator of the U parts of the HRT-areas will
not vanish.

give

{AU(U1, U2), AU(U
′
1, U

′
2)}U = 0. (2.71)

This should be no surprise as, depending on the V -values of the anchor points, this case

allows the two HRT surfaces to be spacelike separated.

The remaining case occurs when the intervals (U1, U2) and (U ′
1, U

′
2) overlap without

having one fully contained in the other; see right panel of figure 2.2. For notational

simplicity we let ui = u(Ui), u
′
i = u(U ′

i) and we take both U1 > U2 and U ′
1 > U ′

2. In this
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case we find

{AU(U1, U2), AU(U
′
1, U

′
2)} =





−6π
c

(
1− 2(u1−u′1)(u2−u′2)

(u1−u2)(u′1−u′2)

)
, U ′

2 < U2 < U ′
1 < U1

6π
c

(
1− 2(u1−u′1)(u2−u′2)

(u1−u2)(u′1−u′2)

)
, U2 < U ′

2 < U1 < U ′
1,

(2.72)

again with analogous results for the V parts. We see there is no remaining dependence

on U0 or U ′
0,

Let us now further explore this result by studying special cases. We begin by noting

that choosing U1 = 0, V1 = 0 and U2 = −∞, V2 = ∞ sets AHRT (U1, V1, U2, V2) =

AHRT [R0], which is the case studied previously7 in section 2.3. Combining expression

(2.72) with the corresponding result for V then yields

{AHRT [R0], AHRT (U
′
1, V

′
1 , U

′
2, V

′
2))} = −8πG

(
u′1Θ(−u′1u′2)
u′1 − u′2

+
v′1Θ(−v′1v′2)
v′2 − v′1

)
. (2.73)

To evaluate this on the AdS3 vacuum we set u′i = U ′
i , v

′
i = V ′

i . The result then agrees with

(2.31). We thus conclude that (2.72) is the generalization of (2.29) to general intervals

and to arbitrary solutions in our phase space.

Another interesting special case arises where we again evaluate the commutator on

the AdS3 vacuum (thus setting ui = Ui, u
′
i = U ′

i), but where we take all of the anchor

points to lie on a t = constant slice of the boundary. Choosing this slice to be t = 0, this

is equivalent to setting ui = Ui = −Vi = −vi, u′i = U ′
i = −V ′

i = −v′i. As a result, if the U

term gives the upper result on the right-hand-side of (2.72), then the V term gives the

analogue of the lower result and the two cancel; i.e., when R1, R2 are both subsets of the

t = 0 slice on the boundary we find

7Section 2.3 in fact defined R0 only in the Poincaré vacuum, but here we generalize the definition so
that in any spacetime R0 is the region between (U, V ) = (0, 0) and (U, V ) = (−∞,∞).
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{AHRT [R1], AHRT [R2]} = 0. (2.74)

This result is to be expected from the fact that commutators of real functions must

change sign under time reversal (as indicated in the quantum mechanical context due

to the required factor of i in the commutator), while the specified configuration and

background are manifestly invariant under time-reversal. Indeed, for this reason the

leading semiclassical commutator of HRT-areas will always vanish on a background that

enjoys a time-reversal symmetry that leaves invariant both R1 and R2.

2.5 Discussion

The goal of our work was to study the flow on phase space generated by HRT-

areas AHRT [R] in Einstein-Hilbert gravity, filling in various gaps in the literature. In

particular, we showed that the canonical commutation relations can be used to evaluate

this flow on any bulk Cauchy surface Σ passing through the HRT surface γR. On such

surfaces, the flow leaves the induced metric invariant but shifts the extrinsic curvature

by a delta-function as described by (2.13). As predicted in [115], this effectively boosts

the entanglement wedge of R relative to that of the complementary region R̄. However,

the effect on the region to the future or past of γR must be determined by solving the

bulk equations of motion in the presence of appropriate boundary conditions.

Such boundary conditions lead to a difference between HRT-area flow and the kink

transformation of [115]. This difference was again predicted in [115]. For vacuum AdS3

spacetimes one can compute this difference and use it to obtain explicit formulae for the

action of our flow on both the boundary stress tensor and other HRT-areas. Results

were presented in section 2.3 for quantities evaluated on the Poincaré AdS3 vacuum.
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Section 2.4 then used a different approach to evaluate the associated commutators on

general vacuum solutions asymptotic to AdS3. This latter approach was based on the

fact that, since all such solutions can be generated from the Poincaré vacuum by acting

with boundary conformal transformations, any observable in this context can in principle

be written as a functional of the boundary stress tensor. This method may also be of

interest in its own right for computing other commutators for which the action on initial

data is more complicated than that of AHRT [R].

We note that [114] also studied the effect of applying the transformation (2.13) at

non-extremal codimension-2 spacelike surfaces γ. Again, this corresponds to boosting the

initial data in what one might call the right wedge relative to that in the complementary

(left) wedge. It was noted in [114] that when γ is non-extremal the resulting initial data

fails to satisfy the constraint equations of Einstein-Hilbert gravity. From our perspective,

this is no surprise. For extremal γ our (2.13) is generated by a diffeomorphism invariant

observable, which necessarily commutes with all constraints. But more generally we

would expect this to fail. In particular, while the flow generated by any diffeomorphism-

invariant A[γ] must also preserve the constraints, for non-extremal γ there will be a

non-trivial contribution from the first term in (2.4), so that the flow would no longer be

given simply by (2.13). In this case the contribution from the first term in (2.4) must

precisely cancel the contribution from the constraint-violating part of (2.13).

Some of our results may have further implications for holography, especially in con-

nection with tensor network models of quantum error correction [69, 71]. One such

result is that the commutator of two HRT-areas vanishes at leading semiclassical order

when evaluated on a background where both HRT-surfaces lie in a common surface of

time-symmetry.8 As a result, such HRT-areas may be specified simultaneously with high

accuracy. This observation may be useful in constructing bulk analogues of the above

8This in fact follows directly from time symmetry and did not require detailed computation.
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tensor networks (e.g. as in [78, 28]) which appears to require bulk states in which such

areas are sharply peaked [129, 75].

Another result that deserves further investigation was the observation in section 2.3.2

that HRT-area flow produces states of infinite energy. As argued in [113, 44, 114], the

development of a UV singularity should be no surprise. But note that any sharp quantum

eigenstate of AHRT [R] will be invariant under the flow that this operator generates. In

particular, the expectation value of the energy will not change under this flow. We thus

conclude that the expected energy in such states must be divergent, or at least set by

some UV regulator. This may again have implications for the use of tensor networks in

holography. More generally, this feature may be relevant for understanding the sense in

which holographic quantum error correcting codes decompose into superselection sectors

defined by AHRT [R] [60]. The point here is that the relevant code subspace is often taken

to be states of low energy in the dual gauge theory [58], while we now see explicitly that

states in any given such superselection sector must have energies set by the UV cutoff.

However, as we see from the 2+1 dimensional case, this need not cause large curvatures

in the bulk.

With regard to future directions, we recall that our work focussed on Einstein-Hilbert

gravity. But it is natural to expect similar results to hold in the presence of higher

derivative corrections. This will be explored in the forthcoming work [124], which will

also comment further on the relation of AHRT [R] to the modular Hamiltonians on R and

R̄.

50



Chapter 3

The Action of Geometric Entropy in

Topologically Massive Gravity

3.1 Introduction

The study of entanglement entropy has contributed crucially to progress across theo-

retical physics. For instance, entanglement entropy has played an integral part in under-

standing the nature of quantum field theories [130], as well as understanding topological

order in quantum many-body systems [131, 132]. Additionally, in holography, a funda-

mental outcome of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspon-

dence is the relation between entanglement entropies in the CFT and geometric entropies

σ of codimension-2 extremal surfaces in the AdS bulk. This relation is described by the

Ryu-Takayanagi (RT) correspondence [61, 62], or by its covariant generalization, the

Hubeny-Rangamani-Takayanagi (HRT) correspondence [63]. In the limit where the bulk

is described by Einstein-Hilbert gravity, the geometric entropy σ is just A/4G where A

is the area of the surface, though higher derivative terms in the action provide additional

corrections to σ [76].
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Given an HRT surface defined by a boundary region R, the area AHRT [R] of this HRT

surface is hence of great interest (even without reference to its CFT dual). In particular,

one can think of AHRT [R] as a quantum operator in the bulk by promoting it from its

classical role as a function on the gravitational phase space. The action of this operator in

semiclassical gravity was studied directly in [3], which is reproduced in Section 2, where

it was found to generate a boundary-condition-preserving kink transformation. As will

be described in more detail in Section 3.2.1 below, this transformation acts as a relative

boost between the entanglement wedges on either side of the HRT surface. Prior to the

explicit study of the action of AHRT [R] in [3], there were many closely related results in

various contexts [108, 109, 110, 111, 118, 119, 120], which suggested a similar form for

the transformation. Most relevant to our work here are [112, 113, 44, 114, 115], which

suggested that the HRT area action would generate this boost-like transformation based

on comparison with modular Hamiltonians. These modular Hamiltonians are given by

the expression K = − log ρ for some state ρ.

In Section 2 we determined the action of AHRT [R] in the gravitational phase space,

working in AdSD Einstein-Hilbert gravity and including arbitrary minimally coupled

matter. To understand the action on the phase space, we calculated Poisson brackets

between AHRT [R] and certain gravitational data. Semiclassically, these Poisson brackets

correspond to commutators, up to a factor of i. We also computed explicit Poisson

brackets between HRT areas defined by different boundary regions R in the Poincaré AdS

groundstate for 2 + 1 Einstein-Hilbert gravity. This calculation proceeded by starting

with the boundary stress tensor algebra, then extending it to an area commutator via

the Leibniz rule. The goal of the current work is to extend the results of Section 2 to

2+1-dimensional asymptotically AdS spacetimes with a chiral boundary CFT, by which

we mean a CFT with unequal left and right central charges.

The present work is inspired by [104], where the authors find an explicit expression for
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the modular commutator [133, 134] in 1+ 1D chiral CFTs. This modular commutator is

defined as J(A,B,C)ρ = ⟨[KAB, KBC ]⟩, where KAB and KBC are the boundary modular

Hamiltonians associated with regions AB and BC, respectively, ρ = ρABC is some state,

and ⟨...⟩ denotes expectation values in that state. For contiguous CFT intervals A, B,

and C on a Cauchy surface Σ, the authors of [104] find a modular commutator given by

J(A,B,C)Ω =
πcL
6

(2ηv − 1)− πcR
6

(2ηu − 1) (3.1)

where cL, cR are the left and right central charge, respectively, |Ω⟩ is the vacuum state on

Σ, and u = t−x and v = t+x are light cone coordinates. Additionally, ηu =
(u1−u2)(u3−u4)
(u1−u3)(u2−u4)

and ηv = (v1−v2)(v3−v4)
(v1−v3)(v2−v4) , where (u1, v1) and (u2, v2) are the anchor points of region A,

(u2, v2) and (u3, v3) are the anchor points of region B, and (u3, v3) and (u4, v4) are the

anchor points of region C.

We would like to compare Eq. (3.1) to bulk area commutators for general pure states

in the bulk. By the Jafferis-Lewkowycz-Maldacena-Suh (JLMS) relation [117], we have

KR = Aext
4G

+Kbulk+Scorrections, where Aext is the area of an extremal surface corresponding

to the boundary region R,Kbulk is the modular Hamiltonian of the bulk region enclosed by

the extremal surface, and Scorrections arise when computing quantum corrections. These

include Wald-like terms and higher derivative corrections, allowing for terms built from

extrinsic curvatures. In semiclassical gravity, we can safely ignore Kbulk, giving σ[R] ≈

KR, where σ may include the higher derivative corrections found in Scorrections. However,

this introduces a potential subtlety: σ[R] ≈ KR is true in any state, whereas the modular

commutator is given by a commutator of vacuum modular Hamiltonians.

We can remedy this issue by noting that, in the bulk semiclassical approximation,

eiλσ |ψ⟩ ≈ eiλKψ |ψ⟩ (3.2)
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for a modular Hamiltonian Kψ defined by the holographic pure state |ψ⟩, and some

arbitrary parameter λ1. This is enough to compute expectation values of commutators.

In particular, we find ⟨[KAB, KBC ]⟩Ω = ⟨[σ[AB], σ[BC]]⟩Ω for KAB, KBC defined in the

state |Ω⟩. In Einstein-Hilbert gravity, σ is an HRT area. In this case, Eq. (3.1) reduces

to J(A,B,C)Ω = πc
3
(ηv − ηu). This is exactly the area commutator computed in [3].

We now wish to extend the derivation of area commutators to find agreement with

the full modular commutator in Eq. (3.1). To do this, we need to modify our bulk space-

time so that it is dual to a boundary CFT with cL ̸= cR. This can be accomplished

by adding to the Einstein-Hilbert action a gravitational Chern-Simons term, which is

a higher-derivative term that preserves bulk diffeomorphism invariance, but which in-

troduces a gravitational anomaly in the dual CFT. This anomaly manifests as either

a non-conservation of the boundary stress tensor or, equivalently, as an anti-symmetric

part of the boundary stress tensor, thus allowing for chiral behavior in our boundary

CFT. This anomaly arises due to the theory’s sensitivity to the choice of coordinate sys-

tem at the boundary. In 2 + 1 bulk dimensions, the resulting bulk theory is known as

topologically massive gravity (TMG); see [135, 136, 137] for original references. Previous

work studying TMG in a holographic context includes [138, 139, 140, 141].

In TMG, due to the presence of the bulk Chern-Simons term, the geometric entropy

is no longer given by just the HRT area. Instead, the geometric entropy is given by

the HRT area plus an extra term, as derived from the bulk perspective in [142] (using

methods based on those in [65]). We will call this the TMG geometric entropy, and

denote the corresponding quantum operator as σTMG[R]. We can gain more intuition

about the TMG geometric entropy by comparing with Einstein-Hilbert gravity, where

we can think of the HRT area as the action of a massive particle propagating in the

bulk. In contrast, in TMG, the geometric entropy is given by the action of a massive

1This approximation will be explained in detail in the forthcoming work [125].
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spinning particle in the bulk. See [143, 144] for other studies on entanglement entropy

in the presence of gravitational anomalies.

Using the TMG geometric entropy computed in [142], we derive vacuum expecta-

tion values of commutators of σTMG, which indeed match the modular commutator in

Eq. (3.1). We also derive the Hamiltonian flow generated by σTMG in semiclassical gravity.

This direct calculation is a first step in understanding the action of geometric entropies

in general higher-derivative gravitational theories. References [115, 3] suggest that geo-

metric entropy flow should remain a boundary-condition-preserving kink transformation,

even with the inclusion of higher-derivative corrections to the Einstein-Hilbert action.

This conjecture will be studied further in [124]. Our work here is an explicit verification

of this hypothesis for TMG.

As a final comment before proceeding with an outline of the paper, we note that [145]

showed that chiral CFTs admit no lattice regularization due to the gravitational anomaly.

That reference also argued that this is an obstruction to defining and interpreting en-

tanglement entropy of subregions in chiral CFTs. A potential resolution is that one can

define entanglement entropy in another way, perhaps by topological-regulation (thinking

of the chiral CFT as induced on some boundary by a higher-dimensional non-chiral CFT)

or via a lattice-continuum correspondence (see, e.g., [146]). Or, it is possible entangle-

ment entropy cannot be defined, but that derivatives of the entanglement entropy still

make sense.2 We will not attempt to resolve this issue in this paper. We simply note

that it is subtle and remains an open question in the literature.

In Section 3.2.1, we reformulate the derivation of the phase space flow generated by

HRT areas in the language of Peierls brackets [147], which are equivalent to the more

familiar Poisson brackets but are more convenient for our purposes. We then use this

same Peierls bracket method to compute TMG geometric entropy flow in Section 3.2.2.

2We thank Jon Sorce for his insight on the lattice regularization issue and its potential resolutions.
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The result is a boundary-condition-preserving kink transformation, which is exactly the

transformation found for HRT area flow [3]. This result holds in spacetimes without

matter. More generally, it holds to first order in the flow parameter for spacetimes

with matter fields whose action is algebraic in the metric. This includes the usual two-

derivative scalar, Yang-Mills, and Proca fields.

In Section 3.3, we compute the algebra of TMG entropy operators. We use the bulk

perspective throughout this calculation, taking special care to include the Chern-Simons

contribution to the boundary stress tensor in Section 3.3.1, and computing σTMG for

general states in Poincaré AdS3 in Section 3.3.2. In Section 3.3.3, we calculate the

σTMG algebra in the vacuum using TMG geometric entropy flow, and in Section 3.3.4 we

calculate the σTMG algebra in general states using the stress tensor algebra. We provide

this calculation to make contact with [3], and as an independent check on our main

result in Section 3.2.2. In Section 3.3.4, we extend the work of [104] by finding the TMG

entropy algebra for disjoint boundary regions A, B, and C. Finally, in Section 5.6, we

conclude with some comments and possible future directions.

3.2 Geometric entropy flow

This section derives the geometric flow induced by the TMG geometric entropy σTMG.

The result applies to asymptotically AdS3 spacetimes with negative cosmological constant

Λ and without matter. It also holds to first order in the flow parameter λ in spacetimes

with matter fields whose action is algebraic in the metric, i.e., ”standard matter”. In

order to quantify the entropy flow, we compute Peierls brackets between the geometric

entropy and data on a particular Cauchy slice. In the bulk semiclassical approximation,

Peierls brackets describe commutatation relations between operators (up to the usual

factor of i). Importantly, a Peierls brakcet {A,B} is only well-defined if both A and B
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are gauge-invariant.

In the dual CFT, we consider the entanglement entropy of an achronal region R. In

semiclassical Einstein-Hilbert gravity, the associated geometric entropy is given by 1/4G

times the area of the corresponding HRT surface, which is the minimal codimension-2

extremal surface anchored to ∂R that satisfies the homology constraint of [121]. As we

will see, in TMG the geometric entropy is instead given by 1/4G times the area of some

surface γ (which lies in a Cauchy slice Σ), plus an additional term related to other data

on Σ. The surface γ is the one which extremizes the entropy functional σTMG. The

surface γ generally differs from the HRT surface one would find for cL = cR, but they are

the same when matter is not present [142].

Our Peierls bracket analysis will focus on the effect of geometric entropy flow on

Cauchy data on Σ. One can then solve the equations of motion to find the action on

the rest of the spacetime. In particular, we compute the bracket between the geometric

entropy σ and Kij, the extrinsic curvature of the codimension-1 surface Σ. Readers

unfamiliar with the Peierls bracket may wish to consult [148] (and references therein) for

background information.

The procedure to compute Peierls brackets starts by adding σ as a source to the

action. Then, we solve the new equations of motion to find the retarded and advanced

solutions for the extrinsic curvature, denoted as D−Kij
tot and D

+Kij
tot, respectively. The

rest of the data on Σ remains unchanged. Finally, the desired Peierls bracket is defined

by
{
σ,Kij(x)

}
= D−Kij

tot(x)−D+Kij
tot(x). (3.3)

Section 3.2.1 computes {AHRT [R]/4G,Kij(x)} in Einstein-Hilbert gravity to illustrate

the Peierls bracket method. We then compute {σTMG[R], K
ij(x)} in Section 3.2.2.
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3.2.1 Revisiting HRT area flow in semiclassical Einstein-Hilbert

gravity

In this section, we directly compute Peierls brackets in asymptotically AdSD Einstein-

Hilbert gravity with standard matter. This commutator was previously computed in

Section 2.2 using the canonical commutation relations of Einstein-Hilbert gravity; here,

we instead use the ADM formalism [149] and the Peierls bracket method. We perform

this calculation as a simple illustration of this method, before applying it to the more

complicated case of TMG. As we will show, our result here matches the previous result.

In the ADM formalism, we decompose the metric according to

ds2 = (−N2 +NiN
i)dt2 + 2N idxdt+ hijdx

idxj, (3.4)

where xi are coordinates in a Cauchy slice Σ and hij is the induced metric on Σ. Using

this decomposition, up to boundary terms the action can be written as [150]

I =

∫

M
dtdD−1x

√−g
[

1

16πG
(R− 2Λ) + LM

]

=

∫

M
dtdD−1xN

√
h

[
1

16πG
(r −K2 +KijK

ij − 2Λ) + LM
]
,

(3.5)

where M is the entire bulk manifold, r is the Ricci scalar on Σ, LM is the matter

Lagrangian, and Kij is the extrinsic curvature on Σ. The extrinsic curvature is defined

as

Kij =
1

2N
(ḣij −DiNj −DjNi), (3.6)

with Di the covariant derivative on Σ. We write the trace of Kij as K = hijK
ij.

Following the Peierls bracket method, we now add the geometric entropy defined by

a boundary region R as a source to the action. For semiclassical Einstein-Hilbert gravity,
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the geometric entropy is given by 1/4G times the area of the HRT surface γ corresponding

to the boundary region R. Additionally, we choose Σ so that it contains γ. The HRT

area is given by [3]

AHRT [R]

4G
=

1

4G

∫

γ

dD−2w
√
q(w)

=
1

4G

∫

M
dtdD−1x

√
q(x)δΣ(γ, x)δ(t− tΣ),

(3.7)

where qAB is the metric on the HRT surface, δΣ(γ, x) is a one-dimensional Dirac delta-

function on the Cauchy slice which localizes x to γ, and tΣ is the time associated with

the Cauchy slice. Adding this to the action in Eq. (3.5) with (infinitesimal) weight λ

gives the modified action

I ′ =

∫

M
dtdD−1x

(
N

16πG

√
h(x, t)[r(x, t)−K2(x, t) +Kij(x, t)K

ij(x, t)− 2Λ]

+N
√
h(x, t)LM(x, t) +

λ

4G

√
q(x)δΣ(γ, x)δ(t− tΣ)

)
.

(3.8)

Next, we set δI ′ = 0 and solve the resulting equations of motion. The modification

of the action introduces a new term containing δ(t − tΣ), and so, to cancel this term

in the equation of motion, we need another term proportional δ(t − tΣ). As we will

show, this can be achieved with an ansatz in which advanced and retarded solutions of

the induced metric remain continuous but in which advanced and retarded solutions for

Kij involve terms proportional to a Heaviside-function Θ(t − tΣ). We will denote the

retarded solution by D−Kij
tot and the advanced solution by D+Kij

tot. Below, we will focus

only on ”relevant” terms in the equation of motion. This simply means we will only keep

terms proportional to δ(t− tΣ) which, with the above ansatz, are simply those containing

time-derivatives of D±Kij
tot.

To find δI ′, we need to understand the functional derivatives of hij and qij with
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respect to hij. These are given [3] by

δhkl(x)
δhij(y)

= δikδ
j
l δ

(D−1)(x− y) (3.9)

δqAB(x)
δhij(y)

= ∂yi

∂x̃A
∂yj

∂x̃B
δ
(D−2)
γ (x, x̃(y))δΣ(γ, y). (3.10)

We also need to understand the variation of Kij with respect to hij, which is

δKkl(x)

δhij(y)
=

1

2N
∂t

(
δhkl(x)

δhij(y)

)
, (3.11)

and which can be evaluated fully using Eq. (3.9). Finally, we need the variation of

AHRT [R] with respect to hij, which is given by

δAHRT [R]

δhij(y)
=

1

2

∫

M
dtdD−1x

δqAB(x)

δhij(y)
qAB(x)δΣ(γ, x)δ(t− tΣ), (3.12)

where, when the metric and Kij are evaluated at tΣ, we do not write their explicit t-

dependence. We will evaluate this fully by inserting Eq. (3.10). This provides all of the

pieces needed to evaluate the variation of the modified action.

Keeping only the relevant terms, we have

δI ′rel =
1

16πG

∫
dt
√
h(t, y)δhij(t, y)

(
∂t[K(t, y)hij(t, y)−Kij(t, y)]

+ 2πλ

√
q(x̃(y))√
h(y)

qAB(x̃(y))
∂yi

∂x̃A
∂yj

∂x̃B
δ(t− tΣ)δΣ(γ, y)

)
.

(3.13)

Notice that LM does not factor into our calculation as long as it does not contain any

extrinsic curvature components. This is true for standard matter, as defined above. We

will now solve for the effect of the new source term at first order in λ about a background

solution of the λ = 0 theory. For source strength λ, we write the extrinsic curvature at
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this order in the form

Kij(t, y) = K̃ij(t, y) + λD±Kij
tot(t, y), (3.14)

where K̃ij is the original extrinsic curvature of the λ = 0 background.3 As discussed

above, D±Kij
tot must contain terms with Θ(t − tΣ), but it can also contain continuous

terms. Thus, we can write D±Kij
tot = D±Kij + D±Kij

cont, where D±Kij contains all

Heaviside-function terms and D±Kij
cont contains all continuous terms. Since the contin-

uous terms in the advanced and retarded solutions must agree on Σ, their difference

vanishes in the Peierls bracket, and we can rewrite Eq. (3.3) as

{AHRT [R], Kij(tΣ, y)} = D−Kij(tΣ, y)−D+Kij(tΣ, y). (3.15)

We now wish to solve for the advanced and retarded solutions to evaluate this Peierls

bracket.

Plugging Eq. (3.14) into Eq. (3.13) and setting δI ′rel = 0, we have

∂tD
±Kij(t, y)− hkl(t, y)∂tD

±Kkl(t, y)hij(t, y) =

2π

√
q(x̃(y))√
h(y)

qAB(x̃(y))
∂yi

∂x̃A
∂yj

∂x̃B
δΣ(γ, y)δ(t− tΣ).

(3.16)

3The calculation of HRT area flow is unaffected by the smoothness of K̃ij , which is important for
including matter in the background spacetime. This is explained in more detail at the end of this section.
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Integrating over time4 and performing a trace reverse gives our two solutions

D−Kij(t, y) = 2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ)

(
qAB(x̃(y)) ∂y

i

∂x̃A
∂yj

∂x̃B
− hij(y)

)
(3.17)

D+Kij(t, y) = −2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(tΣ − t)

(
qAB(x̃(y)) ∂y

i

∂x̃A
∂yj

∂x̃B
− hij(y)

)
. (3.18)

Finally, using the Peierls bracket definition in Eq.(3.3), we arrive at our result

{
AHRT [R]

4G
,Kij(tΣ, y)

}
=2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)

(
qAB(x̃(y))

∂yi

∂x̃A
∂yj

∂x̃B
− hij(y)

)

=− 2πδ̂Σ(γ, y) ⊥i⊥j,

(3.19)

where ⊥i is the unit normal to γ in Σ, and δ̂Σ(γ, y) =

√
q(x̃(y))√
h(y)

δΣ(γ, y) is a one-dimensional

Dirac delta-function of the proper distance between x and γ measured along geodesics in

Σ orthogonal to γ. Since hij remains unchanged under the addition of the source term

σ, the Peierls bracket {AHRT [R], hij(tΣ, y)} vanishes. The flow thus adds a δ-function

(times −2πλ) to K⊥⊥, but leaves all other initial data on Σ unchanged. This precisely

matches our previous result for the HRT area flow in [3], which we arrived at using the

standard Poisson brackets of phase space variables on the Cauchy slice.

How can we understand this result geometrically? We can integrate Eq. (3.19) to

yield the effect of a finite flow by a parameter λ, and we see that the flow induced by

the HRT area introduces a relative boost in Σ, on either side of γ. This ”kinks” the data

on the Cauchy slice in the bulk, as shown in Figure 3.1a, and the rest of the solution

is determined by the equations of motion. However, we must take special care with

boundary conditions. In particular, since Σ represents a definite instant of time, the

4Because the induced metric hij depends on time, our expressions for D±Kij are not the exact
results of these integrals. Instead, Eq. (3.17) and (3.18) give only the discontinuous terms. If we expand
each metric as a power series in t, then our expressions for D±Kij come from considering only the term
proportional to θ(t−tΣ); higher-order terms in the metric give continuous terms which do not contribute
to the Peierls bracket.
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2πλ
γ Σ(Corig)

Σ(Cnew)

(a)

∂Σ

∂R

D(R̄) D(R)

Corig
∣∣∣∣
∂Σ

= Cnew
∣∣∣∣
∂Σ

(b)

Figure 3.1: The geometry of the boundary-condition-preserving kink transformation.
Figure 3.1a shows the transformation of the Cauchy data on Σ in the bulk, from Corig to
Cnew. The flow induces a relative boost with parameter 2πλ between the left and right
sides of Σ. Figure 3.1b depicts the transformation induced in the boundary, showing
the domains of dependence D(R) of R and D(R̄) of R̄. ∂R is the intersection between
the boundary and γ, and ∂Σ is the boundary of a smooth bulk Cauchy surface Σ in the
original spacetime. On the surface ∂Σ, Corig = Cnew. All boundary observables on that
surface are preserved by the flow generated by AHRT [R].

boundary of Σ (∂Σ) must remain fixed due to the asymptotic AdS boundary conditions.

This is shown in Figure 3.1b. Following [3], we refer to this transformation as a boundary-

condition-preserving kink transformation.

The treatment of boundary conditions is in contrast to the original kink transfor-

mation introduced in [115]. Defining K[γ] as the generator of this original kink trans-

formation by λ, then K[γ] has the same bulk action as AHRT [R]/4G but has different

boundary conditions as K[γ] would instead introduce a relative boost on either side of

∂R, the boundary of γ. In particular, this K[γ] also acts as a relative boost at the

boundary. Then, defining HR to be (2π times) the generator of the boundary one-sided

boost (taken to generate flow toward the future in the right wedge), the relation can be

expressed in the form AHRT [R]
4G

= HR+K[γ]. This notation will be useful in Section 3.3.3.

As a final comment, we note that integrating the flow to finite λ requires an un-

derstanding of the Peierls Bracket evaluated at certain background solutions that are

non-smooth as well as at those that are smooth. This is because, if we take a smooth
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background solution and apply HRT area flow, then the solution immediately becomes

non-smooth due to the kink transformation. In the analysis above, we allowed for non-

smooth K̃ij, so there is no obstruction to integrating to finite λ. However, as we will see,

integrating to finite λ is more difficult for TMG entropy flow.

3.2.2 Entropy flow in TMG

We now apply the Peierls bracket method to TMG in spacetimes asymptotic to AdS3

with standard matter. In this theory, the bulk action is

I = IEH − βICS, (3.20)

where IEH is the Einstein-Hilbert action and ICS is the Chern-Simons action, defined as

ICS =

∫

M
Tr

[
ΓdΓ +

2

3
Γ3

]
. (3.21)

The constant β measures the anomaly coefficient. It is defined as

β =
cL − cR
96π

, (3.22)

and we can use this to write the left and right central charges as cL = c0 + 48πβ and

cR = c0 − 48πβ, where c0 = 3/2G is the central charge in the absence of the Chern-

Simons term. For more information on the notation used above, we refer the reader to,

e.g., [138].

Again, we have a boundary region R and its corresponding HRT surface γ. We are

interested in calculating the Peierls bracket between σTMG[R], the geometric entropy

determined by R, and Kij, the extrinsic curvature of a Cauchy slice Σ containing γ. To
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do so, we add σTMG as a source to the action, take the variation, and solve the equations

of motion. Thus, we are interested in solutions to the equation

δIEH − βδICS + λδσTMG[R] = 0. (3.23)

In Section 3.2.1, we calculated the relevant terms of δIEH . As we will show, these terms

will again be the only relevant terms in our TMG calculation. We are left with computing

the relevant terms in δICS and δσTMG[R].

In what follows, we will fix our gauge so that N = 1 and N i = 0. As we mentioned

above, this gauge-fixing is allowed because a Peierls bracket {A,B} must have gauge-

invariant A and B.

Calculating δσTMG[R]

In TMG, the geometric entropy is modified by an additional term, and so is no longer

given by the HRT area. Instead, by Equation (3.26) of [142], the TMG geometric entropy

defined by a boundary region R is given by

σTMG[R] =
1

4G

∫

γ

ds

(√
gµνẊµẊν − 32πGβν̃ · ∇ν

)
, (3.24)

where γ is the curve in spacetime that extremizes σTMG. The first term in the expression

gives the area of γ. Without matter, γ is the HRT surface one would find for cL = cR, and

so the first term is the usual HRT area term. However, with matter present, γ generally

differs from the HRT surface. At each point of γ the vectors νµ, ν̃µ define an orthonormal

frame in the orthogonal plane. Now, the exact Poincaré AdS3 solution has the metric

ds2 =
1

z2
(−dt2 + dx2 + dz2), (3.25)
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where we set lAdS = 1. Our spacetime is asymptotically AdS3, so we can take our metric

to asymptote to Eq. (3.25) and use the corresponding coordinates (t, x) to specify vectors

on the boundary. We define the normal frame at the boundary as ν∂ = ∂t and ν̃∂ = ∂x.

We choose a Cauchy slice Σ so that it contains γ. The surface γ has two endpoints, and,

in general, they do not have the same t-coordinates but they do lie on the same spacelike

line on the boundary. We are free to choose Σ to asymptote to that line, which is a boost

of the constant t slice by some boost parameter α. Then, we can define the boundary

vectors,

nµ∂ = (coshα,− sinhα, 0) (3.26)

⊥µ
∂= (− sinhα, coshα, 0) (3.27)

where nµ is the vector normal to Σ and ⊥µ is the vector normal to γ in Σ, and nµ∂ and

⊥µ
∂ are the boundary values of these vectors. Thus, in the bulk, we must have

νµ = coshα(nµ + tanhα ⊥µ) (3.28)

ν̃µ = coshα(tanhαnµ+ ⊥µ). (3.29)

Plugging into the last term in the action, we have

ν̃µ∇νµ = ⊥µ vσKµσ

= ⊥i vjKij,

(3.30)

where, since ⊥µ and vµ lie within Σ, we denote them with Latin indices.

Let us define the area of a surface ξ as A[ξ, g], where g is the spacetime metric. Using
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our above result in Eq. (3.24), we get

σTMG[R] =
A[γ, g]

4G
− 8πβ

∫

γ

ds ⊥k vlKkl(s)

=
A[γ, g]

4G
− 8πβ

∫

γ

dx
√
q(x) ⊥k vlKkl(x).

(3.31)

We now wish to vary the geometric entropy. In general, there are two components to this

variation: the variation with respect to the surface and the variation with respect to g.

However, because γ extremizes σTMG, the variation with respect to the surface vanishes

when evaluated at γ. So, we need only consider variations with respect to the metric,

and can treat γ as fixed.5 This yields

δσTMG[R] =
δ̃A[γ, g]

4G
− 8πβ

∫

γ

dx
√
q(x)

[
⊥k vlδKkl(x) + δ(⊥k vl)Kkl(x)

+
δ
√
q(x)√
q(x)

⊥k vlKkl(x)

]

=
δ̃A[γ, g]

4G
− 8πβ

∫

M
dtd2x

√
q(x)

[
⊥k vlδKkl(x) + δ(⊥k vl)Kkl(x)

+
δ
√
q(x)√
q(x)

⊥k vlKkl(x)

]
δΣ(γ, x)δ(t− tΣ),

(3.32)

where δ̃A[γ, g] is the variation of the area at fixed γ, as given by Eq. (3.12).6 As before,

when the metric and Kij are evaluated at tΣ, we do not write their explicit t-dependence.

We also have expressions for δKij and δqij, so all that is left to understand is the variation

of ⊥k vl. We have

0 = δ(hij ⊥i⊥j) =⊥i⊥j δhij + 2 ⊥i δ ⊥i, (3.33)

5For a more detailed argument on why we treat γ as fixed, we refer the reader to the discussion at
the start of Section 2.1 in [3].

6While Eq. (3.12) was defined as the HRT area variation, it holds more generally as the variation of
an area A[ξ, g] with respect to the metric.
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which gives

δ ⊥i= −1

2
⊥i⊥k⊥l δhkl + ζvi, (3.34)

where ζ is an unknown constant. Similarly, we can write

0 = δ(hijv
ivj) = vivjδhij + 2viδv

i, (3.35)

which gives

δvi = −1

2
vivkvlδhkl + η ⊥i, (3.36)

where η is a constant. Since we can treat γ as a fixed surface, the only components of

δvi we need are those which keep it normalized. Hence, η = 0, so

δvi = −1

2
vivkvlδhkl. (3.37)

To solve for ζ, we now use

0 = δ(hij ⊥i vj) =⊥i vjδhij + ζ, (3.38)

yielding ζ = − ⊥i vjδhij. Thus, we have

δ ⊥i= −1

2
⊥i⊥k⊥l δhkl − vi ⊥k vlδhkl. (3.39)

We can now use Eq. (3.12) for the area variation, Eq. (3.37) for the variation of vi,
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and Eq. (3.39) for the variation of ⊥i in Eq. (3.32). This gives

δσTMG[R] =

∫
dt
√
q(x̃(y))

(
− 4πβ ⊥i vjδ′(t− tΣ)

+
1

8G
qAB(x̃(y))

∂yi

∂x̃A
∂yj

∂x̃B
δ(t− tΣ)− 8πβvkvlKkl(y) ⊥i vjδ(t− tΣ)

− 4πβ ⊥k vlKkl(y) ⊥i⊥j δ(t− tΣ)− 4πβ ⊥k vlKkl(y)v
ivjδ(t− tΣ)

+ 4πβqAB(x̃(y))
∂yi

∂x̃A
∂yj

∂x̃B
⊥k vlKkl(y)δ(t− tΣ)

)
δΣ(γ, y)δhij(y).

(3.40)

As in Einstein-Hilbert gravity, the source variation includes terms proportional to a Dirac

delta function, δ(t− tΣ). However, unlike the previous case, the first term in Eq. (3.40)

contains a time derivative of a delta function, denoted as δ′(t − tΣ). We thus need

other terms in the equation of motion to be proportional to δ-functions and δ-function

derivatives, so they can cancel these new terms. As we will show in Section 3.2.2, there

will be terms in the equation of motion containing ∂2tD
±Kij

tot, so we can use the same

ansatz as before. Namely, we will choose the advanced and retarded solutions of the

induced metric, D±hij, to be continuous, but choose solutions of the extrinsic curvature,

D±Kij
tot, to have discontinuous terms proportional to a Heaviside-function.

As before, we will focus below only on ”relevant” terms in the equation of motion. In

this case, the relevant terms are ones containing ∂tD
±Kij

tot or ∂
2
tD

±Kij
tot; with our ansatz,

these will give the necessary δ(t− tΣ) and δ
′(t− tΣ) terms.

Calculating δICS

The variation of ICS, as given in [139], is

δICS = −2

∫

M
dtd2x

√
hCµνδgµν , (3.41)
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where Cµν is the Cotton tensor. In 3-dimensions, the Cotton tensor is

Cµν =ϵµασ∇α

(
Rν
σ −

1

4
δνσR

)

=ϵµασ∂αR
ν
σ + ϵµασΓναλR

λ
σ − ϵµασΓλασR

ν
λ −

1

4
ϵµαν∇αR.

(3.42)

It is of course important that all equations of motion are satisfied. However, for the

purposes of this calculation, we need only consider the equations involving the µ = i,

ν = j components of the Cotton tensor, where i, j are spatial indices. This is because

variations of σTMG[R] depend only on the induced metric, and not on any other met-

ric components. Thus, these are the parts of the equation of motion changed by the

introduction of the source, and all the other equations are constraints. The Bianchi iden-

tities guarantee that if the constraints are satisfied on any surface (e.g., to the past in

a retarded solution) and if the equations of motion studied in this section are satisfied,

the constraints will continue to hold on any surface. As a result, we need not explicitly

check that the constraints are satisfied, and we may focus our attention on the remaining

equations of motion.

After some cancellations, the spatial components of the Cotton tensor are

Cij =
1

2

(
ϵiασ∂αR

j
σ + ϵiασΓjαλR

λ
σ + ϵjασ∂αR

i
σ + ϵjασΓiαλR

λ
σ

)
, (3.43)

where we made explicit the symmetry under exchange of i and j. As above, we are

only interested in contributions containing a time derivative of the extrinsic curvature.

Evaluating Eq. (3.43) in the gauge N = 1 and N i = 0, and keeping only relevant terms,
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we arrive at

Cij
rel =

1

2
ϵitk
(
∂2tK

j
k − 4∂t(KlkK

lj) + ∂t(KK
j
k) +Kj

l ∂tK
l
k −Kj

k∂tK

)

+
1

2
ϵjtk
(
∂2tK

i
k − 4∂t(KlkK

li) + ∂t(KK
i
k) +Ki

l∂tK
l
k −Ki

k∂tK

)
.

(3.44)

Using Eq. (3.9) and the identity

δhij(x) =
δhij(x)

δhkl(y)
δhkl(y), (3.45)

we plug into Eq. (3.41), yielding

δICS,rel =−
∫
dt
√
h(t, y)ϵitk

(
∂2tK

j
k(t, y)− 4∂t(Klk(t, y)K

lj(t, y))

+ ∂t(K(t, y)Kj
k(t, y)) +Kj

l (t, y)∂tK
l
k(t, y)

−Kj
k(t, y)∂tK(t, y)

)
δhij(t, y)

−
∫
dt
√
h(t, y)ϵjtk

(
∂2tK

i
k(t, y)− 4∂t(Klk(t, y)K

li(t, y))

+ ∂t(K(t, y)Ki
k(t, y)) +Ki

l (t, y)∂tK
l
k(t, y)

−Ki
k(t, y)∂tK(t, y)

)
δhij(t, y).

(3.46)

We now have equations for the relevant terms in δICS, δσTMG[R] from Eq. (3.40), and

δIEH from Eq. (3.13). In the next section, we combine these equations together to solve

the equation of motion.

Solving the modified equations of motion

To find the Peierls bracket, we start by using our expressions for δIEH , δσTMG[R],

and δICS in Eq. (3.23). As in Section 3.2.1, we write Kij = K̃ij + λD±Kij
tot, where K̃

ij
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is the extrinsic curvature before introducing the source λσTMG[R]. As stated above, the

modified extrinsic curvature, D±Kij
tot, has terms proportional to a Heaviside-function. It

can also have terms containing (t− tΣ)Θ(t− tΣ) (i.e., a sharp corner), which, under two

time derivatives, becomes a δ-function. We will thus write

D±Kij
tot = D±Kij +D±K̄ij +D±Kij

other, (3.47)

whereD±Kij contains all Θ-function terms,D±K̄ij contains all corner terms, andD±Kij
other

contains any other continuous terms that come along for the ride (which, of course, will

not contribute any δ-functions, even under the action of second derivatives). To find the

Peierls bracket we use Eq. (3.15), and hence we do not need to find the explicit expression

for any continuous terms.

In contrast to the calculation of HRT area flow in Section 3.2.1, the flow calculation

in this section does depend on the smoothness of K̃ij. For the remainder of this section,

we will take K̃ij to be smooth. This generally suffices to derive the flow only at first order

in λ around smooth solutions (see the comments at the end of Section 3.2.1). Without

matter, the extension to all orders turns out to be trivial, since these spacetimes are

always locally AdS3, and the kink is just a coordinate artifact. While we expect our

result to hold when matter is present, we save a proof of this for future work. At the

moment, our results hold only at first order in λ when matter is present.

Using our new expression for Kij in Eq. (3.48) and taking λ small, we obtain an
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equation relating the terms proportional to δ(t− tΣ),

0 =− 1

16πG

√
h(t, y)[∂tD

±Kij(t, y)− ∂tD
±K(t, y)hij(t, y)]

+ β
√
h(t, y)ϵitk

(
∂2tD

±K̄j
k(t, y)− 4K̃ lj(t, y)∂tD

±Klk(t, y)

− 4K̃lk(t, y)∂tD
±K lj(t, y) + K̃j

k(t, y)∂tD
±K(t, y) + K̃(t, y)∂tD

±Kj
k(t, y))

+ K̃ lj(t, y)∂tD
±Klk(t, y)− K̃j

k(t, y)∂tD
±K(t, y)

)

+ β
√
h(t, y)ϵjtk

(
∂2tD

±K̄i
k(t, y)− 4K̃ li(t, y)∂tD

±Klk(t, y)

− 4K̃lk(t, y)∂tD
±K li(t, y) + K̃i

k(t, y)∂tD
±K(t, y) + K̃(t, y)∂tD

±Ki
k(t, y))

+ K̃ li(t, y)∂tD
±Klk(t, y)− K̃i

k(t, y)∂tD
±K(t, y)

)

+
√
q(x̃(y))δΣ(γ, y)δ(t− tΣ)

(
1

8G
qAB(x̃(y))

∂yi

∂x̃A
∂yj

∂x̃B

− 4πβ ⊥k vlKkl(y) ⊥i⊥j −4πβ ⊥k vlKkl(y)v
ivj

− 8πβvkvlKkl(y) ⊥(i vj) + 4πβqAB(x̃(y))
∂yi

∂x̃A
∂yj

∂x̃B
⊥k vlKkl(y)

)
,

(3.48)

and another equation relating terms proportional to δ′(t− tΣ),

∂2t (ϵ
itkD±Kj

k(t, y) + ϵjtkD±Ki
k(t, y)) = 4π

√
q(x̃(y))√
h(y)

δΣ(γ, y) ⊥(i vj)δ′(t− tΣ). (3.49)

Integrating the latter equation twice on both sides, we get an equation for the retarded

and advanced solutions, respectively:

ϵitkD−Kj
k(t, y) + ϵjtkD−Ki

k(t, y) = 4π

√
q(x̃(y))√
h(y)

δΣ(γ, y) ⊥(i vj)Θ(t− tΣ), (3.50)

ϵitkD+Kj
k(t, y) + ϵjtkD+Ki

k(t, y) = −4π

√
q(x̃(y))√
h(y)

δΣ(γ, y) ⊥(i vj)Θ(tΣ − t). (3.51)

For now we will work with the retarded solution, saving the advanced solution for later.
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Contracting Eq. (3.50) with ⊥i⊥j and vivj, we find

⊥k vjD
−Kj

k(t, y) = 0 and vk ⊥j D
−Kj

k(t, y) = 0. (3.52)

To obtain the above equation, we used ⊥i ϵ
itk = vk and viϵ

itk = − ⊥k. To derive these,

we note that, due to the normalization and orthogonality constraints of ⊥i, vi, and na,

we have

⊥i ϵ
i0k = ±vk. (3.53)

This then gives ⊥i vkϵ
i0k = ±1, and so ⊥k viϵ

i0k = ∓1. We then have

viϵ
i0k = ∓ ⊥k . (3.54)

In what follows, we choose the plus sign in Eq. (3.53) and so we have the minus sign in

Eq. (3.54). We choose these signs so that our result in the limit cL = cR matches what

we find for Einstein-Hilbert gravity. This choice of sign appears to be consistent with

standard conventions, e.g. in [151].

Now that we have derived these useful identities, let us contract Eq. (3.50) with

⊥i vj + vi ⊥j, yielding

(vivj− ⊥i⊥j)D
−Kij(t, y) = 2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ). (3.55)

These are thus the only components of the solution that survive. We can therefore write

the solution as

D−Kij(t, y) = 2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ)(cvv
ivj + c⊥ ⊥i⊥j), (3.56)

with cv − c⊥ = 1.
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We now must solve for cv and c⊥. We start by contracting Eq. (3.48) with ⊥i⊥j +vivj.

Under this contraction, many terms will cancel out, and we are left with

0 =− 1

16πG

√
h(t, y)(⊥i⊥j +vivj)∂tD

−Kij(t, y) +
1

8πG

√
h(y)∂tD

−K(t, y)

+ β
√
h(y)(⊥i⊥j +vivj)ϵ

itkK lj(t, y)∂tD
−Klk(t, y)

+ β
√
h(t, y)(⊥i⊥j +vivj)ϵ

jtkK li(t, y)∂tD
−Klk(t, y)

+
1

8G

√
q(x̃(y))δΣ(γ, y)δ(t− tΣ)− 4πβ

√
q(x̃(y)) ⊥k vlKkl(y)δΣ(γ, y)δ(t− tΣ).

(3.57)

Substituting the right-hand side of Eq. (3.56) into the equation above, we find

1

8G
(c⊥ + cv) + 4πβ(cv − c⊥) ⊥k vkKkl(y) = − 1

8G
+ 4πβ ⊥k vlKkl(y). (3.58)

Since cv − c⊥ = 1, the equation above reduces to c⊥ + cv = −1. Then we have c⊥ = −1

and cv = 0. Using Eq.(3.56), we obtain the retarded solution

D−Kij(t, y) =− 2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ) ⊥i⊥j

=− 2πδ̂Σ(γ, y)Θ(t− tΣ) ⊥i⊥j .

(3.59)

To solve for the advanced solution, D+Kij, we start from Eq. (3.51) and follow the

same steps as for the retarded solution. We thus obtain

D+Kij(t, y) = 2πδ̂Σ(γ, y)Θ(tΣ − t) ⊥i⊥j . (3.60)

Combining Equations (3.59) and (3.60) yields the Peierls bracket

{
σTMG[R], K

ij(tΣ, y)
}
= −2πδ̂Σ(γ, y) ⊥i⊥j . (3.61)
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This is our main result, and it agrees exactly with Eq. (3.19), the result for Einstein-

Hilbert gravity. The action of σTMG[R] is thus the same as the HRT area action, gen-

erating a boundary-condition-preserving kink transformation as shown in Figure 3.1. In

particular, we can write the relation σTMG[R] = HR + K[γ] as before, where HR is the

generator of the boundary one-sided boost and K[γ] is the kink transform.

3.3 Geometric entropy commutators

In this section, we aim to reproduce the modular commutator result of [104], but

from the bulk perspective. We do this in two ways: by using the results above, and by

using the boundary stress tensor algebra. We indeed find agreement between our results

and [104]. In addition, the nature of our calculation allows us to easily extend the results

of [104] to disjoint boundary regions. This is difficult in their setting as the modular

commutator is defined only for three contiguous boundary regions.

We work in topologically massive gravity with negative cosmological constant and

without matter, for spacetimes asymptotic to Poincaré AdS3. Spacetimes of this form

are always diffeomorphic to TMG in Poincaré AdS3. Thus, if we start in TMG in vacuum

Poincaré AdS3, we can obtain any other spacetime of this form via a boundary conformal

transformation. Defining u = t−x and v = t+x, the Poincaré AdS3 metric of Eq. (3.25)

becomes

ds2 =
1

z2
(−dudv + dz2). (3.62)

Then a boundary conformal transformation will be a map (u, v) → (U(u), V (v)), such

that the boundary metric becomes

ds2∂ = −dUdV = −e2σ−(U)e2σ+(V )dudv. (3.63)
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We see the flat boundary metric is rescaled by some conformal factor e2σ−(U)e2σ+(V ).

We start in Section 3.3.1 by deriving the change of the boundary stress energy tensor

due to this conformal transformation. Then, in Section 3.3.2, we write the renormalized

geometric entropy in this theory. In Section 3.3.3 we calculate the effect of TMG entropy

flow on the stress energy tensor. We then use the geometric flow given by Eq. (3.61)

to calculate, in vacuum Poincaré AdS3 and with a specific choice of boundary region R,

commutators between TMG entropies defined by different boundary regions. In Section

3.3.4 we generalize these results to include general R and all spacetimes diffeomorphic

to vacuum Poincaré AdS3 (which, in particular, include planar black holes). Finally, in

Section 3.3.4, we use our results to understand the entropy algebra with disjoint boundary

regions.

3.3.1 The boundary stress energy tensor

We write the full boundary stress energy tensor in TMG as T̃ij = Tij − TCSij , where

Tij is the stress tensor in Einstein-Hilbert gravity and TCSij represents the contribution

from the Chern-Simons term to the stress tensor. If we know the variation for the Chern-

Simons term in the action, then T ijCS can be found by evaluating

δICS =
1

2

∫

∂M
T ijCSδgij

√
gd2x

=− 1

2

∫

∂M
TCSij δgij

√
gd2x.

(3.64)
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We know δICS from Eq. (3.41), however we will instead use the form of the variation

found in [138]. Hence, the variation takes the form

δICS =2β

∫

∂M
d2x

√
gRηj

ηkδgijϵ
iηk + β

∫

∂M
d2x

√
g[2Kk

i δKkj − ΓkliδΓ
l
kj]ϵ

ij

− β

∫

M
d3x

√
g∇β(R

βρ
µν)ϵ

γµνδgγβ.

(3.65)

In our work below we will use a Fefferman-Graham expansion, writing the metric as

ds2 = dη2 + gijdx
idxj, (3.66)

where we define gij as an expansion about the boundary metric g
(0)
ij : gij = e2ηg

(0)
ij +g

(2)
ij +....

For Poincaré AdS in 2 + 1-dimensions, we have the Minkowski metric on the boundary,

and

g
(2)
ij = κTij. (3.67)

In vacuum Poincaré AdS3 all terms in Eq. (3.65) independently vanish, and so δICS = 0.

The first term vanishes since Rηj
ηk ∝ δjk for large η, and the last term vanishes since the

curvature is covariantly constant. The vanishing of the second term is not as obvious,

but it is due to that fact that g
(0)
ij = ηij, and Tij = 0. We thus see that the original TCS

(i.e., before the conformal transformation) is zero.

We will now apply a conformal transformation to Eq. (3.65), then extract the stress

energy tensor. Since we are perturbing about a flat boundary metric, all terms vanish

except the extrinsic curvature term (we refer the reader to [138] for more details):

Kk
i δKkjϵ

ij =− gkl(2)g
(0)
li δg

(0)
kj ϵ

ij + ...

=κTkig
(0)
jl δg

kl
(0)ϵ

ij + ....

(3.68)
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Using Eq. (3.64), we can extract TCSki , yielding

TCSkl = −4κβTkig
(0)
jl ϵ

ij. (3.69)

(This verifies that TCSkl = 0 when Tki = 0 in the vacuum.) Now, under the conformal

transformation in Eq. (3.63), the stress tensor will transform as [152]

Tabdx
adxb → T originalab dxadxb +

c0
12π

[∂2uσ − (∂uσ)
2]du2 +

c0
12π

[∂2vσ − (∂vσ)
2]dv2. (3.70)

Hence, applying this transformation to Tki in Eq. (3.69), we get

TCSab dx
adxb →− 4κβ

(
c0
12π

g(0)uv ϵ
uv[∂2uσ − (∂uσ)

2]du2

− c0
12π

g(0)uv ϵ
uv[∂2vσ − (∂vσ)

2]dv2
)

→4β([∂2uσ − (∂uσ)
2]du2 − [∂2vσ − (∂vσ)

2]dv2)

→4β([∂2Uσ + (∂Uσ)
2]dU2 − [∂2V σ + (∂V σ)

2]dV 2).

(3.71)

where we used the fact that the original stress tensor is zero. To obtain the second line

of the equation, we use the convention ϵtx = −1 to get

ϵuv =
∂u

∂t

∂v

∂x
ϵtx +

∂u

∂x

∂v

∂t
ϵxt = −2. (3.72)

Finally, under a conformal transformation from the vacuum, the full stress tensor in
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this theory becomes

T̃ijdx
idxj → 1

12π
(c0 − 48πβ)[∂2Uσ + (∂Uσ)

2]dU2

+
1

12π
(c0 + 48πβ)[∂2V σ + (∂V σ)

2]dV 2

→ cR
12π

[∂2Uσ + (∂Uσ)
2]dU2 +

cL
12π

[∂2V σ + (∂V σ)
2]dV 2.

(3.73)

We define the TMG stress tensor components as T̃UU(U) = cL
12π

[∂2Uσ + (∂Uσ)
2] and

T̃V V (V ) = cL
12π

[∂2V σ + (∂V σ)
2]. By comparison with Eq. (3.70), we see that T̃UU(U) =

cL
c0
TUU(U) and T̃V V (V ) = cR

c0
TV V (V ). We note that these relations are more obvious from

the CFT perspective, where, under Wick rotation, we can relate the u and v terms of

the stress tensor to holomorphic and anti-holomorphic parts T (z) and T (z̄), respectively.

Then we replace c0 with cR in T (z) and with cL in T (z̄). Here, however, we wished to

understand the stress tensor transformation from the bulk perspective.

3.3.2 Geometric entropy in TMG asymptotic to Poincaré AdS3

The geometric entropy of TMG is given by Eq. (3.24), as proven by [142] using the

replica trick. Now suppose we have a 1 + 1D chiral CFT region R anchored at (u1, v1)

and (u2, v2). We take R to be the straight line segment between the anchor points. In

vacuum Poincaré AdS3, the non-renormalized TMG entropy can be written as [144]

σ̃vacTMG[R] =
cL
12

ln

(
(v1 − v2)

2

ϵv1ϵv2

)
+
cR
12

ln

(
(u1 − u2)

2

ϵu1ϵu2

)
(3.74)

where ϵui and ϵvi for i = 1, 2 are the cut-offs in the u and v directions for each anchor point.

To maintain translation invariance we can choose ϵu1 = ϵu2 = ϵu and ϵv1 = ϵv2 = ϵv. Then,

to renormalize the TMG entropy, we follow the standard approach of adding counterterms
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and taking the limit ϵ→ 0:

σvacTMG[R] = lim
ϵ→0

(
σ̃vacTMG[R] +

cL
6
ln ϵv +

cR
6

ln ϵu

)

=
cL
6
ln |v1 − v2|+

cR
6

ln |u1 − u2|.
(3.75)

The renormalized entropy is not invariant under the conformal transformation (u, v) →

(U(u), V (v)) given in Eq. (3.63). This conformal transformation consists of two parts:

a diffeomorphism taking u → U(u) and v → V (v), and a Weyl rescaling of the metric.

The metric is invariant under such a transformation, but Eq. (3.74) is not, because the

cut-offs transform as

ϵvi → e2σ+(Vi)ϵvi , (3.76)

ϵui → e2σ−(Ui)ϵui . (3.77)

If one wishes to use the same cut-offs before and after the conformal transformation,

then the renormalized entropy is defined via the same subtraction, and so transforms by

adding σ±:

σTMG[R] =σ
vac
TMG[R] +

cL
6
[σ+(V1) + σ+(V2)] +

cR
6
[σ+(U1) + σ+(U2)].

=
cL
6
ln |v2 − v1|+

cL
6
ln |u1 − u2|

+
cL
6
[σ+(V1) + σ+(V2)] +

cR
6
[σ+(U1) + σ+(U2)].

(3.78)

This is the renormalized TMG entropy, which is of course similar to the result for the

renormalized HRT area under a conformal transformation, except with c0 replaced by cL

in anti-holomorphic terms and by cR in holomorphic terms.
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In particular, in Poincaré AdS3 in Einstein-Hilbert gravity, we instead have

AHRT [R]

4G
=
c0
6
(AV (V1, V2) + AU(U1, U2)) (3.79)

up to a possible constant term which will not factor into our analysis, with

AV (V1, V2) = ln |v(V2)− v(V1)|+ σ+(V1) + σ+(V2), (3.80)

AU(U1, U2) = ln |u(U1)− u(U2)|+ σ−(U1) + σ−(U2). (3.81)

Hence, we can write the TMG entanglement entropy in terms of the U and V pieces of

the HRT-area as as simple rescaling:

σTMG[R] =
cL
6
AV (V1, V2) +

cR
6
AU(U1, U2). (3.82)

In what follows, we will use this expression to rewrite the entropy commutators in [3].

3.3.3 Entropy algebra from geometric flow

We will now use the geometric picture of TMG entropy flow to compute the action

of σTMG[R] on the stress tensor, and the commutator between the TMG entropies of two

different boundary regions. As discussed above, this entropy flow kinks Σ in the bulk, but

preserves ∂Σ. In this section, we work in asymptotically Poincaré AdS3 TMG without

matter and without black holes, although we will later generalize to spacetimes allowing

planar black holes. We follow the same approach as in Section 3 of [3], and refer the

reader to the discussion there for more details. Our goal here is to review the essential

parts of that calculation, and to note any differences (or lack thereof) between TMG and

Einstein-Hilbert gravity.
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Our result for the geometric action of the σTMG flow agrees precisely with that for

(1/4G times the) HRT-area flow in Einstein-Hilbert gravity. In particular, {σ[R]/4G,Kij(y)}

has not changed with the addition of the Chern-Simons term, and we still have σ[R] =

HR+K[γ]. The kink transform K[γ] introduces a relative boost between the two sides of

γ, and so leaves γ invariant. In asymptotically Poincaré AdS3 TMG, the action of K[γ]

on the boundary introduces a gravitational anomaly, but this anomaly does not change

the equations of motion: the equations of motion change by the addition of the Cotton

tensor, which vanishes in Poincaré AdSD. Nor does K[γ] change the boundary metric in

the boosted wedge. Hence, the action of K[γ] leaves TMG invariant, and we need only

consider the action of HR, which must be a boundary conformal transformation. This is

the transformation which ”undoes” the boundary action of the kink transformation, and

so is a boost with a rapidity we will denote as 2πλ.

As in [3], we take the action of HR to be a map (u, v) → (U(u), V (v)) defined by

(3.63).7 We can specify the conformal factor explicitly by taking a boundary region R0,

which is the half-line x ∈ [0,∞) at t = 0 on the boundary at z = 0, and considering the

extremal surface corresponding to R0. Without matter, this extremal surface is the HRT

surface γR0 , and it is the bulk geodesic at x = t = 0 for all z. Then

U = ue−2πλΘ(−U), V = V e2πλΘ(V ), (3.83)

giving

σ−(U) = −πλΘ(−U), σ+(V ) = πλΘ(V ). (3.84)

7Note, however, that the purpose of this conformal transformation is different than the purpose of
the transformation introduced in Eq. (3.63)
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Plugging into Eq. (3.73), the stress tensor under the action of σTMG[R0] is

TV V = cL
12π

(λδ′(V ) + πλ2[δ(V )]2) (3.85)

TUU = cR
12π

(λδ′(U) + πλ2[δ(U)]2). (3.86)

We can also calculate the effect of σTMG[R0] on another TMG entropy defined by a

different boundary region R. This is the same calculation as in Einstein-Hilbert gravity:

we write σTMG[R] under the conformal transformation defined in Eq. (3.83), thus giving

it explicit λ dependence. We write this transformed entropy as σTMG,λ[R]. Then

{σTMG[R0], σTMG[R]} =
d

dλ
σTMG,λ[R]

∣∣∣∣
λ=0

=− πcL
3

V1Θ(−V1V2)
V2 − V1

− πcR
3

U1Θ(−U1U2)

U1 − U2

.

(3.87)

In the next section, we generalize this result to spacetimes diffeomorphic to subregions

of vacuum Poincaré AdS3; in particular, we will now be able to include planar black

holes. We also generalize to commutators between TMG entropies defined by arbitrary

boundary regions.

3.3.4 Entropy algebra from stress tensors

Now, we consider spacetimes diffeomorphic to subregions of vacuum Poincaré AdS3.

By allowing for certain singular conformal transformations from the vacuum, i.e. ones

where we specify the boundary conditions v(V = ∞) = 0 and u(U = ∞) = 0, our

solutions asymptote toM > 0 planar black holes. Otherwise, for solutions that asymptote

to Poincaré AdS3, we choose v(V = 0) = 0 and u(U = 0) = 0. Let us now proceed with a

calculation of the commutator between the geometric entropies of two different boundary

regions. We do this by starting from the stress tensor algebra (i.e, the Virasoro algebra
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with the appropriate chiral central charge), then use the Leibniz rule to get the TMG

entropy algebra. We mainly include this section as an independent check on our TMG

entropy flow calculation in Section 3.2.2. We also include it to make contact with [3]: in

[3], we calculated the geometric entropy commutator in Einstein-Hilbert gravity following

this same method of starting from the stress tensor algebra.

The boundary stress tensor algebra in Einstein-Hilbert gravity is [127]

{TV V (V ), TV V (V
′)} = 2TV V (V

′)δ′(V −V ′)−T ′
V V (V

′)δ(V −V ′)− c0
24π

δ
′′′
(V −V ′), (3.88)

and similarly for the algebra of TUU . Suppose we have the boundary region R anchored

at (U1, V1) and (U2, V2), and the boundary region R′ anchored at (U ′
1, V

′
1) and (U ′

2, V
′
2).

Without loss of generality, we take U1 > U2, V1 < V2, U
′
1 > U ′

2, and V
′
1 < V ′

2 . Then, the

Leibniz rule is used to obtain the HRT area algebra from the Virasoro algebra:

{
AHRT [R]

4G
,
AHRT [R

′]

4G

}
=

∫
dV dV ′dV̄ dV̄ ′ 1

4G

∂AHRT [R]

∂σ+(V )

∂σ+(V )

∂TV V (V ′)
{TV V (V ′), TV V (V̄

′)}

× ∂σ+(V̄ )

∂TV V (V̄ ′)

1

4G

∂AHRT [R
′]

∂σ+(V̄ )

+

∫
dUdU ′dŪdŪ ′ 1

4G

∂AHRT [R]

∂σ−(U)

∂σ−(U)

∂TUU(U ′)
{TUU(U ′), TUU(Ū

′)}

× ∂σ−(Ū)

∂TUU(Ū ′)

1

4G

∂AHRT [R
′]

∂σ−(Ū)
.

(3.89)

In TMG, using the stress tensor components defined after Eq. (3.73), the Virasoro

algebra becomes

{T̃V V (V ), T̃V V (V
′)} = cL

c0
{TV V (V ), TV V (V

′)}E−H (3.90)

{T̃UU(U), T̃UU(U ′)} = cR
c0
{TUU(U), TUU(U ′)}E−H . (3.91)
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where the E-H subscript stands for Einstein-Hilbert. The other terms in the integrals

are related to their Einstein-Hilbert counterparts as

∂σTMG[R]

∂σ+(V )
=

cL
4Gc0

∂AHRT [R]

∂σ+(V )
and

∂σTMG[R]

∂σ−(U)
=

cR
4Gc0

∂AHRT [R]

∂σ−(U)
, (3.92)

and

∂σ+(V )

∂T̃V V (V ′)
=
c0
cL

∂σ+(V )

∂TV V (V ′)
and

∂σ−(U)

∂T̃UU(U ′)
=
c0
cR

∂σ−(U)

∂TUU(U ′)
. (3.93)

Putting this all together, Eq. (3.89) becomes

{σTMG[R], σTMG[R
′]} =

cL
c0

{
1

4G
AV (V1, V2),

1

4G
AV (V

′
1 , V

′
2)

}

+
cR
c0

{
1

4G
AU(U1, U2),

1

4G
AU(U

′
1, U

′
2)

}
.

(3.94)

In Einstein-Hilbert gravity, we had

{
1

4G
AV (V1, V2),

1

4G
AV (V

′
1 , V

′
2)

}
= πc0

6





2ηv − 1, V ′
1 < V1 < V ′

2 < V2

1− 2ηv, V1 < V ′
1 < V2 < V ′

2

0, otherwise

(3.95)

{
1

4G
AU(U1, U2),

1

4G
AU(U

′
1, U

′
2)

}
= πc0

6





2ηu − 1, U ′
2 < U2 < U ′

1 < U1

1− 2ηu, U2 < U ′
2 < U1 < U ′

1

0, otherwise,

(3.96)

where we define the cross ratios ηu =
(u1−u′1)(u2−u′2)
(u1−u2)(u′1−u′2)

and ηv =
(v1−v′1)(v2−v′2)
(v1−v2)(v′1−v′2)

. So, plugging
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these into Eq. (3.94), the entanglement entropy algebra in TMG is given by

{σTMG[R], σTMG[R
′]} =

πcL
6





2ηv − 1, V ′
1 < V1 < V ′

2 < V2

1− 2ηv, V1 < V ′
1 < V2 < V ′

2

0, otherwise

+
πcR
6





2ηu − 1, U ′
2 < U2 < U ′

1 < U1

1− 2ηu, U2 < U ′
2 < U1 < U ′

1

0, otherwise.

(3.97)

This agrees with the result of [104], given in Eq. (3.1). In vacuum Einstein-Hilbert

gravity, the entropy commutator vanishes when we restrict all anchor points to lie on a

constant time slice on the boundary. However, in TMG, this configuration instead gives

a non-vanishing result. For x′1 < x1 < x′2 < x2,

{σTMG[R], σTMG[R
′]} =

πc−
6

(2η − 1), (3.98)

with c− = cL − cR and η =
(x1−x′1)(x2−x′2)
(x1−x2)(x′1−x′2)

. This again agrees with [104].

Disjoint intervals

We can also apply our results to slightly more general situations than those considered

in [104]. In particular, in the semiclassical approximation, their result calculates the

commutator between σTMG[AB] and σTMG[BC], the geometric entropies of boundary

regions AB and BC, respectively, where A, B and C are contiguous. See Figure 3.2 for

an illustration. By contrast, the commutators calculated in this work can be defined for

disjoint intervals A, B and C. This is because, in Eq. (3.24), the TMG entropy is defined

as an integral over the extremal surface. Hence, if we have a disconnected surface, the

integral splits into two, and the contributions from each piece are additive.

For instance, take B and C to be disjoint. We take the anchor points of A to be

87



The Action of Geometric Entropy in Topologically Massive Gravity Chapter 3

Planar boundary

U
V

A
B

C γ2

γ1

Figure 3.2: For contiguous CFT regions A, B, and C, we can draw γ1, the extremal
surface corresponding to region AB, and γ2, the extremal surface corresponding to region
BC. This is the configuration studied in [104], where the authors find the modular
commutator J(A,B,C)Ω, equivalent to the commutator between the TMG entropies of
AB and BC.
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Planar boundary

U
V

A
B

C

D
γ1

γ2

Planar boundary

U
V

A
B

C

D
γ1

γ2

Figure 3.3: For contiguous CFT regions A and B, and disconnected region C, we can
draw γ1, the extremal surface corresponding to region AB, and γ2, the extremal surface
corresponding to region BC. We label the region between B and C as region D. As
opposed to the contiguous case, γ2 splits into two surfaces. In the left figure, γ2 is the
HRT surface corresponding to region B combined with the HRT surface corresponding
to C. In the right figure, γ2 is the HRT surface corresponding to region BDC combined
with the HRT surface corresponding to D. This is a configuration we can now study
using Eq. (3.97).

89



The Action of Geometric Entropy in Topologically Massive Gravity Chapter 3

(U1, V1) and (U2, V2), the anchor points of B to be (U2, V2) and (U3, V3), and the anchor

points of C to be (U4, V4) and (U5, V5). Additionally, we will define a new region D

between B and C, that is anchored at (U3, V3) and (U4, V4). Then the bulk extremal

surfaces corresponding to boundary region BC have two possible configurations, as shown

in Figure 3.3. Thus, σTMG[BC] is given by the configuration with minimal entropy:

σTMG[BC] = min

[
σTMG[B] + σTMG[C], σTMG[BDC] + σTMG[D]

]
. (3.99)

We can hence define σTMG[BC] in terms of TMG entropies defined by contiguous bound-

ary regions, and thus compute σTMG commutators.

In particular, in the disconnected phase (the left diagram in Fig. 3.3), both σTMG[B]

and σTMG[C] commute separately with the σTMG[AB]. Then,

{σTMG[AB], σTMG[BC]}disconnected = 0. (3.100)

In the connected phase (the right diagram of Fig. 3.3), we see that σTMG[D] commutes

with σTMG[AB], but σTMG[BCD] and σTMG[AB] do not commute. Without loss of

generality, we choose U1 > U3, V1 < V3, U2 > U5, and V2 < V5. This yields

{σTMG[AB], σTMG[BC]}connected =

πcL
6





2ηv − 1, V2 < V1 < V5 < V3

1− 2ηv, V1 < V2 < V3 < V5

0, otherwise

+
πcR
6





2ηu − 1, U5 < U3 < U2 < U1

1− 2ηu, U3 < U5 < U1 < U2

0, otherwise.

(3.101)

Thus, we have a generalization of Eq. (3.1) to disjoint boundary intervals.
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3.4 Discussion

This work began by studying the flow on the covariant phase space induced by geo-

metric entropy in topologically massive gravity, computed in spacetimes asymptotic to

AdS3 with standard matter. In terms of Cauchy data on a Cauchy slice Σ containing the

HRT surface, we found exactly the same result as in [3] for HRT area flow in Einstein-

Hilbert gravity. In particular, the flow leaves the induced metric invariant but shifts the

extrinsic curvature by a δ-function as described by Eq. (3.61), essentially boosting the

entanglement wedge of R relative to that of the complementary region. Without matter,

this result holds to all orders in the flow parameter λ; with matter, our result holds only

to first order in λ. We save the generalization to finite λ for future work.

After deriving the geometric entropy flow, we used it to explicitly compute the com-

mutator between TMG entropies defined by different boundary CFT regions. We also

derived this commutator by extrapolating from the stress tensor algebra. Our commu-

tators agree with the modular commutator found in [104], the original motivation for

this work. We concluded with a short discussion about applying our results to disjoint

boundary regions, which is difficult to do with the modular commutator.

It is perhaps surprising that geometric entropy flow in TMG is precisely the same

as HRT area flow in Einstein-Hilbert gravity. Arriving at this result through the Peierls

bracket method was rather complicated, and required many cancellations between terms.

This suggests there may be a more elegant way to approach this calculation, which would

make the physical mechanisms behind these cancellations more obvious. Understanding

this result more fully could allow generalizations to higher dimensional theories with

boundary chiral CFTs, and potentially to theories with other types of higher derivative

terms. Geometric entropy flow in higher derivative theories of gravity will be explored in

[124]. Our work here is an important first step to understanding geometric entropy flow
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more generally.

In the same vein, our Peierls bracket calculation could be extended to higher di-

mensional theories with boundary chiral CFTs. Explicit formulas for the corresponding

geometric entropies have been computed in, for example, 3 + 1, 4 + 1, and 6+ 1 bulk di-

mensions [143, 153]. The Peierls bracket calculation for geometric entropy flow in higher

dimensions would then follow the same steps as in our work here (expect would be con-

siderably more complicated). As already mentioned, it would thus be helpful to have a

more elegant understanding of our result instead of resorting to an explicit calculation.

It would also be interesting to compute explicit TMG entropy commutators in more

general configurations, e.g. with matter present or in higher dimensions. Indeed, this

has not yet been done for HRT area commutators in Einstein-Hilbert gravity. Addition-

ally, area commutators may have further implications tensor network models, as will be

explored in Section 4 and in the forthcoming work [154]. We would also like to under-

stand the implications of our TMG entropy commutator on tensor network constructions,

especially since TMG is an example of a higher derivative theory.
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Link-Area Commutators in AdS3

Area Networks

4.1 Introduction

Over the last decade, tensor networks have played a key role in developing our under-

standing of the AdS/CFT correspondence [52]. They were first proposed as toy models

of AdS/CFT in [73, 74], based in part on the observation that the entanglement entropy

of a boundary subregion is bounded by an area law that agrees with the Ryu-Takayanagi

(RT) formula [61, 62]. It was then shown that certain tensor network constructions sat-

urate this bound [69, 71]. Tensor networks can also model other important aspects of

AdS/CFT, including quantum error correction properties [58] of the holographic dictio-

nary; see e.g. models in [69, 70, 72].

The random tensor networks of [71] have been of particular interest. However, their

qualitative properties differ from those of familiar semiclassical bulk states of AdS/CFT

as the entanglement spectrum is flat for any boundary region R. By this we mean that

the Renyi entropies Sn are approximately independent of n. The same feature arises in
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the HaPPY code [69].

In the AdS/CFT context, for a given boundary region R, and as described in [129, 75],

producing a state with flat entanglement spectrum requires suppressing fluctuations in

the area of the associated Hubeny-Rangamani-Takayanagi (HRT) surface1 [63] relative

to those in standard semiclassical states. Bulk states with such suppressed fluctuations

are known as fixed-area states.

For a given HRT-surface (associated with a given boundary region R), fixed-area

states can be produced by projecting more general states onto appropriately-sized win-

dows of HRT-area eigenvalues, perhaps with the window width scaling as G1/2+ϵ for some

small ϵ > 0 in terms of the bulk Newton constant G. However, given a set of regions

Ri, the corresponding collection of entanglement spectra can be rendered flat only if we

simultaneously suppress area fluctuations for all of the relevant HRT-surfaces γi. This in

turn requires the associated HRT-area operators to approximately commute.

Unfortunately, as emphasized in [78], commutators of HRT-areas can be large even

when all regions Ri lie in a single Cauchy surface of the asymptotically-AdS boundary.

This is in part because the HRT-surfaces γi generally fail to lie in a single Cauchy surface

of the bulk; i.e., points on γi can be causally separated from points on γj. The mixing of

operators under time-evolution then makes it difficult to avoid sizeable commutators2.

One way to address this issue is to modify the notion of a tensor network model

following e.g. [155, 33]. However, it is also natural to ask whether the issue can be

ameliorated by using the collection of regions Ri to construct a network of HRT-like

surfaces that do in fact always lie in a single bulk Cauchy surface, and which thus might

potentially have area operators that commute. Here the use of the term ‘network’ reminds

1I.e., for the covariant generaliztaion of the RT surface.
2In a time-symmetric context, the expectation values of HRT-area commutators generally vanish. But

the commutators still do not vanish as operators, even if their properties are non-trivial to compute in
the semiclassical approximation.
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Figure 4.1: An example area network and its corresponding tensor network, modelled off
of the networks in [78]. The area network is shown in blue. The tensors are black nodes,
and tensor index contractions are shown as red edges. See [78] for explanations.

us that a collection of codimension-2 surfaces lying in a (codimension-1) Cauchy surface

will generally intersect. One might in particular hope such a network to be related to the

tensor network constructions of [78, 28]; see e.g. figure 4.1 below. We emphasize that

both the precise notion of what is meant by an HRT-like surface and the extent to which

they are useful in producing flat entanglement spectra or the networks of [78, 28] remain

to be investigated.

The present work addresses the first of these steps by considering various constructions

of such networks in semiclassical bulk geometries and computing commutators of the

areas of the HRT-like surfaces comprising these networks. We will require our “HRT-like

surfaces” to be extremal away from points where they intersect other surfaces in the

network. The work below is exploratory, and our goal is merely to investigate a few such

networks and collect results that may inform future constructions.

We will analyze the area-operators associated with our network in the semiclassical

approximation. In this context, the operators are described by observables on the classical

phase space and their commutators become i times Poisson brackets. It is then interesting

to study the flow generated by such an operator on the classical phase space. Throughout

this work we will use the terms “operator” and “observable” interchangeably. For HRT-
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area operators, studies in this direction include [112, 113, 44, 114, 115, 3]. Much of

this work made use of the JLMS formula [117] relating the HRT area to the boundary

modular Hamiltonian, though see [3] for a self-contained bulk analysis. The phase space

flow generated by an HRT-area in Einstein-Hilbert gravity turns out to take a simple

geometric form that acts as a boundary-condition-preserving kink transformation (see

[3] for refinements of the discussion in [114, 115]). Extensions to topologically-massive

gravity in AdS3 were studied in [2]. While studies of geometric flow can be of great

use, the present work will simply focus on computing commutators associated with our

networks and will save analysis of geometric features for future work3.

We focus on pure Einstein-Hilbert gravity in AdS3 when the boundary metric is

1+1 Minkowski space. In this context we expect that all operators can be expressed in

terms of the boundary stress tensor. An explicit such expression would then allow us to

use the boundary stress tensor algebra to compute arbitrary commutators. While such

explicit expressions are difficult to obtain, at the semiclassical level it suffices to work

with implicit expressions as described in [3]. The point here is that since the Poisson

Bracket {A,B} of observables A,B is defined in terms of derivatives of A,B on the phase

space, using the chain rule one can use the stress-tensor algebra to compute {A,B} even

if one knows only the derivatives of A,B with respect to each component of the stress

tensor. Following [3], expressions for such derivatives turn out to be straightforward to

construct in the sector of our theory given by acting on Poincaré AdS3 or a planar black

hole with boundary conformal transformations.

We will consider only this sector below. We will also refer to these Poisson bracket

calculations as “semiclassical commutators” despite the lack of a factor of i. Our main

results are as follows:

3Since we consider areas of surfaces with boundaries, the flow generated by these areas may have a
non-trivial effect extending to the boundary, similar to what is found in [148].
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• It is generally difficult to construct arbitrarily fine discretizations of the bulk with

commuting areas.

• We do, however, find a simple 4-link network (analogous to the extremal surface

configuration building the four-tensor network of [78]) for which the link-areas all

commute.

The outline of our paper is as follows. Section 4.2 reviews the formalism of [3] for

computing Poisson brackets of observables in the above sector of vacuum AdS3. In Section

4.3, we analyze a 4-link constrained geodesic network defined by choosing a single HRT

surface and two additional boundary-anchor points. We then follow [105] in adding a

second surface defined by extremizing the length of a curve connecting the additional

two anchors with the constraint that the curve intersects the above-chosen HRT surface.

This is the constrained geodesic. The resulting network is an analogue of the four-tensor

network of [78], and we find that all of its areas commute. Appendix B then analyzes an

extension of this simple network, though we find non-vanishing area commutators.

Since the entanglement wedge cross section (EWCS) has been of particular interest

in the recent literature [156, 157, 158, 159, 160], we turn to the study of an associated

network in section 4.4. Again, this network has non-vanishing area-commutators. In

particular, the EWCS area fails to commute with other areas in the configuration. We

conclude with a brief summary and discussion in section 5.6.

4.2 Commutators from the boundary stress-energy

tensor

The work below will consider pure 2+1 Einstein-Hilbert gravity with negative cos-

mological constant, and we will restrict attention to solutions that can be obtained from
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Poincaré AdS3 or an M > 0 planar black hole by acting with boundary conformal trans-

formations4. Furthermore, since solutions in the above classes are equivalent when their

boundary stress tensors agree, we may express all observables in our theory in terms of

the boundary stress tensor. This section is a brief review of the commutator framework

considered in Section 2.4.

In Poincaré AdS3, the metric is given by Eq. 2.15. All of the solutions we consider

can be generated from (2.15) by acting with boundary conformal transformations. In

particular, any such transformation can be described by two functions, U(u) and V (v),

such that the boundary metric in the solution of interest takes the form (2.33), with

σ(u, v) = σ(u) + σ̂(v) so that dU and dV are given by Eq. (2.34), i.e.

dU = e2σ(u)du

dV = e2σ̂(v)dv.

(4.1)

The action of a general finite conformal transformation on the stress-energy tensor of

a 1+1 dimensional conformal field theory is well known, and is given by Eq. (2.20). We

will choose U(u), V (v) so that the transformation (4.1) maps the (vanishing) boundary

stress tensor T original
ab = 0 of (2.15) to the boundary stress tensor Tab of the desired

solution. We then have

TUU = c
12π

[∂2UσU + (∂UσU)
2] (4.2)

TV V = c
12π

[∂2V σ̂V + (∂V σ̂V )
2] (4.3)

We also define the functions u(U) and v(V ) to be the solutions of (2.34) subject to

4As described in e.g. [161], the full theory consists of a direct sum of disjoint (superselected) phase
spaces, each of which can be generated by acting with boundary conformal transformations on any point
in the phase space. The methods used here should thus also be applicable to more general sectors, where
one expects them to yield similar results.
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certain boundary conditions. And, for a given Tab, σU and σ̂V are solutions of (4.2) and

(4.3), respectively. We will specify the boundary conditions for (4.1) and for (4.2) and

(4.3) at different locations. All boundary conditions will be the same as those chosen

in Section 2.4, and we remind the reader now of those choices. To define boundary

conditions for (4.2) and (4.3) we choose some U0, V0 and define σU0(U), σ̂V0(V ) to be the

solutions of (4.1) that satisfy

σU0(U)|U=U0 = ∂UσU0(U)|U=U0 = 0

σ̂V0(V )|V=V0 = ∂V σ̂V0(V )|V=V0 = 0. (4.4)

In contrast, to define boundary conditions for (4.1) we simply note that U(u), V (v) will

be defined on intervals u ∈ (−∞, umax) and v ∈ (−∞, vmax). We will take umax =

vmax = ∞ for solutions asymptoting to Poincaré AdS3 and umax = vmax = 0 for solutions

asymptoting to an M > 0 planar black hole. We choose our boundary conditions to

be u(U = 0) = 0, v(V = 0) = 0 for solutions asymptoting to Poincaré AdS3, and

u(U = ∞) = 0, v(V = ∞) = 0 for solutions asymptoting to an M > 0 planar black

hole. In either case, uU0(U) and vV̂0(V ) can be written in the form

uU0(U) =
∫ U
0
dU ′e−2σU0

(U ′) + cu (4.5)

vV̂0(V ) =
∫ V
0
dV ′e−2σ̂V0 (V

′) + cv, (4.6)

where, as a consequence of our choice above, cu = cv = 0 when solutions asymptote to

Poincaré AdS3, while for solutions asymptoting to an M > 0 black hole we have

cu = −
∫ ∞

0

dU ′e−2σU0
(U ′), cv = −

∫ ∞

0

dV ′e−2σ̂V0 (V
′). (4.7)

As described above, the objects σU0 , σ̂V0 are functionals of Tab determined by solving
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(4.2) and (4.3). While a closed form solution is not available, we can differentiate (4.2)

with respect to σU0(U) to obtain a linear differential equation for
δσU0

(U)

δTUU (U ′)
. That linear

equation can then be solved to find
δσU0

(U)

δTUU (U ′)
and

δσ̂V0 (V )

δTV V (V ′)
, as given in Eq. (2.44). Since

commutators between boundary stress tensors are given by the Virasoro algebra, the

result (2.44) can be used to compute the Poisson Bracket algebra of conformal factors

σ(U, V ). Doing so yields a commutator of the form ((2.52)), which can be reduced to the

effective commutator in Equations (2.53) and (2.54), reproduced here for convenience:

{σU0(U), σU0(Ũ)}eff = 6π
c
Θ(Ũ − U), (4.8)

{σ̂V0(V ), σ̂V0(Ṽ )}eff = −6π
c
Θ(V − Ṽ ). (4.9)

Now, for any two observables B and C, we can compute their semiclassical commu-

tator using Eq. (2.52):

{B,C} =

∫
d2x2d

2x′2
δB

δσ(x2)
{σ(x2), σ(x′2)}

δC

δσ(x′2)
, (4.10)

in terms of the functional derivatives of B and C with respect to σ(U, V ). Using the

effective commutators (2.53), (2.54), we may thus write the commutator between areas

A1 and A2 in the form

{A1, A2} =
6π

c

∫ ∞

−∞
dŨ

δA2

δσŨ0
(Ũ)

∫ ∞

−∞
dU

δA1

δσŨ0
(U)

Θ(Ũ − U)

− 6π

c

∫ ∞

−∞
dṼ

δA2

δσ̂Ṽ0(Ṽ )

∫ ∞

−∞
dU

δA1

δσ̂Ṽ0(V )
Θ(V − Ṽ ).

(4.11)
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γ1

γ2

Planar boundary

U
V

γ#a

γ#b

(Ua, Va)

(Ub, Vb)

(U1, V1)

(U2, V2)

Figure 4.2: A constrained geodesic network, with HRT surface γ = γ1 ∪ γ2, and two
additional links γ#a and γ#b that together form a constrained HRT surface γ# = γ#a ∪γ#b .
The anchor points of γ are (U1, V1) and (U2, V2), while γ

#
a is anchored at (Ua, Va) and γ

#
b

at (Ub, Vb).

4.3 A simple constrained-surface network with van-

ishing commutators

As mentioned in the introduction, we will construct networks of surfaces by extremiz-

ing areas subject to constraints that require them to intersect in various ways. The first

such networks will be based on the constrained HRT-surfaces of [105]. Such codimension-

2 surfaces γ# are defined by first choosing an HRT surface γ and choosing an anchor

set for γ# on the AdS boundary. The constrained HRT-surface γ# is then defined by

extremizing its area subject to the usual requirements that its anchors remain fixed and

that it satisfy the homology constraint [121], but where we also impose the additional

constraint that γ# must intersect γ; see figure 4.2.
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The locus of the intersection is then determined by the extremization. In AdS3,

extremal codimension-2 surfaces are geodesics and the intersection occurs at a single

point. In any dimension, the intersection divides γ into two half-infinite links γ1, γ2, and

it also divides γ# into γ#a , γ
#
b . This configuration thus defines a network with a single

vertex (at the intersection) and 4 links γ1, γ2, γ
#
a , γ

#
b .

Section 4.3.1 below computes the renormalized areas of γ#a , γ
#
b . Commutators be-

tween the renormalized areas of γ1, γ2, γ
#
a , γ

#
b are then computed in section 4.3.2, where

they are shown to vanish.

4.3.1 Area-operators for half-infinite links

Our task in this section is to compute the areas of γ#a , γ
#
b , γ1, γ2 for given boundary

anchors. We first focus on γ#a , γ
#
b . We take the anchor points of γ to be (U1, V1) and

(U2, V2), while γ
#
a is anchored at (Ua, Va) and γ

#
b at (Ub, Vb).

It will be convenient to begin with a simple case in Poincaré AdS3 where γ is in fact

defined by the boundary region R0 given by the half-line x ∈ [x1,∞) at some t = t1 on

the boundary at z = 0. Since we are Poincaré AdS3, we use the coordinates of (2.15)

given by lower-case roman letters. The associated HRT surface γR0 is then just the

line of constant u, v with u = u1 = t1 − x1 and v = v1 = t1 + x1 for all z. We then

define an associated constrained geodesic γ̄# by choosing two boundary points (ua, va)

and (ub, vb), where without loss of generality we assume ua < u1 < ub and va > v1 > vb.

The intersection point then breaks γ̄# into two half-infinite links γ̄#a , γ̄
#
b .

Since the intersection point lies on γR0 , it must be of the form (u1, v1, z). But for any

half-infinite link γhalf anchored to (ui, vi) on the boundary and the point (u1, v1, z) in

the bulk, the renormalized area in planar BTZ coordinates with horizon at z = zH was
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γ̄a

γR0

Planar boundary

u
v

γ̄b

Figure 4.3: A simple HRT surface γR0 in the vacuum (Poincaré AdS3), along with two
additional links γ̄#a and γ̄#b defined by extremizing the area of γ̄#a ∪ γ̄#b .

found in [128] to be

Avacγhalf
= ln

(
− 2zH

z

[√
z2H − z2 cosh

(
t1 − ti
zH

)
− zH cosh

(
x1 − xi
zH

)])
. (4.12)

In the limit zH → ∞, the BTZ metric becomes Poincaré AdS. Taking this limit, we find

the geodesic length

Avacγhalf
= ln

(
2z +

2(u1 − ui)(vi − v1)

z

)
. (4.13)

We now take γ̄#a to be the half-infinite link with boundary anchor (ua, va), and γ̄
#
b to

be the half-infinite link with boundary anchor (ub, vb). We wish to extremize the total

length Avac
γ̄#a

+Avac
γ̄#b

of γ̄# over possible intersection points on γR0 . Since the points on γR0

are labelled by the value of z in (4.13), a short computation yields:

zext = [(u1 − ua)(va − v1)(ub − u1)(v1 − vb)]
1/4. (4.14)
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Inserting this result into (4.13) gives

Avac
γ̄#a

= ln

[
2

(
(u1−ua)(va−v1)
(ub−u1)(v1−vb)

)1/4

(
√

(u1 − ua)(va − v1) +
√

(ub − u1)(v1 − vb))

]
(4.15)

Avac
γ̄#b

= ln

[
2

(
(ub−u1)(v1−vb)
(u1−ua)(va−v1)

)1/4

(
√

(u1 − ua)(va − v1) +
√

(ub − u1)(v1 − vb))

]
.(4.16)

We will now use the above above results to compute similar areas for the general

configuration shown in figure 4.2. As usual, the idea is to apply an appropriate bound-

ary conformal transformation as in (3.25). This transformation generates a non-trivial

boundary stress tensor, and in that sense takes us out of the vacuum state. For any

half-infinite link area it yields

Aγhalf = Avacγhalf
+ σU0(Ui) + σ̂V0(Vi), (4.17)

where Ui = U(ui) and Vi = V (vi).

Note that Avacγhalf
depends on the vacuum coordinates ui, vi of all three anchor points.

Since we wish to fix the physical coordinates Ui, Vi of the anchors, we should regard ui, vi

as functions of Ui, Vi that depend on some σU0 , σ̂V0 via (4.5) and (4.6). Thus, all three

terms in Eq. (4.17) can contribute to our commutators.

The last generalization we will need is to transform γR0 into a general HRT-surface

γ anchored at arbitrary spacelike-separated boundary points (U1, V1) and (U2, V2). This

will also move the other links, transforming our γ̄#a to some γ#a and taking our γ̄#b to

some γ#b . See Figure 4.2, which shows the result of this transformation. Without loss

of generality, we take Ua < U1 < Ub < U2 and Va > V1 > Vb > V2. We perform

this generalization by taking a fractional linear transformation which brings the second

anchor point of γR0 back from infinity, i.e. we take u → 1
u2−u and v → 1

v2−v . Under this
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transformation one finds

σU0(U(ui)) → σU0(U(ui)) + ln(u2 − ui), (4.18)

with analogous results for σ̂V0(V ). As a result, in the general configuration given in

Figure 4.2 the link areas take the form

Aγ#a = ln

[√
(u1 − ua)(va − v1)

(u2 − ua)(va − v2)
+

√
(ub − u1)(v1 − vb)

(u2 − ub)(vb − v2)

]

+
1

4
ln

[
(u1 − ua)(va − v1)(u2 − ub)(vb − v2)(u2 − ua)

3(va − v2)
3

(u2 − u1)2(v1 − v2)2(ub − u1)(v1 − vb)

]

+ σU0(Ua) + σ̂V0(Va) + ln 2,

(4.19)

and

Aγ#b
= ln

[√
(u1 − ua)(va − v1)

(u2 − ua)(va − v2)
+

√
(ub − u1)(v1 − vb)

(u2 − ub)(vb − v2)

]

+
1

4
ln

[
(ub − u1)(v1 − vb)(u2 − ub)

3(vb − v2)
3(u2 − ua)(va − v2)

(u2 − u1)2(v1 − v2)2(u1 − ua)(va − v1)

]

+ σU0(Ub) + σ̂V0(Vb) + ln 2.

(4.20)

Our ultimate goal in this calculation is to understand commutators between the

areas of the four links γ#a , γ
#
b , γ1, and γ2. Here γ1 runs from (U1, V1) on the boundary

to the intersection point in the bulk, and γ2 runs from (U2, V2) on the boundary to the

intersection point in the bulk. It thus remains to compute the areas of γ1 and γ2 by first

calculating the renormalized areas of each piece of γR0 , performing the fractional linear

transformation u → 1
u2−u and v → 1

v2−v to find Aγ1 and Aγ2 , and finally applying the
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above conformal transformation. Doing so yields the renormalized areas

Aγ1 =
1

4
ln

(
(u1 − ua)(va − v1)(ub − u1)(v1 − vb)(u2 − u1)

2(v1 − v2)
2

(u2 − ua)(va − v2)(u2 − ub)(vb − v2)

)

+ σU0(U1) + σ̂V0(V1) + ln 2,

(4.21)

and

Aγ2 =
1

4
ln

(
(u2 − ua)(va − v2)(u2 − ub)(vb − v2)(u2 − u1)

2(v1 − v2)
2

(u1 − ua)(va − v1)(ub − u1)(v1 − vb)

)

+ σU0(U2) + σ̂V0(V2) + 2 ln 2.

(4.22)

As a check, adding the above two results one finds the renormalized area of the full

geodesic γ = γ1 ∪ γ2 to be

Aγ = ln[2(u1 − ua)(va − v1)] + σU0(U1) + σ̂V0(V1) + σU0(U2) + σ̂V0(V2) + 2 ln 2, (4.23)

which agrees with [3]. As another check, although the above area expressions are written

in terms of σU0(U) and σ̂V0(V ), a short computation shows that derivatives of these areas

with respect to both U0 or V0 give zero. This is the correct result since Aγ#a , Aγ#b
, Aγ1

and Aγ2 are physical observables whose definitions do not depend on our arbitrary choice

of U0, V0.

In order to calculate commutators, one must take care to express u, v as σ-dependent

functions of U, V . After doing so, one may compute the relevant functional derivatives

106



Link-Area Commutators in AdS3 Area Networks Chapter 4

for use in (2.32):

δAγ#a
δσU0(U)

=δ(U − Ua) + e−2σU0
(U)

[
− 1 + 2C

2(u1 − ua)
Θ(U1 − U)Θ(U − Ua)

− 3− 2C

2(u2 − ua)
Θ(U2 − U)Θ(U − Ua)−

1− 2C

2(ub − u1)
Θ(Ub − U)Θ(U − U1)

+
1− 2C

2(u2 − ub)
Θ(U2 − U)Θ(U − Ub) +

1

u2 − u1
Θ(U2 − U)Θ(U − U1)

]
,

(4.24)
δAγ#b
δσU0(U)

=δ(U − Ub) + e−2σU0
(U)

[
1− 2C

2(u1 − ua)
Θ(U1 − U)Θ(U − Ua)

− 1− 2C

2(u2 − ua)
Θ(U2 − U)Θ(U − Ua)−

3− 2C

2(ub − u1)
Θ(Ub − U)Θ(U − U1)

− 1 + 2C

2(u2 − ub)
Θ(U2 − U)Θ(U − Ub) +

1

u2 − u1
Θ(U2 − U)Θ(U − U1)

]

(4.25)
δAγ1

δσU0(U)
=δ(U − U1) + e−2σU0

(U)

[
− 1

2(u1 − ua)
Θ(U1 − U)Θ(U − Ua)

+
1

2(u2 − ua)
Θ(U2 − U)Θ(U − Ua)−

1

2(ub − u1)
Θ(Ub − U)Θ(U − U1)

+
1

2(u2 − ub)
Θ(U2 − U)Θ(U − Ub)−

1

u2 − u1
Θ(U2 − U)Θ(U − U1)

]
,

(4.26)
δAγ2

δσU0(U)
=δ(U − U2) + e2σU0

(U)

[
− 1

2(u1 − ua)
Θ(U1 − U)Θ(U − Ua)

− 1

2(u2 − ua)
Θ(U2 − U)Θ(U − Ua) +

1

2(ub − u1)
Θ(Ub − U)Θ(U − U1)

− 1

2(u2 − ub)
Θ(U2 − U)Θ(U − Ub)−

1

u2 − u1
Θ(U2 − U)Θ(U − U1)

]
,

(4.27)

with analogous expressions for functional derivatives with respect to σ̂V0(V ). In the above

we have defined the quantity

C =

√
(u1−ua)(va−v1)
(u2−ua)(va−v2)√

(u1−ua)(va−v1)
(u2−ua)(va−v2) +

√
(ub−u1)(v1−vb)
(u2−ub)(vb−v2)

. (4.28)
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4.3.2 Vanishing commutators for the 4-link constrained HRT-

surface network

We now use the above results and (4.11) to compute the desired commutators. First,

as a check on our results above, let us compute {Aγ#a , Aγ} and {Aγ#b , Aγ}. Each of these

must vanish since the flow generated by Aγ is known to introduce a relative boost between

the entanglement wedges on either side of γ but to preserve the geometry of each wedge

separately; see e.g. [3] which builds on [114, 115]. Since γ#a and γ#b each lie entirely

in one of these wedges, the relative boost has no effect on their areas. Thus their area

operators must commute with Aγ. Combining the above equations does indeed yield this

result.

We next examine commutators between any two of γ#a , γ
#
b , γ1, and γ2. A priori, we

have no argument for the form that these should take. However, direct calculation shows

that all terms cancel. In particular, the U -parts alone give a result of the form

c1 + c2C, (4.29)

with constants c1 and c2. For example, {Aγ#a , Aγ1}U−component =
1
2
(1−C). The calculation

of the V -components then follows immediately: The functional derivatives with respect

to V are direct analogues of those with respect to U , but with the ordering of the anchor

points reversed. However, we must also take into account the various signs that arise in

comparing the U - and V -dependent pieces in (4.11). The changes inside the step-function

are just those associated with the above reversal in the order of the anchor points, but

there nevertheless remains an overall difference in sign. The result of the computation

of the V -parts is thus identical to that for the U -parts up to this overall sign. Since

C is invariant under u → v, this means the V -parts of the commutator take the form
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−c1− c2C so that they precisely cancel the contributions from the U -parts. We thus find

that the areas of γ#a , γ
#
b , γ1, and γ2 mutually commute.

This is an intriguing result. One may then wonder whether similar results hold for

other simple networks. We explore a 6-link example in Appendix B obtained by adding

a further constrained HRT-surface to the network above. However, in that case we find

link-area commutators that fail to vanish.

4.4 Link-area algebras for the cross section network

It is interesting that the link-area commutators vanished for the constrained HRT-

surface network of figure 4.2. However, following our original motivations requires us to

ask whether the same result can hold in a more complicated network. While there are

clearly many options that one can consider, we focus here on a network associated with

the entanglement wedge cross section (see figure 4.4a), for which the resulting link-area

operators may be of interest in their own right. As before, we begin by finding expressions

for the areas of the entanglement wedge cross section and the four half-infinite HRT-

surfaces in section 4.4.1. We then compute the various area commutators in Section

4.4.2. In contrast to the previous section, we find that some of these commutators do

not vanish.

4.4.1 Area operators

Our goal in this section is to find expressions for the areas of all of the links in the

network shown in Figure 4.4a, but in the context of a general spacetime in our phase

space (i.e., with a general Tab in the allowed class) and with general positions of the

anchor points. We consider in detail only cases where the cross section γCS is spacelike

(though we briefly comment on the case when the cross section is timelike in Appendix D).
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The network is defined by first choosing two HRT surfaces, γ̄′a and γ̄b, and constructing

the associated cross-section γCS, defined as the codimension-2 surface whose boundaries

lie on the above HRT-surfaces and which has extremal length5. In particular, this ex-

tremization condition fixes the locations of the cross-section boundaries on the original

HRT-surfaces. When the region between the HRT-surfaces is an entanglement wedge,

this construction defines an entanglement-wedge cross section (though our computation

holds more generally).

As before, we will generate general configurations by acting on simple ones with

boundary conformal transformations. We start in the Poincaré AdS3 vacuum and choose

two boundary subregions, Ra and Rb. Both regions are to be defined by straight line

segments on the boundary, though they need not lie in any t = constant slice. However,

we can simplify the configuration by acting with boundary conformal transformations

that act on the boundary as fractional linear transformations in either u or v, as such

boundary conformal transformations preserve the vanishing of the boundary stress tensor.

The resulting 6-parameter group can generally6 be used to move both Ra and Rb to line

segments that are symmetric about the origin (u, v) = (0, 0) of the boundary Minkowski

space; see figure 4.4b.

These conditions fix a 4-parameter subgroup of the above symmetries, but they still

allow further action by both boosts and dilations. It is convenient to use the boosts to

place the segment Rb in the surface t = 0.

5As usual, if there is more than one such surface we would choose the minimal one. We should
also enforce a homology constraint. However, neither of these details are relevant in the simple context
studied here.

6The only exceptions correspond to cases where Ra and Rb define a common Lorentz frame but fail
to share a common time-slice. Such exceptions can be treated as degenerate limits of the more general
case studied explicitly.
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1−1 xa−xa
xx

(0, 0)

t = 0

γCS

γ̄b

γ̄′a

(a)

t = 0t = 0

z = 0 u v

(1,−1) (−1, 1)

(ūa,−v̄a)

(−ūa, v̄a)

(0, 0)
Rb

Ra

(b)

Figure 4.4: A simple example of a cross-section network. Panel (a) shows the t = 0 slice,
which we take to contain two HRT surfaces γ̄′a and γ̄b. Although the figure shows xa less
than 1, any value xa > 0 is allowed. Panel (b) shows the z = 0 boundary for a more
general configuration in which Ra and Rb are boundary regions respectively homologous
to γ̄a and γ̄b, but with Ra (and thus also γ̄a) now boosted relative to Rb and γ̄b (which
continue to lie in the t = 0 slice).

Indeed, it will be useful to begin with an even simpler class of configurations in which

all anchor points lie in a constant time slice as shown in Figure 4.4a. We emphasize

that this configuration is no longer related by symmetries to the most general ones, but

we will see that it is nevertheless useful starting point for our analysis. We choose the

anchor points of the first HRT surface, γ̄′a, to lie at x = ±xa, with xa > 0. The anchor
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points of the second HRT surface, γ̄b, are fixed at x = ±1. Given any 4 values of x one

can define a useful cross-ratio (see also (4.39) below) which for these anchor points takes

the value

χ =
4xa

(xa + 1)2
. (4.30)

From this we can compute the area of the cross section, either directly or by using

results from [162, 158]. We find

ACS = ln

(
1 +

√
1− χ√
χ

)
=

1

2
| lnxa|. (4.31)

Notice that, since the cross-section γCS does not extend to the AdS boundary, its renor-

malized area is just its (finite) area. As a result, for any solution in our phase space (with

general Tab) the cross-section area ACS continues to be given by (4.31) so long as u, v are

expressed in terms of the physical coordinates U, V .

We would now like to generalize the configuration in Figure 4.4a by boosting Ra, the

boundary region that defines γ̄′a, relative to Rb as shown in Figure 4.4b. We will denote

the resulting HRT surface by γ̄a, with anchor points at (ūa,−v̄a) and (−ūa, v̄a). We take

ūa > 0 and v̄a > 0.

Note that the cross-section itself is invariant under this boost. Since the result of any

boost satisfies

x2a = ūav̄a, (4.32)

we can write (4.31) in terms of the anchor points in this new configuration to find

ACS =
1

4
| ln ūav̄a|. (4.33)

We can also write down the vacuum values of the areas of the four half-infinite links in
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our network. For any HRT surface with anchor points (ū,−v̄) and (−ū, v̄), the vacuum

area of each half-infinite link is given by Eq. (4.13) with (u2, v2) = (0, 0) and z =
√
ūv̄.

This yields

Avacγhalf
=

1

2
ln[4(ū− (−ū))(v̄ − (−v̄))], (4.34)

where we have made manifest the contributions from each anchor point. Thus, the

vacuum areas of the links cut from γ̄a and γ̄b are

Avacγ̄a,half
=

1

2
ln[4(ūa − (−ūa))(v̄a − (−v̄a))], (4.35)

Avacγ̄b,half
=

1

2
ln[4(ūb − (−ūb))(v̄b − (−v̄b))], (4.36)

where we have ūb = 1 and v̄b = 1. Writing Avacγ̄b,half
in the somewhat awkward form above

will turn out to clarify later calculations. We can now apply the conformal transformation

(3.25), under which the vacuum areas above transform as in (4.17). This gives the area

of the half-infinite links cut from γ̄a and γ̄b in any solution.

We can now move our anchor points into an almost fully general configuration in the

Poincaré AdS3 vacuum by acting with an SL(2,R) × SL(2,R) transformation. We wish to

find the transformation that takes two general HRT surfaces, γa and γb, into the previous

configuration, transforming γa into γ̄a and γb into γ̄b. If γa has anchor points (ua1, va1)

and (ua2, va2), then we have the constraints

auua1 + bu
cuua1 + du

= ūa,
auua2 + bu
cuua2 + du

= −ūa,
avva1 + bv
cvva1 + dv

= −v̄a,
avva2 + bv
cvva2 + dv

= v̄a. (4.37)
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Additionally, if γb has anchor points (ub1, vb1) and (ub2, vb2), then we have

auub1 + bu
cuub1 + du

= ūb = 1,
auub2 + bu
cuub2 + du

= −ūb = −1,

avvb1 + bv
cvvb1 + dv

= −v̄b = −1,
avvb2 + bv
cvvb2 + dv

= v̄b = 1.

(4.38)

We are also free to impose the additional constraints au = av = 1. We can then solve for

ūa and v̄a in terms of the four anchor points of our general HRT surfaces. In terms of

the cross ratios

χu =
(ua2 − ua1)(ub2 − ub1)

(ua1 − ub2)(ub1 − ua2)
, χv =

(va2 − va1)(vb2 − vb1)

(va1 − vb2)(vb1 − va2)
, (4.39)

we find7

ūa =

(
1 +

√
1− χu√
χu

)2

, v̄a =

(
1 +

√
1− χv√
χv

)2

. (4.40)

Since χu, χv < 1, the expressions for ūa, v̄a are real8. Using these definitions in (4.33)

then yields

ACS =
1

2

(
ln

[
1 +

√
1− χu√
χu

]
+ ln

[
1 +

√
1− χv√
χv

])
, (4.41)

where we have dropped the absolute value sign since the expression is manifestly positive

(the arguments in the logarithms are greater than one since χu, χv < 1). Note that

this reduces to the result (4.33) when all anchor points lie on a slice with time-reversal

symmetry, since in that case χu = χv.

The four half-infinite links are now γa1 anchored to (ua1, va1), γa2 anchored to (ua2, va2),

γb1 anchored to (ub1, vb1), and γb2 anchored to (ub2, vb2). Writing the constraints with

parameters bu,v, cu,v, and du,v expressed in terms of the anchor points, and using the

7The constraints (4.37) and (4.38) admit two solutions, differing by a sign in front of the square root
term in the numerator. We choose the sign consistent with the case where both intervals lie in the t = 0
surface.

8The cross-ratios can be written as χu = 4ūa

(ūa+1)2 and χv = 4v̄a
(v̄a+1)2 , which are less than 1 for any

ūa ̸= 1 and v̄a ̸= 1, respectively. This can also be argued directly from the form of χu,v in Eq. (4.39).
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conformally transformed versions of Equations (4.35) and (4.36), we obtain the final

expressions for the areas of the half-infinite links

Aa1 =
1

4
ln

∣∣∣∣
(ua1 − ub1)(ua1 − ub2)(va1 − vb1)(va1 − vb2)

(ub1 − ua2)(ub2 − ua2)(vb1 − va2)(vb2 − va2)

∣∣∣∣

+
1

2
ln |4(ua1 − ua2)(va2 − va1)|+ σU0(Ua1) + σV0(Va1),

(4.42)

Aa2 =
1

4
ln

∣∣∣∣
(ub1 − ua2)(ub2 − ua2)(vb1 − va2)(vb2 − va2)

(ua1 − ub1)(ua1 − ub2)(va1 − vb1)(va1 − vb2)

∣∣∣∣

+
1

2
ln |4(ua1 − ua2)(va2 − va1)|+ σU0(Ua2) + σV0(Va2),

(4.43)

Ab1 =
1

4
ln

∣∣∣∣
(ua1 − ub1)(va1 − vb1)(ub1 − ua2)(vb1 − va2)

(ua1 − ub2)(va1 − vb2)(ub2 − ua2)(vb2 − va2)

∣∣∣∣

+
1

2
ln |4(ub1 − ub2)(vb2 − vb1)|+ σU0(Ub1) + σV0(Vb1),

(4.44)

Ab2 =
1

4
ln

∣∣∣∣
(ua1 − ub2)(va1 − vb2)(ub2 − ua2)(vb2 − va2)

(ua1 − ub1)(va1 − vb1)(ub1 − ua2)(vb1 − va2)

∣∣∣∣

+
1

2
ln |4(ub1 − ub2)(vb2 − vb1)|+ σU0(Ub2) + σV0(Vb2).

(4.45)

Having found these results, it is also useful to note that, if we had been satisfied

with less detailed knowledge of the above functions, we could have obtained certain

information about these areas by following a much simpler route. In particular, since

each half-infinite HRT-surface has a single anchor point, it is manifest that each such area

transforms covariantly under boundary conformal transformations, and that it transforms

as the logarithm of a local operator that has conformal weight 1 at its anchor point.

In particular, these areas must transform in this way under the SL(2,R) × SL(2,R)

group of fractional linear transformations. Since any SL(2,R) × SL(2,R)-invariant func-

tion of four anchor points is a function of the cross-ratios χu, χv, for e.g. γb1 we must
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have

Ab1 =
1

2
ln

(
(ua1 − ub1)(vb1 − va1)(ua2 − ub1)(vb1 − va2)

(ua2 − ua1)(va1 − va2)

)

+ fb1(χu, χv) + σU0(Ub1) + σV0(Vb1),

(4.46)

where fb1(χu, χv) is some (separable) function of the cross ratios that can be found by

comparing with (4.42). The areas of the other three half-infinite links take similar forms.

This form turns out to be useful in simplifying some of the commutator calculations since

all functions of u-coordinates commute with all functions of v-coordinates so that we also

have {χu, fb1(χu, χv)} = 0.

It is now a straightforward exercise to compute functional derivatives of link areas

with respect to σ(U, V ), after first expressing the area operators in terms of coordinates

U, V using (4.5) and (4.6). We can do this for the half-infinite link areas as well as for

the cross-section area. We save detailed expressions for Appendix C, but note here that

for the area ACS of the cross-section γCS, we can write

δACS
δσU(U)

=
∂ACS
∂χu

δχu
δσU(U)

=− 1

4χu
√
1− χu

δχu
δσU(U)

,

(4.47)

and similarly for δACS
δσ̂V0 (V )

. As in section 4.3, such formulae can be combined with (2.32) to

compute the desired semiclassical commutators. We discuss the results in section 4.4.2

below.

4.4.2 Results

We now compute commutators between (i) any two half-infinite link areas and (ii)

the cross-section area and any of the half-infinite link areas. In general, commutators of
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type (i) vanish, but those of type (ii) are non-zero.

Let us start by computing commutators of type (i). Commutators between half-

infinite links on the same HRT surface must vanish since these are equivalent to com-

mutators between a half-infinite link and the HRT surface containing it. HRT area flow

leaves the HRT surface invariant, and so it should leave the link area unaffected. How-

ever, to understand commutators between half-infinite links on different HRT surfaces,

we must perform a calculation. We do this by first taking the link-area functional deriva-

tives given in Equations (C.4)-(C.7), then using them in Eq. (4.11). We find that all

such commutators vanish. And, unlike the link-area algebra of Section 4.3.2, the U - and

V -components of these commutators vanish individually.

The commutators between ACS and the half-infinite link areas are more interest-

ing. We will focus on {ACS, Ab1}. Since ACS depends only on χu and χv, we can use

Eq. (4.46) for Ab1 and ignore the χ-dependent piece fb1(χu, χv), since this commutes

with all functions of χu and χv. We choose the ordering Ub1 < Ua1 < Ua2 < Ub2 and

Vb1 > Va1 > Va2 > Vb2. Using the functional derivative of Ab1 in Eq. (C.8), and the

functional derivative of ACS in Eq. (C.3) (and their V -dependent counterparts), we find

{ACS, Ab1} =
3π

2c

√
1− χu −

3π

2c

√
1− χv. (4.48)

A similar non-vanishing result is of course obtained when b1 is replaced with any other

half-infinite links (the result will be the same up to an overall sign). The relative sign

difference between U -components and V -components appears for the same reason as

described in Section 4.3.2. We will hence always have a difference in overall sign between

commutators with χu and χv; otherwise, they will be the same up to a replacement of

all instances of χu with χv.
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Furthermore, one may check that indeed

{ACS, Aγb1∪γb2} = {ACS, Aγb1}+ {ACS, Aγb2} = 0, (4.49)

as is required by the fact that γb1 ∪ γb2 is an HRT surface relative to which γCS lies

entirely in one of the associated entanglement wedges. In particular, since the action of

the HRT area is just to introduce a relative boost between the two entanglement wedges,

the area ACS is unaffected. The same result holds for γa1 ∪ γa2. As an aside, we note

that these HRT areas will fail to commute with ACS if we allow the cross section to be

timelike. We elaborate on this result in Appendix D.

4.5 Discussion

Motivated by a desire to improve the understanding of tensor-network models of

holography, our work above probed the feasibility of simultaneously fixing the areas of

all surface segments in an area-network. We studied several such area-networks in the

context of pure AdS3 Einstein-Hilbert gravity (where the areas are in fact lengths and

extremal codimension-2 surfaces are geodesics) and computed the relevant commutators

at leading order in the semiclassical approximation.

Our first network contained precisely 4 links and was defined by a single HRT surface

and a single constrainted HRT-surface. All link-area commutators in this network were

found to vanish at leading semiclassical order. While higher-order effects remain to be

considered, they would necessarily be small. We thus conclude that, at least in the pure-

AdS3 context, this network is one for which fluctuations of all areas can be simultaneously

suppressed relative to the O(
√
G) fluctuations found in typical semiclassical states.

However, such results are not generic. In particular, Appendix B analyzed a 6-link
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generalization of the above model defined by adding an additional constrained geodesic.

For this network we found non-vanishing commutators.

We then moved on to study a network with two HRT surfaces and their cross-section

γCS. When the region between the two HRT surfaces is an entanglement wedge, this γCS

in the associated entanglement-wedge cross-section. Here we again found non-vanishing

area commutators.

The present work was exploratory and did not seek deeper understanding of the

results. It is thus far from clear that we have exhausted the space of interesting construc-

tions, though it is also unclear which additional area-networks would be of significant

interest for further study. On the other hand, it would clearly be of interest to under-

stand whether the area-link algebra found for the 4-link constrained-HRT network of

section 4.3 remains Abelian in theories with matter and/or in higher dimensions. If it

does, the result would then call out for an explanation or interpretation in terms of a

dual CFT.

Another issue to which we expect to return is the question of obtaining a more

geometric understanding of the commutators described above and the flows generated by

them. The fact that HRT areas are known to generate flows on phase space described

by geometric operations [114, 115, 3] that something similar may be true of the HRT

area-links studied in the present work. And since such links have boundaries, it is natural

to expect the flow generated by these areas may have a non-trivial effect extending to

the boundary, as in [148] for similar operators associated with codimension-1 surfaces.

Such an understanding might be particularly useful in the context of entanglement-wedge

cross-sections, where the cross-section area is associated with reflected entropy [158] and

has been related to entanglement of purification [156, 157]. These issues will be addressed

in forthcoming work.
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Chapter 5

De Sitter quantum gravity and the

emergence of local algebras

5.1 Introduction

It has long been recognized that the physics of quantum gravity will involve at least

some degree of non-locality, with familiar local physics emerging in the perturbative

limit G → 0. While some such effects may stem from topology-changing processes in

the gravitational path integral, we will focus here a form of non-locality that is directly

associated with diffeomorphism-invariance (see e.g. discussions in [163, 164, 165, 166, 167,

168, 169, 170, 101, 171]), and which are expected to be arise even when topology-change

is absent.

In addition, recent progress on understanding gravitational entropy in this limit [37,

39, 38, 40, 172, 46, 45] has emphasized the importance of the emergence of an algebra

of local fields. Our goal here is to perform the next steps in investigating just how

such algebras appear as G → 0 by exploring a construction advocated in [102] for the

interesting-but-tractable context of perturbative gravity around global de Sitter (dSD)
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space, with metric

ds2 = −dt2 + ℓ2 cosh2(t/ℓ)dΩ2
d, (5.1)

where d = D− 1, ℓ is the de Sitter scale, and dΩ2
d is the round metric on the unit sphere

Sd.

As emphasized in [171], perturbative quantum gravity is manifestly local when for-

mulated around a background that completely breaks diffeomorphism-invariance. In

particular, in that context it can be described by gauge-invariant operators that satisfy

exact microcausality. But this is not the case when the background leaves a subgroup

of gauge diffeomorphisms unbroken; i.e., when the Cauchy surfaces of the background

are compact (so that all diffeomorphisms are gauge) and when there is an isometry that

also leaves invariant any matter fields that may be present. In this more subtle context,

even at the perturbative level any gauge invariant observable must be invariant under the

unbroken isometries.1 As a result, a gauge-invariant observable in perturbative gravity

can be supported in a small region of spacetime localized near a single point p only if p

is a fixed point of every unbroken isometry.

When expanding around global de Sitter, such observables must be invariant under

the full de Sitter group and are thus maximally delocalized. Nevertheless, we expect

to recover a notion of local physics by making use of relational constructions; see e.g.

[163, 164, 165, 166, 167, 168, 169, 170, 101, 102]. Indeed, in an appropriate limit we

should obtain the usual local algebra of quantum fields on a fixed spacetime background.

1This is, of course, just the gravitational version of a general fact about gauge symmetries and
perturbation expansions. Given a gauge transformation g that acts on fields ϕ via ϕ 7→ ϕg, we may
choose a classical background ϕ̄ and define the perturbative field δϕ := ϕ − ϕ̄ and the perturbative
gauge transformation (δϕ)g := ϕg − ϕ̄. When ϕ̄g ̸= ϕ̄, the space of small perturbations is preserved
only when g − 1 is of order δϕ, so that dropping terms of order (δϕ)2 yields ϕg ≈ δϕ + ϕ̄g and thus
δϕg ≈ δϕ + (ϕ̄g − ϕ̄). On the other hand, for a family of transformations with ϕ̄g = ϕ̄, we may take g
arbitrarily large. Furthermore, the action of g on δϕ is then essentially the same as the action of g on
ϕ. In particular, in the gravitational case the unbroken diffeomorphisms act as finite diffeomorphisms
on the perturbative fields δϕ.

121



De Sitter quantum gravity and the emergence of local algebras Chapter 5

Related issues were recently addressed in [45], which explored how a rolling inflaton

field could replace the clock used for the construction described in [39] of a type II von

Neumann algebra for the static patch of dS. However, our treatment differs from that

of [45] in three important ways. The first is that [45] assumed that a definition of a

preferred static patch P of their de Sitter space had already been given in a gauge-

invariant manner. This then left only the isometry associated with time translations

within P to be treated explicitly. One might thus say that they took locality in space as

a given and focussed instead on issues associated with the emergence of locality in time.

In contrast, we treat all de Sitter isometries on an equal footing and explicitly study the

emergence of locality in both space and time. A second difference is that, in addition

to understanding the limiting algebra, we will also characterize the departures from the

G = 0 limit that arise at small-but-finite values of G. Finally, a third difference is that we

consider perturbations around a stable de Sitter space, and in particular one in which all

matter fields (including any field that might be called an ‘inflaton’) has a stable vacuum.

We expect this to be a good starting point for discussion of more interesting scenarios

that involve eternal inflation with a small probability of ending inflation in each Hubble

volume; see e.g. [93, 96] for progress on embedding such constructions in string theory.

Our focus on stable (or nearly-stable) dSd+1 vacuua has important implications for

our construction of gauge-invariant observables. To explain the details, it will be useful to

refer to the theory at order G0 as quantum field theory on a fixed de Sitter background

(dS QFT), where we take this to include the theory of linearlized gravitons. In con-

structing perturbative observables, it may then seem natural to follow [164] and consider

observables of the form

O =

∫ √−gA(x) (5.2)

for some local scalar field A(x) in our dS QFT. This approach has been shown to be
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successful in certain simple models of quantum gravity [173, 174, 170, 101]. The analogous

construction was also used in [45] (where the integral was only over static patch time

translations since, as noted above, that work assumed that a preferred notion of a static

patch had already been given), and in [39, 40, 46] (though with an ad hoc observer clock

instead of just local quantum fields). However, since local correlators in any state2
∣∣Ψ
]

are well-approximated by correlators in the vacuum
∣∣0
]
at late times, the integral in (5.2)

will diverge when acting on any state
∣∣Ψ
]
in the dS QFT Hilbert space HQFT [101, 102].

In particular, for any
∣∣Ψ
]
and for O as in (5.2), in a computation of the norm-squared

∣∣∣O
∣∣Ψ
]∣∣∣

2

=
[
Ψ
∣∣OO

∣∣Ψ
]
=

∫
dxdy

√
−g(x)

√
−g(y)

[
Ψ
∣∣A(x)A(y)

∣∣Ψ
]
, (5.3)

the leading term at large separations between x and y is given by the norm-squared of

the state ∫ √−gA(x)
∣∣0
]
. (5.4)

But by dividing the integral over dSd+1 in (5.4) into an infinite number of large-but-finite

regions, and using the decay of dS correlators at large separations, we may write (5.4)

as an infinite sum over approximately-orthogonal states. This representation thus makes

manifest the divergent nature of its norm. An equivalent observation was also mentioned

in [39, 45] using the static patch language that every state in dS will thermalize at late

times. As noted in [102], the issue may be considered to be an operator-realization

of the so-called ‘Boltzman brain’ problem since, no matter how complicated we make

the operator A(x) (perhaps in an attempt to make the operator respond only to large

and complicated excitations of
∣∣0
]
), our A(x) will still fail to annihilate the vacuum

∣∣0
]

and will thus respond to virtual (or, in the thermal static patch description, Boltzman)

2Due to our introduction of the group averaging inner product in section 5.2.1, we use square brackets
to denote bra states

[
Ψ
∣∣ and ket states

∣∣Ψ
]
of dS QFT.
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versions of such excitations with at least some small probability p per unit spacetime

volume. For any p > 0, integrating over the infinite volume of dSd+1 then gives the

divergence described above.

The success of the use of (5.2) in [45] was thus directly tied to the assumption in of

a rapidly decaying inflaton field made in that work. Since we take all matter fields to

be stable, we will require a different approach. In particular, we choose to follow [102]

in replacing the local observable A(x) with a distinctly non-local operator A that does

in fact annihilate the dS vacuum (though the actual form of the operators we will use is

rather different from that described in [102]). Since A is not a local field, there is then

no meaning to A(x), and thus no direct analogue of (5.2). However, we can still apply

a de Sitter transformation g to the operator A by computing U(g)AU(g−1), where U(g)

is the unitary representation of g on the Hilbert space of the associated quantum field

theory on a fixed de Sitter background (dS QFT). We may then again follow [102] in

constructing de Sitter-invariant observables by writing

O =

∫

g∈SO0(D,1)

dgU(g)AU(g−1). (5.5)

The expression (5.5) uses the Haar measure dg to integrate over all elements g of the

subggroup SO0(D, 1) ⊂SO(D, 1) of isometries of dSD = dSd+1 that are connected to the

identity (i.e., over the orthochronous Lorentz group).

In the main text below we will consider a context with two independent fields, ϕ

and ψ, so that our dS QFT Hilbert space takes the form HQFT = Hϕ
QFT ⊗Hψ

QFT . Here

ϕ and ψ need not be scalars and, in particular, we can include linearized gravitons in

our dS QFT by taking them to be part of the field ϕ. We then choose a local operator

Ã(x) on Hϕ
QFT and a vaccum-orthogonal state

∣∣ψ0

]
∈ Hψ

QFT (so that [0|ψ0] = 0). Taking

A := Ã(x)⊗
∣∣ψ0

][
ψ0

∣∣ for any fixed x will then define a finite O with the desired properties
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for appropriate choices of
∣∣ψ0

]
. In effect, as will be made manifest in section 5.2.2, we will

use the state
∣∣ψ0

]
to define a quantum version of a reference frame with respect to which

positions and directions in de Sitter space can then be specified3 . In particular, despite

the integral over de Sitter transformations in (5.5), we will see explicitly below that the

definition of the observable O depends on the choice of the point x. Note that what is

really needed is just an origin for this reference frame, together with a way to specify

directions emanating from that origin, as one can then use the background de Sitter

metric to construct e.g. a set of Riemann normal coordinates (or any other coordinate

system on dSD) with respect to which the point x can be specified. Below, we will thus

refer to
∣∣ψ0

]
as a reference state. We emphasize that the associated reference field ψ is a

part of the dS QFT and, in particular, that it will backreact on the geometry at higher

orders in perturbation theory.

For the above non-local operators A, we will see explicitly in section 5.2.2 that the

operators (5.5) act like local quantum fields in any limit where
[
ψ0

∣∣U(g)
∣∣ψ0

]
becomes

δ(g), the Haar-measure delta-function on the de Sitter group supported at the identify.

Such limits are straightforward to construct when we take G → 0 so that
∣∣ψ0

]
may

contain arbitrarily large energies and momenta without inducing a large gravitational

backreaction.

In contrast, if we want to approximate QFT on empty de Sitter space, at finite G

the backreaction effects from the state
∣∣ψ0

]
prevent us from taking a strict delta-function

limit. As a result, the integration over g in (5.5) causes our gauge-invariant observables

to be somewhat-smeared versions of local quantum ϕ-fields, so that the desired local

algebra is recovered only approximately.

3There is a vast literature on so-called quantum reference frames; see e.g. [175, 176] for foundational
works, [177, 178] for recent works including broad reviews, and [179, 180] for relations to [39, 40, 45, 46].
This literature addresses themes that strongly overlap with our current discussion, though often with a
slightly different emphasis and formalism.
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(b)

Figure 5.1: A sketch of global dSd+1 indicating regions (shaded pink) where we construct
good approximations to dS QFT at non-zero G. (a): Regions that contain a minimal Sd

can span only global time intervals ∆t ≲ O[ln(G−1)]. (b): Regions far to the future (or
past) of a minimal Sd can span arbitrarily large global time intervals.

As we will see, the accuracy of this approximation is far from uniform across the de

Sitter background. Instead, it is typically best in a region near where the reference objects

in the state
∣∣ψ0

]
are well-localized. The approximation then degrades as one moves to

more distant regions of the spacetime. Our results also indicate that it is difficult (and

likely impossible) to engineer settings where the dS QFT approximation holds to high

accuracy over regions that span a global time interval of more than O(ℓ lnG−1) that is

symmetric with respect to the past and future of global de Sitter or, more generally,

which contains a minimal Sd that we may call t = 0 ; see figure 5.1 (a). On the other

hand, because such minimal spheres describe the most fragile regions of global dS, we

find that we can nevertheless obtain a good approximation to dS QFT over arbitrary

spans of global time, so long as we take the associated regions to be far to the future (or

far to the past) of the associated minimal Sd; see figure 5.1 (b).

It will be useful to begin by describing the Hilbert space of gauge-invariant states

on which the operators (5.5) will act. We review this construction in section 5.2.1,

using the group-averaging construction of [181, 182]. We then apply this formalism to

dS1+1 in Section 5.3. While Einstein-Hilbert gravity is trivial in two-dimensions, it is
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nevertheless useful to analyze dS1+1 as a toy model of the higher dimensional cases4.

We first consider a reference state
∣∣ψ0

]
for which the classical limit describes having a

single particle in each of two complementary static patches. We identify the regions of

spacetime in which the dS QFT approximation breaks down, and we estimate the size

of the region in which the dS QFT approximation holds. We then introduce additional

reference particles, localizing at additional events, such that these events all lie on a

single pair of antipodally-related timelike geodesics. However, we find that the size of

the allowed region remains the same (or becomes slightly smaller). We then demonstrate

analogous results for higher dimensions in section 5.4, before finally arguing in section

5.5 that dropping the requirement of time-symmetry does in fact allow us to approximate

dS QFT well over arbitrary intervals of global time (so long as they are sufficiently far

to the future or past). We then conclude in Section 5.6 with comments on cosmological

interpretations of our results and outlook for the future.

5.2 Group averaging and perturbative dS gravity

In a perturbative analysis of any quantum theory, one expands both the operators

and the quantum states in powers of a small parameter ϵ. The expansion is typically

performed about a background classical solution s0, in which case the leading term in

any quantum state |Ψ⟩ is generally expected to be a state |Ψ1⟩ of the linearized theory

around s0. However, subtleties arise when the background s0 leaves some of the gauge

symmetries unbroken.

The issue can be explained simply by using the Hamiltonian formalism of the classical

theory. In this formalism, the phase space is subject to constraints C which generate

4While one can also study dS1+1 in Jackiw-Teitelboim (JT) gravity, the JT dilaton always breaks
the de Sitter isometry group to a smaller (one-dimensional) group. However, constructions analogous to
those below could be studied for the case where the remaining gauge group is noncompact.
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gauge transformations by taking Poisson Brackets. When s0 leaves a gauge symmetry

unbroken, there will be a corresponding constraint C such that all Poisson Brackets

{C,A} vanish at s0 (regardless of whether A is gauge invariant). This is of course

equivalent to requiring all first order variations δC to vanish at s0; i.e., s0 is a stationary

point of C.

As a result, the leading term in the equation of motion C = 0 is of second (quadratic)

order at s0. In particular, when passing from linear to quadratic order in perturbation

theory, one encounters this new equation of motion even though it has no analogue in the

linear theory. Such new quadratic equations of motion are called linearization stability

constraints. This terminology refers to the fact that solutions to the linearized theory can

be perturbatively corrected at higher orders of perturbation theory only if they satisfy

such constraints. Solutions of the linearized theory that fail to satisfy such constraints

are simply spurious and do not represent linearizations of solutions to the full theory. See

e.g. [183, 184, 185, 186, 187] for discussion of such issues in classical general relativity.

A classic example of this phenomenon occurs in Maxwell theory coupled to charged

fields on Sd × R (where the R factor is the time direction). The linearized theory will

admit general linearized solutions for the charged fields. But since the charge-density is

typically quadratic in the charged fields, at quadratic order the charged fields will source

the Maxwell field. And since Sd has no boundary, there is no way for electric flux to

leave the sphere. As a result, the Maxwell Gauss law requires the total electric charge

to vanish; see figure 5.2. It is thus only linearized solutions with vanishing net electric

charge that can be linearizations of solutions to the full theory.
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+

-

Figure 5.2: A positive charge (red) sources a flux of electric field (arrows) as shown.
However, if the charge lives on a sphere (say, at the north pole), the resulting field lines
are forced to cross again at least at one other point (at the south pole in the example
shown here). The Gauss law then requires the resulting convergence to coincide with the
location of a negative charge (blue). As a result, only configurations of charges with zero
net charge can consistently source electric fields on Sd.

In the Maxwell example above, it is straightforward to impose the linearization sta-

bility constraints at the quantum level as well. After constructing the states of the

linearized theory, one need only truncate that Hilbert space to the sector with vanishing

total charge. Charge conservation then prohibits such states from mixing with the states

that have been discarded. Since no new constraints arise at higher orders, we can then

proceed to arbitrary orders in perturbation theory without further obstacles.

The gravitational case is qualitatively similar in many ways. Consider in particu-

lar gravitational perturbation theory around global dSD. The SO(D, 1) isometries are

unbroken diffeomorphisms and, since the Cauchy surfaces of global dS are compact, all

diffeomorphisms are gauge symmetries. The associated SO(D, 1) generators must there-

fore vanish and, at quadratic order, this simply sets to zero all de Sitter charges of the

linearized theory. At the classical level it is then straightforward to select linearized

solutions with vanishing charges and to correct them at higher orders.

However, a subtlety arises in the quantum theory. Since SO(D, 1) is non-compact, the

spectra of its generators are generally continuous. As a result, in the linearized theory,

the only normalizable state with vanishing SO(D, 1) charges is the de Sitter-invariant
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vacuum |0⟩. Restricting to this state would then forbid the study of any excitations at

all.

Nevertheless, a so-called group-averaging approach to constructing a larger Hilbert

space for the perturbative theory was described by Higuchi in [181, 182]. In essence, the

idea is to first note that the linearized theory does contain states with vanishing charges,

though they are non-normalizable5. Since states that are annihilated by the de Sitter

charges must be invariant under the de Sitter group, we will henceforth refer to these

as de Sitter-invariant states. It turns out that one may then usefully renormalize the

inner product of the linearized theory to yield a well-defined Hilbert space HLPG of de

Sitter-invariant states satisfying the linearized stability constraints. We will refer to this

HLPG as the Hilbert space of linearized perturbative gravity in the expectation that each

state in HLPG is indeed the linearized description of a state in the full quantum gravity

theory.

In particular, we will see that operators of the form (5.5) are densely defined onHLPG.

The general theory of the Hilbert space HLPG has been discussed in [173, 188, 189, 190,

191] under a variety of names. It will be reviewed briefly in sections 5.2.1 and 5.2.2

below, after which we analyze special observables of the form (5.5) in section 5.2.3. It is

useful to mention that the group averaging construction has also been called the method

of coinvariants in [39, 45]. See also [103] for a recent discussion of such constructions in

the context of the gravitational path integral.

5.2.1 Review of group averaging

It is natural to expand perturbative quantum gravity in powers of G. As a result,

the first-order theory will consist of linearized gravitons together with a matter quantum

5As described in [45], these non-normalizable states may be better thought of as well-defined weights
on an appropriate algebra.
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field theory on a fixed de Sitter background. As mentioned above, we refer to the Hilbert

space of this matter-plus-graviton theory as HQFT . The matter quantum field theory

can in principle be strongly coupled, though we will restrict to free theories below for

simplicity.

The group averaging construction of [181, 182] can then be described as follows. For

a state
∣∣Ψ
]
∈ HQFT , consider the formal integral

|Ψ⟩ =
∫

g∈G
dgU(g)

∣∣Ψ
]
, (5.6)

where G is the orthochronous de Sitter group SO0(D, 1), U(g) gives the unitary repre-

sentation of G, and dg is the Haar measure on G. Since G is non-compact, the states

|Ψ⟩ are not normalizable using the standard inner product on HQFT . Let us therfore

introduce a new group-averaged inner product,

⟨Ψ1|Ψ2⟩ := [Ψ1| · |Ψ2⟩ =
∫

g∈G
dg
[
Ψ
∣∣U(g)

∣∣Ψ
]
, (5.7)

which removes one integration over g. The inner product (5.7) thus effectively divides

the old inner product by the (infinite) volume of the de Sitter group. The Hilbert space

HLPG of de Sitter invariant states (which provide the linearized (L) description of valid

perturbative gravity (PG) states) is then defined by choosing a useful linear space of

states V ⊂ HQFT with finite group-averaged inner products (5.7) and completing the

space spanned by their linear combinations (modulo null states).

We note that the expression (5.6) plays only a formal role in this construction and

that one may alternately consider (5.7) as a new inner product on the original states
∣∣Ψ
]
.

With respect to this new inner product, states of the form (U(g)− 1)
∣∣Ψ
]
are null states

for all g,
∣∣Ψ
]
. Using this description of the group-averaging inner product, the above
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construction was called the method of coinvariants in [39, 45].

The group-averaging construction is useful when V ⊂ HQFT results in a finite and

positive semi-definite inner product (5.7). Since (5.7) clearly diverges for a de Sitter-

invariant vacuum
∣∣0
]
, our V can only contain states orthogonal to

∣∣0
]
. This is not to

say that there can be no well-defined state of quantum gravity associated with
∣∣0
]
, but

merely that the inner product on
∣∣0
]
should not be renormalized. Furthermore, since

∣∣0
]
is the unique normalizable de Sitter-invariant state in HQFT , any well-defined de

Sitter-invariant operator whose domain includes
∣∣0
]
can only map

∣∣0
]
to a multiple of

itself. Thus such observables cannot mix the state
∣∣0
]
with states defined from the above

domain V . As a result, unless one has good reason to introduce additional de Sitter

invariant observables, it suffices to treat
∣∣0
]
separately from all other states; see [192] for

general discussion of this issue.

In a theory with well-defined particle number (say, in the sense of being positive

frequency with respect to global time), one might thus like to find that (5.7) is both

finite and positive definite for a natural space V that is dense in the space of states with

N ≥ 1 particles. As explained in appendix E, the full story is more complicated, and

there remain holes in the existing literature associated with light scalar fields and fields

with spin. However, at least for gravitons on dS3+1 and for scalar fields in any dimension

with mass M > (D− 1)/2ℓ, there is strong evidence that the above is essentially correct,

though there are three subtleties.

The first subtlety is that, as written, (5.7) is in fact ill-defined forN = 1 particle states

but, as explained in E, one should nevertheless define it to be zero for such states. This

result is natural quantum analogue of the observation that single point-particles in dS

always have at least one non-vanishing dS charge and, as a result, that a single particle

never satisfies the linearization stability constraints described in the introduction. It

would be interesting to understand whether this feature might be related to complications
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described in [39] when they attempted to introduce an observer in only one static patch.

The second subtlety is that two-particle states again have divergent group-averaging

norm. As described in appendix E, this appears to be associated with the fact that

all classical 2-particle configurations with vanishing dS charges continue to leave a non-

compact subgroup of SO(D, 1) unbroken and, as a result, well-defined de Sitter-invariant

operators again cannot cause 2-particle states to mix with standard Fock states having

N ≥ 3 particles.

Finally, the third subtlety is that, while positivity for 3 + 1-dimensional linearized

gravitons was checked explicitly in [182], there is not yet a complete proof that the group

averaging inner product is positive semi-definite for all states of N ≥ 3 particles of scalar

fields with the masses indicated above. See appendix E for discussion of the current

status of this issue.

5.2.2 Group averaging with a Reference

Let us now divide our de Sitter QFT into a target system and a reference system.

For simplicity we will assume that HQFT takes the form of a tensor product,

HQFT = Hϕ
QFT ⊗Hψ

QFT , (5.8)

where Hψ
QFT describes a system to be used as a reference and Hϕ

QFT describes the target

system whose physics we wish to more actively probe. We will imagine that, before

imposing de Sitter invariance, the system induces a definite pure state
∣∣ψ0

]
∈ Hψ

QFT , so

that we need only consider states of the full system of the form
∣∣α
]
⊗
∣∣ψ0

]
∈ HQFT for

some
∣∣α
]
∈ Hϕ

QFT . Group averaging such states produces de Sitter-invariant states of
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the form

|α;LPG⟩ :=
∫
dgU(g)

∣∣α
]
⊗
∣∣ψ0

]
, (5.9)

which then live in the space of allowed states for perturbative gravity (PG) at order

G0 (at which the gravitational theory is linear (L)). We will use HLPG,ψ0 to refer to the

Hilbert space defined by states of the form (5.9) using the group-averaging inner product.

We expect to be able to take a limit in which
∣∣ψ0

]
serves as a sharp reference within

our de Sitter space, and with respect to which at least certain observables can be well-

localized. For example, for the right fields, and in the correct limit,
∣∣ψ0

]
could describe a

very classical planet Earth equipped with all manner of laboratories and marked reference

points with respect to which one could classically construct relational gauge-invariant

observables (e.g., the average value of the Higgs field in the city of Paris during the

opening ceremonies of the 2024 Olympics). We therefore expect that, under the right

conditions, we can also construct relational quantum observables which are well-described

by local quantum field theory on a fixed de Sitter spacetime.

Before turning to the observables themselves, it is useful to further investigate the

Hilbert space structure associated with the states (5.9). The group-averaging inner prod-

uct of two such states takes the form

⟨β;LPG| |α;LPG⟩ =
∫
dg
[
ψ0

∣∣U(g)
∣∣ψ0

][
β
∣∣U(g)

∣∣α
]
. (5.10)

The expression (5.10) is a convolution over the group of a state-dependent factor
[
β
∣∣U(g)

∣∣α
]

and a factor
[
ψ0

∣∣U(g)
∣∣ψ0

]
that will remain fixed so long as our reference system is undis-

turbed. We will refer to the fixed factor
[
ψ0

∣∣U(g)
∣∣ψ0

]
as the group averaging kernel.

If there were a normalizable state
∣∣ψ0

]
for which this kernel was a Dirac delta-function,

[
ψ0

∣∣U(g)
∣∣ψ0

]
= δ(g), then the inner product (5.10) would reduce precisely to the inner
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product on Hϕ, i.e. we would have ⟨β, ψ0| |α, ψ0⟩ =
[
β
∣∣α
]
. While this seems unlikely to

be the case for any normalizable state, it is nevertheless true that for any state
∣∣ψ0

]
with

absolutely-convergent group-averaging norm

⟨ψ0|ψ0⟩ :=
∫
dg
[
ψ0

∣∣U(g)
∣∣ψ0

]
, (5.11)

the appearance of this group-averaging kernel in (5.10) will tend to localize the integral

over g to a region surrounding the identity. This follows from the fact that, since U(g) is

unitary, we must have
[
ψ0

∣∣U(g)
∣∣ψ0

]
≤ 1 with equality only for U(g) = 1. Furthermore,

if (5.11) converges absolutely, then the kernel will suppress contributions far from the

identity.

Of course, this region may be very large for a general state
∣∣ψ0

]
. But we will study

limits in which
[
ψ0

∣∣U(g)
∣∣ψ0

]
becomes sharply peaked, so that the associated region is

small. The inner product (5.10) will then be given by the usual dS QFT inner product on

Hϕ
QFT with small corrections associated with the finite width of the peak of

[
ψ0

∣∣U(g)
∣∣ψ0

]
.

We will characterize these corrections more precisely in sections 5.3 and 5.4 for par-

ticular choices of reference state
∣∣ψ0

]
. In particular, we will see there that the associated

corrections to correlation functions are not uniformly small across the entire de Sitter

space, but that their size depends on the location of the arguments of such correlators in

relation to structures defined by
∣∣ψ0

]
.

Let us now consider the case where ϕ and ψ describe independent local quantum

fields with no mutual interactions. For the moment, we will still allow both ϕ and ψ

to have self-interactions. Furthermore, we can in fact allow ϕ to denote a collection of

mutually-interacting quantum fields, and similarly for ψ, so long as the fields of ϕ and

the fields of ψ do not interact with each other6.

6We expect the inclusion of perturbative interactions between ϕ and ψ will be straightforward, but
we will not pursue it here. We thus see no obstacle to including linearized gravitons in either ϕ or ψ.
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5.2.3 Relational Observables for perturbative dS gravity

Since operators can be built from bra- and ket-states, and since limits where
[
ψ0

∣∣U(g)
∣∣ψ0

]

is sharply peaked make HLPG,ψ0 canonically isomorphic to Hϕ
QFT , we should also expect

there to be an algebra of gauge-invariant (i.e., de Sitter-invariant) observables that re-

duces in this limit to the algebra of local ϕ-fields. The construction we will use is a direct

analogue of our construction (5.9) of quantum states. Given a local field ϕ̂QFT that acts

on Hϕ
QFT , for any point x in global dS we simply define the operators

ϕ̂LPG(x) :=

∫
dg U(g)

(
ϕ̂QFT (x)⊗

∣∣ψ0

][
ψ0

∣∣
)
U(g−1)

=

∫
dg
(
ϕ̂QFT (gx)⊗ U(g)

∣∣ψ0

][
ψ0

∣∣U(g−1)
)
, (5.12)

where gx denotes the image of the point x under the de Sitter isometry g. Note that,

even for a fixed value of x, we can use the fact that the Haar measure is invariant under

g → g0g to write U(g0)ϕ̂LPG(x) = ϕ̂LPG(x)U(g0). The operators (5.12) are thus de Sitter-

invariant and represent observables of the linearized perturbative gravity (LPG) theory

for each fixed value of x.

As forshadowed in the introduction, this construction makes use of non-local elements

both in the integral over the group of de Sitter isometries and also through the explicit

use of the global quantum state
∣∣ψ0

]
. This feature will play a critical role in ensuring

that the operators (5.12) are well-defined and, in particular, that they have finite matrix

elements between states of the form (5.9). Such matrix elements take the form:

⟨β;LPG| ϕ̂LPG(x1)ϕ̂LPG(x2) . . . ϕ̂LPG(xn) |α;LPG⟩

=

∫
dg1 dg2 . . . dgn+1

([
ψ0

∣∣U(g1)
∣∣ψ0

] n∏

k=1

[
ψ0

∣∣U(gkg−1
k+1)

∣∣ψ0

])

×
[
β
∣∣ϕ̂QFT (g1x1) . . . ϕ̂QFT (gnxn)U(gn+1)

∣∣α
]
, (5.13)
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where we have used the fact that dgn+1 is invariant under gn+1 → g−1
n+1. Convergence

of the integrals in (5.13) is guaranteed by the absolute convergence of (5.11). Again,

it is manifest that (5.13) reduces to the ϕ correlators of dS QFT in limits where our

group-averaging kernel
[
ψ0

∣∣U(g)
∣∣ψ0

]
approaches δ(g).

In the particular case where either
∣∣α
]
or
∣∣β
]
is the de Sitter-invariant ϕ-vacuum

∣∣0;ϕ
]
, the factor of U(gn+1) can be dropped from the final line. Since it will be natural

to focus on this case below, we define the notation

|0⟩LPG :=

∫
dg U(g)

(∣∣0;ϕ
]
⊗
∣∣ψ0

])
. (5.14)

Thus we may also define

ϕ̂LPG(x1) . . . ϕ̂LPG(xn) := ⟨0;LPG| ϕ̂LPG(x1) . . . ϕ̂LPG(xn) |0;LPG⟩

=

∫
dg1 dg2 . . . dgn+1

(
[
ψ0

∣∣U(g1)
∣∣ψ0

] n∏

k=1

[
ψ0

∣∣U(gkg−1
k+1)

∣∣ψ0

]
)

×
[
0;ϕ
∣∣ϕ̂QFT (g1x1) . . . ϕ̂QFT (gnxn)

∣∣0;ϕ
]
. (5.15)

However, we emphasize that the state (5.14) is only vacuum with respect to ϕ, and that

the ψ field is in a group-averaged version of the state
∣∣ψ0

]
. In particular, the state

|0⟩LPG defined above still contains our reference and is thus not the vacuum of the full

perturbative gravity theory. It will thus induce non-trivial backreaction at higher orders

in G.

Since states
∣∣ψ0

]
with absolutely-convergent group-averaging norm will define group

averaging kernels
[
ψ0

∣∣U(g)
∣∣ψ0

]
with finite width, choosing some of the points xi to lie

on each other’s light-cones will cause (5.15) to differ infinitely from the corresponding

correlator in dS QFT. However, this strong difference is clearly associated with very high
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energies. It is thus useful to describe the manner in which (5.15) approximates correlators

of dS QFT by studying smeared correlators (which are sensitive only to the physics below

an energy scale set by the smearing function). For example, in a free theory it suffices to

study smeared two-point functions of the form

∫
dx1dx2F1(x1)F2(x2)ϕ̂LPG(x1)ϕ̂LPG(x2) (5.16)

for appropriate smearing functions F1, F2. We will focus below on the case where F1, F2

are members of a family of functions Fy(x) that are well-approximated by Gaussian

functions of both the global time t and of the location on the sphere Sd at fixed t that

are peaked at the point y in global dS. We will take the width of these Gaussians in both

global time t and in location on the sphere to be identical as measured in terms of proper

time and distance. For example, when y lies at the north pole of the sphere Sd at some

time ty, and for an appropriate normalization factor N we may take

Fy(x) = Ne−
(t−ty)2

2σ2 e
[cos(θ)−1]

cosh2(t/ℓ)σ2 ≈ Ne
− 1

2σ2

[
(t−ty)2+ ℓ2θ2

cosh2(t/ℓ)

]
, (5.17)

where t, θ are the global coordinates of the point x with θ being the polar angle on Sd,

and where the final approximation holds for θ ≪ 1. We note for future reference that the

final exponent on the right-hand-side defines an effective flat Euclidean-signature metric

with line element

ds2E := dt2 +
dθ2

cosh2(t/ℓ)
+

ℓ2θ2

cosh2(t/ℓ)
dΩd−1, (5.18)

so that

Fy(x) ≈ e−
|x−y|2E

2σ2 , (5.19)

where |x− y|E is the Euclidean distance between x and y defined by7 (5.18).

7The astute reader will not that, if we wish to define Fy for general y away from the north pole by
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We also note that the effect of convolving smeared dS QFT correlators with our group

averaging kernel will depend on the extent to which Fy(x) differs from Fy(gx), and thus

the extent to which the exponent on the right-hand-side of (5.17) differs between x and

gx. Since the triangle inequality bounds the change in |x − y|E in terms of |gx − x|E,

we see that for |x − y|E ≲ σ the change in the smearing function Fy is small when

|gx − x|E ≪ σ. The question of whether this small change in the smearing function

can cause a significant change in smeared correlators can be studied by using a standard

partition of unity to divide the domain of integration into subregions based on whether

subsets of the xi are close together or far apart. For example, when studying the smeared

two-point function (5.16), we divide the domain of integration into a region with (Lorentz-

signature de Sitter distance) |x1 − x2| ≲ ϵ and a region with |x1 − x2| ≳ ϵ. In the former

region, the integral is well-approximated by a smeared Minkowski-space correlator. Since

the Wightman axioms require Minkowski-space correlators to be tempered distributions

[193], and since tempered distributions are continuous linear functionals on the space of

test functions, the integral over this region will change by only a small amount under

a small change in the smearing functions Fy. Here it is important to that we consider

Wightman correlators rather than their time-ordered counterparts. Similar continuity

follows for the integral over the region |x1 − x2| ≳ ϵ since the correlator is bounded

in that region and the smearing function changes by a function of integrable norm;

(i.e., by a function in L1(dS))8. As a result, when |gx − x|E ≪ σ for all g within the

peak of the group-averaging kernel, a given set of smeared dS QFT correlators will be

rotating (5.17), then the analogue of (5.18) in fact depends on the location of y on the sphere Sd. While
this fact is not explicitly indicated by the notation |x − y|E , it will not play an important role in our
analysis.

8For free fields on dS, one may alternatively proceed by writing the field operator as an expansion
in global dS mode functions that solve the equation of motion. Integrating any given mode against
a smooth function of time yields a result that must vanish faster than any polynomial as the angular
momentum of the mode becomes large. It thus follows that the relevant mode sums converge absolutely.
The desired result then follows from the fact that the above convolution makes negligible change in the
high-frequency components of Fy.
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well-approximated by the correspondingly smeared versions of the perturbative gravity

correlators (5.15).

5.3 Reference states in dS1+1

The above section described our general framework for using perturbative gravity to

approximate the algebra of local observables in dS QFT. There we saw that a central

role is played by the group averaging kernel
[
ψ0

∣∣U(g)
∣∣ψ0

]
, and that comparison of the

perturbative gravity and dS QFT correlators is controlled by i) the width of the peak of
[
ψ0

∣∣U(g)
∣∣ψ0

]
about the identity and ii) by the effect of those isometries g that lie within

the above peak on the points x at which we wish to evaluate such correlators.

We thus now turn to a detailed investigation of this kernel for interesting classes of

states. In this section we consider the simple-but-illustrative case of 1+1 global de Sitter,

taking the field ψ to be a collection of free scalar fields with mass M > 1/2ℓ (so that the

one-particle states lie in principal series representations of SO(2, 1) [194, 195]). Thinking

of ψ as a collection of fields allows us to choose each particle to be associated with a

distinct scalar field. We may thus treat the ψ-particles as distinguishable, which provides

a slight simplification of the calculations. While Einstein-Hilbert gravity is trivial for the

case D = 2, our goal is to use D = 2 as a toy model of higher dimensional physics.

We thus simply analytically continue certain formulae from higher dimensions to D = 2

in order to discuss versions of D = 2 linerization stability constraints (which are again

solved by group averaging), D = 2 perturbative gravity operators, and a (dimensionless)

D = 2 Newton constant G. However, we will postpone any more involved discussions of

back-reaction to section 5.4 (where the higher-dimensional case will be addressed).
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5.3.1 Preliminaries

Studying our kernel requires an understanding of how the de Sitter isometries act on

our states. It is useful to begin by recalling that, in global coordinates, the metric on

dS1+1 takes the form

ds2 = −dt2 + ℓ2 cosh2 tdθ2, (5.20)

where ℓ is the de Sitter scale. It will sometimes also be useful to write the metric in

conformal coordinates T, θ, where cosh(t/ℓ) = secT with T ∈ [−π/2, π/2], so that the

line element becomes

ds2 =
ℓ2

cos2 T
(−dT 2 + dθ2). (5.21)

In these coordinates, the generators of the isometry group are

B1 ≡ ξ2 ≡ cosT cos θ∂T − sinT sin θ∂θ, (5.22)

B2 ≡ ξ1 ≡ cosT sin θ∂T + sinT cos θ∂θ, (5.23)

R ≡ ξθ ≡ θ, (5.24)

where the notation B1, B2, R classifies the generators of SO(2, 1) according to their action

as either boosts or rotations when one thinks of SO(2, 1) as Lorentz transformations on

2+1 Minkowski space. The actions of these Killing fields on de Sitter space is shown in

Figure 5.3 below.

The action of the generators on our states can be understood by defining

B± ≡ B2 ± iB1. Hence B1 =
1

2i
(B+ −B−), and B2 =

1

2
(B+ +B−). (5.25)
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Figure 5.3: The Killing vector fields B1 (left), B2 (center), and R (right), in dS1+1. The
figures are drawn using conformal coordinates T, θ with −π < θ < π, −π/2 < T < π/2.

We then have the commutation relations [196].

[R,B+] = B+, [R,B−] = −B−, [B−, B+] = 2R. (5.26)

The Casimir operator C2 is given by

C2 = B+B− +R(1−R) = B2
1 +B2

2 −R2. (5.27)

We now let |m] be the 1-particle eigenstate of the R operator with R|m] = m|m].

In particular, we may take it to be the state created from the ψ-vacuum by acting

with the creation operator associated with the usual mode of the scalar field ψ having

angular quantum number m. For one-particle states, the Klein-Gordon equation gives

C2|m] = M2ℓ2|m], where M is the mass of the scalar field and where we consider only

the case M > 1/2ℓ. It will be useful to introduce the parameter ∆ through

∆(1−∆) =M2ℓ2. (5.28)

By convention, we take the imaginary part of ∆ to be positive for M > 1/2ℓ, so that we
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have ∆ = 1
2
+ i
√
M2ℓ2 − 1/4. We may thus choose the phases of the states |m] to satisfy

B−|m] = (m−∆)|m− 1], B+|m] = (m+∆)|m+ 1], (5.29)

B1|m] =
1

2i

[
(m+∆)|m+ 1]− (m−∆)|m− 1]

]
, (5.30)

B2|m] =
1

2

[
(m+∆)|m+ 1] + (m−∆)|m− 1]

]
. (5.31)

Below, we will also use the notation

µ = Im∆ =
√
M2ℓ2 − 1/4. (5.32)

Let us now conclude our discussion of preliminaries by reviewing the results of [197]

describing the asymptotics of the kernel
[
ψ0

∣∣U(g)
∣∣ψ0

]
at large g. For this purpose we

will in fact consider scalar fields of any mass M > 0, where we take ∆ to be defined

by (5.28) with the convention that ∆ < 1/2 for M < 1/2ℓ. We will take
∣∣ψ0

]
to be an

N -particle state and, for each particle, we take the state to be a finite linear combination

of the above states |m].

The results of [197] were expressed by writing a general g ∈ SO0(2, 1) in the form

g = eiθ1ReiλB1eiθ2R. Since θ1, θ2 range over a compact space, and since the resulting

rotations simply map any given angular momentum mode to a superposition of other

such modes, the large g behavior is controlled by the behavior of eiλB1 at large λ. And

since de Sitter isometries act diagonally on multi-particle states, our group averaging

kernel will contain factors of [m|eiλB1 |n] for each particle, where n again denotes an

angular quantum number. At large λ, the asymptotic behavior of this 1-particle matrix

element was shown to be ∣∣∣∣∣[m|eiλB1|n⃗]
∣∣∣∣∣ ∼ e−λRe∆ (5.33)
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so that the group averaging kernel decays exponentially with large boost parameter.

Since the relevant integration measure for dS1+1 is sinhλ dλ (see again [197]), we see

that (5.11) converges absolutely for NRe∆ > 1. In particular, for M > 1/2ℓ we require

N ≥ 3. As discussed in [197], this is also the case for scalar fields of mass M > d/2ℓ in

dSd+1 for any d ∈ Z+.

5.3.2 A pair of reference particles on opposite sides of dS

Having seen that our kernel strongly suppresses contributions from large g for N ≥ 3

particles with M > 1/2ℓ, we can now turn our attention to the region near the identity

(g ∼ 1) at which the group-averaging kernel is peaked. Though one can certainly engineer

special cases where there are also important contributions from outside this peak, having

a second peak of height near 1 clearly requires fine tuning. Furthermore, if the height of

another peak is not near 1, a different form of fine tuning is required if its contributions

are to be comparable to or greater than those of the unit-height central peak. Since we

do not expect this to occur for generic
∣∣ψ0

]
, we will defer consideration of this possibility

until introducing the particular states we wish to study. At that point, we will display

numerical results supporting the above expectations.

For the moment, however, we will simply compute the width of the central peak for

interesting classes of states by writing U(g) = ei(λ1B1+λ2B2+θR) and expanding to second

order in λ1, λ2, θ. We will in fact focus on the simple case of 2-particle states (with

M > 1/2ℓ). As noted above, to control contributions from large g the full state
∣∣ψ0

]

must contain a third particle. But we are free to choose the state of the third particle to

have a much broader peak near the identity (perhaps engineered by smearing an arbitrary

state over a large-but-finite range of de Sitter transformations), so that the width of the

kernel is set by just the first two particles.
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At the classical level, a pair of identical-mass particles can satisfy the linearization

stability constraints in dS1+1 only if their de Sitter charges cancel exactly. This requires

the geodesics followed by the two particles to be related by a rotation through an angle

π for some rotation generator. We will take this to be the rotation eiπR. We will thus

choose a quantum state
∣∣ψ+

]
for the first particle and then simply take the state of the

second particle to be
∣∣ψ−
]
= eiπR

∣∣ψ+

]
, with the full 2-particle reference state being the

tensor product
∣∣ψ0

]
=
∣∣ψ+

]
⊗
∣∣ψ−
]
. (5.34)

Rather than attempt a general classification of the possible such states
∣∣ψ+

]
, we will

confine our investigation to a simple choice that facilitates explicit calculations. We take

the first particle to be localized around (T, θ) = (0, 0), so that the other is then localized

around (0, π). In particular, we take
∣∣ψ±
]
to be of the form

∣∣ψ±
]
=

1√
2j# + 1

j#∑

m=−j#

(±1)m|m] (5.35)

for some cutoff j#, where the coefficients (±1)m are found by expanding Dirac delta-

functions δ(θ) and δ(θ−π) in terms of rotational harmonics Ym(θ) =
1√
2π
e−imθ. This is a

convenient choice, since Equations (5.29)-(5.31) give the action of all generators on these

eigenstates. As j# → ∞, the particles become perfectly localized at the points θ = 0, π

at time t = 0.

Since the magnitude of our kernel is greatest at the identity, we can study the width

of the peak by expanding U(g) to quadratic order in λ1, λ2 and θ. To this order, the

kernel
[
ψ0

∣∣U(g)
∣∣ψ0

]
is then determined by the expectation values of B1, B2, R and the

expectation value of symmetrized products of pairs of generators. However, many of these

moments vanish even in the state
∣∣ψ+

]
since

∣∣ψ+

]
is invariant under θ → −θ (which as
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shown in figure 5.3 maps B1, B2, R to B1,−B2,−R). Using [X] to denote the expectation

value of an observable X in the state
∣∣ψ+

]
we thus find

[B2] = [R] = [B1B2 +B2B1] = [RB1 +B1R] = 0, (5.36)

so that the only non-vanishing moments in
∣∣ψ+

]
at this order are [B1], [R

2], [B2
2 ], [RB2+

B2R], and [B2
1 ]. Furthermore, since

∣∣ψ0

]
is invariant under the rotation θ → θ + π

(which as shown in figure 5.3 maps B1, B2, R to −B1,−B2, R), the contributions to
[
ψ0

∣∣RB2 + B2R
∣∣ψ0

]
and

[
ψ0

∣∣B1

∣∣ψ0

]
from

∣∣ψ±
]
must cancel against each other. Direct

computation of the remaining moments at this order then yields

[
ψ0

∣∣U(g)
∣∣ψ0

]
=
[
ψ+

∣∣U(g)
∣∣ψ+

][
ψ−
∣∣U(g)

∣∣ψ−
]

=1− λ21
(
[B2

1 ]− [B1]
2
)
− λ22[B

2
2 ]− θ2[R2] +O([g − 1]3)

=1− 1

2
λ21j#

(
1 +

4µ2

(2j# + 1)2

)
− λ22

8j#
3 + 4j# + 3 + 12µ2

12(2j# + 1)

− 1

3
θ2j#(j# + 1) +O([g − 1]3),

(5.37)

where µ was defined in (5.32). Let us therefore introduce the parameters

χ1 = j#

(
1 +

4µ2

(2j# + 1)2

)
, χ2 =

8j#
3 + 4j# + 3 + 12µ2

6(2j# + 1)
, χθ =

2

3
j#(j# + 1), (5.38)

in order to write the group averaging kernel as an approximate Gaussian

[
ψ0

∣∣U(g)
∣∣ψ0

]
≈e−χ1λ21/2e−χ2λ22/2e−χθθ

2/2, (5.39)

where we emphasize that χi ≥ 0 for all i ∈ {1, 2, θ}. The widths of the peak in the

various directions are then proportional to χ
−1/2
i and, in the χi → ∞ limit, the Gaussians
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become proportional9 to a delta-function that sets λi = 0 for all i. In this limit, the inner

product between two physical states reduces to the standard QFT inner product without

additional smearing.

However, the large χi limit requires j# and/or µ to become large. In the presence of

dynamical gravity, either option would induce a large gravitational backreaction. Hence

the χi must remain bounded if we wish to keep such backreaction is small. We will

characterize this backreaction more precisely in section 5.3.2 below.

Characterizing backreaction

In order to estimate the bounds imposed on the χi associated with the restriction

to small backreaction, we will need to say more about how this backreaction will be

measured. Gravitational backreaction on (d+1)-dimensional de Sitter space is generally

highly non-uniform, so that for any classical perturbation of dS one can find some sense

in which the backreaction is large. This is perhaps most simply illustrated by making use

of the Gao-Wald theorem [198], showing that any perturbation satisfying the null energy

condition forces the past (or future) of any timelike geodesic to contain a complete Cauchy

surface. There is thus a sense in which applying a large boost to any spherical cross-

section of the perturbed de Sitter space must give a Cauchy surface of vanishingly small

total volume. This is in sharp contrast to the case of unperturbed dS, where applying

any dS isometry to the Sd at t = 0 of course exactly preserves its finite volume.

We will choose to measure the backreaction near the round Sd that passes through

the spacetime points at which our ψ particles are well-localized; i.e., the Sd at t = 0 with

the coordinates and states defined as above. As discussed in [102], a reasonable measure

9Since we have chosen
∣∣ψ0

]
to be normalized, we will always find

[
ψ0

∣∣U(1)
∣∣ψ0

]
= 1. So, as written,

the limit χi → ∞ gives a delta-function with a vanishing coefficient. However, for the same reason,
the norm ⟨α;LPG|α;LPG⟩ also vanishes in this limit for any normalized

∣∣α
]
∈ Hϕ

QFT . Obtaining

normalized states |α;LPG⟩ thus requires taking
[
α
∣∣α
]
to scale as

√
χ1χ2χθ. Combining this factor with

the Gaussian (5.39) yields the desired delta-function.
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of the backreaction in this region is the total flux F of energy through this Sd, where

F =

∫

t=0

√
hTabn

anb (5.40)

in terms of the QFT stress tensor Tab, the unit normal na to the surface t = 0, and the

volume element h of the induced metric on this surface. If we wish to keep the level

of backreaction on the geometry below some fixed cut-off, then in terms of the bulk

Newton constant G, the maximal allowed value of F will of course scale as 1/G in the

limit G→ 0. While Einstein-Hilbert gravity is not dynamical in 1+1 dimensions, we can

nevertheless use our investigation of dS1+1 as a toy model of the higher-dimensional case

by introducing a (dimensionless) parameter G and imposing the restriction F ≲ 1/Gℓ.

To understand the constraint this imposes on our χi, we will need to estimate the

contributions to F arising from the mass and angular momentum of our ψ-particles. This

is straightforward due to the fact that the time derivative of the metric vanishes at t = 0.

As a result, the local notion of positive-frequency mode near t = 0 associated with the

standard definition of particles in global de Sitter coincides with the notion of positive

frequency for the static cylinder metric

ds2 = −dt2 + ℓ2dθ2. (5.41)

Our F thus coincides with what one would call the energy E on the static cylinder (5.41)

when computed in terms of the angular momentum m. It is thus clear that, If both

particles were in modes having angular momentum precisely m, we would find

F = 2
√
M2 +m2/ℓ2. (5.42)

In order to limit backreaction, we must thus take the mass parameter µ and the maximum
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angular momentum j# to satisfy Mℓ≪ 1/G and j# ≪ 1/G as G→ 0.

Let us first we examine the ultrarelativistic limit (j# ≫ µ, though with 1/G ≫ j#).

The results (5.38) then simplify significantly to yield

χ1 = j# +O(1), χ2 =
2

3
j#

2 +O(j#), χθ =
2

3
j#

2 +O(j#). (5.43)

We see that the dependence on µ disappears at leading order in j#/µ.

As described in section 5.2.3 the effect of group averaging on correlation functions

smeared with the global coordinate near-Gaussians Fy of (5.17) will be small when the

smearing is confined to de Sitter isometries g such that

|gx− x|E ≪ σ, (5.44)

where |x1 − x2|E is the flat Euclidean distance defined by (5.18) and we consider all

x located within the peak of each near-Gaussian Fy. Since the Gaussian (5.39) gives

significant weight only to group elements with λi ≲ χ
−1/2
i , for large-but-finite χi the

condition (5.44) is equivalent to

χ
−1/2
i |ξi|E ≪ σ, (5.45)

where |ξi|E is the Euclidean norm of the appropriate vector field from (5.22)-(5.24). In

particular, we have

|ξ1|2E/ℓ2 =cos2 θ + sinh2(t/ℓ) sin2 θ (5.46)

|ξ2|2E/ℓ2 =sin2 θ + sinh2(t/ℓ) cos2 θ (5.47)

|ξθ|2E/ℓ2 =cosh2(t/ℓ). (5.48)
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In regions of spacetime where any of the bounds (5.45) are exceeded, the space-

time resolution of the observables ϕ̂LPG is low, and the dS QFT approximation to per-

turbative gravity breaks down even for correlators smeared with the functions (5.17).

The corresponding cutoff contours (at which |ξi|2E ∼ χiσ
2) are shown in Figure 5.4 for

specific values of σ and j#. At sufficient depth within the region between these con-

tours, dS QFT correlators smeared with the function (5.17) will be well-approximated

by correspondingly-smeared perturbative gravity correlators.

(a) The KVFs and cutoff contours for B1 (left), B2 (center), and R (right) are drawn
using conformal coordinates (T, θ) for dS1+1.

(b) The above cutoff contours are displayed on together on a single conformal diagram.
We also show the part of the timelike geodesic at θ = 0 (pink vertical line) that is
consistent with all cutoffs.

Figure 5.4: Cutoff surfaces |ξi| = χiσ
2 are shown for the ultrarelativistic limit of the

reference state given by (5.34) and (5.35). For illustration purposes we have used the
values 2σ2 = 1 and j# = 4. At sufficient depth within these cutoffs, our perturbative
gravity correlators provide good approximations to corresponding dS QFT correlators.

Note that at large j# we have χ1 ≪ χ2, χθ. As a result, consulting (5.46) and taking

t large as well, we see that over most of the spacetime the large j# cutoff will be set by

|t/ℓ| ∼ 1

2
ln j# + ln

σ

ℓ sin θ
. (5.49)
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However, inside the static patch around either θ = 0 or θ = π, the Euclidean norm of ξ1

always satisfies |ξ1|2E ≤ 2. Thus, inside such static patches, the cutoff is instead set by

B2 or R, both of which give

|t/ℓ| ∼ ln j# + ln
σ

ℓ
. (5.50)

So, for j# ∼ 1/G, we have a good approximation to dS QFT only for global times

|t/ℓ| ≲ lnG−1+O(1), with the actual cutoff being twice as large inside our static patches

as it is at generic points outside. In particular, the spacetime volume of the region where

our approximation is good is of order (1/G).

We can now return to (5.38) and consider other cases with µ j# ≲ 1/G. So long as

µ and j# are both in fact of order 1/G, we see that the leading behavior of both χ2

and R is always independent of µ in the limit G → 0, and that it thus agrees with our

ultrarelativistic analysis above. It is only χ1 that depends on the ratio µ/j# at this order.

We see that χ1 is in fact largest in the non-relativistic limit µ≫ j#. However, if we wish

to make µ/j# parametrically large as a power of 1/G, then we must take j# to scale as a

power 1/Gα with α < 1, so that χθ is no longer of order 1/G2. In fact, analyzing (5.38)

shows that if we wish to make all χi scale with the same power of 1/G, we should take

µ ∼ 1/G and j# ∼ 1/G2/3 so that χi ∼ 1/G4/3. In any such case, however, the cutoffs on

global time will be logarithmic in G. Adjusting the scalings of µ and j# serves only to

alter the coefficient of lnG−1, though we see that it does so differently inside the static

patch than it does outside.

5.3.3 Adding more reference particles

For the above reference state, we found that smeared dS QFT correlators are well-

approximated by our smeared perturbative gravity correlators only in a region of de Sitter

space spanning global times of order lnG−1. It is thus interesting to explore whether
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this region can be enlarged by considering a more complicated reference state. We are

particularly motivated by a desire to understand whether the region can be enlarged

within a natural static patch of dS, perhaps at the expense of shrinking the allowed

region outside. In this section, we investigate the effect of adding additional reference

particles localized at points along the θ = 0 and θ = π geodesics.

Figure 5.5: Events at which each particle localizes (dots) are shown together with the
light cones of these points.

As before, it will be useful to keep the full reference state
∣∣ψ0

]
properly ‘balanced’

in the sense that it has vanishing expectation values of B1, B2, R to avoid giving
∣∣ψ0

]
de

Sitter charges that are parametrically larger than those of the ϕ-system (as that would

then require group averaging to nearly annihilate the resulting state in order to extract

a state in which the total de Sitter charges vanish).

We will consider states of the form
∣∣ψ0

]
= |ψ3

+]⊗|ψ3
−] with |ψ3

−] = eiπR|ψ3
+], but where

|ψ3
+] now contains three particles that become well localized along the geodesic θ = 0 at

times −t#, 0, and t#. In particular, we take

|ψ3
±] =

(
e−it#B1/ℓ

∣∣ψ±
])

⊗
∣∣ψ±
]
⊗
(
eit#B1/ℓ

∣∣ψ±
])
, (5.51)

where
∣∣ψ+

]
is again given by (5.35). Thinking of B1 as the static patch Hamiltonian, we

see that moments of B1, B2, R in the various one-particle states will be given by moments

of static-patch time-translations of B1, B2, R in
∣∣ψ±
]
. It will thus be useful to compute
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expectation values like
[
ψ±
∣∣eiB1t#Ae−iB1t#

∣∣ψ±
]
, (5.52)

where A is a linear or quadratic expression in B1, B2, R. For A = B1 or A = B2
1 , the time

translation has no effect and (5.52) reduces to matrix elements calculated previously. For

B2 and R, it is useful to define operators L± = R ± B2 corresponding to lightlike (null)

rotations which have commutation relations

[L±, B1] = ∓iL±, [L+, L−] = −2iB1. (5.53)

As a result, under a time translation, these operators satisfy eiB1t#/ℓL±e
−iB1t#/ℓ =

L±e
∓t#/ℓ, from which we obtain the time translations of R and B2:

eiB1t#/ℓRe−iB1t#/ℓ =R cosh(t#/ℓ)−B2 sinh(t#/ℓ), (5.54)

eiB1t#/ℓB2e
−iB1t#/ℓ =B2 cosh(t#/ℓ)−R sinh(t#/ℓ). (5.55)

We can now use the above results to compute the group averaging kernel. Since

our new
∣∣ψ0

]
still enjoys the symmetries discussed near (5.36), the moments listed in

(5.36) once again vanish. It thus remains only to compute [B2
1 ], [B

2
2 ], and [R2]. These

moments receive contributions from the corresponding moments of each 1-particle state.

The moment [B2
1 ] also receives contributions from cross terms between various pairs of

particles, associated with the fact that
[
ψ+

∣∣B1

∣∣ψ+

]
is non-zero in all one-particle states.

Other cross terms vanish since
[
ψ+

∣∣B2

∣∣ψ+

]
=
[
ψ+

∣∣R
∣∣ψ+

]
= 0. The final result for our
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kernel is thus

[ψ3
0|U(g)|ψ3

0] =1 + 3λ21([B1]
2 − [B2

1 ])− λ22

(
[B2

2 ](1 + 2 cosh2(t#/ℓ)) + 2[R2] sinh2(t#/ℓ)

)

− θ2
(
[R2](1 + 2 cosh2(t#/ℓ)) + 2[B2

2 ] sinh
2(t#/ℓ)

)
+O([g − 1]3)

=1− λ21χ̃1/2− λ22χ̃2/2− θ2χ̃2
θ/2 +O([g − 1]3),

(5.56)

where the coefficients χ̃ are

χ̃1 =3j#

(
1 +

4µ2

(2j# + 1)2

)
, (5.57)

χ̃2 =
8j#

3 + 4j# + 3 + 12µ2

6(2j# + 1)
(1 + 2 cosh2(t#/ℓ)) +

4

3
j#(j# + 1) sinh2(t#/ℓ), (5.58)

χ̃θ =
2

3
j#(j# + 1)(1 + 2 cosh2(t#/ℓ)) +

8j#
3 + 4j# + 3 + 12µ2

3(2j# + 1)
sinh2(t#/ℓ). (5.59)

As in the two particle case, the QFT approximation holds exactly in the limit χ̃ → ∞.

The coefficients χ̃ still grow with increasing j# and µ, but now they also grow with

increasing t#.

Let us thus investigate how large we can take t# while keeping the backreaction small

as measured by (5.40); i.e., for F ≲ 1/G. Recall that F gives the total energy E that

the state would have if it were placed in a static cylinder spacetime of radius ℓ (keeping

the state unchanged in the Fock basis defined by angular momentum modes). The

particles at t = 0 will contribute to F according to (5.40) as they did before. However,

the contributions of the time translated particles are easiest to study by evolving the

particles from t = ±t# to t = 0.

For the particles that localize at θ = 0, it is convenient to perform this evolution using

the description provided by the static patch centered at θ = 0. The time translation from
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t = 0 to t = ±t# is then trivial but, as we evolve them back to t = 0, the particles move

to higher energies as they fall away from θ = 0 toward the static patch horizon.

Let us first consider the limit j# ≫ µ so that the particles are relativistic, and so

travel along null rays. Such particles rapidly approach the de Sitter horizon and then

blueshift exponentially with respect to the vector field na in (5.42). We thus find that

the total flux of energy through t = 0 is

F = (2 + 4 cosh(t#/ℓ))
√
j#

2 + µ2 ∼ 2j#e
t#/ℓ, (5.60)

where the final right-hand-side gives the leading behavior at large j# and t#.

At leading order in 1/j# and 1/t# we also find

χ̃1 ∼
3

2
j#, χ̃2 ∼

1

3
j#

2e2t#/ℓ, χ̃θ ∼
1

3
j#

2e2t#/ℓ. (5.61)

The cutoff contours will look very similar to the ones we found before, except that there

is now an extra parameter to vary. Outside the static patch, we expect the cutoffs to

again be set by χ1 since it remains of order j# (since particles related by static-patch

time-translations must contribute equally to χ1). Inside the static patch, estimating the

cutoff time tc using either χ2 or χθ leads to

cosh2(tc/ℓ) =
1

3
j#

2e2t#/ℓ ∼ 1

G2
, (5.62)

so that we again find tc ≲ ℓ ln(1/G) for any allowed choice of j#, t#. We thus see that,

with a given finite energy budget measured by F , adding localized particles along the

geodesics θ = 0, π fails to increase the size of the allowed region. In fact, a careful check

of the coefficients shows that the region in which we find a good approximation to dS

QFT has actually shrunk by a small amount.
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While we have not investigated other choices of reference states in detail, the expo-

nential increase of kinetic energies with static patch time is typical of any particles falling

toward a de Sitter horizon. This suggests that the above behavior is generic when we

require backreaction to be small at t = 0 for our global time t; i.e., at a minimal Sd. For

example, the same exponential factors arise in the nonrelativistic limit µ≫ j#. However,

in section 5.5 we will explore the possibility of allowing backreaction at such minimal

spheres to be large, and thus allowing F to be large, while requiring backreaction to be

small in other regions of de Sitter space. Due to that fact that it will require a slightly

more involved discussion of backreaction in Einstein-Hilbert gravity, and since our dis-

cussion of ‘backreaction’ for D = 2 was simply a convenient fiction designed to provide

a toy model of well-known results for Einstein-Hilbert gravity in the higher dimensional

case, we postpone that discussion to section 5.5 and, in particular, until after treating

group averaging in higher dimensions in section 5.4.

5.4 Reference states in dSd+1

We will now see that essentially the same results found above for dS1+1 also hold for

dSD for all D > 1. We begin with a discussion of particle states and the associated action

of SO(D, 1) generators following [197]. To this end, we consider a sphere Sd, with metric

ds2 = dθ21 + sin2 θ21dΩ
2
d−1, (5.63)

where θ1 is the polar angle and we use coordinates Ωd−1 = (θ1, ..., θd). In global dS we

use the corresponding global coordinates (with global time t) in which the metric takes

the form

ds2 = −dt2 + cosh2 t(dθ21 + sin2 θ1dΩ
2
d−1). (5.64)
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One-particle wavefunctions on Sd can be written in terms of spherical harmonics

labelled by angular momentum vectors j⃗ = (jd, . . . , j1) with jk ≥ 0 for k ≥ 2. For

k ≥ 1, we take jk to be the total angular momentum quantum number for the SO(k+1)

subgroup of SO(D, 1) associated with the Sk sphere at constant θn for n ≤ d − k + 1.

The above quantum numbers thus satisfy

jd ≥ jd−1 ≥ ... ≥ j2 ≥ |j1|. (5.65)

In analogy with the construction in section 5.3.2, we begin by considering a reference

state
∣∣ψ1

]
=
∣∣ψ+

]
⊗
∣∣ψ−
]
where each state describes a particle that is well-localized at

t = 0 at one of the poles of the Sd. For simplicity, we take each particle to be invariant

under the SO(d) rotations that preserve the poles. As a result, two particles will not

suffice to break all of the dS isometries, so we will need to add more particles later.

Indeed, we will soon define
∣∣ψ0

]
=
∣∣ψ1

]
⊗
∣∣ψ2

]
⊗ . . .

∣∣ψD
]
, where the

∣∣ψi
]
for i ≥ 2 are

constructed from
∣∣ψ1

]
by applying rotations by π/2 in d = D − 1 orthogonal directions;

see the discussion below.

In the state
∣∣ψ1

]
=
∣∣ψ+

]
⊗
∣∣ψ−
]
, the only non-zero angular momentum will be jd, for

which we henceforth use the simplified notation j = jd. We will again consider a free

scalar field with 1-particle states in the principle series, with ∆ = d/2 + iµ. We take the

state of each particle to be of the form

∣∣ψ±
]
= N

j#∑

j=0

c±j |∆, j, 0⃗], (5.66)

where + denotes a particle at the north pole and − denotes a particle at the south pole,

and where N is a normalization constant.

The coefficients c±j will be given by the spherical harmonic expansion of an Sd Dirac
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δ-function localized at the relevant pole. It is natural to write this delta function δ̃(θ1)

in the form

δ̃(θ1) =
δ(θ1)

Vd−1 sin
d−1 θ1

, (5.67)

where δ(θ1) is the standard Dirac delta-function associated with the measure dθ1 and

Vd−1 =
∫
Ωd−1

dΩd−1 is the volume of the unit d − 1 sphere. There is an analogous

result for the δ-function at the south pole. The d-dimensional spherical harmonics for

jd−1 = jd−2 = ... = j1 = 0 are given (see e.g.[197]) by

(d)Yj⃗(Ωd) =
1√
2π

(d)Yj0(θ1)
d−1∏

n=2

(n)Y00(θd+1−n), (5.68)

where there is no θd dependence, since the associated harmonic simplifies to 1/
√
2π. The

other harmonics are given by

(d)Yj0(θ1) =
1

2(d−2)/2Γ(d
2
)

[(
j +

d− 1

2

)
Γ(j + d− 1)

Γ(j + 1)

]1/2
cosj θ1

×2 F1(−
j

2
,
1− j

2
;
d

2
;− tan2 θ1),

(5.69)

and by

(n)Y00(θd+1−n) =
[(n− 1)Γ(n− 1)]1/2

2(n−1)/2Γ(n
2
)

, (5.70)

where we see the (n)Y00(θd+1−n) above are independent of θd+1−n. Thus the relevant

spherical harmonics depend only on θ1. We can now determine the coefficients c±j in the

expansion of δ̃(θ1) and δ̃(θ1 − π) in terms of the spherical harmonics (d)Yj⃗(θ1) noting

that, since we will normalize the answer afterwards, we care only about the j-dependent

factors. We find

c±j = (±1)j
[(
j +

d− 1

2

)
Γ(j + d− 1)

Γ(j + 1)

]1/2
. (5.71)
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With these coefficients, the normalizations N for the
∣∣ψ±
]
states are

N =

√
2dΓ(j# + 1)

(2j# + d)Γ(j# + d)
. (5.72)

The generators of the de Sitter group U(g) consist of the D(D−1)
2

rotations Jij about

each spatial direction (with i < j and i, j = 1, ..., D), and D boosts Bk. It is convenient to

use the embedding space formalism to find the expressions for the corresponding Killing

vector fields in terms of global coordinates. In this formalism, we represent our de Sitter

space as the hypersurface XµX
µ = 1 in a (D + 1)-dimensional Minkowski space with

metric ds2 = −dX2
0 + dX2

1 + ...+ dX2
D. On the hyperboloid, the Minkowski coordinates

are then related to global coordinates through X0 = sinh t, Xi = zi cosh t, where the zi

are functions of the angles on Sd that define the standard embedding of SD−1 in RD; e.g.

z1 = cos θ1, z2 = sin θ1 cos θ2, etc. The Killing fields are thus

Bk =zk∂t +
k∑

l=1

zk
z2l

tanh t cot θl(cos
2 θl − δlk)∂θl , and (5.73)

Jij =

j∑

l=i

zizj
z2l

cot θl(cos
2 θl + sin2 θiδli − δlj)∂θl . (5.74)

Note that the action of B1 is the same as in dS1+1 given by Eq. (5.23), but with θ

replaced by θ1 and with (5.23) rewritten in terms of global coordinates.

As in Section 5.3, we use the above description of U(g) to compute the group averaging

kernel to order (g−1)2 in order to determine its width around the identity. The calculation

of the kernel is greatly simplified by the symmetries of our reference state. First, Jij
∣∣ψ±
]

vanishes for i, j ̸= 1, since these rotations have no effect on scalar particles at the poles.

Second, the expectation values of all rotation generators Jij also vanish, and so too will

the expectation values of all Bl for l = 2, ..., D due to the invariance of our states under
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reflections. In particular, the states
∣∣ψ±
]
are each individually invariant under reflections

defined by choosing some i ≥ 2 and mapping Xi → −Xi while holding fixed all Xj with

j ̸= i. Additionally, under the reflection X1 → −X1, the B1 generator transforms as

B1 → −B1. This leads to a cancellation between the remaining terms of order (g − 1)

(since the only such terms were those associated with the expectation value of B1).

Finally, we consider the cross terms [J1iJ1j], [B1Bi], [BiBj], and [BkJ1i], for i, j ̸= 1,

and where the expectation values [...] are taken in either the + or − state. That these all

vanish can be seen by applying the reflection symmetries Xi → −Xi, under which each

of the above combinations of generators picks up a sign, but under which the states
∣∣ψ±
]

are individually invariant. Due to the above vanishing moments and cancellations, the

group averaging kernel defined by
∣∣ψ1

]
becomes just

[
ψ1

∣∣U(g)
∣∣ψ1

]
=
[
ψ+

∣∣U(g)
∣∣ψ+

][
ψ−
∣∣U(g)

∣∣ψ−
]

=1− λ21
2

(
[B2

1 ]− [B1]
2
)
−

D∑

ℓ=2

(λl⊥)
2

2
[B2

l ]−
∑

1≤i<j≤D

(θij)2

2
[J2
ij] +O([g − 1]3).

(5.75)

The analysis of the above coefficients is somewhat tedious. We therefore relegate the

details to appendix F and merely quote the leading results at large j# from (F.21)

(
[B2

1 ]− [B1]
2
)

=

[
d

d+ 2
− d2

(d+ 1)2

]
j#

2, [B2
l ] =

1

2(d+ 1))
j#,

[J2
ij] =

1

d+ 2
j#

2δi,1 for j > i. (5.76)

For k = 2, . . . , D, we now define
∣∣ψk
]
= ei

π
2
Jk1
∣∣ψ1

]
, and we use these states to
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Figure 5.6: The state (5.77) contains 2D particles, each of which localizes at a point
(pink dot) on the Sd at global time t# along one of the coordinate axes of RD.

construct
∣∣ψ0

]
=

D∏

k=1

∣∣ψk
]
; (5.77)

see figure 5.6. For the state (5.77) we find

[
ψ0

∣∣U(g)
∣∣ψ0

]
= 1− 1

2

D∑

i=1

λ2iχi −
1

2

∑

1≤i<j≤D

λ2ijχij +O([g − 1]3), (5.78)

with

χi =
(
[B2

1 ]− [B1]
2
)
+

D∑

k=2

[B2
k] ≈

[
d

d+ 2
− d2

(d+ 1)2

]
j#

2, and

χij = [J2
1j] ≈

1

d+ 2
j#

2 for j > i. (5.79)

Here [X] still denotes the expectation value of X in the original state
∣∣ψ+

]
and the

approximation is valid at leading order in j#.

We see that all χi, χij are positive for all d. By the same argument as in dS1+1, our

dS QFT correlators will be well-approximated by our perturbative gravity correlators in

regions where the Euclidean norms (see (5.18)) of the killing vectors are much smaller

than the χ
1/2
i , χ

1/2
ij . To find the relevant |Bk|2E, we use (5.73). To find the magnitude

of the |Jij|2 in Euclidean signature, we can use (5.74), or we can make direct use of the
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embedding space coordinates. The results are

|Bk|2E/ℓ2 =z2k + (1− z2k) sinh
2 (t/ℓ), and (5.80)

|Jij|2E/ℓ2 =(z2i + z2j ) cosh
2 (t/ℓ). (5.81)

In order to describe the region in which our dS QFT correlators are well-approximated

by our perturbative gravity correlators, let us note that since χi is independent of i, and

since χij is independent of i, j, the region in which our dS QFT approximation holds

to any fixed accuracy ϵ will be invariant under the full SO(D) group of rotations that

preserve the global time t. It therefore suffices to test the conditions |gx − x|E ≪ σ

only at the pole where θ1 = 0. Furthermore, we may focus on the generators B2 and J12

since, for large t#/ℓ, we see from (5.80) that all other boosts and rotations have equal or

smaller Euclidean norm at θ = 0. Using either B2 or J12 leads to the condition

et/ℓ ≪ χ1/2σ ∼ j#σ. (5.82)

So, as in our 1+1 toy model, for j# ≲ 1/G, we find that our dS QFT approximation can

hold only in a region spanning a global time interval of size ∆t ∼ lnG−1.

5.5 Reference particles in future dS

In section 5.3.3 we found that, with a fixed energy budget measured by the flux F

through a minimal S1 in dS1+1, adding boosted particles in states e±it#B2
∣∣ψ±
]
did not

improve our approximation of the local algebra dS QFT in any region of dS1+1. Since

the results in section 5.4 for particles localized at t = 0 in dSd+1 are quite similar to

those in section 5.3.2, it is again clear that with fixed total energy-flux F through a
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minimal Sd, adding more particles localized at other times will again fail to improve our

approximation of local algebras in (d+ 1)-dimensional dS QFT.

However, the key limitation in section 5.3.3 arose from fixing F . Furthermore, as

discussed in section 5.3.2, there is generally no sense in which backreaction can remain

small across all of dS, so one must make a choice of both where, and in what sense, one

wishes perturbation theory to hold. Finally, since global de Sitter space is exponentially

large in both the far future and the far past, the energy carried by perturbations tends

to become extremely diluted in such regions and backreaction tends to be much smaller

than at a minimal Sd.

Let us therefore investigate what we can do if we decide to allow large backreaction

near the minimal Sd at t = 0 (thus dropping the constraint on F ), though we will still

require backreaction to be small to the future of some global time slice t = t# > 0. We

will do so using the reference state

∣∣ψ0

]
=

D∏

k=1

∣∣ψk
]
, (5.83)

∣∣ψ1

]
:= eit#B1

∣∣ψ+

]
⊗ e−it#B1

∣∣ψ−
]
, (5.84)

∣∣ψk
]

:= ei
π
2
Jk1
∣∣ψ+

]
, for 2 ≤ k ≤ D, (5.85)

where
∣∣ψ±
]
are again given by (5.66); i.e., we use only particles that become localized

at global time t = t# > 0 and we again impose j# ≪ 1/G in (5.66). At time t = t#,

each particle thus gives only a small perturbation, and the perturbation toward the

future should be even smaller. We will investigate later the extent to which the resulting

perturbations can remain small at times t < t#.

Since each state
∣∣ψk
]
is invariant under the same set of (spatial) reflection and rotation

symmetries as the similarly-labeled state in section 5.3.3, the non-vanishing moments

that contribute to the group-averaging kernel are again just the expectation values of B2
k
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and J2
ij, for which will again define squared-widths χk and χij. Furthermore, while it

is straightforward to compute these expectation values from the results in section 5.3.3,

the analyses of the previous sections show that we do not in fact need the detailed forms

of the results. Instead, the important point is that, due to the boost transformations of

Bk, Jij (analogous to those in (5.54)), for the particles in state
∣∣ψk
]
and for i ̸= k we will

find χi and χkj to be proportional to e2t#/ℓ for large t#, though χk and χij for i, j ̸= k

will be unchanged by the boost.

As a result, in the full state
∣∣ψ0

]
we will find all χi, χij to be proportional to e2t#/ℓ

for large t#. This will then compensate for the fact that the Euclidean norms |Bi|2E and

|Jij|2E are exponentially large at t = t#, and it will similarly allow these vector fields to

satisfy our criterion for a good approximation to dS QFT for a global time interval of

order lnG−1 to the future of t = t#. This condition is also satisfied whenever |t| < t#,

so long as we consider a region of dS in which backreaction is small.

It thus remains only to estimate the backreaction from our state. There are several

pieces to this discussion. First, we may note that at time t = t# we have only 2D particles

on a sphere Sd of volume coshd(t#/ℓ)Vdℓ
d, where Vd is the volume of the unit sphere.

Furthermore, by construction each particle alone has small backreaction, meaning that

it can be modeled as a Schwarzschild black hole of radius much less than ℓ. As a result,

for all t ≫ ℓ the particles are exponentially far apart, and – in some reference frame10 –

the region near each particle can be modeled as a Schwarzschild de Sitter solution (again

with Schwarzschild radius much less than ℓ). In this sense the backreaction is small at

10For t# − t ≫ ℓ, the particle will be highly relativistic in the reference frame associated with slices
of constant global time t. It should then be described as a de Sitter version of the Aichelberg-Sexl
solution [199]. In 2+1 dimensions there is no curvature away from the particle, and for d ≥ 4 the
Aichelberg-Sexl solution decays at long distance. But in 3+1 dimensions the Aichelburg-Sexl metric
grows logarithmically. Of course, curvatures still decay and, more importantly, the gravitational field is
entirely confined to a shock wave in a null plane. As a result, for t ≫ ℓ the vast majority of de Sitter
space remains exponentially far from such shock waves and, indeed, the total probability for an object in
dS to encounter such a shock wave between global time t and global time t = ∞ is exponentially small.
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t = t# unless one probes the small region very close to one of the particles. Recalling that

metric perturbations can in principle be included in the field we call ϕ, such comments

can be promoted to statements about gauge-invariant operators of the form (5.12) if

desired.

It is important to realize, however, that there are small perturbations to de Sitter at

t = t# even far away from the expected locations of the particles. Some of this effect

is due to the fact that, since we cut off the mode sum defining each particle’s state at

some j#, the particles are not perfectly localized and their wavefunctions have long tails

that extend across all of de Sitter space. That, however, is a minor issue as, at large

j#, those long tails correspond to only a tiny net probability for the particles to be far

from their expected location. Furthermore, one could remove the long tails by replacing

each particle by the coherent state obtained by making a unitary transformation of the

ψ-vacuum using ei
∫
ψ(x)f(x) for some compactly-supported f(x).

While ei
∫
ψ(x)f(x) is invariant under linearized gauge-transformations, it will not be

gauge-invariant at the higher orders in perturbation theory used to compute backreac-

tion. Instead, as usual, it must be ‘gravitationally dressed’. In the present context, the

only structure to which such operators can be dressed is the background itself. This

is simply a set of words which means that the backreaction need not vanish in regions

that are causally separated from the support of f , and that one must instead solve the

gravitational constraints to analyze what happens in such regions.

It is reasonable to expect that the overall effect on the expansion/contraction of

the spheres Sd will be well-approximated by smearing the particles over the sphere.

By this we mean that we will simply solve the Friedman equations for homogeneous

isotropic cosmologies using the homogeneous energy density ρ that gives a flux Ft =
∫
t

√
hTabn

anb = ρ coshd(t#/ℓ)Vdℓ
d of energy through the given sphere Sd that agrees

with the flux Ft computed perturbatively for our 2D particles. Since angular momentum
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is conserved, assuming that µ and j# are of the same order in 1/G, once t is signifcantly

less than t# the particles will be relativistic and we will have

Ft ∼
2Dj#
ℓ

e
t∗−t
ℓ . (5.86)

Replacing our particles with a uniform energy density

ρ(t) ∼ Fte
−dt/ℓℓ−(d+1) ∼ j#e

t∗−t
ℓ , (5.87)

and comparing this with the energy density ρΛ = d(d−1)
16πGℓ2

associated with the de Sitter

cosmological constant, we find that ρ(t) ≪ ρΛ for

e(d+1) t
ℓ ≫ Gj#

ℓd−1
et#/ℓ; (5.88)

i.e., the backreaction from our homogeneous ρ will be small whenever t exceeds
t#
d+1

−
ℓ

d+1
ln
(
ℓd−1

Gj#

)
by at least a few e-folding times.

Now, since the state
∣∣ψ0

]
contains only a smll number (2D) of particles, it is clear

that the actual energy density is far from homogeneous. Some of the issues involving the

inhomogeneous part of ρ were discussed above and relate to probing the local spacetime

near each particle. However, additional effects arise when, e.g. by random chance, some

subset of the particles finds themselves closer together than other subsets. It is then

natural to model such circumstances by a ρ that is again smooth, but where the local

energy density in that region is larger than in other regions. Comparing with our analysis

above, we see that this will then increase the backreaction in such regions, though this

can only be the case in small regions of spacetime. Qualitatively, then, this is similar to

the comments above about probing small regions near each particle. In this sense, then,

we expect backreaction to be small over the vast majority of the region of our de Sitter
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space at global times

t >
t#
d+ 1

− ℓ

d+ 1
ln

(
ℓd−1

Gj#

)
. (5.89)

As a result, our perturbative gravity correlators will be a good approximation to our dS

QFT correlators over the vast majority of the region satisfying

t# + ln

(
j#σ

ℓ

)
> t >

t#
d+ 1

− ℓ

d+ 1
ln

(
ℓd−1

Gj#

)
. (5.90)

Taking σ = ϵ1ℓ, j# = ϵ2ℓ
d−1/G then yields

t# + ln

(
ϵ1ϵ2

ℓd−1

G

)
> t >

t#
d+ 1

+
ℓ

d+ 1
ln ϵ2. (5.91)

Taking t# large (say, with ϵ1 and ϵ2 small but with ϵ1ϵ2
ℓd−1

G
large) then allows us to make

our approximation highly accurate over a region with arbitrarily large spacetime volume

and which spans an arbitrarily large interval of global time.

5.6 Discussion

Our work above studied the use of the perturbative gravity observables (5.12) in

approximating algebras of local quantum fields on a fixed de Sitter spacetime dSd+1. In

the limitG→ 0, one can approximate such local fields well over arbitrarily large regions of

dS. However, if the region of interest includes a minimal Sd, we found this approximation

to fail at small G when the region spanned a global time interval significantly larger

than ln(ℓd−1/G) (plus subleading corrections). On the other hand, we argued that the

approximation could hold to high precision in regions spanning arbitrarily large global

time intervals so long as they are located far to the future (or far to the past) of the

associated minimal Sd. This in particular includes arbitrarily large regions of any static
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patch of the de Sitter space.

Although our analysis of the possible constructions was far from exhaustive, and

although our detailed computations were performed only for free scalar fields with masses

M > 2/dℓ, we saw that the main results depended only on the presence of certain

exponential behaviors that follow from basic de Sitter kinematics. We therefore expect

our conclusions to be quite robust. It would nevertheless be useful to make the analysis

more complete with respect to possible choices of reference
∣∣ψ0

]
, and to incorporate

perturbative interactions, gravitational or otherwise. Similarly, for simplicity we treated

our ψ-particles as distinguishable but, since no two ψ-particles occupy the same mode,

it is clear that symmetrizing/antisymmetrizing over particles in
∣∣ψ0

]
will not affect our

results.

We emphasize that our interest here concerned algebras of local fields. In particu-

lar, we may consider arbitrary products of the perturbative gravity observables ϕ̂PG(x)

defined in (5.12). While there are subtleties related to the fact that our ϕ̂PG(x) are un-

bounded, this is easily remedied by replacing the operators ϕ̂QFT (x) in the integrand of

(5.12) with bounded functionals of ϕ̂QFT (x).

Of course, our dS QFT approximation does not hold uniformly for all elements of the

resulting algebra, nor does it hold uniformly in all states. In particular, at any fixed value

of G, operators formed by taking sufficiently large products will create states with large

back-reaction. Nevertheless, it is clear that as G → 0 one can choose parameters such

that the approximation holds for a larger and larger subset of elements of the algebra,

and such that it holds well over a larger and larger set of states. Thus as G → 0 one

should recover the entire algebra of local quantum ϕ-fields, though filling in the technical

details and characterizing the various rates of convergence remains a project for future

investigation.

In contrast, had we been interested only in computing vacuum correlation functions
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(without first constructing an algebra), we could have approximated the results of dS

QFT to much higher precision. At the physical level, this relates to the point often made

by cosmologists that, since the vacuum is de Sitter invariant, if one wishes to compute

the vacuum two-point function
[
0
∣∣ϕ(x)ϕ(y)

∣∣0
]
, then there is no need to sharply define

the location of both points x and y so long as the geodesic distance between the two is

sharply defined. Mathematically, we may note that we can construct a de Sitter-invariant

perturbative-gravity observable

O(x, y) :=

∫
dgϕ(gx)ϕ(gy)⊗ U(g)

∣∣ψ0

][
ψ0

∣∣U(g−1) (5.92)

whose expectation value in our ϕ-vacuum state |0;LPG⟩ is

⟨0;LPG|O(x, y)|0;LPG⟩ =
[
0
∣∣ϕ(x)ϕ(y)

∣∣0
] (∫

dg
∣∣∣
[
ψ0

∣∣⊗ U(g)
∣∣ψ0

]∣∣∣
2
)
, (5.93)

so that it exactly reproduces the two-point function of dS QFT at all x, y for any value

of G. However, since (5.92) is not the product of two perturbative gravity observables

(5.12), the result (5.93) says nothing about the accuracy of approximating the algebra of

local fields.

Our interest in local algebras was in part motivated by recent works constructing

type II von Neumann algebras of local fields [39, 38, 172, 40, 45, 46]. Specifically, we

wished to investigate the way in which the static patch algebra of [39] could emerge from

perturbative gravity observables. In this regard, there are several aspects of our approach

on which we wish to remark.

The first of these is that the algebra of perturbative-gravity observables generated

by ϕ̂PG(x) does not directly reproduce the full algebra of dS QFT, but only the algebra

of ϕ-fields. In particular, it does not include the algebra of ψ-fields which can change
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our reference state
∣∣ψ0

]
. Nevertheless, this precisely matches the structure of the Hilbert

space used in [39] in the sense that that work assumed the existence of a so-called observer,

and that the operator algebra was not allowed to either create or destroy such observers.

Furthermore, while the observer’s clock operator was used at an intermediate point of the

construction, the observables constructed in [39] can be described as what we would call

ϕ-observables defined at times relative to the observer’s clock. This is clearly in direct

parallel with our perturbative-gravity observables, which describe ϕ-fields relative to our

reference state
∣∣ψ0

]
.

However, there should be no problem with including additional operators that allow

the creation/annihilation of ψ-quanta which are not to be considered part of our refer-

ence state; e.g. which act on modes with much smaller angular momentum on each Sd.

Indeed, to the extent that we can treat ψ-particles as distinguishable, one may simply

consider a space of states that is the tensor product of a high-angular-momentum
∣∣ψ0

]

state with arbitrary low-angular-momentum states of the ψ-field, and one may then de-

fine perturbative-gravity observables that act on this space in direct analogy with (5.12).

Taking into account that ψ-particles are identical then involves a formal symmetriza-

tion/antisymmetrization depending on the bosonic/fermionic nature of the ψ-particles

but, as usual, this has little effect when the relevant two sets of particles occupy very

different modes.

A more interesting point is that, while they clearly reproduce a local algebra in the

limit G → 0, from the perspective of the dS quantum field theory that acts on the

Hilbert space HQFT = Hϕ
QFT ⊗Hψ

QFT the operators ϕ̂PG are highly non-local even before

they are group-averaged. This is due to the fact that, in contrast to the constructions

used in [163, 170, 101, 171, 45], the integrand in (5.12) contains a factor of
∣∣ψ0

][
ψ0

∣∣,

which is an operator not contained in the local algebra of quantum ψ-fields for any

subregion of dS which cannot describe a complete Cauchy surface. As discussed in the
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introduction (following [102]), this property is absolutely essential if the group averaging

integral in (5.12) is to converge in the presence of a long-lived de Sitter vacuum state.

While it naturally viewed as a surprise, and perhaps in fact a distasteful one from the

perspective of local quantum field theory, we emphasize that perturbative gravity about

a background that fails to break all diffeomorphism gauge symmetries is not a local

quantum field theory. In particular, since observables in perturbative gravity about

dS must be invariant under the entire de Sitter group (see again the discussion at the

beginning of section 5.2), they are in some sense necessarily as far from local operators

as one can get. In any case, whatever the philosophical issues may be regarding our

construction, we see that it does in fact reproduce local quantum field theory in the limit

G→ 0.

The idea of using highly non-local ingredients like quantum states to define observ-

ables which, in some limit, nevertheless reproduce local physics seems likely to be ex-

tremely useful in in quantum gravity more generally, and especially in attempts to go

beyond perturbation theory. The point here is that the path integral is naturally taken

to define an inner product on quantum states that projects onto gauge-invariant states,

and which can then be used to build a gauge-invariant Hilbert space; see e.g. the dis-

cussions in [200, 192, 201]. As a result, this path integral inner product automatically

implements group averaging when expanded perturbatively (see e.g. the recent discus-

sion in [103]). Thus, to the extent that we understand how to compute gravitational

path integrals, we already have the desired Hilbert space of states at hand. We may

thus use such states |Ψ1⟩, |Ψ2⟩ to directly construct gauge-invariant operators |Ψ1⟩⟨Ψ2|

rather than take on the technical challenge of attempting to perform an integral over

the diffeomorphism group of some more local operator expression (and then needing to

worry further if e.g. topology-changing processes further enlarge the gauge group in the

non-perturbative quantum theory; see e.g. the discussion in [202]).
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Our work also reported some technical progress regarding the de Sitter group-averaging

inner product that underlies our analysis. Appendix A proposed a potential alternate

formulation of this inner product that, based on the uniqueness theorem of [190] and

the freedom to tune a parameter (α) to make the result finite and non-zero, we expect

(for some value of α) to be equivalent to group averaging. However, the alternate inner

product is manifestly positive semi-definite. We also argued that any inner product for

perturbative gravity on dS must map one-particle states of our HQFT to null states. The

argument was a direct quantum analogue of the fact that classical one-particle states can-

not satisfy the linearization stability constraints. Finally, we argued that the divergence

of group averaging for Fock-basis 2-particle states of massive scalar fields is related to the

fact that all classical 2-particle solutions preserve a notion of static-patch time-translation

symmetry and thus, like the de Sitter-invariant vacuum
∣∣0
]
, leave a non-compact gauge

group unbroken. The fact that the unbroken gauge group is now only R is then naturally

associated with the fact that group-averaging diverges only linearly for such 2-particle

states, while it diverges exponentially for
∣∣0
]
. While it would be useful to sharpen this

last argument, and also to rigorously prove equivalence of group-averaging with our al-

ternate inner product, for heavy fields in dS (e.g., for scalars with M > d/2ℓ), this gives

a rather complete understanding of the group averaging inner product.

This technical progress again has implications for the construction of local algebras

and the connection between our work and that of [39, 40, 45, 46]. In particular, the two-

particle states with linearly-divergent divergent group-averaging norm naturally play the

role of a clock-less version the observer assumed in [39, 40, 45, 46]. Indeed, without a

clock, group-averaging would again diverge linearly in the context studied in those works.

Adding an appropriate clock degree of freedom, whether realized as the relative motion

of a 3rd particle or as the addition of infinitely many internal states that mix under time

evolution, will thus cause group averaging to converge. The resulting states can then be
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used as a reference
∣∣ψ0

]
in precisely the manner described here.

Finally, some readers may be surprised that we have focused so heavily on the study

of global de Sitter space. In contrast, many treatments of de Sitter or inflation discuss

only the inflating patch of de Sitter. Since the inflating patch has noncompact Cauchy

surfaces, its Killing fields are not normally treated as generating gauge symmetries. In

effect, one typically assumes (perhaps implicitly) that boundary conditions are imposed

at the upper corner of the inflating patch such that the associated diffeomorphisms are

non-trivial asymptotic symmetries rather than gauge. However, we are not aware of a

complete technical specification and treatment of such boundary conditions and, perhaps

as a result, many longstanding questions and confusions remain regarding the detailed

relationship between analyses of global dS and analyses in the inflating patch. Nev-

ertheless, it seems likely that, as discussed briefly in [203], the physics of global dS

linearization stability constraints is directly related to large logarithms that arise when

studying gravitational perturbation theory in the inflating patch; see, e.g., [204] and ref-

erence therein, [205, 206]. It would thus be very interesting to better understand the

implications of constructions described here for physics in the inflating patch and, in

particular, to understand if (despite the seemingly different time-dependence involved)

the above-mentioned large logarithms might be related to the fact that our perturbative

gravity correlators become highly smeared versions of dS QFT correlators at late times.
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Chapter 6

Concluding Remarks

Through the work in this thesis, we have gained a better understanding of operators in

quantum gravity in both AdS and dS spacetimes.

In Chapters 2-4, we considered geometric entropy operators in semiclassical AdS (or

AdS with an added Chern-Simons term), which are of great importance as the bulk

dual to boundary subregion entanglement entropy. First, we studied the flow generated

by the HRT area operator in Einstein-Hilbert gravity, as well as the algebra of these

operators. We then showed in Chapter 3 that this flow is preserved for geometric entropy

in 3D gravity with a gravitational anomaly, a first test at understanding the action of

geometric entropy in higher-derivative theories of gravity. In Chapter 4, motivated by

the connection between networks of intersecting bulk surfaces and random holographic

tensor networks, we computed commutators between areas of these bulk surfaces. We

were successful in constructing a four-link area network where all area commutators

vanish, but showed it is generally hard to construct larger commuting networks.

In Chapter 5, we considered quantum observables in global de Sitter. Since the

only dS-invariant state is the vacuum, we used a group averaging procedure to find a

usable basis of dS-invariant states, and these states included both an observable degree
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of freedom and the reference state wavefunction. For a reference state localized near

a minimal Sd of dSd+1, we showed that the observables become smeared once they are

far enough in the future or past from the chosen reference system (in particular, the

observables are unsmeared only within the region where the global time coordinate spans

an interval of order ∆t ≲ lnG−1). This means these observables can only be modeled by

the physics of QFT in curved spacetime in a rather limited region of global dS. However,

if we do not restrict to reference states near a minimal Sd, observables can be modelled

accurately by QFT in arbitrarily large regions of dSd+1.

There is much that remains to be understood about operators in quantum gravity. For

instance, what is the action of geometric entropy operators in general higher-dimensional

theories, and can this be derived in a simple way using the boundary modular Hamil-

tonian? And what about the action of areas of other surfaces in the AdS bulk, like the

links of the entanglement wedge cross section? Are there ways to construct arbitrarily

fine discretizations of the bulk where every link-area commutator vanishes, or is it better

to consider tensor network constructions that do not rely on suppressing fluctuations of

all areas simultaneously? And finally, for quantum observables in global de Sitter, what

is the cosmological interpretation of the “allowed” region where these observables expe-

rience minimal smearing? What significance does this effect have for quantum gravity in

our own universe?
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Appendix A

Normalizations and the One-Sided

Boost

As discussed in section 2.2.3, both the flow generated by AHRT and the kink transfor-

mation can be described as a sort of one-sided boost. This appendix verifies the details

of this relationship, and shows in particular that such a transformation leads precisely

to (2.13) with the stated normalizations. We perform an explicit computation below

for spacetimes that admit a bulk Killing field ξa which acts locally like a boost near

γ. We also study the effect on initial data defined for particularly convenient Cauchy

surfaces. But since the flow clearly does not affect initial data within either wedge, the

delta-function terms in (2.13) can depend only on the local structure near γ. It will thus

be clear that the same normalizations continue to hold for the more general transforma-

tion described in section 2.2.3 (and originally defined in [115]), where we allow arbitrary

Cauchy surfaces through γ and where the boost operator is defined only in the local

approximation where one replaces each plane orthogonal to γ with flat Minkowski space.

We will call our one-sided boost ηα. Before proceeding, recall that γ defines two

entanglement wedges, one on each side of the surface, and that ξa is past-directed in one
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(which we call the left wedge) and is future directed in the other (which we call the right

wedge). In the left entanglement we take ηα to be the identity. In the right wedge we

instead take ηα to be the diffeomorphism generated by moving points along the orbits of

the KVF ξa by a Killing parameter α/κ, where κ is the surface gravity of ξa. Thus ηα is

a diffeomorphism in each entanglement wedge, though it is not smooth at γ and we have

not defined its action at points that lie inside1 the chronological future or past of γ.

We thus examine the action of ηα on Cauchy surfaces that contain γ. Note that ηα will

map any such Cauchy surface Σ to another such surface Σ̃. To simplify our discussion,

we will make a special choice for the Cauchy surface Σ, or at least for the part of that

Cauchy surface near γ. We begin by choosing a unit spacelike vector field ma normal to

γ and defined smoothly everywhere on γ. We then extend ma to some region near γ by

taking ma to be the unit affinely-parameterized tangent to a congruence of geodesics. At

least near γ, these geodesics will generate a hypersurface. We take this to coincide with

the part of Σ near our HRT surface.2 The normal na to Σ then satisfies mana = 0 in the

region near γ. We then further extend both ma and na off of the original slice Σ in an

arbitrary smooth manner that preserves the conditions nama = 0 and nan
a = −1. Thus

we have the useful relations

ma∇am
b = 0 (A.1)

manb∇an
b =

1

2
ma∇a(−1) = 0 (A.2)

mamb∇an
b = ma∇a(m

bnb) = 0. (A.3)

We also use s to denote proper distance along geodesics in the original congruence, with

1On the boundary of the future or past of γ the action of ηα can be defined by continuity.
2Had we started with a generic hypersurface, we could consider the family of spacetime geodesics

which happen to be tangent to the hypersurface at γ. The analysis would then be identical to leading
order near γ, and in particular would give precisely the same delta-function terms in (2.13).
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s = 0 at γ.

Let us now construct a second Cauchy surface Σ̃ by applying a map ηα to Σ. The

map ηα is almost a diffeomorphism, except that it is not smooth at γ. Before proceeding,

note that γ defines two entanglement wedges, one on each side of the surface, and that ξa

is past-directed in one (which we call the left wedge and in which we take s < 0) and is

future directed in the other (which we call the right wedge and in which we take s > 0).

In the left entanglement we take ηα to be the identity. In the right wedge we instead take

ηα to be the diffeomorphism generated by moving points along the orbits of the KVF ξa

by a Killing parameter α/κ, where κ is the surface gravity of ξa. As a result, the normal

ña to Σ̃ satisfies

ña = cosh(αΘ(s))na + sinh(αΘ(s))ma . . . , (A.4)

where . . . denotes terms that are smooth but which depend on the way that our vector

fields were extended off of the original Cauchy surface Σ. Similarly, the normal m̃ to γ

in Σ̃ satisfies

m̃a = cosh(αΘ(s̃))ma + sinh(αΘ(s̃))na . . . , (A.5)

where we have used the fact that Σ̃ is isometric to Σ to introduce a coordinate s̃ that

measures proper distance from γ along Σ̃ in the same way that s does along Σ. Note

that the conditions mam
a = −nana = 1 and nam

a = 0 give

m̃b∇an
b = 0 (A.6)

m̃b∇am
b = 0.

Let us now recall that the extrinsic curvature of Σ can be described by a degenerate

tensor Kab = −hca∇cnb whose indices range over all coordinates of our spacetime (and

not just those on Σ). Although it is not manifest from the definition, this tensor is
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symmetric. From (A.4), we thus see that the extrinsic curvatures Kab and K̃ab of Σ and

Σ̃ are related everywhere by the action of ηα except for the component m̃am̃bK̃ab which

will be sensitive to derivatives of the theta-functions in (A.4):

m̃am̃bK̃ab = m̃am̃b∇añb. (A.7)

Such derivatives introduce δ-function terms in K̃ab that are not present in the image3

η∗αKab of Kab under the flow ηα.

Furthermore, since when acting on scalars we have m̃a∇a = ∂s̃, we may write

m̃a∇añb = αδ(s̃)m̃b+
(
sinh(αΘ(s̃))m̃am̃b∇anb + cosh(αΘ(s̃))m̃am̃b∇amb + . . .

)
, (A.8)

where the final step uses (A.6). Since the final . . . terms in (A.8) are smooth, they are

determined by their values in the left and right wedges and must thus be a part of η∗αKab.

We therefore conclude that the extrinsic curvatures of Σ and Σ̃ are related by

K̃ab = η∗αKab + αδ(s̃) m̃am̃b, (A.9)

which agrees with (2.13) if we set α = −2π and take the bracket with AHRT/4G to give

d/dλ.

As mentioned in footnote 1, the form of the normalization factor in (A.9) differs from

that presented in [115]. This difference arises from the fact that the results of [115] were

expressed using coordinates that are not smooth on Σ̃, and thus which introduce signif-

icant dependence on regulators. In contrast, even though it is not smoothly embedded

3Since K̃ab is defined only on Σ̃, there is no need to define this flow in the causal past or future of
γ. Furthermore, since the extrinsic curvature Kab of Σ is smooth at γ, we can define η∗αKab at γ by
requiring it to be a smooth tensor on Σ̃ when expressed in terms of coordinates on Σ̃ obtained by acting
with ηα on smooth coordinates for Σ. We emphasize that Σ̃ can be regarded as an intrinsically-smooth
manifold whose embedding in the bulk happens not to be smooth.
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in the bulk, we emphasize that Σ̃ has the intrinsic structure of a smooth manifold, so

that the corresponding proper distance coordinate s̃ is smooth on Σ̃. This turns out to

remove detailed dependence on regulators found in [115] and leads to the elegant result

(A.9).
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Appendix B

Adding Additional Constrained

HRT Surfaces

We now generalize the network of Figure 4.2 by adding an additional constrained HRT

surface as shown in figure B.1, and which is associated with the links γc, γd. We again

start with an HRT surface γ, which is now taken to be anchored to the boundary at

(U1, V1) and (U2, V2). We then add two constrained geodesics: one anchored to (Ua, Va)

and (Ub, Vb), and the other anchored to (Uc, Vc) and (Ud, Vd). See Figure B.1. The two

intersection points divide the original HRT-surface γ into the three segments: γ1, γ3, and

γ2.

Since the network of figure B.1 contains the network of figure 4.2 as a sub-network,

the results of section 4.3.2 yield

{Aγa , Aγb} = {Aγa,b , Aγ1} = {Aγa,b , Aγ2∪γ3} = {Aγ1 , Aγ2∪γ3} = 0, (B.1)

181



Adding Additional Constrained HRT Surfaces Chapter B

t = 0

Boundary
(Uc, Vc) (Ua, Va)(U1, V1) (Ub, Vb) (Ud, Vd) (U2, V2)

γc
γd

γa γbγ1

γ3

γ2

Figure B.1: For visual simplicity, we show the configuration projected into a time slice.
We start with an HRT surface, shown in black and given by γ = γ1 + γ2 + γ3. We then
add two constrained geodesics, one in blue (γa+ γb) and one in red (γc+ γd), which each
intersect the HRT surface.

and, analogously,

{Aγc , Aγd} = {Aγc,d , Aγ2} = {Aγc,d , Aγ1∪γ3} = {Aγ2 , Aγ1∪γ3} = 0. (B.2)

As a result, only three classes of commutators remain for direct computation:

{Aγa,b,c,d , Aγ3}, {Aγa,b , Aγc,d}, and {Aγ1,2 , Aγ3}. (B.3)

Note that we can also obtain {Aγ1 , Aγ2} from {Aγ1,2 , Aγ3} using the final commutator in

(B.1).

Our present goal is not to obtain a full analysis of this network, but rather only to

find a case where commutators fail to vanish. As a result, we will focus on the first class

of commutators, where we will indeed find a non-vanishing example.

Without loss of generality, we take Uc < Ua < U1 < Ub < Ud < U2, and hence

Vc > Va > V1 > Vb > Vd > V2 to ensure spacelike separation of the anchor points. We

will calculate {Aγa , Aγ3}. For simplicity, we rewrite the commutator as

{Aγa , Aγ3} = {Aγa , Aγ1∪γ3 − Aγ1} = {Aγa , Aγ1∪γ3}, (B.4)
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where we used {Aγa , Aγ1} = 0 from (B.1). The functional derivatives of Aγa and Aγ1∪γ3

with respect to σU0(U) are given in Eq. (4.24), respectively. One can also find the

analogous expressions for functional derivatives with respect to σV0(V ).

Combining these results with the effective σ-commutators in (2.53) and (2.54), we

find

{Aγa , Aγ3} =
3

8
χ
(U)
21ac +

1

8
χ
(U)
bd21 −

1

4
C

(
χ
(U)
21ac + χ

(U)
bd21

)

− 3

8
χ
(V )
21ac −

1

8
χ
(V )
bd21 +

1

4
C

(
χ
(V )
21ac + χ

(V )
bd21

)
,

(B.5)

where we define the cross ratios

χ
(U)
ijkl =

(ui − uj)(uk − ul)

(ui − uk)(uj − ul)
and χ

(V )
ijkl =

(vi − vj)(vk − vl)

(vi − vk)(vj − vl)
. (B.6)

In (B.5), C is given in Eq. (4.28). Clearly, this result does not vanish in general, though it

does vanish in the limit where (Uc, Vc) and (Ud, Vd) approach (U2, V2) so that γc, γd recede

to infinity and our current network reduces to the one studied previously in section 4.3.2.

Similar calculations show that other link-area commutators also generally fail to vanish,

including commutators between links on different constrained geodesics (e.g. γa and γc).
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Appendix C

Link-Area Functional Derivatives for

the Cross Section Network

In this section we record the functional derivatives for the link areas in the (entanglement

wedge) cross section network. First, we find the functional derivatives of the cross ratios

χu and χv; χu and χv are given in Eq. (4.39). Their functional derivatives are hence

δχu
σU0(U)

=χue
−2σU0

(U)

[
2

ub2 − ua1
Θ(Ub2 − U)Θ(U − Ua1)

+
2

ua2 − ub1
Θ(Ua2 − U)Θ(U − Ub1)−

2

ua2 − ua1
Θ(Ua2 − U)Θ(U − Ua1)

− 2

ub2 − ub1
Θ(Ub2 − U)Θ(U − Ub1)

]
,

(C.1)

δχv
σV0(V )

=χve
−2σV0 (V )

[
2

vb2 − va1
Θ(Vb2 − V )Θ(V − Va1)

+
2

va2 − vb1
Θ(Va2 − V )Θ(V − Vb1)−

2

va2 − va1
Θ(Va2 − V )Θ(V − Va1)

− 2

vb2 − vb1
Θ(Vb2 − V )Θ(V − Vb1)

]
,

(C.2)
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and using these and Eq. (4.47), the functional derivative of the cross section area ACS

immediately follows

δACS
σU0(U)

=− 1

4
√
1− χu

e−2σU0
(U)

[
2

ub2 − ua1
Θ(Ub2 − U)Θ(U − Ua1)

+
2

ua2 − ub1
Θ(Ua2 − U)Θ(U − Ub1)−

2

ua2 − ua1
Θ(Ua2 − U)Θ(U − Ua1)

− 2

ub2 − ub1
Θ(Ub2 − U)Θ(U − Ub1)

]
,

(C.3)

and similarly for the functional derivative with respect to σ̂V0(V ). Next, we wish to find

the functional derivatives of the half-infinite link areas, as given in Equations (4.42)-

(4.45), with respect to σU0(U):

δAa1
δσU0(U)

=δ(U − Ua1) + e−2σU0
(U)

[
1

2(ua2 − ub1)
Θ(Ua2 − U)Θ(U − Ub1)

+
1

2(ub2 − ua2)
Θ(Ub2 − U)Θ(U − Ua2)

− 1

2(ua1 − ub1)
Θ(Ua1 − U)Θ(U − Ub1)

− 1

2(ub2 − ua1)
Θ(Ub2 − U)Θ(U − Ua1)

− 1

ua2 − ua1
Θ(Ua2 − U)Θ(U − Ua1)

]
,

(C.4)
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δAa2
δσU0(U)

=δ(U − Ua2) + e−2σU0
(U)

[
1

2(ua1 − ub1)
Θ(Ua1 − U)Θ(U − Ub1)

+
1

2(ub2 − ua1)
Θ(Ub2 − U)Θ(U − Ua1)

− 1

2(ua2 − ub1)
Θ(Ua2 − U)Θ(U − Ub1)

− 1

2(ub2 − ua2)
Θ(Ub2 − U)Θ(U − Ua2)

− 1

ua2 − ua1
Θ(Ua2 − U)Θ(U − Ua1)

]
,

(C.5)

δAb1
δσU0(U)

=δ(U − Ub1) + e−2σU0
(U)

[
1

2(ub2 − ua1)
Θ(Ub2 − U)Θ(U − Ua1)

+
1

2(ub2 − ua2)
Θ(Ub2 − U)Θ(U − Ua2)

− 1

2(ua1 − ub1)
Θ(Ua1 − U)Θ(U − Ub1)

− 1

2(ua2 − ub1)
Θ(Ua2 − U)Θ(U − Ub1)

− 1

ub2 − ub1
Θ(Ub2 − U)Θ(U − Ub1)

]
,

(C.6)

δAb2
δσU0(U)

=δ(U − Ub2) + e−2σU0
(U)

[
1

2(ua1 − ub1)
Θ(Ua1 − U)Θ(U − Ub1)

+
1

2(ua2 − ub1)
Θ(Ua2 − U)Θ(U − Ub1)

− 1

2(ub2 − ua1)
Θ(Ub2 − U)Θ(U − Ua1)

− 1

2(ub2 − ua2)
Θ(Ub2 − U)Θ(U − Ua2)

− 1

ub2 − ub1
Θ(Ub2 − U)Θ(U − Ub1)

]
,

(C.7)
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and analogously for functional derivatives with respect to σ̂V0(V ). Also useful are the

functional derivatives for the half-infinite link areas as expressed in the simpler form

given by Eq. (4.46) for Ab1, with analogous expressions for the other link areas. We thus

have

δAb1
δσU0(U)

=δ(U − Ub1) +
δfb1(χu, χv)

σU0(U)

+ e−2σU0
(U)

[
1

ua2 − ua1
Θ(Ua2 − U)Θ(U − Ua1)

− 1

ua1 − ub1
Θ(Ua1 − U)Θ(U − Ub1)

− 1

ua2 − ub1
Θ(Ua2 − U)Θ(U − Ub1)

]

(C.8)

and similarly for the functional derivative with respect to σ̂V0(V ).
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Appendix D

Failure of HRT Area Commutation

for a Timelike Cross Section

In considering the cross section network of Section 4.4, we restricted to the case where the

cross section γCS is spacelike. We now briefly discuss the case when γCS is timelike. This

can be achieved if we take, for instance, the anchor point ordering Ub1 < Ua1 < Ub2 < Ua2

and Vb1 > Va1 > Vb2 > Va2. We will consider in detail the commutator between Aγb1∪γb2 ,

i.e. the area of HRT surface γb1∪γb2, and the cross section area ACS. A similar result will

hold for the commutator between Aγa1∪γa2 and ACS. In the case where γCS is spacelike,

we expected this commutator to vanish because the flow induced by the HRT area leaves

γCS unaffected. We indeed showed this was true via an explicit calculation. However,

when γCS is timelike, we do expect it to be affected by the flow induced by the HRT

areas in the network. We show this explicitly below.

We begin with a calculation of {χu, Aγb1∪γb2}. As in all previous calculations, we

perform this calculation by integrating over the functional derivatives of the area opera-

tors and the effective σ-commutators in Equations (2.53) and (2.54). The χu functional

derivative is given by Eq. (C.1), and the HRT area functional derivative can be found
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either directly (by differentiating the HRT area) or by adding δAb1
σU0

(U)
and δAb2

σU0
(U)

as given

in Equations (C.6) and (C.7), respectively. We find

{χu, Aγb1∪γb2} =
12π

c
(1− χu). (D.1)

As explained in Section 4.4.2, commutators with χv will be the same up to a sign and

replacement of χu with χv, yielding

{χv, Aγb1∪γb2} = −12π

c
(1− χv). (D.2)

We can now use Eq. (4.47) to calculate the commutator with ACS. We find

{ACS, Aγb1∪γb2} = −3π

c

√
1− χu
χu

+
3π

c

√
1− χv
χv

. (D.3)

A similar result holds for {ACS, Aγa1∪γa2}. As expected, this does not vanish.
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Appendix E

Group averaging and its extensions

This appendix addresses the finiteness and positivity properties of the group averaging

inner product. We begin in section E.0.1 with a summary of results in the existing

literature. We then propose a family (labeled by a single parameter α) of potential

alternative inner products in section E.0.2. The uniqueness theorem of [207] to argue

that, if there is a value of α such that this alternate inner product is well-defined on

the space V ⊂ HQFT of states on which group-averaging converges absolutely, then the

two inner products must coincide on V , so that the alternate inner product is in fact an

extension of the group-averaging inner product. The extended definition is manifestly

positive semi-definite and, as discussed in section E.0.3, it assigns vanishing norm to all 1-

particle states. One may also independently show that any allowed extension must assign

vanishing norms to these states. For scalar fields with masses M > d/2ℓ, this would thus

suffice to show that the extended inner product is finite and positive semi-definite for

seed states in a dense subspace of the space that is both orthogonal to the dS-invariant

vacuum
∣∣0
]
and orthogonal to all 2-particle states. Finally, the case of 2-particle states is

discussed in section E.0.4, where we suggest that their divergent group-averaging norm

is related to the fact that the corresponding classical solutions leave unbroken a non-
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compact subgroup of SO(D, 1).

E.0.1 Summary of previous results

The case of linearized gravitons on dS4 turns out to be exactly solvable, and (5.7)

was shown in [182] to be finite and positive semi-definite when V is the space spanned by

Fock basis-states with N ≥ 2 particles associated with the standard linearized graviton

modes on global dS4. While it was not obviously finite for N = 1 particle states, we will

return to that case in section E.0.3 below.

For general massive free minimally-coupled scalar fields, the group averaging integral

(5.7) was shown to be finite in [208] for standard Fock states that contain a sufficient

number of particles. For scalar fields in the so-called principal series of SO(D, 1) repre-

sentations (having M2 > (D − 1)2/4ℓ2 where ℓ is the de Sitter length scale), this result

holds for N > 2 particles. The threshold particle number for scalar fields is higher than

for the free gravitons studied in [182] because convergence is aided by adding angular

momentum and because there are no gravitons with angular momentum quantum num-

ber jd−1 (as defined in section 5.4) satisfying jd−1 < 2. The reader may think of this

result as a generalization of Birkhoff’s theorem (which immediately excludes gravitons

with jd−1 = 0).

Larger numbers of particles are required for fields with smaller masses. The required

number N diverges as m → 0 due to the fact that massless fields on dS have a zero

mode, though sufficient excitations of this zero-mode also provide convergence; see [209]

for discussion of the dS1+1 case. For smaller numbers of particles the integral (5.7) fails

to converge absolutely, though for the N = 1 particle case this can be dealt with as

described in section E.0.3 below.
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E.0.2 An alternate definition?

An important part of justifying the group-averaging inner product (5.7) is that it

satisfies a certain uniqueness result [207]. We will now use this uniqueness to outline an

argument that (5.7) is positive semi-definite when it converges absolutely. The argument

involves the introduction of an alternate inner product which, if it is finite and non-zero

on any state in the space V on which group-averaging converges absolutely (and for which

the group-averaging norm is non-zero), must agree with group-averaging on all of V by

the argument of [207]. We in fact introduce a one-parameter family of potential alternate

inner products in the expectation that there will be a value of this parameter which gives

a finite no-zero result on V . Unfortunately, however, the alternate inner products are

difficult to compute. We thus leave detailed investigation of this expectation for future

work.

Translating to the language of the current paper, the uniqueness theorem of [207]

shows that if V ⊂ HQFT is a space of states on which (5.7) converges absolutely, then

there is an associated algebra AV of de Sitter-invariant linear operators defined by

aψ1,ψ2 :=

∫
dgU(g)

∣∣ψ1

][
ψ2

∣∣U(g−1) (E.1)

for ψ1, ψ2 ∈ V . Since the Haar measure dg is invariant under g → g−1, these operators

map V to itself and also satisfy

[
ϕ1

∣∣aψ1,ψ2ϕ2] = [aψ2,ψ1ϕ1

∣∣ϕ2

]
(E.2)

for all ϕ1, ϕ2 ∈ V . Here as usual we have defined |aϕ1] := a
∣∣ϕ1

]
. The theorem then shows

that, up to an overall normalization, (5.7) is the unique product on V that satisfies
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linearity with respect to the 2nd argument, the complex conjugation condition

⟨ϕ1|ϕ2⟩∗ = ⟨ϕ2|ϕ1⟩, (E.3)

the ∗-representation condition1

⟨ϕ1|aψ1,ψ2ϕ2⟩ = ⟨aψ2,ψ1ϕ1|ϕ2⟩, (E.4)

and with respect to which (U(g) − 1)|ϕ] is a null vector for all g ∈ SO0(D, 1) and all

|ϕ] ∈ V .

As a result, if we can find another inner product satisfying the above properties on the

same domain V , it must be equivalent to (5.7) up to an overall normalization (though we

must then check that this normalization constant is finite and non-zero). Let us therefore

think of dSD as embedded in D + 1 Minkowski space so that, choosing a standard set

of inertial coordinates X0, . . . , XD on that Minkowski space (with Minkowski metric

ηµν = diag(−1, 1, . . . , 1)), we can write the generators of the de Sitter group as the

generators Jµν = −Jνµ of Lorentz transformations on Minkowski space and define the

operators

J2 :=
D−1∑

i,j=1

J2
ij, B2 :=

D−1∑

i=1

J2
0i. (E.5)

For any real parameter α we may then consider the inner product

(ϕ1|ϕ2) =
[
ϕ1

∣∣ |B|αδ(B2)ΠJ2=0

∣∣ϕ2

]
:=

1

2π

∫

λ∈R
dλ
[
ϕ1

∣∣ |B|αeiλB2

ΠJ2=0

∣∣ϕ2

]
, (E.6)

where |B|α := (B2)α/2 and where ΠJ2=0 is the projection onto states with J2 = 0;

1The theorem of [207] is stated in terms of so-called rigging maps which are analogues of (5.6). In
that language, the main result is that the rigging map commutes with all a ∈ AV . But the reality
property of rigging maps together with (E.2) makes this equivalent to (E.4).
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i.e., onto states that are invariant under the rotational subgroup SO0(D) ⊂ SO0(D, 1).

This inner product is written with round brackets to distinguish it from the other inner

products used in this work. Expression (E.6) satisfies the complex conjugation condition

(E.3) since

(ϕ1|ϕ2)
∗ =

1

2π

∫

λ∈R
dλ
([
ϕ1

∣∣ |B|αeiλB2

ΠJ2=0

∣∣ϕ2

])∗

=
1

2π

∫

λ∈R
dλ
(
[ϕ2| |B|αe−iλB2

ΠJ2=0

∣∣ϕ1

])
= (ϕ2|ϕ1). (E.7)

Furthermore, sinceB2 commutes with all rotations, and since ΠJ2=0 =
∫
r∈SO0(D)

U(r)dr

(where dr is the normalized Haar measure on SO0(D)), we see that the factors |B|α, eiλB2
,

and ΠJ2=0 (or equivalently |B|α, δ(B2), and ΠJ2=0) all commute with each other. In the

same way we see that if the integral in (E.6) converges, then we have

(ϕ1|Jµνϕ2) = 0 (E.8)

for all SO(D, 1) generators Jµν . For rotations this follows immediately from ΠJ2=0Jij = 0,

while for boosts it follows from the fact that δ(B2) = 1
2π

∫
λ∈R dλe

iλB2
is the ϵ→ 0 limit of

projectors onto the part of the spectrum of B2 in the range [0, ϵ]. Since B2 is a positive-

definite quadratic combination of the J0i (see (E.5)), this implies that at finite ϵ it also

restricts the spectrum of any J0i to the interval [0,
√
ϵ]. For (µ, ν) = (0, i), expressions

like (E.8) then contain an extra factor of
√
ϵ and thus vanish as ϵ → 0. As a result, for

∣∣ϕ1

]
,
∣∣ϕ2

]
∈ V and any g ∈ SO0(D, 1) we have

(ϕ1|[U(g)− 1]ϕ2) = 0. (E.9)

We can also show that the alternative inner product (E.6) satisfies the ∗-representation

194



Group averaging and its extensions Chapter E

condition (E.4). To do so, we simply note that aψ1,ψ2 commutes with all U(g), and that

it thus commutes with ΠJ2=0, |B|α, and eiλB2
. We may then use (E.2) to write

(aψ2,ψ1ϕ1|ϕ2) =
[
ϕ1

∣∣aψ1,ψ2

∫
dλ|B|αeiλB2

ΠJ2=0

∣∣ϕ2

]
= (ϕ1|aψ1,ψ2ϕ2), (E.10)

as desired.

As a result, if we can find a value of α for which (E.6) is finite on the domain

V spanned by global dS Fock basis states which contain enough particles for group

averaging to converge absolutely, and if (E.6) is finite non-zero for that α and any choice

of
∣∣ϕ1

]
,
∣∣ϕ2

]
∈ V then, up to an overall normalization, for that α and all

∣∣ψ1

]
,
∣∣ψ2

]
∈ V

the alternative inner product (ψ1, ψ2) must agree with the group averaging inner product

(5.7). Moreover, since δ(B2) can be expressed as a limit of spectral projections, the

alternative inner product (E.6) is manifestly poistive-definite. Finding the above α would

then also establish positive semi-definiteness of group averaging on V .

The existence of such an α is certainly plausible, but the inner product (E.6) appears

difficult to compute. We thus leave further investigation of this issue for future work.

E.0.3 One-particle states for free fields

In section E.0.2, we suggested that the inner product (E.6) (for some α) provides an

alternative way of writing the group-averaging inner product (5.7) on the original domain

V . However, it can happen that expression (5.7) is well-defined for states where (5.7) is

not. If the alternate and group-averaging inner products do in fact agree on V for some

α, this would then suggest that (E.6) is well-defined on a domain Valt that is strictly

larger than the original domain V . It would then be tempting to define the desired de

Sitter invariant Hilbert space HLPG using (E.6) on the full domain Valt. In this context,

we could refer to (E.6) as an extended group-averaging inner product.
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Of course, doing so immediately raises the question of the extent to which this sup-

posed extension would be unique. We now will answer this question for the case of N = 1

particle states for any free field. This is an interesting case since, when combined with

the results reviewed in section E.0.1 and with the discussion of section E.0.4 below, it

provides a rather complete picture of group-averaging for both 3+1 gravitons and free

scalar fields with M > d/2ℓ.

The alternate inner product (E.6) is well-defined for 1-particle states of any free field

and, in fact, defines any 1-particle state to be a null state. To see this, note that the factor

ΠJ2=0 in (E.6) means that the only 1-particle state that could possibly have non-zero

norm is the state |⃗j = 0⟩ associated with the zero angular-momentum mode of the field.

Yang-Mills fields and gravitons have no such modes, so this completes the analysis for

such cases. Similarly, for minimally-coupled massless scalars the zero angular-momentum

mode is also a zero-frequency mode and so does not have particle excitations. While it

would be interesting to return to states of that zero mode in the future (in order to

extend the 1+1 analysis of [209]), this again completes the analysis of 1-particle states

for such fields.

It thus remains only to consider fields with minimally-coupled masses M2 > 0. The

1-particle states of such fields are irreducible representations of SO(D, 1) with values of

the quadratic Casimir B2 − J2 = µ2 for µ2 > 0. As a result, the rotationally-invariant

one-particle state
∣∣⃗j = 0

]
is an eigenstate of B2 with eigenvalue µ2 > 0. Thus δ(B2)

must annihilate
∣∣⃗j = 0

]
, so that

∣∣⃗j
]
is a null state under the inner product (E.6).

Furthermore, the above argument also shows these definitions to be unique. Indeed,

let us consider a basis of one-particle states that are eigenstates of J2. If J2
∣∣ϕ
]
= λ

∣∣ϕ
]

then, unless
∣∣ϕ
]
is proportional to the rotationally invariant state

∣∣⃗j = 0
]
, the fact that
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J2 is a sum of squares requires λ > 0. We may thuswrite

∣∣ϕ
]
=
J2

λ

∣∣ϕ
]
=

D−1∑

i,j=1

Jij

(
Jij
λ

∣∣ϕ
])

. (E.11)

But since (U(g)− 1)
∣∣Ψ
]
must be a null state for all ψ, the same must be true of Jij

∣∣Ψ
]
.

Thus (E.11) must be null as well. It then remains only to discuss the rotationally-invariant

one-particle state
∣∣⃗j = 0

]
. But it was shown above that this state is an eigenvector of

B2 with eigenvalue µ2 > 0. It is thus of the form

B2

µ2

∣∣⃗j = 0
]
=

D−1∑

i,j=1

J0i

(
J0i
µ2

∣∣⃗j = 0
])

. (E.12)

The same argument used above then shows that
∣∣⃗j = 0

]
must be null in HLPG.

The statement that one-particle states map to null states in HLPG is a direct analogue

of the classical statement that any single particle in dS has at least one non-vanishing

de Sitter charge. In particular, for free particles with mass M > 0, if one considers the

static patch associated with the particle’s geodesic, then the corresponding static-patch

energy takes the value M . There are thus no classical single-particle states for which all

de Sitter charges vanish.

E.0.4 The divergent group-averaging norm of 2-scalar-particle

states

We now briefly address the case of 2-particle states of scalar fields. The asymptotic

expansions of [209] show that the group averaging norms of such states fail to converge

absolutely and, in fact, that they in fact diverge linearly. This is a slower divergence

than the exponential divergence one finds for the group-averaging norm of the de Sitter-
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invariant vacuum
∣∣0
]
, but it is a divergence nonetheless. In fact, it is precisely the degree

of divergence one would expect if such states left unbroken a 1-dimensional subgroup of

SO(D, 1) generated by some boost transformation.

While the 2-particle states
∣∣Ψ
]
do not appear to leave such a group unbroken, the

corresponding classical solutions do exhibit an unbroken such symmetry. Indeed, setting

the de Sitter charges to zero forces a pair of classical particles to travel along antipodally-

related geodesics (as in the particle approximation to the Schwarzschild-de Sitter solu-

tion). Such solutions clearly leave one boost symmetry intact. Some quantum version of

this residual symmetry thus appears to be associated with the above divergence, though

it would be useful to understand the relationship in more detail. In particular, follow-

ing similar discussions in [188], one might expect to be able to use an improved such

understanding to argue that no well-defined de Sitter-invariant operator can cause such

2-particle states to mix with states having N ≥ 3 particles.
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Generator moments in general

dimensions.

We now compute and analyze the coefficients in (5.75) associated with the expectation

values of B1, B
2
k, J

2
ij in the state

∣∣ψ+

]
for all D. Our goal is to extract useful expressions

for these moments at leading order in large j#.

Let us start by computing the expectation value [B1] =
[
ψ+

∣∣B1

∣∣ψ+

]
. On the states

∣∣ψ±
]
, the action of B1 is

B1

∣∣ψ±
]
=N

j#∑

j=0

c±j b
+
j

∣∣∆, j + 1, 0⃗
]
+N

j#∑

j=1

b−j
∣∣∆, j − 1, 0⃗

]
, (F.1)

with

b+j =

[
(j + d− 1)(j + 1)(j + d−∆)(j +∆)

(2j + d− 1)(2j + d+ 1)

]1/2
, and (F.2)

b−j =

[
(j + d− 2)j(j − 1 + d−∆)(j − 1 + ∆)

(2j + d− 3)(2j + d− 1)

]1/2
. (F.3)

(F.4)
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Utilizing b−j = b+j−1, this yields

[
ψ±
∣∣B1

∣∣ψ±
]
= ±2N2

j#−1∑

j=0

c+j c
+
j+1b

+
j . (F.5)

As we will find with most of our other moments, a simple closed-form expression for

this sum is not readily available. However, we are mostly interested in the asymptotic

behavior at large j#, since in this limit the group averaging kernel will approximate a

Gaussian with shrinking width. In particular, given our results in dS1+1, it is natural to

take the ultrarelativistic limit j# ≫ µ. However, for now we will proceed with computing

the remaining expectation values; we will then return later to the question of asymptotic

behavior.

For [B2
1 ], we find the result

[
ψ±
∣∣B2

1

∣∣ψ±
]
=N2

j#∑

j=1

(c+j )
2(b+j−1)

2 +N2

j#∑

j=0

(c+j )
2(b+j )

2 + 2N2

j#−2∑

j=0

c+j c
+
j+2b

+
j b

+
j+1. (F.6)

Similarly, calculating [J2] gives

[
ψ±
∣∣J2
∣∣ψ±
]
= N2

j#∑

j=0

j(j + d− 1)c2j =
d

d+ 2
j2# +

d2

d+ 2
j# (F.7)

Finally, to find the expectation value of B2
k for k > 1, we use the Casimir equation

C2 = B2
1 +B2

⊥ − J2, (F.8)

where we have used the notation B2
⊥ :=

∑d
n=2B

2
n. Since we have

[
ψ±
∣∣C2
∣∣ψ±
]
= ∆(d−∆), (F.9)
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we can easily compute [B2
⊥].

We now return to the question of asymptotic behavior. For [B1] and [B2
1 ], it is natural

to assume that keeping only the leading terms in the summands will give the correct

large j# behavior at leading order in 1/j#. We will then check this assumption. The

leading order behavior of the normalization constant is, using Stirling’s approximation,

N2 = dj#
−d[1 +O(1/j#)]. And, in the limit j >> d and j >> ∆, we have

b+j =
j

2
[1 +O(1/j)], (F.10)

c+j =j(d−1)/2[1 +O(1/j)], (F.11)

(which have the same leading order asymptotic behavior for j → j + 1 or j → j + 2).

While this large j limit will not hold for the terms in the sum where j is small, we will

shortly show that the terms where it fails do not contribute significantly in the limit of

large j#. For convenience, we consider only [ψ+|B1

∣∣ψ+

]
, which differs from [ψ−|B1

∣∣ψ−
]

only by an overall sign. For
[
ψ+

∣∣B1

∣∣ψ+

]
, we have

[
ψ+

∣∣B1

∣∣ψ+

]
=

d

d+ 1
j# +O(1), (F.12)

where we have used Faulhaber’s formula for the sum:
∑j#−x

n=0 jd+y = 1
d+y+1

j#
d+y+1 +

O(j#
d+y) for the cases x = 0, 1, 2 and y = 0, 1. Similarly, for [B2

1 ] we find

[
ψ±
∣∣B2

1

∣∣ψ±
]
=

d

d+ 2
j#

2 +O(j#). (F.13)

Applying the Casimir equation (F.8), we find
[
ψ±
∣∣B2

⊥
∣∣ψ±
]
is zero at order j2#. At next

to leading order, there are contributions from cj, b
+
j , N

2, and Faulhaber’s formula, the
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latter of which becomes

j#−x∑

n=0

jd+y =
1

d+ y + 1
j#

d+y+1 + (1/2− x)j#
d+y +O(j#

d−1). (F.14)

Taking these contributions at next to leading order into account, we find

[
ψ±
∣∣B2

1

∣∣ψ±
]
=

d

d+ 2
j#

2 +
d(2d2 + d− 2)

2(d+ 1)(d+ 2)
j# +O(j#

0), (F.15)

and so by the Casimir equation

[
ψ±
∣∣B2

⊥
∣∣ψ±
]
=

d

2(d+ 1)
j# +O(j#

0). (F.16)

We may now verify that the above guess indeed gives the correct large j# behavior

of the desired moments (despite the fact that we used Equations (F.10) and (F.11) in

regimes where they were not fully applicable). For our summands f(j), we have

∫ b

a−1

f(x)dx ≤
b∑

j=a

f(j) ≤
∫ b+1

a

f(x)dx, (F.17)

since f(j) is increasing with j. In particular, for [B1] we find

lim
j#→∞

2N2
∫ j#−1

−1
f(x)dx

d
d+1

j#
≤ lim

j#→∞

[
ψ+

∣∣B1

∣∣ψ+

]
d
d+1

j#
≤ lim

j#→∞

2N2
∫ j#
0
f(x)dx

d
d+1

j#
. (F.18)

The lower bound evaluates to

lim
j#→∞

2
∫ j#−1

−1
f(x)dx

1
d+1

j#
d+1

= lim
j#→∞

2f(j# − 1)

j#
d

= 1. (F.19)
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We can see that the upper bound will also evaluate to 1. Thus, we must have

lim
j#→∞

[
ψ±
∣∣B1

∣∣ψ±
]

± d
d+1

j#
= 1. (F.20)

The same argument holds for [B2
1 ], proving we have the correct asymptotic behavior of

our sums.

We will also need to find [B2
l ] for l ≥ 2 and [J2

ij]. The symmetry of
∣∣ψ+

]
requires all

[B2
l ] to be equal for l ≥ 2. Additionally, all [J2

ij] with i = 1 (or j = 1) must be equal,

while all others must vanish. At leading order in the 1/j# expansion, we thus find,

(
[B2

1 ]− [B1]
2
)

=

[
d

d+ 2
− d2

(d+ 1)2

]
j#

2, [B2
l ] =

1

2(d+ 1)
j#,

[J2
ij] =

1

d+ 2
j#

2δi,1 for j > i. (F.21)
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Appendix G

The Art of Science

Art, in many forms, has always played an important role in my life. Though my scientific

and artistic interests are often distinct—but never completely separate—there have been

a handful of times where they have become entwined. For instance, in 2022 and 2023,

I created two projects for entry into UCSB’s Art of Science Competition, held by the

Center for Science and Engineering Partnerships (CSEP). As I believe these projects to

be a valuable part of my graduate school experience, I describe them briefly below.

G.1 A Wormhole Lullaby

As discussed in Chapter 1, the black hole information problem saw important devel-

opments in the last five years. Inspired by this new research, and in particular by the

calculations in [9], I created A Wormhole Lullaby. In [9], the authors consider a black

hole in a simple 2D model of gravity, with an asymptotic boundary. This black hole has

a so-called ”end-of-the-world” (EOW) brane behind the horizon. The authors compute

the entropy of the Hawking radiation produced by this black hole; in particular, they

compute the Renyi entropy, which is given by 1
n−1

Tr(ρn) for integer n and where ρ is the

204



The Art of Science Chapter G

Figure G.1: A spacetime configuration that contributes to the Renyi six-entropy.

density matrix of the radiation. To compute this quantity, one can use the replica trick,

where one takes n copies of the asymptotic boundary conditions, then sums over the

partition functions for all possible configurations of the interior. Many of these configu-

rations will include connections between different boundaries, creating wormholes. Then,

taking the limit of n→ 1 gives the von Neumann entropy of the radiation.

The painting in Figure G.1 shows an example configuration with a three-sided worm-

hole, a two-sided wormhole, and a disconnected black hole. The EOW branes follow the

white lines (though for the 3D black holes and wormholes depicted they should instead be

2D sheets). Of course, one should not take this rendering too seriously. The musical por-
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tion of the project can be found at https://www.youtube.com/watch?v=5P_Zagp-jZg.

It follows the calculation of the Renyi entropy with n = 6, starting with no wormholes

between the boundaries (and one EOW brane) and ending with one wormhole connecting

all six asymptotic boundaries (and six different EOW branes). The calculation includes

a normalization constant, which is represented by the background piano chords. Each

piano melody on top of that represents a wormhole configuration connecting a particular

number of boundaries, with a string harmonizing for every copy of that type of worm-

hole. And, for each new EOW brane, a new instrument is added. For example, the

configuration in Figure G.1 has three different melodies, no string harmonies, and four

extra instruments.

I am especially interested in this type of music, that transcribes equations into pieces

of a song. The music in this next project also falls in this category, though now using

lyrics to represent quantum states.

G.2 The Dance of the Qutrits

This work is based on a toy model of a quantum error correcting code, called the

three qutrit code [106]. A qutrit, as opposed to a qubit, is realized by a three-level

system. The three qutrit code has two parts: first is the encoding, where the quantum

state of one qutrit (the “message”) is copied into the state of three qutrits. Next is the

decoding, where one can act on the three qutrit state in a clever way to get back the

original message. The original state is |ψ⟩ = c0 |0⟩ + c1 |1⟩ + c2 |2⟩. This get encoded as
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Figure G.2: The Elwood bluffs in Goleta, CA, affected by the quantum information
exchange between three qutrits.

the state |ψ̃⟩ = c0 |0̃⟩+ c1 |1̃⟩+ c2 |2̃⟩, where

|0̃⟩ = 1√
3
(|000⟩+ |111⟩+ |222⟩) (G.1)

|1̃⟩ = 1√
3
(|012⟩+ |120⟩+ |201⟩) (G.2)

|2̃⟩ = 1√
3
(|021⟩+ |102⟩+ |210⟩). (G.3)

To get back the original state |ψ⟩ from |ψ̃⟩, we can use an operator that only acts on

two of the three qutrits in |ψ̃⟩. Say this map is U †
12, acting only on the first two qutrits.

Then we have

U †
12 |ψ̃⟩ = |ψ⟩1 ⊗

1√
3
(|00⟩23 + |11⟩23 + |22⟩23). (G.4)

and we can extract the original state from the state of the first qutrit. Notice that, since

the decoding map only acts on the first two qutrits, it is immune to any errors that may

have occurred in the third qutrit.
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The musical component of this project can be found at https://www.youtube.com/

watch?v=LK5LvfkE__U. The lyrics are shown below, and we see they follow the three-

qutrit code in detail, with the words “tangle”, “space”, and “bound” (and variants

thereof) representing the states 0, 1, and 2, respectively. States of multiple qutrits

have overlapping lyrics, with one line sung and two spoken. The visual component of the

piece, shown in Figure G.2, symbolizes the effect of quantum information on the world

around us. I was motivated to create this project by recent results that show that, in the

AdS/CFT correspondence, the operator encoding between bulk and boundary acts like

a quantum error correcting code. This is why the qutrits in Figure G.2 look like gravita-

tional objects, bending spacetime around them—the exchange of quantum information

is a key part of understanding quantum gravity.
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Dance of the Qutrits

The state

|ψ⟩ = c0 |This web is something tangled⟩
+ c1 |the space between my thumb and pointer finger⟩
+ c2 |filled with unbounded halfways.⟩

becomes ∣∣∣ψ̃
〉
= c0

∣∣0̃
〉
+ c1

∣∣1̃
〉
+ c2

∣∣2̃
〉

with

∣∣0̃
〉
=

1√
3



∣∣∣∣∣∣

My bed head hair tangled and retangled but
untangled just yesterday and
now entangled, inseparable at the pillowcase edge.

〉

+

∣∣∣∣∣∣

Or at the theory’s edge, where spacetime uncurves
like pixels in the spaces between the letters.
Black space full of almost everything.

〉

+

∣∣∣∣∣∣

Unbounded like the ocean, does it really ever meet the sky?
Or, my extra dimensions bound and squeezed,
bound to be here, there, everywhere.

〉
 ,

∣∣1̃
〉
=

1√
3



∣∣∣∣∣∣

Fungal lattice tangled up, the birch trees intertwined
talking to each other across gaps in space
their white bark boundaries transparent, become one.

〉

+

∣∣∣∣∣∣

Separate beings in time and space but
all bound to err, correct, err again.
Are we really so different, tangled together like this?

〉

+

∣∣∣∣∣∣

My boundary, my skin, a suggestion
entangled with the air and maybe
dust lost in space and sunlight streaming through fall leaves.

〉
 ,

and

∣∣2̃
〉
=

1√
3



∣∣∣∣∣∣

An untangled worm living locally at dawn
but slowly unbound, non-locally a seagull soaring
and maybe spatially spread into a red dwarf, the milky way,

〉

+

∣∣∣∣∣∣

even the space inside a black hole horizon
tiny particle pings entangled with whoever lies outside
an information matrimony, forever bound

〉

+

∣∣∣∣∣∣

and so, unbound, no longer you and me but amorphous us
spacetime has handed you your fate and it’s
capital letters F-A-T-E, past and future all tangled up.

〉
 .

Then

U†
12 =




Spun and unspun, done and undone.
A hidden code in the universe, pulling apart the fabric and
weaving it back together,
a repeating message because she is clumsy, the great big sky,
coding and recoding and encoding and decoding.
Someday (I think) she’ll reveal her secrets.




decodes
∣∣∣ψ̃
〉
, giving

U†
12

∣∣∣ψ̃
〉
= |ψ⟩1 ⊗

1√
3

(∣∣∣∣
This web is something tangled
my grandmother’s quilt, why would I detangle

〉

23

+

∣∣∣∣
the space between my thumb and pointer finger,
nothing more than spacetime herself

〉

23

+

∣∣∣∣
filled with unbounded halfways
(as we are all bound to be)

〉

23

)
.
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