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Distributed brain co-processor for tracking
spikes, seizures and behaviour during electrical
brain stimulation
Vladimir Sladky,1,2,3,* Petr Nejedly,1,2,4,* Filip Mivalt,1,5 Benjamin H. Brinkmann,1,6

Inyong Kim,1 Erik K. St. Louis,7 Nicholas M. Gregg,1 Brian N. Lundstrom,1

Chelsea M. Crowe,8 Tal Pal Attia,1 Daniel Crepeau,1 Irena Balzekas,1,9,10

Victoria S. Marks,1,9 Lydia P. Wheeler,1,9 Jan Cimbalnik,2 Mark Cook,11 Radek Janca,12,13

Beverly K. Sturges,8 Kent Leyde,14 Kai J. Miller,15 Jamie J. Van Gompel,15

Timothy Denison,16 Gregory A. Worrell1,6† and Vaclav Kremen1,17†

* These authors contributed equally to this work.
† Senior and corresponding authors.

Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an inter-
face for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet
developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor
providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distrib-
uted computing resources. Automated analysis of continuous streaming electrophysiology is synchronizedwith patient reports using a
handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and
patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and
seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy,
and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living
in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to
guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes,
seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow
more detailed investigation of the clinical impact of spikes and seizures on patients.
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Introduction
Epilepsy affects nearly 1.0% of the world population and is
associated with a high disease burden.1,2 Approximately
one-third of people with epilepsy continue to have seizures
despite dietary, behavioural and antiseizure medication ther-
apies.3 Electrical brain stimulation has emerged as a revers-
ible and effective palliative therapy for drug-resistant
epilepsy, but therapy optimization is slow and long-term

seizure freedom rare.4,5 Despite the addition of brain sens-
ing, current electrical stimulation devices lack accurate seiz-
ure diaries.6–8 Currently physician rely on patient seizure
diaries that are known to be unreliable9,10 coupled with in-
complete electrographic data.6,8 The challenge of patient
management without accurate seizure counts has remained
a persistent technology gap impeding epilepsy management.

Herewedescribeadistributedbrainco-processor that enables
wireless streaming of intracranial electroencephalography
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(iEEG), seizure and interictal epileptiformspike (IES)detection,
accurate seizure diaries and synchronized patient
annotations of seizure symptoms. The system creates a gold-
standard seizure diary that can be used to guide electrical
brain-stimulation therapy. The distributed brain co-processor
provides integration of implantable brain sensing and stimula-
tion devices with off-the-body commercial electronics (smart-
phone, tablet and watch) for clinical and neuroscience
research applications.11–14 The integration of implantable de-
vices with commercial electronics via bi-directional wireless
connectivity allows algorithm complexity to scale with ad-
vances in consumer cloud computer and smartphone hard-
ware. Brain implants providing sensing and bi-directional
wireless connectivity enable continuous electrophysiology
data streaming, and when coupled with off-the-body comput-
ing resources overcome the computational and data storage
limitations of current implantable electrical brain-stimulation
(EBS) devices. Until recently, there were several obstacles to
consolidating the technology layers required forEBS, streaming
continuous brain electrophysiology and synchronized behav-
iour reports. Here, we utilize the investigational Medtronic
Summit RC+ S™ (RC+ S™), a rechargeable sensing and
stimulation implantable device with a bi-directional applica-
tion programming interface, to demonstrate these capabilities
in canines and humans living with epilepsy.11–13,15 The system
enables continuous streaming of iEEG to a handheld tablet or
smartphone for real-time analysis and tracking of IESs, seizures
and correlation with synchronized patient reports (Fig. 1). The
electrophysiology classifiers (seizure and IES) were validated,
tested and then prospectively deployed for out-of-sample test-
ing in pet canines and humans living in their natural environ-
ments with epilepsy.

Materials and methods
Study design and data sources
To develop classification algorithms, we used a large data-
base of iEEG from twodifferent implanted investigational de-
vices that wirelessly stream iEEG data, the NeuroVista (NV)
and Medtronic Summit RC+ S™ devices. The development
data set included 13 humans and 8 canines (Fig. 2). We
used two humans and eight dogs for training and validation
of the seizure detection algorithm.The seizure detection algo-
rithm was pseudo-prospectively tested in archived data from
seven humans implanted with the NV device (NH3–9). True
prospective testing was completed using the RC+ S™ device
in four humans (MH1–4) and two pet dogs (MD2 andMD3)
living in their natural environments.

Devices, training, validation and
testing data
Data sets collected from two implantable devices were uti-
lized for system training, validation and testing (Fig. 2).
The investigational NV system is a 16-channel brain sensing
(0.1–100 Hz bandwidth; 400 Hz sampling) implantable

device providing continuous iEEG wireless streaming to an
off-the-body data storage and analytics device carried by
the patients and dogs. The RC+ S™ is a 16-channel electric-
al stimulation and sensing implantable device capable of
selective sensing from any 4 of the 16 channels (1–70, 125,
250 Hz bandwidth; programmable sampling 250, 500 or
1000 Hz) and wireless streaming to a handheld tablet com-
puter with cellular and internet connectivity to a central
cloud based data and analytics platform.11,12 The investiga-
tional NV and RC+ S™ devices have yielded massive data
sets of ambulatory iEEG from dogs and humans with
epilepsy in naturalistic settings and are ideal for development
of robust automated algorithms for brain behavioural
state classification, IES and seizure detection. We have previ-
ously used the NV device data from humans9 and canines16

for developing seizure detection and forecasting algo-
rithms.17–20

Canine device implants
The animal research took place at Mayo Clinic, Rochester,
MN and University of California Davis, Davis, CA under
IACUC Protocol A00002655 Chronic Wireless
Electrophysiology and Modulation in Epileptic Dogs.
Epilepsy occurs naturally in dogs with prevalence, age of on-
set and clinical presentation similar to human epilepsy.21

Naturally occurring canine epilepsy is often drug resistant
and new therapies are needed. In addition, the canines pro-
vide a platform for preclinical testing, since dogs are large en-
ough to accommodate devices designed for humans. All
canines were implanted with either the NV or RC+ S™ de-
vices at either Mayo Clinic or University of California,
Davis.16,17 The pet dogs with epilepsy were implanted and
clinically managed at University of California, Davis, CA.

NeuroVista seizure advisory system
Five dogs [NeuroVista dog subject (ND) 1–5] were im-
planted with the investigational NV device.16,17 All canines
were implanted with four subdural, four contact strip elec-
trodes placed through small keyhole craniotomies. The elec-
trode tails were tunnelled to the NV device in a pocket
behind the canine’s right scapula.

Investigational Medtronic Summit RC+++++S™
Three dogs (MD1–3) where implanted with the RC+ S™.
Deep brain-stimulation electrodes were implanted intracra-
nially into bilateral anterior nucleus of the thalamus
(ANT), hippocampus or neocortex in canines under anaes-
thesia using a custom-made stereotactic frame. Canines
underwent a 3.0T MRI using a stereotactic T1-weighted se-
quence (Fig. 3). Targets and trajectories were planned using
stereotactic software (Compass™ Stereotactic Systems)
adapted for a large animal head frame. Burr holes were
drilled into the skull for each of the four electrode leads
(Medtronic lead models 3391 and 3387) that were inserted
to the target depth and secured with metal anchors and
bone screws. The electrode lead tails were tunnelled to the
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RC+ S™ in a pocket behind the canine’s right scapula. The
canine underwent a post-op X-ray CT scan, which was then
co-registered to the stereotactic MRI (Analyze 12.0; BIR,

Mayo Foundation) in order to verify targeting accuracy.
We have previously described the similar procedure for the
NV device implants.16,17
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Figure 1 Distributed brain co-processor. Integrating implanted sensing and stimulation devices with off-the-body and cloud computing
resources. The system was developed and prospectively tested in canines and humans with drug-resistant epilepsy living in their natural
environments. (Top) Schematic for bi-directional data transmission between implanted brain sensing and stimulation device integrated with local
handheld computer (epilepsy patient assist device) and cloud environment. Deep brain-stimulation (DBS) electrodes were implanted in anterior
nucleus of thalamus (ANT) and hippocampus (HPC). The integrated system provides a platform for chronic ambulatory monitoring of patient
reported behaviour, device data (battery, telemetry and electrode impedance), seizures and interictal epileptiform spikes (IESs). (Bottom) The
cloud co-processor enables connection to distributed devices, review of electrophysiology data and analytics from a battery of algorithms running
on the patient’s local handheld or in the cloud environment. The physician can quickly review and confirm or reject automatically detected and
patient reported candidate seizure events. The panel shows 7 days of continuous hippocampal IES rates and seizure detection probability.
Triangles show patient reported seizure events. Circles denote automated seizure detections either confirmed as seizures (blue dots) or false
positive (red) by expert visual review. Monitor inset shows example of raw data from hippocampus with automated IES detections (red dots). The
patient was aware and reported (triangle) one out of the six seizures detected in the continuous intracranial EEG (iEEG) and confirmed by the
physician.

4 | BRAIN COMMUNICATIONS 2022: Page 4 of 16 V. Sladky et al.



Human subjects
NeuroVista seizure advisory system
The data from nine (seven males) human subjects implanted
with the investigational NV device (NH 1–9) were from the
human NV device trial carried out in Melbourne, Australia,
between 24 March 2010 and 21 June 2011.9 All subjects

were implanted with four subdural, four contact strip
electrodes.

Investigational Medtronic Summit RC+++++S™
The four human subjects with RC+ S™ (MH1–4) were im-
planted at Mayo Clinic under an FDA IDE: G180224 and
Mayo Clinic IRB: 18-005483 ‘Human Safety and

RC+SNeuroVista
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Figure 2 Schema of training, validation and testing data sets used in development of a generic, automated seizure detection
algorithm for canines and humans. The preprocessing pipeline is the same for all data sets and represents the transition from raw iEEG data
to normalized spectrograms. (A) Retrospective data included human and canine data sets acquired with two different investigational devices,
NeuroVista (NV) and RC+ S™ device. (B) Algorithm training was performed using retrospective data from humans and canines collected with
NV devices. (C) The validation data included NV data from two humans (NH1 and NH2) and RC+ S™ data from three canines (MD1–3). The
validation data set was used to select the optimal convolutional neural network with long-short-term memory (CNN LSTM) model that was
subsequently deployed in testing. The area under the precision-recall curve (AUPRC) and F1 score was calculated on the validation data set during
training. The model with the highest combined score was deployed in testing. (D) Pseudo-prospective (data from seven humans; NH3-9) and
(E) prospective (RC+ S™ data from four patients MH1–4 and two pet dogs MD2 and MD3) ambulatory testing in human and canines living in
natural environments (human at home and dogs living with their owners) were performed over multiple months (see results in Fig. 8 and Table 3).
To get one probability signal from NV and RC+ S™ devices, we aggregate CNN LSTM model outputs from multiple channels by average and
argmax functions, respectively.
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Feasibility Study of Neurophysiologically Based Brain State
Tracking andModulation in Focal Epilepsy’. The study is re-
gistered at https://clinicaltrials.gov/ct2/show/NCT039466
18. The patients provided written consent in accordance
with the IRB and FDA requirements.

We consented six patients and implanted four female pa-
tients with drug-resistant temporal lobe epilepsy (TLE) as
part of the NIH Brain Initiative UH3-NS95495
Neurophysiologically-Based Brain State Tracking &
Modulation in Focal Epilepsy. The details of the approach
for implantation have been previously described.22 MRI
was performed after Leksell (Elekta Inc.) frame fixation for
stereotactic targeting. Medtronic 3387s electrodes were
then implanted in the ANT by direct targeting of the mam-
millothalamic tract on MRI (FGATIR sequence).23

Medtronic 3391 electrodes were implanted into the amyg-
dala and hippocampus through direct targeting (Fig. 4).
After confirmation of the electrode location with intraopera-
tive CT, the leads were connected to bifurcated extensions
and tunnelled to the RC+ S™ in an infraclavicular pocket.
The FDA IDE protocol investigates EBS paradigms, includ-
ing low frequency (2 and 7 Hz) and high frequency (100
and 145 Hz) stimulation, IES and seizure detection, forecast-
ing, behavioural state tracking and adaptive EBS control.

Patient MH1
A 57-year-old ambidextrous woman with drug-resistant me-
sial temporal lobe epilepsy (mTLE). History of head trauma
with loss of consciousness followed by generalized tonic-
clonic seizure beginning at age 9. She did well until age
21 years, when her seizures became drug resistant. She has
comorbid depression and anxiety.

Patient MH2
A 20-year-old right-handed woman with diabetes mellitus
type 1 and drug-resistant mTLE. No epilepsy risk factors.
Epilepsy onset at age 7 years and a prior left temporal lobec-
tomy at age 9 years. She was seizure free until age 17 years
when seizures recurred while off all medications.
Thereafter, she has been drug resistant. She has comorbid de-
pression and anxiety.

Patient MH3
A 35-year-old right-handed woman history of diabetes mel-
litus and drug resistant mTLE. She has no epilepsy risk fac-
tors. Epilepsy onset at age 4 years old. Significant
comorbid depression. She had elevated glutamic acid decarb-
oxylase 65-kilodalton isoform antibody (GAD65) that did
not respond to trials of immunotherapy.

Patient MH4
41-year-old right-handed woman with drug resistant mTLE.
No clear risk factors for epilepsy. Epilepsy diagnosis was at
age 31 years. Despite vagal nerve stimulator (VNS) andmed-
ications she had continued seizures. She has comorbid de-
pression and anxiety.

Detection of interictal epileptiform
spikes
The IES is an electrographic marker of pathological brain tis-
sue capable of generating unprovoked seizures. In recent
years, there has been rapid development of reliable techni-
ques for automated IES detection. To train and evaluate
the IES detector, we used continuous hippocampal record-
ings from the RC+ S™.12 We used a previously validated al-
gorithm24 that models and adapts based on statistical
distributions of signal envelopes from background (normal)
iEEG activity. This enables differentiating signals containing
IESs from signals with background activity even in long-term
data recordings with changing background electrophysio-
logical activity. The IES detector also identified low-
amplitude IES in cases where the background activity power
is low and IES are often missed by expert visual review.

We benchmarked the IES detector using data acquired
with a chronically implanted brain stimulator. We deployed
the detector in a cloud system that received the continuously
streaming hippocampal data over 1 year. We compared the
detector performance with the manual visual review
(G.A.W. and N.M.G. electroencephalographers) scoring se-
lected epochs (see Data for IES Detector). The IES detector
ran during different ANT stimulation paradigms (no stimu-
lation, 2, 7 and 145 Hz stimulation) with changing stimula-
tion current amplitudes (2, 3 and 5 mA) and pulse widths of
90 and 200 µs.

To investigate how IESs characteristics change in periods
of different seizure frequency, we selected epochs of the
data in periods of frequent (cluster) and less frequent seizure
activity (non-cluster). The seizure cluster period was defined
as more than two seizures in a day. For each of the two

Figure 3 Canine stereotactic implant. (A) A 6-year-old pet
dog with drug-resistant epilepsy. High resolution (B), Sagittal
(C) and axial (D) coronal T1 MRI. The electrodes were implanted
by direct visual targeting of anterior nucleus of thalamus and
hippocampus.
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(cluster, non-cluster), we selected 5-min-long epochs for left
and right-hippocampal channels. Each selected epoch was
taken at distinct times to assess differences between sleep
and wake cycles. In total, we selected 24 5-min-long epochs
reviewed independently by 2 electroencephalographers. All
IESs were marked in both hippocampal channels and used
subsequently to calculate congruence score between experts
and to validate the automated IES detector. Subsequently, we
used the 2-month period of continuously streaming human
data from the implanted RC+ S™ to analyse IES rates and
IES characteristics.

Statistical analysis
We statistically analysed automatically detected IES. We
grouped peak-to-peak (P2P) amplitudes of IES by location
(left or right) in each patient (MH1–4). The number of sam-
ples per group varies with all groups containing more than
5000 samples. Due to the non-normal data distribution the
two tailedMann–Whitney U test was used to determine stat-
istical significance between P2P amplitudes during day/night

periods of time in each patient. Since the number of samples
in each group varies, we bootstrapped the distributions, and
the test was repeated with random sampling of the data.
Average P-values were calculated from the repeated tests.

Generic seizure detector
The training data set consists of long-term NV recordings
from five canines (ND1–5) and two human patients (NH1–
2; Fig. 2B). In canines, all seizures were included in training
(340 in total). Another 628 interictal segments with various
electrophysiological activity patterns were manually se-
lected. The human data set consists of 1049 seizures and
846 interictal non-seizure segments. Half of the seizures
(524) and half of the interictal segments (423) were boot-
strapped and used as training data and the other half of
data used in the validation data set. The validation data set
included two sets of data. The first data set includes RC+
S™ recordings from three canines. Each recording spans at
least 210 days. In total, 133 electrographic seizures and
833 interictal segments were selected from the continuous

Figure 4Human subject MH1. (A) Papez circuit and implanted electrodes targeting bilateral anterior nucleus thalamus (ANT), Hippocampus
(HPC) and amygdala (AMG). (B) MRI—the ANT and HPC electrodes from co-registration of MRI and post-implant CT are highlighted.

Table 1 Seizure detection results using NeuroVista human data set

Pseudo-prospective NV human data set Number of seizures Tested interval (days) AUPRC AUROC

NH3 39 728 0.21 0.90
NH4 43 726 0.99 0.96
NH5 731 558 0.88 1.00
NH6 684 183 0.70 0.99
NH7 173 766 0.86 0.99
NH8 277 394 0.83 0.98
NH9 99 465 0.93 0.99
Total 2046 3820 X X
Avg.+ Std. 292+ 273 545+ 198 0.78+ 0.24 0.97+ 0.03

Performance of the generic seizure detection model for human seizures deployed on out-of-sample human NV data set in pseudo-prospective testing. Pseudo-prospective data were
previously collected but analysed while maintaining the temporal relationship of all seizures. Machine learning performancemetrics are shown together with the number of seizures and
number of recording days in the data sets.
AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic curve.
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recordings upon visual review by an expert reviewer. The se-
cond data set contains the other half of the data (twoNV hu-
man recordings) generated by bootstrapping the training
data set.

The testing data sets include previously collected NV data
sets that were used for pseudo-prospective testing and RC+
S™ data sets for prospective testing. The pseudo-prospective
testing was done with NV human data (NH3–9) and retains
the original temporal order of the data. The NV human data
set spans �10.5 years and includes 2046 seizures (Table 1).
True prospective testing of seizure detection ran over
723 days and contains 204 seizures that were recorded in
the four humans (MH1–4) and two pet canines (MD2 and
MD3) implanted with RC+ S™ devices (Table 3) and living
in their natural environments.

Detector design—convolutional
neural network with long-short-term
memory
To design a generalizable seizure detection algorithm for a
generic implantable system, we required the algorithm to op-
erate independently of the recording system, spatial electrode
position and species tested. We used two of the few fully im-
plantable devices capable of continuous iEEG wireless
streaming. This allows long-term, real-time monitoring since
the collected data are continually transferred from the im-
plantable device to the brain co-processor system (tablet or
smartphone and cloud computational resource).12

Previously reported seizure detectors19,25–27 usually util-
ize a combination of computationally expensive features ex-
tracted from multiple channels, or features extracted from
shorter segments without adaptation to a long-term baseline.
Another common limitation is that the testing is done on iso-
lated ictal and interictal segments and not on long-term con-
tinuous recordings spanning multiple months. Lastly,
deployment of seizure detectors on out-of-sample unba-
lanced data in subjects in their natural environments is rarely
provided.

In order to address these limitations, we developed a con-
volutional neural network (CNN) combined with
long-short-term memory (LSTM)28,29 neural network utiliz-
ing short-time Fourier transform (STFT) calculated from sin-
gle lead iEEG as an input. We previously used a CNN with
LSTM for automated classification of iEEG transients.30

The STFT converts the single lead time series data into a
time-frequency representation (spectrogram). The spectro-
gram hyperparameters were selected based on the spectral
content of electrographic seizures. Invariance to sampling
frequency is achieved by using a constant time window of
1 sec with 0.5 sec overlap, and subsequently selecting only
frequencies lower than 100 Hz. A raw data segment is trans-
formed into a spectrogram image with dimensions 100×T,
where T is the number fast Fourier transform (FFT) calcula-
tions, not depending on sampling frequency (frequency do-
main resolution is always 1 Hz per sample). Time series

data of 5 min length were empirically chosen to provide
long enough EEG baseline temporal context for the LSTM,
so the relative power of seizure stands out of the background
activity. The final classification is made for every 0.5 s of the
5-min input raw data signal using a many-to-many LSTM
architecture. Raw data are z-score normalized prior to
STFT calculation and each frequency band of the resulting
spectrogram is z-score normalized prior to the neural net-
work inference. Preprocessing for all data sets in training,
validation and testing is the same (Fig. 2). Dropout layers
in neural networks are used for regularization during train-
ing to prevent overfitting. Similarly, we drop random seg-
ments prior to the spectrogram computation. This enables
the network to handle the data from the wireless system
with possible short data gaps.

The CNN LSTM model consists of two convolutional
blocks (convolution and ReLU) with kernels {5, 5} and
{96, 3}, respectively. Subsequently, time distributed feature
representation is processed with two layers of bi-directional
LSTM recurrent neural network. Lastly, a fully connected
layer with a softmax activation function transforms the
LSTM output into probability output. The proposed archi-
tecture is trained with Adam optimizer (learning rate=
10−3, weight regularization= 10−4) in a many-to-many
training scheme, where every input FFT window has a mul-
ticlass label. We implemented four types of labels: normal
activity, IES together with artefacts, dropout segments
and seizures. Adding additional labels might improve learn-
ing because the model is forced to not only distinguish in-
terictal activity from continuous seizure activity but also
interictal discharges which are not considered as electro-
graphic seizures in different behavioural states, and thus
could lower the number of false positives. The temporal
resolution of the detector is defined by the FFT window
step (0.5 sec). In order to train the network, we use a spe-
cial purpose deep-learning computer Lambda Labs Inc.
(8x GTX2080TI GPU, 64 CPU cores and 512 GB RAM).
The data-parallel training method runs on all GPUs and
average model gradients are used to reduce training time.
The model is built in the PyTorch deep-learning library
for Python.

Training and validation of seizure
detection model
The model was trained on NV data (five canines, two human
patients; Fig. 2A). All training segments were 10 min long.
Random 5 min intervals were sampled from the full seg-
ments during the training every time the segment was used
in training. Because the human training data set had a higher
number of data segments than the canine training data set,
we randomly sampled the human data epochs during the
training in a way that the number of data segments from
both classes was balanced.

The validation data set was used to select the best CNN
LSTMmodel which was then subsequently deployed in test-
ing. The model hyperparameters were selected heuristically

8 | BRAIN COMMUNICATIONS 2022: Page 8 of 16 V. Sladky et al.



using the established features of seizure spectrograms and
were the same for all analysis and not optimized further.
Performance of the model during the training was evaluated
by area under the precision-recall curve (AUPRC), where all
seizure targets were set to one, and all the other classes were
set to zero. The AUPRC was used as a validation score be-
cause it is independent of the probability threshold of the
classifier and is not dependent on the true negative samples
in these highly imbalanced data sets. Validation examples
were fixed 5-min intervals and were not randomly sampled.
Validation scores (AUPRC) were calculated on two different
data sets (three canines with RC+ S™, two human patients
with NV device) independently. The two validation scores
were averaged after each training epoch and the model
with the best score achieved during training was deployed
on the test data set in order to obtain results (Fig. 2).

Model deployment
We arbitrarily chose 10 continuous seconds of ictal activity
as an electrographic event that we want to detect.31 The
model iterates over the data with 5-min windows with
100 s of overlap. The model gives a probability of seizure
for every 0.5 s (higher probability is used in the overlap re-
gion) in every channel. Seizures in the test data set are
marked across all channels without specification; therefore,
we combine probabilities from all channels in the following
way. The three highest probabilities from all channels are
averaged, and from this averaged probability, the final per-
formance measures are calculated. For a given probability
threshold, the system identified continuous detection when-
ever the probability was above a threshold (see the transition
from raw iEEG to a detection in Fig. 5). Next, every detection

A B

C D

CH4

CH1

50
0 

uV

Figure 5 From raw iEEG data to probability and seizure detection. (A) One minute of iEEG data recorded with NeuroVista device, 16
neocortical electrode contacts, containing a spontaneous seizure of subject NH7. The seizure is present on a few channels with a good signal to
background ratio suitable for automated detection. (B) Time-frequency analysis of iEEG signals shows the different signatures of seizure
electrophysiology (shaded area) in different channels: channel 1, where seizure is notable and channel 4 where it is hard to identify. (C) Plots of
classifier probabilities for each electrode (channels 1–4 in colour CH1–4) below actual raw data showing that for some electrodes, the seizure is
very prominent and for some not differentiable from the background signal. (D) The classifier output probabilities for top three probabilities
together with the mean (bold line) and threshold (horizontal line) showing when the detection is raised (time 0).
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interval above a threshold was automatically extended if in
the next 10 s from the current detection was another detec-
tion. Subsequently, the two detections were merged into
one interval. Thus, for every probability threshold, we de-
tected intervals of various lengths which the model marks
as seizures. Intervals shorter than 10 s were dropped from
detected events. For detected events longer than 10 s
AUPRC and area under the receiver operator curve
(AUROC), scores were calculated based on the region over-
lap with gold-standard seizures marked by an expert review-
er. The window hyperparameter (10 s) was heuristically
selected based on clinical seizures domain knowledge and
not optimized.

The model was deployed to continuously process incom-
ing data from RC+ S™ animal and human subjects. Due
to a different electrode configuration in the RC+ S™ system
in comparison with theNV system, we could not use an aver-
age of the three highest probabilities. Instead, a maximal
probability given by two hippocampal channels was taken
as an output of the model. Subsequently, the detected inter-
vals were calculated from the probabilities in the same man-
ner as for the data from the NV data set. Review of the raw
data by an expert created gold-standard seizure marks for
evaluating classifier performance. Thus, with all detected
events and true seizure marks, the AUPRC and AUROC
scores were calculated.

Data and materials availability
All results associated with this study are present in the paper.
The data are available upon reasonable request (https://
www.mayo.edu/research/labs/bioelectronics-neurophysiology-
engineering/overview). The analysis code is available on
GitHub (https://github.com/mselair/best_toolbox).

Results
Tracking behaviour and epilepsy
biomarkers in humans and canines
We used analysis of intracranially recorded electroencephal-
ography to detect seizures and IES in ambulatory humans
and canines with drug-resistant epilepsy living in their nat-
ural environments. Continuous streaming iEEG was ana-
lysed in a cloud environment and on a tablet computer
carried by subjects, which also enabled synchronized patient
inputs. Physicians and engineers remain in the loop using a
web-based Epilepsy Dashboard to review biomarker trends
(IES rates and seizures), patient annotations (seizures, auras
and medication logs) and implanted device data (battery sta-
tus, telemetry and EBS parameters). The system provides an
integrated machine learning platform for algorithm develop-
ment, data viewing, biomarker tracking and expert annota-
tion of events, e.g. confirmation that a detected
electrophysiological event or patient reported event was a
true positive seizure (Fig. 1).

Detection of interictal epileptiform
spikes
The IES is an established biomarker of epileptogenic brain,32

and associated with risk for spontaneous, unprovoked sei-
zures.33–35 For long iEEG data sets, it is labour intensive
and impractical to use visual analysis to calculate IES rates.
Here, we trained, validated and tested an automated IES de-
tector on long-term continuous ambulatory iEEG record-
ings. We implemented a previously published automated
IES detection algorithm,24 where the data are continuously
accumulated by streaming iEEG from the RC+ S™ device
to a cloud database. We compared the automated IES detec-
tions to expert visual scoring from two epileptologists
(N.M.G. and G.A.W.). These data included periods during
day, night, seizure clusters (two ormore seizures in 12 hours)
and non-seizure cluster periods. There was good concord-
ance for the IES labelling by expert visual review (Cohen’s
kappa score 0.87) and between the algorithm and experts
(F1 score 0.82+0.08 with sensitivity 91+ 0.6% and posi-
tive predictive value 77+ 1.6%).

The algorithm performs well during night, day, high and
low seizure periods (Table 2). The IES rates are higher during
seizure clusters periods (two or more seizures in 12 hour per-
iod), but performance of the automated detector is similar
during periods with high and low IES rates (F1 score was
0.84 in seizure cluster and 0.80 in non-cluster seizure peri-
ods).35 Despite the difference in IES rates between day (ap-
proximately 25% lower IES rates) and night the algorithm
performed similarly (day F1 score was 0.81 and 0.82 at
night). Visual examples of IES and comparison of automated
detections with expert visual review are shown in Fig. 6 for
day (A) and night (B) and illustrate the concordance between
expert visual review and the automated classifier. The hippo-
campus IES rate variations during day and night over a
2-month period show circadian and multi-day fluctuations
(Fig. 6C). We analysed IES characteristics to explore how
the hippocampal IES properties differ in various behavioural
states (Fig. 6D) and find higher peak-to-trough IES ampli-
tudes during night compared with wake for all four human
subjects (P, 0.01).

Automated seizure detection
Accurate seizure catalogues are critical for optimal epilepsy
management and assessment of EBS outcomes, but remain
a basic technology gap for the field.6–8 We created an accur-
ate seizure diary based on a generic seizure detector using an
LSTM29 artificial recurrent neural network combined with
convolutional neural network (CNN)28 applied to continu-
ous iEEG to reliably detect seizures in ambulatory canine
and human subjects with epilepsy.

The large testing, validation and training data set from
multiple brain structures in humans and canines was col-
lected over multiple years with two different fully implanta-
ble recording devices (NV or Medtronic PLC, see Methods).
The CNN LSTM model was trained on a data set from five
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dogs with naturally occurring epilepsy (340 seizures) im-
planted with NV devices16,17 and one half of the data from
two, randomly selected human subjects with epilepsy im-
planted with the NV device (524 seizures). The model was
then validated on the other half of the data from two NV pa-
tients (524 seizures) and three canines (133 seizures in dogs:
MD1–3) implanted with RC+ S™ devices (Fig. 2).12

Automated detection of spontaneous seizures recorded
with iEEG is possible because of the characteristic spectral
patterns that are readily identified visually and by machine
learning approaches.36 Fig. 7 shows an example of a typical
seizure with its time-frequency (spectrogram) characteristics,
raw data and the CNN LSTM model seizure probability for
MH1 from the out-of-sample data. The model probability
for seizure classification changes in context of raw iEEG
and spectral content showinghighprobabilitywithin the seiz-
ure activity and low probability outside the seizure (before
and after the seizure). The example highlights the importance
of the LSTM network in the model. While feature-based ma-
chine learningmodelswould detect the bursts of IES at the be-
ginning and during the seizure, the LSTM network raises the
seizure probability prior and during the seizure time.

The precision-recall curves (PRCs) and receiver operator
curves (ROCs) are calculated by sequentially changing the
model probability detection threshold and evaluating the re-
sults for all seizures from each subject in the testing data sets
(Fig. 8).

The performance of the generalized automated seizure de-
tector using out-of-sample data from seven human patients
implanted with the NV device (total seizures 2046 over
3820 days) was AUPRC 0.78+ 0.24 and AUROC 0.97+

0.03 (Table 1). The performance of the model on
out-of-sample data in subjects with the NV device is shown
in Table 1. The performance of the generalized classifier is vi-
sualized using standard machine learning graphs of PRC and
ROC for each individual human (Fig. 8). The model outper-
forms recently published state of the art detectors19 and runs
in near real-time.

Prospective long-term ambulatory
monitoring and algorithm testing
After training, validation and retrospective testing using pre-
viously collected data, we then deployed the automated IES
and seizure classifiers prospectively in four humans (subjects
MH1–4) and two pet dogs (MD2 and MD3) with epilepsy
living in their home environments. In total, the system was
able to record an average of 66+ 0.17% of the data across
all human subjects.

The performance of the IES detection in the ambulatory
prospective data compared with gold-standard expert visual
reviewed events was 0.90 sensitivity and F1 score of 0.81
(Table 2).

Prospective testing of the seizure detector in ambulatory
subjects in real-world environments showed excellent per-
formance, with an AUROC of 0.99+0.01 and PRC of
0.76+0.25 using the expert visual review of the continu-
ously acquired iEEG as the gold standard for the humans
(MH1–4) and the two pet canines (MD2 and MD3). The
AUPRC more accurately describes the performance results
of this highly imbalanced data with over 99% of the time
spent in a non-seizure (interictal) state, the AUPRC was

Table 2 Interictal epileptiform spike rates (IES)

Characteristics Cluster Non-cluster Day Night

IES rate per minute 37.4+ 29.1 17.9+ 7.2 13.8+ 8.7 41.6+ 23.7
F1score 0.84+ 0.09 0.8+ 0.05 0.81+ 0.08 0.82+ 0.08
PPV 0.81+ 0.2 0.74+ 0.14 0.71+ 0.12 0.8+ 0.18
Sensitivity 0.9+ 0.08 0.9+ 0.08 0.94+ 0.001 0.89+ 0.09

Results from prospective testing of the automated IES classifier at different time periods (day versus night) and seizure counts (seizure clusters/non-clusters) compared with expert
visual review. Periods of seizure clusters were defined by two, or more, seizures in a 12-h period. The F1 score comparing the automated detector and expert visual review for labelling
IES was similar for each condition studied.

Table 3 Prospective RC+++++S™ seizure detection results

Prospective RC+++++S™ data set Number of seizures Tested interval (days) AUPRC AUROC

MH1 134 147 0.93 0.99
MH2 8 149 0.89 0.99
MH3 20 44 0.82 0.99
MH4 19 156 0.75 0.99
MD2 17 107 0.47 0.96
MD3 6 120 0.88 0.99
Total 204 723 X X
Average+++++Std. 54+ 49.34 120.5+ 41.97 0.76+ 0.25 0.99+ 0.01

Performance of automated seizure detection in canine and human seizures deployed prospectively in pet canines and humans living with epilepsy in their home environments (MH1–4
are four human subjects and MD2 and MD3 are the two pet dogs). Machine learning performance metrics are shown together with the number of seizures and number of recording
days in the data sets.
AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic curve.
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0.93, 0.89, 0.82, 0.75 and 0.47, 0.88 for the four humans
and two pet canines (MD2 andMD3), respectively (Table 3).

The human subjects reported a total of 555 seizures using
the epilepsy patient assist device over the course of 945 days
of monitoring, but only 39.71+ 29.20% of the seizures re-
ported were actually associated with an electrographic cor-
relate (verified seizures; Table 4). Interestingly, of the 407
detected iEEG seizures, 43.86+30.77% were not identified
by the patient (Table 4). These results reflect the challenge of
patient seizure reporting and the established unreliability of
seizure diaries.

Discussion
There has been significant progress in EBS devices for
drug-resistant epilepsy, but the time to achieve optimal indi-
vidualized stimulation parameters is long and seizure-free
outcomes remain relatively rare. We suspect that the ability
to continuously track electrophysiology, seizure counts and
patient behaviour will accelerate the optimization of indivi-
dualized EBS therapy. To address the technology gaps
in currently available EBS systems, we developed and de-
ployed a distributed brain co-processor to investigate and
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Figure 6 Long-term analysis of interictal epileptiform spike (IES) rates. Visual example of comparing spike detections between the
automated approach and human operators for (A) day/awake and (B) night/sleep period. (C) Daily averaged spike rate per hour in left (top) and
right (bottom) hippocampus during night and day periods of time in 8 weeks of MH1 recording. (D) The graph shows peak-to-peak (P2P)
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Whitney U test was used to measure statistical significance between P2P amplitudes during day/night periods of time in each patient. There are
significant differences between night/day in left hippocampal IES peak-to-peak amplitudes during the prospective testing period for all four patients
implanted with RC+ S™.
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continuously track patient reported symptoms, IES biomar-
kers and seizures during EBS.

While seizure detection using iEEG is a well-established
field, it has not been applied for creating accurate seizure
diaries in ambulatory humans (or canines) with epilepsy.
Despite advances in iEEG-sensing capability, the current de-
vices approved for human epilepsy (NeuroPace RNS and
Medtronic Percept) do not provide accurate seizure diaries.

This is a notable gap given that a primary outcome measure
for epilepsy is seizure counts. This highlights the significance
of the current paper where for the first time in ambulatory
humans and canines, accurate seizure diaries are demon-
strated during concurrent anterior nucleus of the thalamus
brain stimulation over multiple months in naturalistic set-
tings. The primary device innovation that makes accurate
seizure diaries possible is the ability to stream continuous
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iEEG off the embedded device and onto a local computing
device capable of running a sophisticated generalizable
CNN LSTM detector that was demonstrated to work with-
out subject specific tuning in two different species (dogs
and humans) in out of sample, prospective ambulatory
subjects.

We show that seizures and hippocampal IES rates and
characteristics are dynamically changing in a circadian pat-
tern with IES rates highest at night. The hippocampus IES
rate variations showed a circadian fluctuations and higher
peak-to-trough IES amplitudes during the night. The accur-
ate automated quantification of IES is potentially of funda-
mental importance in epilepsy.37,38 Interestingly, seizures
preferentially occurred during wakefulness in the human
subjects despite increased IES rates during sleep.39,40 The
reason for this phenomenon remains unclear, but future re-
search using accurate seizure and IES rate data streams in
ambulatory subjects will enable further investigation into
long-term temporal dynamics of IES and seizures and enable
investigations exploring the IES rates,33 changing IES
morphology41–43 and circadian rhythms34,44 in association
with seizures occurrence. The use of IES as a biomarker for
seizure forecasting in the setting of EBS is an important dir-
ection for future investigation.

Regarding seizure reporting, there are two important ob-
servations. Similar to previous studies, we found that pa-
tients9,45 and pet owners often do not create reliable
seizure diaries when compared with gold-standard seizure
catalogues created from automated seizure detection algo-
rithms applied to continuous iEEG. This is not surprising gi-
ven that seizures can be subtle, can go unnoticed by
caregivers and patients are often amnestic for their seizures.
This result highlights the potential challenge of optimizing
EBS and medical therapy, if arguably the most critical meas-
ure of epilepsy therapy outcome, seizure rates, is inaccurate.
This may play a role in the long time required for therapy
optimization with current FDA-approved devices.
Furthermore, we determined that only 56.13+ 30.77% of
iEEG captured seizures are reported by patients, thus many

electrographic seizures would not be available for informing
EBS therapy adjustments. Whether the unreported iEEG
electrographic seizures reflect amnestic episodes or are truly
subclinical seizures without clinical symptoms is unclear and
raises an interesting future avenue of investigation where
automated seizure detections could trigger an automated pa-
tient assessment46 to probe mood, cognition, memory and
motor impairments during and around seizures.

The current study has several limitations. The technology
layers deployed in the system described here are associated
with additional patient burden given that rechargeable de-
vices must be periodically charged (Fig. 1; implantable device
and tablet computer).14 Given the fact that seizures can be
relatively rare events, the accumulation of adequate statistics
remains a fundamental challenge for epilepsy research.

Here we will also discuss some of the challenges in ambu-
latory subjects. The iEEG data transmission from the embed-
ded device to the handheld device is the most severe system
challenge since iEEG telemetry requires significant energy
and recharging of the implant (� every 24 h in current use
case). In the future, performing computing on the embedded
device, we can likely achieve more efficient data sampling
and decrease the battery load on the implanted device.36

Similarly, the volume of iEEG transferred from the handheld
to the cloud can be reduced given most analysis can be ac-
complished on a modern handheld (iPhone and Tablet)
and significantly reduce the need to transfer iEEG data to
the cloud.

There are also significant privacy issues with streaming
brain data and patient reports, but this is largely managed
by de-identifying and end-to-end encrypting all data streams.
Furthermore, the EBS parameters can only be changed with-
in an established safe parameter space set by the physician
working directly with the patient. These applications likely
reflect the future of implanted device management. Patients
will no longer have to travel to the clinic for device manage-
ment. These systems will strengthen the connection of pa-
tients and their care teams as they live in their home
environments.

Table 4 Analysis of patient seizure diaries and electrographic seizures

Subject Days monitored iEEG seizures Reported seizures

Patient seizure reports and iEEG

Patient report with
iEEG seizure (%)

iEEG seizures not
reported by patient (%)

MH1 269 273 80 38.75 88.64
MH2* 258 13 279 2.87 38.46
MH3 153 89 165 43.03 20.22
MH4** 265 32 31 74.19 28.12
Total 945 407 555 X X
Avg. +++++Std. 378+ 287 163+ 153 222+ 187 39.71+ 29.20 43.86+ 30.77

Continuous intracranial EEG (iEEG) from bilateral amygdala, hippocampus and anterior nucleus of thalamus enabled direct assessment of patient seizure diary reports and iEEG
recorded electrographic seizure activity. On average 39.7% of iEEG electrographic seizures had a patient seizure diary report within +30 min of the iEEG event and 56.14% of the
patient reported seizures had associated iEEG confirmed events. These results from continuous ambulatory iEEG in natural environments demonstrate the complex and inaccurate
relationship between patient diary reports and gold-standard verified seizures from continuous iEEG. Note: All four patients had seizures independently from left and right
hippocampus. The table includes all seizures, except for MH2* where the results are for right-hippocampal seizures only because of very frequent electrographic seizures (average 30/
day) originating from the left hippocampal remnant of a prior left anterior temporal lobectomy. The excellent reporting for patient MH4** included her caregiver reports. The accuracy
of patient reporting of seizures is currently confounded by fact that iEEG seizures may be truly subclinical seizures or amnestic seizures that the patient does not recall.
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In summary, we present results from a powerful system in-
tegrating a new investigational neural sensing and stimula-
tion device with local and distributed computing that
should prove useful for future investigation and optimization
of EBS in drug-resistant epilepsy. This research identifies
areas for future research including bi-directional interfaces
to enable iEEG event triggered behavioural assessments,47

continuous behavioural state tracking,48 seizure forecasting
and adaptive EBS therapy. Future implantable systems with
greater device computational power and data storage cap-
acity will enable smart sampling paradigms to buffer data,
run embedded algorithms and trigger alarms for therapy
change, behavioural queries and data transfer that should en-
hance understanding of behaviour and brain activity.
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