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RESEARCH ARTICLE
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Abstract

The etiology of necrotizing enterocolitis (NEC) is not known. Alterations in gut microbiome,

mucosal barrier function, immune cell activation, and blood flow are characterized events in

its development, with stress as a contributing factor. The hormone corticotropin-releasing

factor (CRF) is a key mediator of stress responses and influences these aforementioned

processes. CRF signaling is modulated by NEC’s main risk factors of prematurity and for-

mula feeding. Using an established neonatal rat model of NEC, we tested hypotheses that:

(i) increased CRF levels—as seen during stress—promote NEC in formula-fed (FF) new-

born rats, and (ii) antagonism of CRF action ameliorates NEC. Newborn pups were formula-

fed to initiate gut inflammation and randomized to: no stress, no stress with subcutaneous

CRF administration, stress (acute hypoxia followed by cold exposure—NEC model), or

stress after pretreatment with the CRF peptide antagonist Astressin. Dam-fed unstressed

and stressed littermates served as controls. NEC incidence and severity in the terminal

ileum were determined using a histologic scoring system. Changes in CRF, CRF receptor

(CRFRs), and toll-like receptor 4 (TLR4) expression levels were determined by immunofluo-

rescence and immunoblotting, respectively. Stress exposure in FF neonates resulted in

40.0% NEC incidence, whereas exogenous CRF administration resulted in 51.7% NEC inci-

dence compared to 8.7% in FF non-stressed neonates (p<0.001). Astressin prevented

development of NEC in FF-stressed neonates (7.7% vs. 40.0%; p = 0.003). CRF and CRFR

immunoreactivity increased in the ileum of neonates with NEC compared to dam-fed con-

trols or FF unstressed pups. Immunoblotting confirmed increased TLR4 protein levels in FF

stressed (NEC model) animals vs. controls, and Astressin treatment restored TLR4 to con-

trol levels. Peripheral CRF may serve as specific pharmacologic target for the prevention

and treatment of NEC.
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Introduction

Necrotizing enterocolitis (NEC) is the most common fatal gastrointestinal (GI) disease affect-

ing premature infants in the developed world [1]. The incidence is 0.3–2.4 cases of NEC for

every 1,000 live births [2], corresponding to annual costs ranging between $500 million to $1

billion in the United States [3]. No specific therapy is available to treat NEC. Nearly one half of

patients afflicted with NEC develop complications requiring surgical intervention; of these,

approximately 50% die [1]. Overall mortality has remained unchanged over the past 30 years

[3]. Survivors face ongoing morbidity due to malnutrition, recurrent small bowel obstructions,

liver failure, and neurocognitive deficits [1, 4].

The major processes implicated in NEC’s pathogenesis include abnormal bacterial coloni-

zation [5, 6], intestinal barrier dysfunction [4, 7–12], overzealous inflammation [11–16], and

ischemia due to vasoconstriction [17–20]. While these have been well-characterized, their tem-

poral and cause-effect relationships during NEC’s development remain undefined. Widely

accepted risk factors for NEC include prematurity, history of enteral formula feeding [2], and

physiologic stress [4, 7]. Protective factors include breast-feeding [4], administration of probi-

otics [21], and corticosteroid administration [4, 22–24].

The peptide hormone corticotropin-releasing factor (CRF), the related urocortin (UCN)

peptides, and their cognate CRF receptors (CRFRs) may play important roles in NEC’s devel-

opment. In mammals, CRF synthesis and secretion from the hypothalamus into the portal cir-

culation initiates the response to physiologic and psychologic stress as a part of the

hypothalamic-pituitary-adrenal (HPA) axis [25]. CRFRs (CRF1 and CRF2) are expressed ubiq-

uitously in several cell types and organs [25], and are secreted into the plasma in extracellular

vesicles [26]. CRF1 is predominantly found in the brain, and its activation by CRF initiates the

HPA axis response. CRF2 is predominantly present in the periphery, and its activation by

UCN1-3 returns stress responses back to homeostasis by facilitating negative feedback of the

HPA axis [27, 28]. Through autocrine, paracrine, and endocrine mechanisms, CRF and uro-

cortins act via CRFRs to elicit peripheral organ effects. Spatio-temporal activation of CRFRs

and their ligands is nuanced and critical for disease development and progression [29]. Activa-

tion of CRF1 is associated with pro-inflammatory events, whereas activation of CRF2 is associ-

ated with anti-inflammatory effects in the GI tract as well as in mast cells [30].

Several studies have demonstrated that components of the CRF system modulate GI motil-

ity, barrier function, and inflammation [31–36]; these events also contribute to NEC’s

pathogenesis.

Luminal bacteria are necessary for NEC to occur [4]. CRF is associated with alterations in

luminal bacterial colonization. Increased levels of endogenous CRF and its exogenous admin-

istration are associated with inhibited small bowel peristalsis [37, 38], altered secretion of lumi-

nal mucin [39] and gastric acid [40], and increased bacterial adherence to epithelial surfaces

[39]. These result in bacterial overgrowth, loss of commensal bacterial species, and selection of

pathogenic gram-negative and gas-forming bacterial organisms in the gut lumen [39, 41–43].

These luminal defenses have been found deficient in NEC [7, 12, 44], and similar shifts in the

luminal microbiome are characteristic of NEC, in both experimental [5] and clinical [45] set-

tings. In addition, CRF increases gut barrier permeability via increased expression of toll-like

receptor 4 (TLR4) on enterocyte and immunocyte membranes [46, 47]. Downstream effects of

TLR4 activation by bacterial endotoxin have been well characterized in NEC [1, 15], and

include elaboration of pro-inflammatory cytokines [6], compromise of epithelial tight junc-

tions [2], enterocyte apoptosis [9], and inhibition of enterocyte migration and restitution [48].

Independent of its TLR4-related actions, CRF serves as a chemoattractant and activator of

mast cells and other immunocytes. Reciprocal release of nerve growth factor (NGF) from
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immunocytes promotes innervation of these cells by the enteric nervous system (ENS), such

that subsequent stress-induced CRF signaling by the ENS sustains a pro-inflammatory state

[49–53]. CRF’s actions in mast cells are mediated largely by CRF2 [30]. Finally, CRF contrib-

utes to local vasoconstriction and enterocyte ischemia by promoting endothelin release, along

with decreased endothelial nitric oxide synthase (eNOS) activity [54, 55]. Ischemic changes

seen in NEC were traditionally attributed to asphyxia and hypoxic events [56]; however, more

recent work suggests that NEC’s ischemic insults stem from altered local endothelin-to-nitric

oxide ratios [17–19] and endothelin receptor expression [20] favoring vasoconstriction, with

resultant ischemia-reperfusion injury.

In addition, clinical factors that affect NEC’s incidence are key modulators of CRF signal-

ing. CRF signaling decreases with administration of probiotics [39, 41, 43], and CRF activity is

subject to negative feedback control by corticosteroids [57]. In contrast, intestinal CRF activity

increases in response to maternal separation and the transition from breast feeding to formula

feeding [35, 58, 59]. Endogenous CRF and CRFR levels increase within the GI tract in response

to inflammation [31] and stressful stimuli [52]. Newborn animals appear to be more vulnera-

ble to these changes [57, 60]. This vulnerability may be accentuated in the setting of prematu-

rity due to compromised feedback control from an immature HPA axis [57].

Given the parallels between peripheral CRF pathways and what we know about NEC, it is

attractive to postulate a key role for CRF in NEC’s pathogenesis. Peptide-based CRF inhibitors

do not cross the blood-brain barrier and tend to have negligible effects on either central ner-

vous system or HPA axis function. They do not appear to affect normal GI function. Thus,

pharmacologic inhibition of overstimulated peripheral CRF signaling seems to offer promise

for the prevention and treatment of NEC. In this proof-of-concept study, we sought to test the

hypotheses that: (i) increased CRF levels—as seen during stress—promote NEC in formula-

fed newborn rats, and (ii) antagonism of CRF action ameliorates NEC. We utilized a well-

described neonatal rat model consisting of formula feeding and exposure to hypoxia and cold

stress.

Materials and methods

Materials

CRF peptide and peptide antagonist, Astressin (AST) were purchased from American Peptide

Company, Sunnyvale, CA.

Animals

Animal experiments were performed using neonatal Sprague Dawley rats (Charles River, Pon-

tage, MI) and were approved by the Institutional Animal Care and Use Committee of Chil-

dren’s Hospital Oakland Research Institute. Neonates were delivered spontaneously from

timed-pregnant female rats. Rats were housed in temperature- and humidity-controlled cages

that utilized a laminar flow HEPA filter system, unless specified. They had access to ad lib
food, water, and environmental enrichment. Adult rats and neonates housed with dams were

monitored daily. Neonates in experimental conditions were housed with members of their

treatment groups in a temperature (35˚C) and humidity (15%)-controlled incubator. Each

neonate was monitored, fed, and provided with bladder and bowel stimulation six times daily.

All experiments were performed in accordance with the NIH and ARRIVE guidelines.

Experimental groups. Neonates (weight 6–10 g) were randomized into six treatment and

two control groups on postnatal day 3: Group 1: dam-fed unstressed (DF, n = 22); Group 2:

dam-fed stressed (DFS, n = 26); Group 3: formula-fed, unstressed (FF, n = 23); Group 4: for-

mula-fed stressed (NEC, n = 25); Group 5: formula-fed unstressed with 30μg/kg CRF
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administration (CRF, n = 27); Group 6: formula-fed stressed with 60μg/kg Astressin adminis-

tration (AST, n = 26). Neonates in Groups 1 and 2 were housed with a dam and allowed ad
libitum nursing (Fig 1).

Experimental model of necrotizing enterocolitis (NEC)

Experimental NEC was induced as described previously, with a protocol that consisted of

maternal separation, formula feeding, and exposure to hypoxia and cold stress [6, 61, 62].

Briefly, groups of formula-fed neonates (FF, NEC, CRF, and AST group) were separated from

dams on postnatal day 3 and housed with other members of their treatment group in a temper-

ature-controlled incubator (34˚C). They were gavage fed six times daily with approximately

12.5μL/g body weight (80–200μL) of a special rodent formula consisting of 15g Similac 60/40

in 75 mL Esbilac canine milk replacement (Ross Pediatrics, Columbus, OH and Pet-Ag,

Hampshire, IL, respectively). Stress sessions (DFS, NEC, and AST groups) took place twice

daily, and consisted of exposure to a 100% N2 atmosphere (hypoxia) in a modular incubation

chamber (Billups-Rothenberg, Del Mar, CA) for 60 seconds, followed by exposure to 4˚C for

10 minutes (cold stress). Animals were returned to their incubators immediately after stress

sessions (Fig 1). CRF (30μg/kg) and Astressin (60μg/kg) in 100μL sterile water were adminis-

tered twice-daily as subcutaneous injections. Astressin injections were performed 30 minutes

before exposure to hypoxia and cold stress. Experimental conditions were applied for 48

hours, after which animals were euthanized as per the AVMA guidelines and specimens col-

lected. Carbon dioxide exposure followed by bilateral thoracotomy and cardiac venting was

used for euthanizing adult rats. Neonates were anesthetized with isoflurane and euthanized via

decapitation. Experimental endpoints included body conditioning score of 2 or less, rectal pro-

lapse, loss of vigorous mobility, lethargy, failure to respond to stimuli; as well as findings

Fig 1. Experimental model of NEC- a timeline. Neonates were housed with dams for 3 days before being randomized at postnatal

day (PND) 3 into 6 groups as shown. Dam-fed controls were randomized to no stress (DF) or hypoxia / cold stress exposure (DFS),

housed with a dam, and allowed ad libitum feeding. Formula-fed neonates were separated from their dams and housed in an

incubator. They were randomized to no stress (FF), hypoxia / cold stress exposure (NEC), no stress with CRF administration (CRF),

and hypoxia / cold stress exposure after pretreatment with Astressin (AST).

https://doi.org/10.1371/journal.pone.0246412.g001
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suggestive of injury or aspiration that occurred during gavage feeding. These included respira-

tory distress, regurgitation of feeds, and pharyngeal bleeding. No rats died before meeting cri-

teria for euthanasia.

Histology

The GI tract was removed intact from euthanized pups, linearized, and gently flushed with

1mL of sterile phosphate-buffered saline (10mM PBS, pH 7.4). 40mm of terminal ileum was

removed. The distal 20mm was flushed with fresh fixative (4% paraformaldehyde in PBS with

5% sucrose) and immersed in room-temperature fixative for 6 hours. The proximal 20mm was

snap-frozen in liquid nitrogen and stored at -80˚C for subsequent analysis (see below). Fixed

specimens were rinsed and dehydrated in serial dilutions of ethanol in PBS (5, 10, 20, 50, and

70% ethanol), processed, embedded in paraffin, and sectioned at 5μm for microscopic analysis

by the Mouse Pathology Core of the Helen Diller Cancer Center at the University of California

at San Francisco. Sections were stained with hematoxylin and eosin (H&E) for light micros-

copy analysis. Paraffin-embedded slides were stored at room temperature for further analysis.

Analysis of mucosal injury

Mucosal injury and presence of NEC were assessed using 5μm H&E-stained sections of intes-

tine by researchers blinded to the treatment groups. Pathologic changes in intestinal architec-

ture were evaluated via a NEC scoring system developed for use in neonatal rats [61, 62].

Histologic changes in ileum were scored on a scale of 0–3; 0 = normal, 1 = mild inflammation,

separation of the villous core without other abnormalities, 2 = moderate inflammation, villous

core separation, submucosal edema, and epithelial sloughing, and 3 = severe, denudation of

epithelium with loss of villi, full-thickness necrosis, or perforation. Animals with histologic

scores� 2 were defined as having developed NEC (Fig 2).

Antibodies

Primary antibodies. The primary and secondary antibodies, dilutions used, and sources

were as follows: Antibodies from Santa Cruz Biotechnology, Santa Cruz, CA: CRFR1/2 (sc-

1757; goat; 1:500) [63], β-actin (A2228; mouse; 1:5,000) [29], TLR4 (M16) (sc-12511; goat;

1:1000), and CRF (rabbit; 1:5,000; Courtesy of Prof. W. Vale:) were used.

Secondary antibodies. For immunofluorescence staining goat anti-rabbit conjugated to

Rhodamine Red-X or FITC (Jackson ImmunoResearch) at 1:500 dilution was used. For West-

ern blot analyses donkey anti-goat/rabbit conjugated to Alexa Fluor 680 (Thermo Fisher Sci-

entific) and donkey anti-mouse conjugated to IRDye 800 (Rockland Immunochemicals,

Pottstown, PA) at 1:20,000 dilution was used.

Western blot analysis

Ileum tissue samples were homogenized in RIPA buffer supplemented with protease inhibitor

cocktail (Roche, Mannheim, Germany) and phosphatase inhibitor cocktails (Sigma-Aldrich).

Total protein concentration was determined using the Bradford assay with bicinchoninic acid

(BCA) reagent (Millipore Sigma, St. Louis, MO). Total protein (40 μg) was resolved by 10%

SDS-PAGE, transferred to polyvinylidene difluoride membranes (PVDF, Immobilon-FL;

Millipore, Billerica, MA) and blocked for 1 h at room temperature in Odyssey Blocking Buffer

(Li-COR Biosciences, Lincoln, NE). Membranes were incubated with primary antibodies over-

night at 4˚C. Membranes were washed for 30 min (1 × PBS, 0.1% Tween20) and incubated
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with secondary antibodies for 1 h at room temperature. Blots were analyzed and quantified

with the Odyssey Infrared Imaging System.

Immunofluorescence and microscopy

Terminal ileum sections (5μM thick) from experimental and control groups were deparaffi-

nized in xylene and rehydrated in ethanol series. Sections were incubated in blocking buffer

containing 1x PBS, 0.3% Triton X-100, 10% normal goat serum for 1 h at room temperature

followed by incubated with primary antibodies (anti-CRF and anti-CRF1/2) overnight at 4˚C.

Sections were washed and incubated with fluorescent secondary antibodies (conjugated to

Rhodamine Red-X and FITC) for 1 h at room temperature. Images were acquired using an

epi-fluorescence microscope (20x and 40x objectives) and images were captured using AxioVi-

sion Imaging software.

Statistical analysis

The incidence of NEC was determined for each treatment group and expressed as

percentage ± standard error. Groups were compared using directional Chi square analysis and

Fischer’s exact test using Stata SE software (StatCorp; College Station, TX). P values < 0.05

were considered statistically significant. All data are representative of at least three indepen-

dent experiments (biological replicates), involving 12 litters of neonatal rats.

Fig 2. Mucosal injury and NEC scoring system. Representative H&E-stained terminal ileum sections to show

mucosal injury consistent with NEC. (a) Normal intestinal mucosa: score 0. (b) Mild inflammation: score 1. (c)

Moderate inflammation consistent with NEC: score 2. (d) Severe inflammation consistent with NEC: score 3.

https://doi.org/10.1371/journal.pone.0246412.g002
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Results

Formula feeding by itself causes mild inflammation in neonates

Stress in dam-fed neonates or formula feeding in absence of other factors may not be sufficient

to cause overt NEC-like disease in rodents or humans. To test this notion, neonates were left

in their home cages with dams without any handling or stress (dam-fed; DF) or exposed to

acute hypoxia and cold stress (DFS). As expected, terminal ileum histology was normal in DF

pups and after 72 hours of exposure to stressors, none (0/26) of the pups in DFS group devel-

oped histologic findings consistent with NEC (Fig 3a, 3b and 3g). Formula feeding without

stress exposure (FF) resulted in mild inflammatory changes in the terminal ileum with 17 of 23

pups demonstrating mild inflammation with vacuolization of villi and two of 23 (8.7 ± 5.9%)

developed NEC (Fig 3c and 3g).

Formula feeding combined with hypoxia and cold stress exposure causes

NEC-like changes in the gut morphology

We confirmed that formula feeding combined with acute exposure to hypoxia and cold stress

(NEC) over 48 hours caused overt changes in gut histopathology. Moderate to severe inflam-

matory changes occurred in 10 of 25 pups (40.0 ± 9.8%) animals in the NEC group, with nearly

all specimens demonstrating some degree of inflammatory change (23 of 25 pups; Fig 3d and

3g). Histopathological changes were also accompanied by gross changes in the small bowel

that showed erythema, edema, full thickness necrosis, and perforation in pups with NEC com-

pared with DF unstressed controls (Fig 4a). Gross changes observed in rat gut were similar to

those seen in preterm newborn human infants with complicated NEC (Fig 4b).

CRF and CRF receptor expression is increased after induction of NEC

We next asked if NEC is associated with increased expression of CRF and its receptors in the

terminal ileum. Immunofluorescence staining revealed diffuse and low levels of CRF and

CRFR immunoreactivity (CRF-IR and CRF1/2-IR, respectively) in the dam-fed unstressed

group (Fig 5a; DF). Exposure to hypoxia and cold stress in dam-fed animals increased CRF-IR

in the villi (Fig 5b; DFS). CRF and CRFRs co-localized in the ileum (Fig 5, Merge). In the for-

mula-fed unstressed group, again CRF-IR co-localized with its receptors along the basolateral

aspects of villous enterocytes, along with some staining within villi and in the submucosal and

myenteric plexuses (Fig 5c; FF). Induction of NEC resulted in clear, discrete and multiple

points of co-localization of CRF-IR with its receptors within submucosal and myenteric plex-

uses, and in the villi (Fig 5d; NEC), and omission of primary antibody (negative control) did

not show any signal (Fig 5e). Analysis of the sections at higher magnification revealed CRF-IR

and CRF1/2-IR co-localization in the villus tip with little to no staining in the neurons of the

submucosal or myenteric plexuses in DF control neonates. In NEC neonates, CRF-IR and

CRF1/2-IR expression increased in the villi and around the center corresponding to the loca-

tion of enteric neurons coursing alongside blood vessels, and was diffused and disorganized.

Expression was also clearly evident in the neurons of the plexuses (Fig 5f). This finding sug-

gests an association between the development of NEC and increased CRF and CRFR expres-

sion within the enteric nervous system as well as the enterocytes.

Exogenous CRF promotes NEC-like changes in the gut morphology

Having confirmed our hypothesis that hypoxia and cold stress exposure (NEC group) results

in increased levels of CRF, we asked if CRF alone is sufficient to initiate NEC-like disease. We

administered CRF in formula-fed unstressed rats instead of hypoxia and cold stress exposure
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Fig 3. Formula feeding and exposure to acute stressors causes frank NEC-like histopathological damage in rats. Representative H&E-stained micrographs

showing villi damage in NEC. (a-c) Terminal ileum sections of DF, DFS, and FF unstressed pups showed normal gut histology with well-preserved villi structure. (d)

Inflammatory changes were present in terminal ileum of FF neonates exposed to stressors (NEC) or (e) FF unstressed pups with CRF administration. (f) Pretreatment

with Astressin in FF pups prevented stress-induced changes in ileum histopathology and prevented development of NEC. DF = dam-fed, unstressed; DFS = dam fed,

stressed; FF = formula-fed unstressed; NEC = formula-fed, stressed; CRF = formula-fed, unstressed with 30μg/kg of sc CRF administration; AST = formula-fed,

stressed with 60μg/kg of sc CRF antagonist, Astressin administration. Scale Bar = 100μM. (g) Stack bar graph summarizing numbers of neonates with 0–3 scores within

control or treatment groups.

https://doi.org/10.1371/journal.pone.0246412.g003
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(CRF group). As predicted, 51.9 ± 9.6% (14 of 27) of neonates developed NEC (Fig 3a and 3b).

This increase in incidence reached statistical significance compared to DF, DFS, and FF groups

(p< 0.001, Fig 6).

CRF antagonism with Astressin prevents development of NEC-like changes

in the gut morphology

We reasoned if exogenous CRF was sufficient to promote NEC-like inflammation and gross

gut edema, antagonism of CRF even in formula-fed neonates exposed to hypoxia and cold

stress should ameliorate these changes. As predicted, AST administration abrogated develop-

ment of NEC in 92% of the pups with 24 of 26 pups showing no or low-grade inflammation

(score 0–1, Fig 3). AST treatment significantly reduced NEC incidence to 7.7 ± 5.2% (2 of 26)

versus 51.9 ± 9.6% (14 of 27) in the CRF group and 40.0 ± 9.8% (10 of 25) in the NEC group

(p = 0.0033; Fig 6).

Fig 4. Experimental model of necrotizing enterocolitis. (a) Formula feeding combined with hypoxia and cold stress

exposure induced gross changes in the small bowel including erythema, edema, and full thickness necrosis. (b) Gross

intra-operative findings representative of complicated NEC in a premature human neonate.

https://doi.org/10.1371/journal.pone.0246412.g004
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Astressin treatment decreases toll-like receptor 4 (TLR4) levels

CRF is known to increase expression of TLR4, which in turn causes changes in gut permeabil-

ity. Next, we confirmed using western blotting that TLR4 levels were increased in ileum of

neonates with NEC compared with DF unstressed controls. Since treatment with Astressin

prevented development of NEC, we ascertained TLR4 levels in ileum of neonates in AST

group and found expression levels to be similar to those seen in DF unstressed control group

(Fig 7). This data suggests that antagonism of CRF with Astressin was sufficient to downregu-

late TLR4 levels.

Discussion

Necrotizing enterocolitis is a major cause of morbidity and mortality in premature neonates.

Despite being first described over 100 years ago, no specific treatments have been developed.

The role of stress in the development of NEC has been established. However, little is known

about the role of key mediators of the stress axis—such as CRF and CRFRs—in NEC. In this

study, we demonstrated that (i) stress in combination with formula-feeding, but neither alone,

cause NEC-like histologic changes; (ii) over- and mis-expression of CRF is associated with the

development of NEC; and (iii) CRF antagonism is sufficient to markedly decrease NEC inci-

dence in an experimental animal model. While most studies that employed a similar NEC

model, demonstrated NEC rates over 50% [6, 61, 62]; ours did not reach that level. This is

likely explained by the fact that we limited our experimental conditions to 48 hours after ran-

domization, whereas others applied their models over a 72-hour period.

Formula feeding is known to increase expression of the components of the CRF system,

whereas administration of probiotics, breast milk, and corticosteroids decrease their expres-

sion [39, 41, 43, 57]. Human milk also has antioxidant properties; in experimental NEC,

glutamine and arginine supplementation has beneficial effects due to alterations in lipid perox-

idation and antioxidant enzyme levels in the small intestine [64, 65]. Formula milk and other

Fig 5. CRF and CRF receptor immunoreactivity (IR) is increased in the terminal ileum of neonates with NEC. (a-e) Representative immunostained

section from DF, DFS, FF and NEC ileum. CRF-IR (red) and CRFR (CRF1/2-IR, green) was evident in the villi, blood vessels, and neurons within the

myenteric plexuses of FF and NEC groups, but only low, diffuse staining was seen in DF and DFS control groups. (f) Higher magnification (63x)

confocal images revealed differences in staining pattern in CRF-IR and CRF1/2-IR in DF controls versus NEC groups.

https://doi.org/10.1371/journal.pone.0246412.g005
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chemicals also alter antioxidant levels, but whether AST treatment has beneficial effects on

antioxidant enzymes [65, 66], is an area that needs further investigation. Spatio-temporal acti-

vation of CRFRs and their ligands is nuanced and critical for development of several GI disor-

ders that include inflammatory bowel disease and functional GI diseases [29]. Stress-induced

alterations in GI motility and diarrhea are well described, and gut-specific elimination of CRF

ameliorates these symptoms. Activation of CRF1 is associated with pro-inflammatory events,

whereas activation of CRF2 is associated with anti-inflammatory effects in the GI as well as in

mast cells [30]. Newborn animals appear to be more vulnerable to these changes [60]. In this

study, we found increased expression of CRF in enteric neurons in the terminal ileum of rats

with NEC. Co-localization of CRF and CRFR expression within submucosal and myenteric

plexuses and also within the core of villi was more robust, albeit disorganized in rats with

NEC, whereas organized basolateral localization was evident in the ileum of control rats. This

is the first report to demonstrate upregulation of CRF immunoreactivity in the gut of rats with

experimental NEC. Although previous literature has suggested that CRF activity might play a

role in neonatal intestinal injury and repair [67], here, we demonstrate unequivocally that

stress-induced increases in CRF are sufficient to increase NEC incidence and severity.

Fig 6. Incidence of necrotizing enterocolitis among treatment groups. The incidence of NEC was determined for

each treatment group and expressed as percentage ± standard error. Groups were compared using directional Chi

square analysis and Fischer’s exact test. �: FF versus NEC groups, p = 0.006; ��: FF versus CRF groups, p< 0.001; #:

NEC versus AST groups, p = 0.033. DF = dam-fed, unstressed; DFS = dam fed, stressed; FF = formula-fed unstressed;

NEC = formula-fed, stressed; CRF = formula-fed, unstressed with 30μg/kg of sc CRF administration; AST = formula-

fed, stressed with 60μg/kg of sc CRF antagonist, Astressin administration.

https://doi.org/10.1371/journal.pone.0246412.g006
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We further demonstrated that exogenous CRF administration promotes the development

of NEC even in absence of external stressors, primarily via mucosa epithelial inflammation

leading to villi loss, submucosal edema, necrosis, and perforation. In support of this pro-

inflammatory role of CRF, pharmacological antagonism of CRF action was protective; we

found NEC incidence was decreased by ~81% in rats after CRF antagonism even in the face of

formula-feeding and exogenous stressors. CRF antagonism was accompanied by less severe

mucosal injury compared to rats with NEC. Previous studies have described the role of CRF

activation in various inflammatory gut disorders and in NEC’s key pathologic processes [37–

43, 46, 47, 49–51, 53–55]; here, we show that antagonizing the actions of CRF can prevent

development of experimental NEC.

Alteration in intestinal barrier permeability is a hallmark of human NEC. TLR4 activation,

bacterial overgrowth, and vasoconstriction are thought to promote gut ischemia and intestinal

barrier permeability in NEC. Increased TLR4 expression and activation are key steps in NEC’s

development, and have been shown to precede overt histologic signs of inflammation in exper-

imental NEC [6, 9, 61]. Similar to others, we found TLR4 expression was increased in ileum of

rats with NEC compared with controls. CRF antagonism markedly decreased TLR4 expres-

sion. Other studies have shown contribution of CRF in modulating mast cells and gut function

including motility and permeability [33, 34, 68, 69]. While this study did not ascertain the con-

tribution of immune versus non-immune TLR4 in promoting NEC, CRFRs are present in

both immune and non-immune cells of the gut. Both endocrine and paracrine actions of CRF

have been described in these cell types [25].

Stress in neonates has been shown to be associated with mucosal injury in a variety of gut

disorders. CRF and CRFR activation have been shown to be key modulators in the brain-gut

Fig 7. TLR4 levels in NEC. Bar graph showing increased TLR4 levels in rats with NEC and AST treatment decreased

levels to those seen in dam-fed rats. Actin was used as normalization control. P = 0.03 NEC versus AST.

https://doi.org/10.1371/journal.pone.0246412.g007
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axis. This study demonstrates that CRF activation plays a role in the development of experi-

mental NEC via increased receptor localization and disorganization leading to mucosal injury.

These findings suggest that at least in the setting of experimental NEC, specific antagonism of

CRF in the peripheral tissues ameliorates NEC’s incidence and severity, and holds promise for

pharmacologic prevention of this disease.
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50. Keita AV, Söderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogas-

troenterol Motil. 2010; 22(7):718–33. Epub 2010/04/09. https://doi.org/10.1111/j.1365-2982.2010.

01498.x PMID: 20377785.

51. Buckinx R, Adriaensen D, Nassauw LV, Timmermans JP. Corticotrophin-releasing factor, related pep-

tides, and receptors in the normal and inflamed gastrointestinal tract. Front Neurosci. 2011; 5:54. Epub

2011/04/20. https://doi.org/10.3389/fnins.2011.00054 PMID: 21541251

52. Larauche M, Kiank C, Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by

stress and pathophysiological implications. J Physiol Pharmacol. 2009; 60 Suppl 7:33–46. PMID:

20388944

53. Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone augments proin-

flammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin

shock in mice. Infect Immun. 2002; 70(11):6068–74. https://doi.org/10.1128/IAI.70.11.6068-6074.2002

PMID: 12379683

54. Gougoura S, Liakos P, Koukoulis GN. Effect of CRH on NO bioavailability, ROS production and antioxi-

dant defense systems in endothelial EAhy926 cells. Free Radic Res. 2010; 44(7):803–12. https://doi.

org/10.3109/10715762.2010.485988 PMID: 20528575.

55. Wilbert-Lampen U, Straube F, Trapp A, Deutschmann A, Plasse A, Steinbeck G. Effects of corticotro-

pin-releasing hormone (CRH) on monocyte function, mediated by CRH-receptor subtype R1 and R2: a

potential link between mood disorders and endothelial dysfunction? J Cardiovasc Pharmacol. 2006; 47

(1):110–6. https://doi.org/10.1097/01.fjc.0000196240.58641.d3 PMID: 16424794.

56. Neu J. The ’myth’ of asphyxia and hypoxia-ischemia as primary causes of necrotizing enterocolitis. Biol

Neonate. 2005; 87(2):97–8. Epub 2004/11/03. https://doi.org/10.1159/000081898 PMID: 15528876.

57. Bolt RJ, van Weissenbruch MM, Cranendonk A, Lafeber HN, Delemarre-Van De Waal HA. The cortico-

trophin-releasing hormone test in preterm infants. Clin Endocrinol (Oxf). 2002; 56(2):207–13. https://

doi.org/10.1046/j.0300-0664.2001.01467.x PMID: 11874412.

58. Estienne M, Claustre J, Clain-Gardechaux G, Paquet A, Taché Y, Fioramonti J, et al. Maternal depriva-
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