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Intermittency in Drift-Wave Turbulence: Structure of the Momentum Flux
Probability Distribution Function

Eun-jin Kim and P. H. Diamond
Department of Physics, University of California–San Diego, La Jolla, California 92093-0319

(Received 3 August 2001; published 20 May 2002)

We analytically compute the probability distribution function (PDF) of the local Reynolds stress (R)
for forced Hasegawa-Mima turbulence. With the assumption that the PDF tail is due to an instanton
with the spatial form given by the modon solution, the tail of the PDF of R is found to be a stretched,
non-Gaussian exponential, with the specific form exp!2cR3"2# (c is a constant). We relate the temporal
localization of the instanton to the degree of “burstiness” of the momentum transport event.

DOI: 10.1103/PhysRevLett.88.225002 PACS numbers: 52.35.Ra, 52.35.Kt, 52.35.Mw, 52.35.Sb

Prediction of particle and heat transport is essential to
obtaining controlled magnetic fusion. In particular, large
transport events of substantial amplitude, even if rare, can
be dangerous for confinement, on account of their strength.
For instance, the breaking of gyro-Bohm scaling observed
in large tokamaks as well as in recent numerical simula-
tions [1] indicate that avalanche-like events of a large
amplitude can be crucial in the transport (e.g., in the L
mode). These events are associated with coherent struc-
tures such as streamers or blobs and are often bursty in
time, thus leading to non-Gaussian statistics in probabil-
ity distribution function (PDF) tails. Therefore, transport
models must confront the problem of prediction of rare,
large transport events. The focus of this Letter is thus on
the prediction of PDF tails arising from these bursty events
associated with coherent structures.

Theoretically, one can obtain PDF tails in the long time
limit by taking an ensemble average. For instance, let us
imagine constructing tails of flux PDF owing to fluid veloc-
ity at t ! 0, by turning on an external forcing at t ! 2`
when there is no fluid motion. We further assume that at
t ! 0, there are coherent structures that are responsible
for PDF tails. Between the initial (t ! 2`) and final
times (t ! 0), coherent structures would appear at arbi-
trary times, followed by their destruction. As PDF tails are
determined by the amplitude of these coherent structures
at t ! 0, we can relate PDF tails to a joint probability of
creation and decay of various coherent structures (or, the
transition amplitude between the state with no fluid mo-
tion and that with coherent structures). Here, the coherent
structure can be viewed more generally as the spatial pat-
tern associated with an “empirical eigenfunction” of the
turbulence. While a weighted sum over these different
coherent structures would eventually be necessary to ob-
tain the true PDF tail, for simplicity, we shall assume the
presence of only one single coherent structure [2] in the
following discussion and call the creation and destruction
processes of this coherent structure an instanton and an
anti-instanton, respectively. Note that the physical mean-
ing of instanton/anti-instanton employed here is slightly
different from that used in quantum mechanics [3].

An instanton solution for a dynamical variable u in
classical fluid problems [2] is a nonperturbative solution
in the form of u$x, t% ! F$t%u0$x% with F$t ! 2`% ! 0.
Here, u0$x% denotes the spatial form of a coherent struc-
ture (i.e., more specifically, an exact solution of the time-
independent dynamical equation in a certain frame) and
F$t% is a temporally localized amplitude, capturing its cre-
ation process. For instance, u0 can be an exact solution
to a homogeneous nonlinear equation, in which case F$t%
represents the excitation of u0 from the initial state with
u ! 0 by an external forcing. As we shall see shortly,
F$t% is to be determined by a saddle-point method applied
to an effective action expression for the PDF, which can, in
general, be given by a path integral [2,4,5]. Thus, the PDF
estimate is intrinsically nonperturbative. The opposite can
apply to an anti-instanton, which starts with a finite (ini-
tial) value of F$t% and ends with a vanishing (final) value;
F$t% in this case represents the destruction of a coherent
structure. In principle, one should incorporate the contri-
bution to PDF tails from multi-instantons, a time sequence
like instanton, anti-instanton, instanton, for example.

In this Letter, we compute the PDF tail of local Reynolds
stress R (momentum flux) for forced Hasegawa-Mima tur-
bulence [6] in order to study momentum transport. Note
that Hasegawa-Mima turbulence is the simplest paradigm
of drift-wave turbulence. While heat and/or particle trans-
port events are ultimately of greater interest, the simplicity
of the Hasegawa-Mima model forces us to consider only
momentum transport events here. A “momentum trans-
port event” may be thought of as a localized burst of shear
generation such as that which occurs when the L ! H
transition is triggered. Note that the generation of shear
flow has been extensively studied in many astrophysics,
geophysical, and laboratory settings, with examples rang-
ing from the Jovian belt-type flow, the rapid rotation of the
Venusian atmosphere, to the zonal winds on major planets
Jupiter and Saturn. In the absence of dissipation and exter-
nal forcing, the Hasegawa-Mima equation allows an exact
solution, known as a modon [7], which is a bipolar vortex
soliton. As this is the only exact solution that is available
to us, we consider coherent structures (which contribute to
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PDF tails) to be modons, for simplicity. Furthermore, to
simplify the analysis, we take into account only a single
instanton [2]. The key idea is then to view the PDF tails
as a transition amplitude from an initial state, with no fluid
motion, to final states with different values of R due to a
modon in the long time limit.

A forced Hasegawa-Mima equation [6] takes the follow-
ing form:

$1 2 =2%≠tf 1 y!≠yf 2 v ? ==2f ! f . (1)

Here, the notation is standard; x and y denote local ra-
dial and poloidal directions, respectively; y! ! r2

s Vi"Ln
is the drift velocity due to radial density gradient; Ln !
2$≠xn0"n0%21 is the (background) density length scale;
f, v ! 2= 3 fẑ, and f are, respectively, electric po-
tential, E 3 B advection velocity, and external forcing.
Note that Eq. (1) is nondimensionalized by measuring the
length, velocity, and f in units of rs, cs, and Te"e.

To keep the analysis tractable, we shall take the statistics
of the forcing to be Gaussian with white noise in time as
follows:

& f$x, t%f$x0, t0%' ! d$t 2 t0%k$x 2 x0% , (2)

and & f' ! 0. By exploiting the Gaussian statistics of
the forcing [5], the PDF for the local Reynolds stress
yxyy$x0% ! 2≠xf≠yf$x0% can be expressed in terms of
a path integral [2,4]:

P$R; x0% ! &d$yxyyjx0 2 R%' !
Z

dleilRIl , (3)

where

Il !
Z

DfDf e2Sl .

In Eq. (3), the angular brackets denote the average over the
random forcing f, and Sl is the effective action given by

Sl ! 2i
Z

d2x dtf!$1 2 =2%≠tf 1 y!≠yf 2 v ? ==2f#

1
1
2

Z

d2xd2x 0dt f$x%k$x 2 x0%f$x0%

1 il
Z

d2xdt $2≠xf≠yf%d$t%d$x 2 x0% . (4)

As we are interested in PDF tails for a large R, we can
evaluate the l integral in Eq. (3) by a saddle-point method,
once Il is computed. Furthermore, the leading order term
in Il can be evaluated by a saddle-point method provided
that l is a large parameter. In fact, l can be taken as a
large parameter for n . 1, when Il ( exp!2Sl$0%# with
Sl$0% ! iCln, since the saddle-point solution for the l
integral satisfies l ~ R1"$n21%. Here, Sl$0% is the saddle-

point action, and C and n are constants. A saddle-point
solution f for large R and l with the initial condition
f$t ! 2`% ! 0 constitutes an instanton, as mentioned
previously.

Expecting a coherent structure, contributing to PDF
tails, to be a modon created by the external forcing, we
make the ansatz that the saddle-point solution (instanton)
is a temporally localized modon, i.e.,

f$x, t% ! c$x, t%F$t% , (5)

where c$x, t% ! c$x, y 2 Ut% is a modon solution given
by [7]

c, ! !c1J1$kr% 1 $b 2 k2U%r"k2# cosu ,

c. ! c2K1$pr% cosu .
(6)

Here c, ! c$r , a% and c. ! c$r . a%; r !
p

x2 1 y02,
tanu ! y0"x, y0 ! y 2 Ut, b ! y! 2 U, p2 ! 2b"U,
c1 ! 2ba"k2J1$ka%, c2 ! 2Ua"K1$pa%, and J 0

1$ka%"
J1$ka% ! $1 1 k2"p2%"ka 2 kK 0

1$pa%"pK1$pa%; U is
the velocity of a modon; a is the size of the core region;
J1 and K1 are the first Bessel and the second modified
Bessel functions. In the following analysis, the size of a
modon a shall be taken to be a fixed parameter. As noted
previously, PDF tails are then interpreted as the transition
amplitude going from the state with no fluid motion to
final states with different values of local Reynolds stresses
due to different amplitude of a modon of a given size a.
The time variation of f, i.e., F$t% in Eq. (5), representing
the excitation of a modon by an external forcing, can be
associated with the degree of “burstiness” of an event.

By using Eq. (5), we can perform the spatial integral
in Sl, in Eq. (4), as follows. First, we assume that k in
Eq. (2) is approximately parabolic for jx 2 x0j , L with
the following form:

k$x 2 x0% ! k0J0$kf jx 2 x0j% , (7)

and vanish for jx 2 x0j . L. Here L & a01"kf with a01
being the first zero of J0. Note that the choice of J0 is just
for computational convenience. Second, we expand the
conjugate variable in terms of Bessel and Fourier series:

f, !
X

m,n
Jm

µ

amn

a
r
∂

!amn$t% sinmu 1 bmn$t% cosmu# ,

f. !
X

m,n
Km$qmnr% !amn$t% sinmu 1 bmn$t% cosmu# ,

(8)

where f, ! f$r , a, u, t% and f. ! f$r . a, u, t%;
amn$t%, bmn$t%, amn$t%, and bmn$t% are unknown func-
tions of time, which are to be determined by solving
saddle-point equations.

By using Eqs. (5)–(8) in (4), Sl reduces to an integral
with respect to time only:
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Sl ! 2i
Z

dt
X

n
! "F$Anb1n 1 Anb1n% 1 F$F 2 1%Bna2n#

1 k0

Z

dt
X

m,n
!$Dnb1n 1 Dnb1n% $Dmb1m 1 Dmb1m%

1 EmEna2ma2n# 1 il
Z

dt F2j0d$t% .

(9)

Here, j0 ! 2≠xc≠yc$x0%, An ! c1$1 1 k2%
Ra

0 dr 3
rJ1$kr%J1$z1n%"2 1 a

Ra
0 dr r2J1$z1n%"2k2, Bn ! 2ka 3

Ra
0 dr rJ2$kr%J2$z2n%"4, Dn !

Ra
0 dr rJ1$kfr%J1$z1n%"2,

En !
Ra

0 dr rJ2$kfr%J2$z2n%"2, An ! c2$1 2 p2% 3
RL

a dr rK1$q1nr%K1$pr%"2, and Dn !
RL

a dr rK1$q1nr% 3
J1$kfr%"2; z1n ! a1nr"a and z2n ! a2nr"a; ain is the
nth zero of Ji [i.e., Ji$ain% ! 0]; q1n is a constant; a !
b 2 k2U. Note that An, Dn, An, and Dn here originate
from the terms involving cosu, while Bn and En arise
from those with sin2u. Note also that the coefficients An,
An, and Bn involve the projection of the conjugate vari-
able onto the modon, while Dn, Dn, and En contain the
projection of the forcing onto the conjugate variable.

By minimizing Sl (4) with respect to independent vari-
ables F$t%, a2n$t%, b1n$t%, a2n$t%, and b1n$t%, we obtain the
following saddle-point equations:

2iAn≠tF 1 2k0

X

m
$Dmb1m 1 Dmb1m%Dn ! 0 , (10)

2iBnF$F 2 1% 1 2k0

X

m
EnEma2m ! 0 , (11)

2iAn≠tF 1 2k0

X

m
$Dmb1m 1 Dmb1m%Dn ! 0 , (12)

X

n
!An≠tb1n 1 An≠tb1n 2

Bn$2F 2 1%a2n# ! 22lF$t%d$t%j0 . (13)

Equation (13) implies that b1n and b1n have a discontinu-
ity at t ! 0, since the physical quantity F$t% is a smoothly
varying function of time. Furthermore, as conjugate vari-
ables propagate backwards in time in the presence of dis-
sipation [2], b1n ! 0, b1n ! 0, and a2n ! 0 for t $ 0.
We thus integrate Eq. (13) for a small time interval t [
!2e, 0# (e ø 1) to obtain the relation at t ! 2e,

X

n
!Anb1n 1 Anb1n# ! 2lF0j0 , (14)

where F0 ! F$t ! 0%. Note that the discontinuities in b1n
and b1n at t ! 0 are directly related to the nonvanishing
value of F0. For t , 0, the coupled equations (10)–(13)
yield an equation for F as

≠ttF 2 g$F2 2 F% $2F 2 1% ! 0 , (15)

where g !
P

m BmBm"$Q
P

n EnEn% and Q !
P

m AmAm"
P

n DnDn !
P

m AmAm"
P

n DnDn. The solution to
Eq. (15), with the boundary conditions F$t ! 0% ! F0
and F$t ! 2`% ! 0, is easily found to be

F$t% !
1

1 2
F021

F0
exp)2p

g t*
, (16)

while the value of F0 is determined by Eqs. (10), (12), and
(14) as

F0 ! 1 1
i4k0lp

g Q
j0 .

As can be seen from Eq. (16), the instanton is localized
within a time interval proportional to 1"pg. By adjusting
the forcing, the localization time of the instanton can be
chosen to be shorter than the viscous time scale, thereby
justifying the neglect of viscosity in the present analysis.
Note that Eqs. (10)–(13) indicate a nonvanishing projec-
tion of the forcing onto the modon is necessary for the
existence of a nontrivial solution for F. Thus, the (spatial)
“overlap” between the forcing and modon is critical for
the generation of the modon. This projection is likely to
be maximized by choosing the characteristic scale of the
forcing to be comparable to that of a modon, i.e., when
kf ( k. In more general terms, which coherent structure
is likely to be generated is determined by the nature of
the forcing, with different forcings giving rise to different
manifestations of intermittency.

The instanton solution (16), with the help of Eqs. (10)–
(13), then gives us the saddle-point action to leading order
in l, as

Sl$0% + 2
i
3

hl3,

where h ! j3
0q2 and q ! j4k0"$pg Q%j. The previous

equation justifies the assumption of large l since Sl$0% ~
l3 with n ! 3. Finally, the PDF tails for local Reynolds
stress R can easily be computed by applying the saddle-
point method for the remaining l integral in Eq. (3). It
turns out that the PDF tail is physically meaningful only
for R"j0 . 0, because an instanton with the opposite sign
of R to the modon is unlikely to be excited. For R"j0 .
0, the saddle-point solution satisfies lj0q ! i$R"j0%1"2,
reducing F0 to the following form:

F0 ! 1 2

µ

R
j0

∂1"2

.

This is purely real, thereby rendering F$t% in (16) a physi-
cal quantity and leading to the following PDF tail:

P$R; x0% ( exp
Ω

2
2
3q

µ

R
j0

∂3"2æ

. (17)

Equation (17) provides the probability of finding a local
Reynolds stress R, normalized by j0, at x ! x0. Re-
call that j0 ! 2≠xc≠yc$x0% is local Reynolds stress as-
sociated with the modon solution (6). The PDF tail (17)
is a stretched exponential, exhibiting non-Gaussian statis-
tics and intermittency. Owing to this stretched exponential
PDF tail, the probability of the generation of (large-scale)
shear flow with a large amplitude is likely to be enhanced
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over Gaussian prediction. Note that in the absence of forc-
ing (i.e., k0 ! 0), P ! 0, simply because the instanton
cannot form without the forcing. We also note that an in-
stanton method is likely to give an exponential dependence
of PDF tails like Eq. (17).

Given a rather sensitive dependence of our results on
the properties of an external forcing, it is worth comment-
ing on the implication of our results for a real system
where the stochasticity (randomness) is likely to be self-
consistently generated. By virtue of the fluctuation-
dissipation theorem, the amplitude of the (self-generated)
fluctuation u0 in a dynamical variable u may be crudely
estimated as &u02'"tc ~ & f2'. Here, tc is the correlation
time of u0, which can represent the inverse of the linear
growth rate of u0, for instance. Thus, our results (given in
terms of & f2') can be recast in terms of &u02'"tc. We note
though that in a self-consistent system, multiplicative, in
addition to additive, stochasticity is likely to be present.
In that case, the generation of coherent structures from
this multiplicative noise may be different from the case
of an external forcing. This issue will be addressed in a
future publication.

In summary, we have presented a nonperturbative ana-
lytical result for the tail of the PDF of the local Reynolds
stress (vorticity flux) R for forced Hasegawa-Mima tur-
bulence. Our key idea was based on the observation that
the PDF tail is governed by the bursty events associated
with the appearance of coherent structures, which enabled
us to relate the bursty events to the creation of a coherent
structure, say, a modon in the present Letter. Accordingly,
we envisioned the PDF tails as the transition amplitude
from an initial state, with no fluid motion, to final states
governed by the modon with different values of R in the
long time limit. This transition amplitude was found by
optimizing the effective action for the PDF given by a
path integral via a saddle-point solution (instanton). We
found that the tail of the Reynolds stress (R) PDF ex-
hibits the non-Gaussian statistics with the specific form
exp!2cR3"2#, where c is a constant. We conclude by

remarking that the contribution to PDF tails from multi-
structures or multi-instantons should be incorporated in a
future paper. Furthermore, the extension of this model to
the study of global momentum flux (Reynolds stress) and
to the prediction of heat or particle transport in a more
complicated model, such as the Hasegawa-Wakatani equa-
tions [8], ion temperature gradient turbulence [9], or dis-
sipative trapped ion convective cell [10] models, would be
worthwhile.

We thank K. Itoh and S.-I. Itoh for a useful observation
concerning the relation between instanton structure and the
concept of an empirical eigenfunction. This research was
supported by U.S. DOE FG03-88ER 53275.
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