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The development of treatment biomarkers for psychiatric disorders has been challenging, particularly for heterogeneous
neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD). Promising findings are also rarely
translated into clinical practice, especially with regard to treatment decisions and development of novel treatments. Despite this
slow progress, the available neuroimaging, electrophysiological (EEG) and genetic literature provides a solid foundation for
biomarker discovery. This article gives an updated review of promising treatment biomarkers for ADHD which may enhance
personalized medicine and novel treatment development. The available literature points to promising pre-treatment profiles
predicting efficacy of various pharmacological and non-pharmacological treatments for ADHD. These candidate predictive
biomarkers, particularly those based on low-cost and non-invasive EEG assessments, show promise for the future stratification of
patients to specific treatments. Studies with repeated biomarker assessments further show that different treatments produce
distinct changes in brain profiles, which track treatment-related clinical improvements. These candidate monitoring/response
biomarkers may aid future monitoring of treatment effects and point to mechanistic targets for novel treatments, such as
neurotherapies. Nevertheless, existing research does not support any immediate clinical applications of treatment biomarkers for
ADHD. Key barriers are the paucity of replications and external validations, the use of small and homogeneous samples of
predominantly White children, and practical limitations, including the cost and technical requirements of biomarker assessments
and their unknown feasibility and acceptability for people with ADHD. We conclude with a discussion of future directions and
methodological changes to promote clinical translation and enhance personalized treatment decisions for diverse groups of

individuals with ADHD.

Translational Psychiatry (2022)12:444; https://doi.org/10.1038/s41398-022-02207-2

INTRODUCTION

Biomarker discovery for psychiatric disorders and symptoms has
been challenging, despite a clear need to guide clinical decisions
[1-3] and a vast literature examining neurobiological under-
pinnings of diagnoses, dimensional constructs (i.e, Research
Domain Criteria [RDoC]) [4, 5], developmental trajectories [6, 7],
and treatment response [8, 9]. Furthermore, promising findings
are rarely translated to clinical practice, in academic medical
hospitals or clinics or even further, to community clinical settings.
This has been true for nearly all psychiatric disorders, yet
particularly true for neurodevelopmental disorders such as
attention-deficit/hyperactivity disorder (ADHD), which is likely to
have multiple etiological and neurobiological pathways and
whose benchmarks for “typical” and “pathological” are moving
targets due to population-level variability in behavioral, cognitive,
and brain maturation rates [3, 10]. The lack of biomarker
translation is especially evident in the slow development of
novel treatments for ADHD (and many other disorders) [11],
where the gold-standard of treatment, psychostimulant medica-
tions, has been the same for over 50 years. Despite the slow

progress, the considerable scientific efforts and substantial
literature base provide a promising foundation for biomarker
discovery. The goal of this article is to give an updated narrative
review of promising biomarkers for ADHD treatment response
along with methodological changes that may assist with clinical
translation to enhance personalized medicine and novel treat-
ment development.

We first briefly discuss biomarker definitions and categories to
provide a framework for the review. In 2001, the NIH Biomarkers
Definitions Working Group defined a biomarker as “a characteristic
that is objectively measured and evaluated as an indicator of
normal biologic processes, pathologic processes, or biological
responses to a therapeutic intervention. A biomarker can be a
physiologic, pathologic, or anatomic characteristic or measure-
ment that is thought to relate to some aspect of normal or
abnormal biologic function or process” [12]. While there have
been several variants on this basic theme, particularly as applied
to various biomarkers of types (e.g., blood biomarkers) and disease
states (e.g., cancer biomarkers or psychiatric biomarkers), a recent
outline of biomarker categories by the Food and Drug
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different categories of biomarkers (adapted from the Food and
Drug Administration Biomarkers, EndpointS, and other Tools
Resource [13]) have the potential to impact clinical practices in
psychiatry. This review focuses specifically on treatment
biomarkers.

Administration (FDA) Biomarkers, EndpointS and other Tools
(BEST) [13] Resource will be used as a framework for the current
review (Fig. 1). Literature on diagnostic and susceptibility/risk
biomarkers are outside the scope of this paper (recent reviews can
be found elsewhere [3, 14-16]). We thus focus on categories
relevant to treatment decision making (i.e, predictive and
monitoring/ response biomarkers). We highlight key findings by
providing examples from strong, methodologically rigorous
studies, particularly on pharmacological treatments, along with
methodological barriers to clinical translation.

PREDICTIVE BIOMARKERS

Given the wide variability in effectiveness and tolerability of
available treatments, an important motivation for developing
biomarkers has been to identify measures parsing this variability
and aiding personalized treatment decisions. This is especially
needed for treatments such as non-stimulants and non-
pharmacological options, where effects may not be observed
until weeks after treatment initiation. Here, we use the term
“predictive biomarkers” based on BEST guidelines [13] (Fig. 1), but
recognize that studies have also referred to these measures as
“prognostic biomarkers” [17].

Structural and functional neuroimaging

Pre-treatment subcortical volumes have been associated with
treatment response to methylphenidate (MPH), with responders
showing smaller volumes than non-responders [18] in one study
but greater gray matter concentration [19] in another study
(Table 1). A single study using diffusion-weighted imaging found
that a machine learning algorithm could predict better MPH
response from higher values of local efficiency (reflecting how
efficiently information can be distributed between a brain region
and its neighbors) within the thalamus, precentral gyrus and
superior frontal gyrus [20]. Although the directions of the patterns
are mixed, measures implicated in the pathophysiology of ADHD
have been found to have potential predictive value with
treatment effects.

With regard to functional MRI, studies have shown that greater
left lateral prefrontal cortex activation during a Stroop task [21] and
age-related increases in within-network cingulo-opercular connec-
tivity tracking the developmental trajectory of neurotypical controls
[22] were associated with improvement in ADHD symptoms as
assessed while subjects were on versus off medication. One of
these studies in particular suggests that predictive biomarkers of
treatment response may be developmentally sensitive, requiring

SPRINGER NATURE

repeated assessments of developmental change [22]. Importantly,
both studies used naturalistic, observational designs of chronically
medicated youth scanned off medication, and may not generalize
to very poor treatment responders, who are more likely to cease
treatment [21, 22]. Moreover, since long-term medication exposure
may produce changes in brain patterns, findings may not apply to
individuals assessed prior to treatment [23]. These issues can be
overcome by clinical trials. In one such study, lower pre-treatment
connectivity from striatal regions to orbitofrontal, cingulo-opercular
and middle and medial temporal regions was associated with
better treatment outcomes after 8-week MPH treatment [24].
Studies have further tested whether acute changes (particularly
with short-acting psychostimulants) may predict symptom
improvement over longer timeframes [22]. To our knowledge, only
one fMRI study has adopted such a design in a small sample
(N=7), reporting that greater decreases in regional homogeneity
(i.e., local coherence in fluctuating BOLD signals, or local
connectivity) within right postcentral gyrus and superior parietal
lobe following a single MPH dose predicted lower ADHD severity at
8 weeks [25].

While most studies focused on a single form of treatment,
neuroimaging profiles predicting differential response to different
treatments may be more useful to guide treatment decisions at
the individual level (i.e., treatment stratification [26]). A notable
study of this type, using a double-blind, cross-over randomized
controlled design comparing 8-week MPH vs. atomoxetine (ATX)
treatment, found that greater pre-treatment caudate activation
predicted better treatment response to MPH, but worse response
to ATX [27]. These findings suggest that the identified fMRI
patterns, if replicated, may be valuable for predicting response to
different treatments.

In addition to potential applications in treatment allocation
algorithms, an aim of biomarker research is to develop novel
neurotherapies targeting neural processes associated with a
disorder or modulated by existing treatments [11]. The most
elegant neuroimaging example is provided by studies investi-
gating fMRI neurofeedback of the right inferior frontal gyrus
(IFG) as a novel ADHD treatment [28-30], guided by meta-
analytic evidence that the right IFG is under-activated in
individuals with ADHD [31, 32], but upregulated by ADHD
medications [9, 31, 32]. Although clinical improvements over
2 weeks were observed both with rIFG-neurofeedback and a
control neurofeedback condition (para-hippocampal region),
only active rIFG-neurofeedback showed evidence of improve-
ments in everyday life (i.e., learning retention) after 11 months
[28]. Individual differences in neurofeedback learning were
associated with greater pre-treatment inferior frontal and striatal
activation during an inhibitory control task [29].

Overall, while the ability of single pre-treatment brain scans to
guide clinical decision making is an important goal, the current
neuroimaging literature does not point to any immediate clinical
applications of neuroimaging biomarkers due to inconsistent
findings and small sample sizes (Table 1). Further, the high costs,
contraindications and low tolerance of participants’ movement of
MRI are considerable barriers to the future implementation of
neuroimaging biomarkers in clinical settings (particularly for
highly hyperactive children), and will require substantial metho-
dological innovation (e.g., shorter scans, better motion correc-
tions). Finally, the methodology for testing promising findings as
predictive biomarkers must evolve to be clinically useful. For
example, the right IFG-neurofeedback findings [28-30] should be
quantified for a threshold value (of activation) that maximally
identifies treatment response, and then that value should be used
as an inclusion criterion or to stratify participants in subsequent
independent prospective trials to determine its predictive validity.
This last step has not been implemented in any neuroimaging
studies of predictive biomarkers to date but is necessary to
develop a biomarker that can be used by others in clinical settings.

Translational Psychiatry (2022)12:444
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EEG

EEG has been one of the main techniques to investigate the
neural mechanisms of ADHD treatment response [8, 33].
Compared to fMRI, EEG recordings allow the direct investigation
of brain activity with greater temporal resolution, but less
accurate spatial precision [1, 17]. EEG is also less expensive and
more tolerant of participants’ movement, making it easier to
collect large clinical samples over time for the development of
treatment biomarkers [34].

The most consistent findings suggest that higher spectral
power in the theta band (4-7 Herz [Hz]) during resting states (eyes
open or closed) is associated with better clinical outcomes
following stimulant treatment [17, 35, 36] (Table 2). A common
interpretation of this finding is that lower pre-treatment levels of
arousal and vigilance, commonly displayed by children with ADHD
[37], predict better response. In some studies, excess theta power
in responders was accompanied by lower power in faster
frequencies, especially beta (generally 13-25Hz), and elevated
theta-to-beta-ratio (TBR) [35, 36]. Yet, an association between TBR
and treatment outcome was not replicated in a larger, more
recent study [38], suggesting that TBR may have questionable
predictive utility, besides its well-documented limited diagnostic
properties [39, 40]. Further, event-related potential (ERP) studies
found that more intact auditory P3 [41], cue P3 and contingent
negative variation [36, 42] amplitudes, reduced no-go P3
amplitudes [36, 42], and greater change in P3 amplitude after a
single stimulant dose predicted better stimulant response [42, 43].
Two notable studies also tested the combined predictive effects of
spectral power and ERPs on treatment response [36, 42],
accounting for shared variance between various measures. In a
multivariate model, higher cue P3, smaller no-go P3, and excess
theta power were the only significant predictors of stimulant
response [36]. An aggregate index combining EEG/ERP and
performance measures predicted treatment response with 88%
specificity and 86% sensitivity [42].

Fewer studies focused on non-stimulant medications. A 12-
month study of ATX found broad pre-treatment increases in
power in children classified as non-responders relative to controls,
whereas responders only showed elevations in slower frequencies
such as the delta (<4 Hz), theta and alpha (8-12 Hz) bands [44].
Lower pre-treatment N2 amplitudes [45] and greater pre-
treatment P3 amplitudes [41, 46] during auditory tasks have been
associated with better response after 6-10 weeks of ATX
treatment, although non-significant P3 effects were also reported
[45]. Both in children and in adults, greater change in temporo-
parietal theta cordance (a measure of regional spectral power) at
1 week predicted clinical outcomes at 6-12 weeks [47, 48].

Although most available studies of EEG predictive biomarkers
have investigated pharmacological treatments, a notable non-
pharmacological example is a novel 4-week double-blind, sham-
controlled trigeminal nerve stimulation (TNS) trial, where lower
pre-treatment resting-state right-frontal theta and alpha power
predicted greater clinical improvement [49]. Furthermore, EEG
power, coupled with deficits on a behavioral rating of executive
functioning, had an area under the curve (AUC) of 0.81,
suggesting good prediction of TNS treatment response. Since
these findings come from the first RCT testing TNS for ADHD,
replication in future larger trials is needed. Another non-
pharmacological study [50] found that, compared to non-
remitters, girls and women whose ADHD symptoms remitted
following quantitative EEG-informed neurofeedback showed
shorter frontal P3 latencies during an auditory task, whereas
boys and men who remitted had lower individual alpha peak
frequency (iAPF; i.e., the frequency at which an individual’s alpha
activity oscillates, with slower profiles potentially reflecting
reduced thalamo-cortical information flow [51, 52]). Given the
relatively inconclusive evidence on neurofeedback efficacy for
ADHD at the group level [53-55], these studies may help to

as assessed using

ADHD-RS-IV.

response to ATX,
ADHD attention deficit hyperactivity disorder, ADHD-RS-IV ADHD Rating Scale-IV, ATX atomoxetine, CGAS Children’s Global Assessment Scale, CGI Clinical Global Impressions scale, CPRS Conners’ Parent Rating

response to MPH,

and off medication
but a worse

Key findings
versions of the
CPRS in youth
with ADHD.
activation was
associated with a
better treatment

Greater pre-
treatment caudate

Brain activation
during a go/no-

biomarker(s)
go task

Candidate

Design

and off
medication
8-week MPH/ATX
randomized cross-
over design, pre-
treatment

% White
Not
reported

% Male
83%

11.0SD=24

Age
M=

N Controls

N ADHD
(medication-
naive)

Country
USA 36

continued
Scale, DICA-IV Diagnostic Interview for Children and Adolescents - IV; fMRI functional magnetic resonance imaging; IFG inferior prefrontal gyrus, MPH methylphenidate, MRI magnetic resonance imaging, RCT

randomized controlled trial.

Schulz et al.

Authors, year
[27]

Table 1.
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predicted gain in

stratified normalized

remission of 36% and
29%, respectively.

Exploration phase:

higher iAPF

predicted remission
with GUAN and

lower iAPF predicted
remission with ATX.

Acute P3b amplitude
changes accurately

P3b during
auditory

Single dose and
6-month MPH,

open label

Not

58%

M=133,

35

Not reported

(probably
Australia)

Young et al.

[43]

predicted treatment
outcome in 81%

of cases.

oddball task

reported

2.48

SD

ADHD attention deficit hyperactivity disorder, ATX atomoxetine, AUC area under the curve statistic, EEG electroencephalography, DEX dexamphetamine, ERP event relate potential, GUAN guanfacine, MPH

methylphenidate, iAPF individual alpha peak frequency, M mean age, NF neurofeedback, NPV negative predictive value, PPV positive predictive value, SD standard deviation, TNS trigeminal nerve stimulation.

identify biologically-distinct ADHD subgroups who respond
better to this treatment.

Only a few studies tested EEG predictors of more than one type
of treatment [52, 56, 57]. An 8-week randomized controlled trial
(RCT) comparing MPH, guanfacine and their combination found
that event-related EEG power profiles during a working memory
task showed treatment-specific associations with clinical improve-
ments [57]. Specifically, better treatment outcome was predicted
by weaker mid-frontal beta power modulations localized in the
anterior cingulate cortex (ACC) in children treated with combined
MPH + guanfacine, but by stronger modulations in children
treated with MPH or guanfacine. Together, EEG measures
explained twice as much variance in treatment outcome than
clinical measures alone in children treated with guanfacine and
combined treatments. These findings, while awaiting replication in
independent samples, suggest that EEG profiles could supplement
clinical information to aid future personalized treatment decisions.

Another noteworthy exemplar based on different treatments is
a recent multi-sample study of iAPF [52]. Guided by previous
literature showing associations of slow iAPF with worse stimulant
response [38, 58] but better neurofeedback response [50],
particularly in boys and men, this study tested whether iAPF
differentially predicted ADHD remission following MPH and
multimodal neurofeedback treatments in boys with ADHD [52].
After developing and validating iAPF as a neurobiologically
plausible biomarker in a large transdiagnostic sample, this study
found that iAPF was able to stratify children with ADHD to MPH
(high iAPF) or multimodal neurofeedback (low iAPF) with gains in
remission of 17-30% relative to observed remission rates. These
results were corroborated in blinded, out-of-sample validations,
with predictive gains of 29-36%. Additional exploratory analyses
showed that iAPF predicted remission to guanfacine (high iAPF)
and ATX (low iAPF). These findings point to iAPF as a robust
biomarker able to predict treatment outcome across independent
samples. As stated above for neuroimaging biomarkers, an
important next step to inform future personalized treatment
approaches would be to carry out a prospective study using iAPF
to stratify individuals with ADHD to different treatments.

To summarize, while most of the EEG profiles predicting
treatment outcomes have been examined only for stimulants,
right frontal resting state spectral power, event-related power
related to working memory and iAPF emerge as candidate
predictive biomarkers that may aid future stratification and
prediction of response to different treatments. Future studies will
need to apply out-of-sample stratification and validation
approaches prospectively to a wider portion of the ADHD
population, treatments and EEG profiles.

Genetics

Genetic studies have also investigated biomarkers predicting
treatment response, particularly to MPH (Table 3). The first wave of
studies took a candidate gene approach focused on single
nucleotides polymorphisms (SNPs) and variable number tandem
repeat (VNTR) within or proximal to monoaminergic genes
[59, 60], as ADHD medications act on dopaminergic, serotonergic
and adrenergic systems. A meta-analysis found that many
candidate variants predicted MPH response with odds ratios
(ORs) around 1.5-3 [60], including a VNTR within the SLC6A3 gene
encoding the dopamine transporter, SNPs tagging the gene
coding for the norepinephrine transporter (SLC6A2), variants
within the DRD4 gene altering receptor expression and near the
ADRA2 gene coding for the alpha-2-adrenergic receptor, and a
SNP within the enzyme Catechol-o-methyltransferase (COMT)
involved in degrading catecholamines.

Given the known limitations of candidate gene approaches [61],
more recent work has focused on genome-wide association
studies (GWAS). As large sample sizes are needed in GWAS of
complex phenotypes such as medication response, studies

Translational Psychiatry (2022)12:444
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significant hits for

open label

naive, 13

treatment response.
PRS for ADHD was

medication free
for >1 week)

found to predict a

favorable response,

explaining 2% of the

variance.

ADHD attention deficit hyperactivity disorder, ATX atomoxetine, CNV copy number variant; COMT Catechol-o-methyltransferase, GWAS genome-wide association study, M mean age, MPH methylphenidate; PRS

polygenic risk score; RCT randomized controlled trial, SD standard deviation, SNP single nucleotides polymorphism, VNTR variable number tandem repeat.

G. Michelini et al.

including less than 250 participants found no genome-wide
significant SNPs tied to medication response [62, 63]. More
promising results come from a large Danish study that linked
genotype data with medical records, allowing a well-powered
GWAS of starting (N=7427) or stopping (N=3370) MPH
treatment or switching to non-stimulants (N = 1137) over 2 years
[64]. While no genome-wide significant associations emerged for
starting or stopping treatment, a locus on 16g23.3 containing
genes associated with many neuropsychiatric phenotypes was
associated with switching medications, likely due to poor efficacy.
In addition to common genetic variants, a few studies have
examined rarer genetic variants, such as copy number variants
(CNVs; these represent large scale genomic duplications or
deletions). One study reported that ADHD-associated CNVs were
concentrated in genes within a network of metabotropic
glutamate receptor genes, affecting 11.3% of ADHD cases
compared to 1.2% of neurotypical controls [65]. In a subsequent
open-label trial, individuals who harbored CNVs within this
glutamatergic gene network had better therapeutic response to
an activator of this glutamate receptor, fasoracetam [66].

Since each individual genetic marker only explains a tiny
fraction of treatment response, three studies have investigated
aggregate measures of genetic risk using polygenic risk scores
(PRS) (i.e., the sum of alleles across the genome weighted by their
effect size). PRS for ADHD was found to predict a favorable
response to ADHD medication (MPH or ATX), explaining around
2% of the variance [63]. The aforementioned Danish study did not
find the PRS for ADHD to be associated with treatment outcomes
[64], consistent with recent evidence that genes implicated in the
pathogenesis of ADHD do not overlap with genes encoding
targets of stimulants and ATX [67]. However, PRS for bipolar
disorder and schizophrenia increased the likelihood of stopping
stimulant medication (~5-7% of the variance) [64], mirroring
findings that comorbid bipolar or psychotic disorders are
associated with poor treatment response and adverse events.
Finally, a PRS for MPH response derived in a childhood cohort did
not significantly predict response in an independent adult cohort
[62], with several interesting nominally significant signals that may
be worthy of future exploration.

Additionally, there has been interest in genetic markers that lie
within the cytochrome P450 superfamily of enzymes. The
cytochrome P450 system largely determines the metabolism of
ATX and varies widely between individuals by genotype, and by
race and ethnicity [68]. Pharmacokinetic genetic studies have
particularly focused on the cytochrome P450,2D6 (CYP2D6),
contrasting individuals with different genotypes leading to
ultrarapid, extensive and poor metabolism of ATX. Poor meta-
bolizers show up to 9 times less plasma clearance of ATX than the
extensive metabolizers, creating greater exposure to the drug. In
turn this raises the question of whether dosage adjustment based
on CYP2D6 genotype may help avoid adverse side effects, at least
for those taking high doses of ATX.

Together, initial findings suggest that stratifying individuals
based on genetic markers, such as PRS and CNVs, may be useful to
guide future treatment choice in a mechanistic manner. Future
studies will need to use much larger samples, consider possible
multiplicative effects of different genetic markers, investigate the
effects of genetic biomarkers on response to multiple pharmaco-
logical and non-pharmacological treatments, and test the
predictive utility of genetic biomarkers in combination with other
biomarkers, such as the promising neuroimaging and EEG
biomarkers discussed above.

MONITORING AND RESPONSE/PHARMACODYNAMIC
BIOMARKERS

Another major application of treatment biomarkers is for
treatment monitoring, with repeated biomarker assessments
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performed before and after treatment, in response to acute doses
or over longer periods. Neuroimaging and EEG biomarkers
reviewed in this section are consistent with the BEST monitoring
biomarker category and response/pharmacodynamic biomarker
category [13] (also sometimes called “pharmacokinetic biomar-
kers”) (Fig. 1).

Structural and functional neuroimaging

Both acute and longer-term treatment effects on brain patterns
have been documented using structural and functional magnetic
resonance imaging in ADHD samples (Table 4). Changes in
structural neuroimaging markers following treatment with MPH
have been studied as part of a 16-week double-blind, randomized,
placebo-controlled trial of boys and young men with ADHD
[69, 70]. One report from this trial showed wide-spread time-by-
medication-by-age interaction effects in left hemisphere white
matter, which were driven by increases in fractional anisotropy
among medicated children [69]. A report from the same trial
described increasing cortical thickness in medicated children
within right medial frontal cortex, which contrasted with the
cortical thinning that was observed in the placebo group. No
significant results were found for the adult groups, and structural
brain changes were not associated with clinical improvement [70].
Similarly, a double-blind randomized placebo-controlled trial of
N =131 adults with ADHD who underwent 12 months of MPH
treatment reported no significant treatment-related changes in
gray matter volume [71].

A reasonably large literature, including studies using double-
blind placebo-controlled designs in unmedicated youth with
ADHD, has examined changes in brain functioning under acute
doses of stimulant medication [9, 72-75] (Table 4). Available fMRI
studies reported upregulation of cingulo-opercular [9, 73, 76, 77]
and striato-thalamic activation [9, 77], and greater default mode
deactivation [9, 21, 78] across a range of cognitive tasks.
Regarding resting-state fMRI, changes in brain functioning
following acute doses have also been reported in cingulo-
opercular, striato-thalamic and default mode networks
[25, 79-81]. However, results are more varied than those from
the task-based literature, arguably reflecting the heterogeneity in
processing pipelines, regions of interest, network parcellations
and imaging metrics [81]. Nonetheless, two recent studies have
converging findings which point to a stabilizing influence of
psychostimulants on atypically variable resting-state connectivity
patterns in subjects with ADHD, as assessed using dynamic
functional connectivity methods [82, 83]. The few studies
investigating acute non-stimulant (e.g., ATX) effects have reported
largely overlapping patterns of functional brain changes to those
seen under single MPH doses [73-75], despite the longer time
needed for ATX to produce therapeutic effects and its distinct
molecular mechanisms [84].

A further body of work has examined the links between
treatment-related improvements in ADHD symptoms and pre- to
post-treatment changes in brain functioning over the course of
clinical trials. ADHD symptom changes have been associated with
changes in functional connectivity between bilateral medial
frontal and left insular regions [85] and in fractional amplitude
of low-frequency fluctuations (fractional ALFF) within bilateral
superior parietal lobe [86]. Studies on ATX suggest that the
therapeutic mechanisms of ATX require medium-term changes in
the brain [87, 88], and that ATX-related improvements in ADHD
symptoms were related to changes in functional connectivity,
predominantly involving inferior frontal and temporo-parietal
regions [87]. Interestingly, initial studies directly comparing the
medium-to-long term effects of MPH and ATX on brain function-
ing suggest partly different effects [88, 89]. For example, in one
study, clinical improvements positively correlated with treatment-
related increases in fractional ALFF within left temporo-parietal
and bilateral pre- and post-central gyri regions for participants

SPRINGER NATURE

taking MPH, but negatively with changes in fractional ALFF within
left occipital lobe and pre- and post-central gyri for patients taking
ATX [88]. Regarding task-based fMRIl, one medium-term
(6-8 weeks) study reported that improvement in symptoms were
associated with gains in task-related activation for ATX but
reductions in activation for MPH in the right IFG, left anterior
cingulate/supplementary motor area, and bilateral posterior
cingulate cortex [89].

With regard to non-pharmacological interventions, the afore-
mentioned fMRI neurofeedback trial of the rlIFG represents a
notable example [30, 90]. The IFG-neurofeedback group showed
increases in fronto-striatal activation during an inhibitory control
task and in activation and connectivity during a learning transfer
test from pre- to post-treatment, which correlated with ADHD
symptom improvements [28-30, 90].

Together, these findings provide initial evidence suggesting
that distinct neuroimaging biomarkers may be useful for
monitoring the longer-term effects of MPH, ATX and right IFG-
neurofeedback (fronto-striatal activity/connectivity). Nevertheless,
limitations of this body of work include reliance of small sample
sizes and lack of replications, as well as more practical limitations
of MRI which limit its utility in clinical settings.

EEG

Several studies have investigated the acute effects of medica-
tion on EEG profiles in individuals with ADHD [8] (Table 5). Acute
MPH doses decrease theta and alpha power and increase beta
power [91, 92] during resting states, suggesting that acute
stimulants ameliorate patterns of cortical hypo-arousal asso-
ciated with ADHD [92]; although non-significant [93, 94] effects
have also been reported. Acute MPH administration also
increases the amplitude of ERP components often reduced in
individuals with ADHD [16, 95], such as P3 [96, 97] and error-
related negativity and positivity [98] during go/no-go tasks,
whereas effects on N2 amplitudes are more mixed [96, 97].
These partly inconsistent findings likely arise from the use of
small, heterogeneous samples and analytic differences (e.g., use
of absolute vs. relative power). Initial findings further suggest
that acute ATX doses decrease spectral power in delta, theta and
beta bands [99].

Studies investigating the longer-term effects of pharmacologi-
cal treatment on EEG data have generally shown that stimulants
ameliorate EEG patterns that differ between individuals with
ADHD and neurotypical controls [16, 100-102], albeit often
without reaching full normalization. MPH treatment have been
shown to increase resting-state beta power and reduce theta
power and TBR across several studies [8, 103-106], particularly
over frontal and central scalp regions, although non-significant
effects have also been reported, [106-109] especially for TBR [8].
Regarding event-related activity, stimulants have consistently
shown medium and long-term effects on ERP components
associated with impaired sustained attention and cognitive
control in individuals with ADHD, particularly for P3 amplitudes
[107, 110-113], with P3 increases linked with improvements in
clinical and cognitive profiles [111].

Besides EEG studies of stimulants, 12-month ATX treatment
produced decreases in EEG resting-state power in delta, theta, and
alpha bands in responders but no changes in non-responders [44].
Several studies have also focused on EEG effects of non-
pharmacological treatments. Preliminary but encouraging data
exist from a 4-week RCT of trigeminal nerve stimulation in children
with ADHD, showing that active treatment increased resting state
right-frontal (delta, theta, beta, and gamma) and mid-frontal
(gamma) spectral power [114]. Several studies have reported
effects of neurofeedback, although findings appear quite incon-
sistent [56, 103, 110, 115]. More generally, the utility of neurofeed-
back biomarkers remains unclear given the inconclusive findings
on the clinical efficacy of neurofeedback [53-55].
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Very few EEG studies have compared the effect of different
treatments on EEG measures. While similar acute effects of MPH
and ATX have been reported on EEG spectral power [116], a cross-
over study comparing the effects of 8-week MPH vs. ATX on
contingent negative variation amplitudes showed increases with
MPH but not ATX [117]. Only one RCT, to our knowledge,
compared the long-term effects of stimulant medication (MPH),
non-stimulant medication (guanfacine, an alpha-2 agonist) as well
as their combination [109, 118]. After 8 weeks, each treatment
displayed distinct effects on resting-state spectral power and
event-related power during a spatial working memory (WM) task.
MPH was associated with increased centro-parietal resting-state
beta power and mid-occipital event-related theta power during
WM retrieval, which was localized in the primary visual cortex.
Guanfacine decreased resting-state alpha power across scalp
regions and mid-occipital alpha power during working memory
maintenance and retrieval (although event-related findings did
not survive multiple-testing corrections). Combined MPH + guan-
facine treatment increased centro-parietal resting-state beta
power, decreased resting-state theta power across scalp regions,
and decreased event-related mid-occipital theta and beta power
throughout the WM task, suggesting ameliorating effects on EEG
measures showing ADHD-control differences in previous studies
[100, 101, 119, 120]. Changes in EEG activity produced by
combined medication were also associated with significant clinical
and cognitive improvements [109, 118]. Finally, a few notable
studies have directly compared the effects of medication and non-
pharmacological interventions on EEG measures. In an RCT testing
the effects of MPH, neurofeedback and physical activity, the
former two treatments showed comparable reductions in theta
power and smaller reductions with physical activity [103]. Yet, only
MPH increased P3 amplitudes during a go/no-go task compared
with neurofeedback and physical activity [110]. These differences
were no longer evident after 6 months, suggesting similar long-
term effects of these treatments [121].

Overall, findings reviewed here suggests that EEG profiles,
particularly event-related measures (e.g, P3 amplitudes and
event-related power modulations), are promising monitoring
biomarkers. Future studies should replicate these encouraging
findings in more heterogeneous samples and test the effects of
multiple treatments. The application of source localization
techniques is particularly promising for uncovering underlying
brain mechanisms of EEG biomarkers and may also guide the
development of novel non-pharmacological treatments [1].

DISCUSSION

In this article we have reviewed progress in the discovery of
treatment biomarkers for ADHD and their translation towards
personalized treatment approaches, with a particular focus on
predictive and monitoring/response biomarkers. Several pre-
treatment profiles have been shown to predict response to
pharmacological treatments for ADHD, with more preliminary but
encouraging findings for response to non-pharmacological treat-
ments. The most promising measures for treatment prediction are
EEG measures such as iAPF and event-related beta power
modulations, and genetic markers involved in PRS and CNVs,
whereas the MRI literature has generally yielded more mixed
findings largely based on small samples. These pre-treatment
profiles represent candidate predictive biomarkers which, in the
future, may assist in the stratification of patients with ADHD to
specific treatments. Research leveraging repeated biomarker
assessments further suggests that clinical response to ADHD
treatments is underpinned by treatment-specific changes in brain
profiles. These treatment-related changes have typically been
consistent with the amelioration of neural patterns that are altered
in children and adults with ADHD, although some evidence of
“better than typical” post-treatment profiles have also been
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reported, suggesting potential compensatory mechanisms
[118, 122]. These findings point to promising candidate monitor-
ing/response biomarkers which may not only assist in future
monitoring of treatment response, but also guide development of
novel treatments (e.g., neurotherapeutics [11]) targeting neuro-
biological mechanisms.

Overall, this body of research represents a solid research base
for the development of biomarker approaches and for the future
allocation of patients to existing and novel pharmacological and
non-pharmacological treatments based on their individual beha-
vioral and neurobiological profiles, consistent with the principles
of precision and personalized medicine [26, 122, 123]. Never-
theless, despite this considerable progress, the available literature
does not yet provide sufficiently strong evidence for actionable
treatment biomarkers for ADHD in clinical settings. Biomarker
studies have provided quite heterogenous findings to date, likely
due to limitations of study samples, study designs and analysis
methods used [3, 81], as well as the known heterogeneity of the
ADHD population [10, 124]. In the following paragraphs, we
highlight key directions for future research studies and methodo-
logical and practical changes required to facilitate the clinical
translation of treatment biomarkers for ADHD, with the goal of
promoting equitable access to personalized medicine practices for
all treatment-seeking individuals.

First, there is a widespread lack of replication and out-of-sample
validation of findings for most candidate predictive and monitor-
ing/response biomarkers, with only a few notable exceptions [52].
Most studies have used small samples (e.g., N <100 participants
for MRI/EEG studies), which are unlikely to allow for reliable
estimates of the associations of genetic and brain biomarkers with
measures of clinical effectiveness [125, 126]. The field needs to
move towards systematic replication and out-of-sample validation
of promising biomarker findings in larger samples, which will be
essential to guarantee that the validity of biomarkers will
generalize to individuals in clinical settings in the future. This is
likely to require collaborative, multi-site recruitment efforts,
following examples set by biomarker research on other neurode-
velopmental and psychiatric disorders [127, 128].

Second, alongside increasing sample sizes and validation
efforts, future research will be needed to increase the diversity
of samples with regard to age, sex, comorbidities, ethnicity, race,
and geographical region. As highlighted throughout our review,
most evidence to date is based on samples of children (mainly
boys) from White majority backgrounds and high-income
countries, typically with few psychiatric and medical co-
occurring conditions, even though comorbidities are the norm
in patients with ADHD [6, 129]. Several reviewed studies
conducted in Western countries do not even provide information
on race/ethnicity (Tables 1-5), likely suggesting the use of all-
White or predominantly-White samples that are not representative
of the wider population of individuals with ADHD [130]. While
underrepresented minority populations have largely been
excluded from biomarker research across methodologies, this
issue is particularly acute for genetic research, as nearly all studies
reviewed here have been conducted on White and non-Hispanic
populations [131-134]. In parallel, future efforts should also
increase the cultural competence of clinicians responsible for
clinical assessments and treatment decisions. [135] Further,
considering the clinical and etiological heterogeneity that
characterizes the ADHD population [10, 124], different subgroups
of individuals may display different degrees of clinical improve-
ments and neurobiological changes in response to any given
treatment. Studies investigating biomarkers of narrow aspects of
ADHD symptomatology (e.g., inattentive symptoms), focusing on
specific subgroups of the ADHD population (e.g., children with co-
occurring ADHD and autism), and delineating data-driven clusters
of individuals with ADHD will be especially useful to address this
issue. The use of more heterogeneous and diverse samples and
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employment of inclusive research practices will be essential to
ensure equitable access to future clinical applications of treatment
biomarkers for people with ADHD.

Third, most studies have examined associations between
specific biomarkers and treatment outcomes using correlational
and group-level analyses, but any biomarker is likely to
individually explain only a small amount of variance in treatment
response. Classifiers and machine learning algorithms are becom-
ing particularly popular approaches to handle high dimensionality
and maximize predictive accuracy of biomarkers [3, 136]. The few
studies that adopted these multivariate methods to predict
treatment response at the level of individual subjects have used
small sample sizes, which are known to be highly sensitive to
overfitting [20, 57, 137]. Moreover, most studies did not examine
whether biomarker profiles explain clinically useful variance over
and above routinely-collected information such as baseline ADHD
symptoms, comorbidities and neuropsychological functioning.
Future studies will need to use multivariate approaches to
aggregate several biomarkers across multiple units of analysis as
well as clinical and demographic characteristics, in order to
establish the clinical utility of promising biomarkers in combina-
tion with other more readily-available information. These com-
bined biomarkers will then need to be tested at the individual
level in independent samples, using metrics such as AUC,
sensitivity, specificity, negative and positive predictive values.

Fourth, although a key aim of personalized medicine is to
determine which treatments may work best out of the available
options for a given patient [26, 122, 123], little work has examined
the treatment-specificity of associations between brain pattern
and treatment outcomes. Future research testing treatment-
specific associations will be crucial for developing mechanistic
models of ADHD treatments and individually tailored treatment
algorithms. Such studies would also be particularly valuable to
define the precise mechanisms of action of current treatment,
which could then be targeted in the development of novel
treatments, such as neurostimulation of the circuits sensitive to
the effects of current medications. In addition, existing studies
have mainly focused on associations with treatment response
measured as improvements in ADHD symptoms and impairment,
and more work is needed to examine whether individual
differences in adverse side effects and medication tolerability
can be predicted and monitored using biomarkers. Finally,
quantifying biomarker thresholds for inclusion criterion or
stratification of participants to treatment and subsequent testing
in independent samples is a critical next step in deploying
biomarkers in clinical practice and personalized medicine.

Fifth, since most of the available studies have conducted
biomarker and clinical assessments only over a few weeks or
months, we know very little about the clinical utility of biomarkers
over longer time periods. Longitudinal work following patients
with ADHD over multiple years has shown that remission from
ADHD symptoms follows a highly non-linear trajectory for most
patients [138], and it is not uncommon for the effects of
medication to decrease or for side effects to emerge over time,
despite high initial rates of response and tolerability [139, 140].
Predictive biomarkers derived before treatment allocation may
thus not be indicative of longer-term treatment success [138], and
future studies using longer time frames of several months or years
are needed. Similarly, with regard to monitoring/response
biomarkers, while most studies have focused on the therapeutic
brain mechanisms of ADHD treatments at the group level,
particularly with stimulants, more work is needed to explore
whether individual differences in these changes act as a source of
variation in treatment response. Potential clinical applications may
be better informed by knowledge of how medium-term changes
in biomarkers relate to treatment responses over the longer term
in ADHD [138]. Thus, future studies will need to examine whether
changes in brain functioning over the initial weeks of treatment
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predict treatment response over the longer-term, beyond the
timeframe of previous studies.

Sixth, very limited work has sought to establish the reliability,
robustness and reproducibility of ADHD treatment biomarkers,
although these are essential biomarker characteristics that are
critical for future clinical application [3, 141, 142]. The reliability of
candidate neuroimaging and EEG measures has only recently
been systematically evaluated [126, 143-145]. Findings indicate
that while the reliability of certain EEG measures (particularly
resting state spectral power) tends to be good in 5-10 min
recording conditions [119, 146, 147], the reliability of fMRI
measures becomes acceptable only with longer (i.e, over
15-20 min) recordings [145, 148]. In addition, given the flexibility
in neuroimaging processing and analysis methods and the
resultant large number of researcher degrees of freedom, the
pre-registration of future data processing and analysis plans is
essential to limit type-l errors and inflated effect sizes known to
effect non-registered studies [149], as are multiverse studies in
which the robustness of study findings are examined across
multiple distinct pipelines and analysis strategies [150].

Finally, from a practical perspective, any neuroimaging, EEG,
and genetic biomarker findings must not only be generalizable
across patient subpopulations, but also across treatment sites
and various testing equipment and procedures. The develop-
ment of standardized biomarker testing protocols and training
of healthcare professionals responsible for biomarker testing will
be important challenges to face prior to clinical implementation.
Further, the cost-effectiveness of brain and genetic markers is
also yet to be determined from a health economics perspective,
and will require pragmatic RCTs comparing the effectiveness
and costs of biomarkers approaches vs. care as usual [122].
These cost-benefit considerations will be particularly salient for
neuroimaging biomarkers, considering the high cost of data
collection. Importantly, future efforts should also place particular
attention to the acceptability of biomarker approaches for
people with ADHD (i.e., participatory research and research co-
production approaches [151]). This is because even the most
predictive and reliable biomarker will have limited clinical utility
if most patients were unwilling to undergo testing necessary to
derive the biomarker. This will be especially important for
biomarkers requiring more involved assessments (e.g., MRI) and
measures with important ethical implications (e.g., genetics).
Inclusive and participatory research practices will be crucial to
maximize the feasibility and uptake of future clinical applica-
tions of treatment biomarkers by diverse groups of individuals
with ADHD worldwide.

In conclusion, this article sought to highlight progress in the
development of treatment biomarkers for ADHD and set clear
guidance for future studies to move the field forward. Whereas
most of the available research on ADHD biomarker to date has
taken a primarily mechanistic approach, we hope that our
recommendations will contribute to a shift toward more transla-
tional and clinically useful approaches, as well as more robust
methodologies, and larger and more diverse samples. We believe
that these steps will be essential to promote clinical translation of
biomarker research and enhance personalized treatment decisions
for diverse groups of individuals with ADHD.
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