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ABSTRACT
This baper describes the development of a high~sﬁeed computer program
':'for.the Solutioh of the Linear Poisson Equation,
| V. (kve) = o,

whére ¢ and p are scalar funcﬁions of two.independént'vafiables, and K is
a secqﬁd-rank tensdr whose coﬁponenfs are functions of two independent
- variables.. The mathematical mbdei ié'given in detail. Examples shoﬁing
thé appiicatién 6f the program to the solution of problems in eiectro-
‘sfgtics'demonéfrates its speed and accuracy.

1vOutstandingvché?acteristic; of JASON, in addition to speéd, are the
vfoliowing: |
. (1)' program may be used both for éylindricaily symmetric systems

and for two-dimensional Cartesian systems,

(2) .completely general boundafy conditions (Neumann, Dirichlet),
(3) geﬁeialized quadrilaterai mesh,
(4) _utilization of algorithms which ensureicontinuity‘of ¢ across

mesh lines,



~(5)
, 'v(6)
o (7-)‘» _
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use of bioc_k iterative methods for so_lution of the equations, '
ease and :s'ivinplicity of input,
no_nhbmogenedus,_ anisotropic media may be consideréd through

use of the t.ensorvi(. :



-1- UCRL-18721 (Rev. 1)
v : Preprint '

MATHEMATICAL MObEL'

In this section,‘é mathématical médel.for numerical:solutionvofv
the linear Péisson equétion .
V(v = 0. - (1)
is constructed; ¢ and p are scalarrfunctibnsvof two independent variables
and K is a second-rank tensor whose componénts are functions of two in-
dependent variables. The_develépment is limifed to systems‘poséessing
cylindrical symmetry. In addition, it is assgmed that the tensor, Kk, is

diagonal in the coordinate system chosen:

. o S ku(r,z) O
_(P =¢-(I‘,Z) 5 P = p(I‘,Z) 5 K= 0 KZ(I‘,Z) o ) (la)
We will also show how the equations deriVed here for the cylindrical

case can be applied to two-dimensional Cartesian systemé. The aevelop-

:- ment given here follows the work of Zienkiewicz [1].

For systems with cylindrical symmetry, equation (1) can be written .

as
0 00y k.09 O , 39 : ’
_5;(/% 57 5t 5o (kg g)-p(r:z) =0 (2)
. this is the Euler-Lagrange equation for the variational problem
: - . 2 2
106) = [ Zfer B + 0y () + 204] avan
R 2 or _ dz v
S | (3)
+ [ ar¢ ds = minimum,
o -
_where R is open regidn~of two-dimensional space,

C is one or more differentiable curves bouﬁding R,

¢ is assumed to be of class Cl on R-and C.

Applying the variational principle, we find that any function; ¢, which

" renders (3) stationary in R, satisfied (2) in R subject to the natural
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boundary condition

00 . . _
K 5 F g = Q

(&)

on C; where d/dn denotes differentiation with respect to the outward
normal on the contour C [2]. Note that the second integral in (3) is
identically zero whenever r is zero (since ¢ is Cl). This ensures that
B¢Van = 0. whenever r 1s zero, -a necessary condition for cylindrical
symmétry.
To construct a set of difference equations appfoximating‘(e) in R,
we use the "finite element method" [1]. We first divide the region, R,
into a finite number of subregions, or elements, R®, e = l,...Nb,'such
that
R . .
U R =R,
e=1 : :
o (5)
RNRf = 8,8 ; ef=1,...,N,
(0 exf
Ber =|1 esr,
and such that the contour C is approximated by an exclusive union of
sides of the Re, e 2,1,.‘.,N. For our purﬁoses, we take the elements

to be polygons of four nodes (corners):

XBL693-227I
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It is clear that a construction of such elements can be easily made to

satisfy conditions (5).
Assuming that within each element the variation of ¢ is prescribed

by the values of ¢ associated'with the nodes of the element, we have

0%(r,2) = [M° (9)°=17¢ + 1%¢ + 156+ 10, (6)
(r,2) 1 22 330 Lk '
in which the matrix [N]e»involves suitable functions of coordinates. _.
The condition for ¢.to render I(¢) stationary is that

o1(9) = 0.
o

2
For a given set of values of {¢} = Ul‘{¢} , therefore, minimization of
. e= ‘

(3) may be accomplished approximately by satisfying fhe set of

equations
aI(d’) =0 ; 8 =1,*"+, m, ) : (7)
54)3 )
. where m is the total number of distinct elements in the set {¢} ; 1i.e.,
. ' N
the number of distinct nodes in the region R = U Re.
: e=1

Let I(¢)€ be the contribution of an element, e, to the total integral

I(¢d). 'Then we have
(9) = 2 1(d) , . (8)
e=1
provided none of the I(¢)® is. infinite. Since I(¢), and consequently

1($)®, depends only on the first derivative of @, this condition will

' .be satisfied -if ¢ is of class Cl'on R and C.  This was one of our
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assumptions in applying the variatidhailprinciple A condition‘en the
matrix [N] is, therefore, that it be constructed of functions which
~are of class C]'on R® ana C° C denotlng the boundary of the element
R®. |
Using equations (3), (6), and (BL wevhave the-following relation:
BI(‘I)) = [g] {d)}e + .{‘F}ep V ; (9)
3(9}° - . |

‘where the elements of the matrix [S]e are given by

= f KT aNn-éym drdz
RE or Oor .
. _ (10)
+/ K * BN -égm drdz ; n,m = 1,°--,k
z Oz .
. R _
and the elements of the vector {F}e are'given by
e e e " »
F. = f qrN_ ds +_[e pan drdz ; n = l,{-j,h. N (11)

Noha R
- Equations giving the approximate set of potentials can now be thained

from equations (7) and (8) together with (9):

(¢ _ 5 u®_ (1)
3¢, € 3¢, , 3
=> [s] (¢} + (W =0, : (13)
L
Sim = % Shim »
(1k)
F, =5 F
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Note that the sums in (12) and (14) need to be taken only over those

elements which share the node n,. since

21(9)” _

P )

39, °

if.I(¢)e does not contain ¢nb(and hence node n).

‘We have yet to construct the matrix [N]e. To do this, we need
to find a function bf thg coordinafes, f'and Z, which suitablyAdescribes
the_variatioﬁ of ¢ over én'elemént, and ensures conveigence af the
;approximate'mihimization process given above. As was showh.earlier,
the function must glso be of class Cl on R® and Ce t0 Dbe admiésible.,
This restriction can be shown to be sufficient to ensufe convérgence,-
“provided the functioﬁ can take on a constant vaiue in an infinitesi-
mal element. |

Considering the above restrictions;éﬁ appropriate function is the
bilinear form | |

q?:' oz'-l+.o¢2;5 +agn + 0k, - (15),

where ¢ and n are local skewed cdordinates defined as shown:

 XBL683-2270
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The values of ¢ at the four nodes of an element will then uniquely
determine the four coefficients in (15) for that element, and hence
“  the components of [N]®. Solving for the d's in terms of the nodal

values of ¢, we have the following expressions for (1€,

Ny = (1-£)(1-m),

N = %(i+_g)(i—ﬁ)‘,-' |
" (16)
Ny = H(1re)(), "
M, = H(1-g)(2n),

where the local coordinated ¢ and n are related'to the gldbal_coofdi-

nates r and z by the formulas

e Ne e N e N Ne e . Ne e
zZ. = lzl + N,zg 525. 421 » _
v | - (17)
e e e e e’ e e e e -
r = Nlrl + Nér? + I 13 + Nhrh‘

2 3

. Equations (10) and (11) may now be used.to obtain the elements of
) - e B . : e . ) )

- the matrix [S] and the vector {F} , respectively, from (16) and (17):

e

Spm = KT (RS) + K,I,(RS) 5 nym =1, sk (18)
Fo o= 0T3(R%) + = qyT4(C%) 5 n=1,...,k, (19)

.j=l
where it has been aséumed_thét the"tenéorvK énd the functioh p(r,z)

are constant over a’given,eieménf, and that the function q(s) is con-
stant over a given boundafy section between nodes. The quantities in
(18) and (19) denoted by I, (D) are easily evaluated by the application

of Gaussian quadraturé_to the expressidns listed below:
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_— " 3r© aN oy prion®  ar con® |
& I.(R®) = - — =)= = a 20.1
: ' (R ) f f -1 ’ l <8n 3 g ot on ><Bn.6g1n 55 Bn ) gdn ( )
P v : \‘i '
+1 +1 e e
dz aN _ 9z ON_\(dz ot BN
1 (R Y =S T -_e.l | (ag e gg_nxég S - é? 5 >dﬁdn, (20.2)
ST RS, | ' o ; '
L(R) = [ [ =N |3l e, ~ (20.3)

+1 , ~ P 1
NCORYIES gg [1+ (28 - 2D2/(=5 - rPF @ ;5 n=-1, (20.1)

1.(c) = f+l N, r L (z - ze)g/(ge _ 8oy dn‘- ;1 (pb- )
2 ’ - J1 Br] o T3 o | 1‘.’ g=1,. (20.5

s dre

ESCORVINES 1+ <zu - =5)° /<rh P07 asam, (20.6)
e, 1 .e e 3p° e e2, e e.2 3
Iu(c ) = J iy 5T [l + (29 - z) /(ry = ;)] an ; e=-1, (20.7)

+1 n
where lJle is the Jacobian determinant

dz8dr®  3z%dr®

1Jf= —————— | o (21)

‘The total matrix [S] and the total vector {F} are now obtained

.  through the use of (1k).
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Modification of the Algorithm for 2-D Cartesian Systems

@

The mathematical model we havé'just given fof°Cylindricaily Symm-
metric systems can, with only_mindrbmodification, be applied to two- ' )
~d1men51onal Cartesian systems

In Cartesian coordlnates, equatlons (l) and (5) are, respectlvely,

%(Kx %‘f% %(Ky %?) - p(;c;y) =0 | (22)
and | -

(23) .

+ fC q ¢ ds = minimum,
Carrying the transfofmation through, we find the following expres-
sions for.the'coupling matrix [S] and the boundary vector (F}:

€ S o
S = Lo S G o B

aN U | -
+ K dxdy ; n,m = l,...,h _ 2L
fRe ¥ ay ayn Y m ) ( )

: e e o : '
Fo=[ aNjds+ [ poN dxdy;ns=1,...,k (25)
: e e :
C , R

Since we have used the same type'of element in both cases, all
the statements made regarding regions and boundaries in the cylindrical
devélopment are valid here. TIn addition, tﬁe ekpressions given for-
- the mdtrix [N]1® in the cylindrical case are identical to those for

the Cartesilan case.
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Tt is now apparent that all of the difference between the twb
systems is contained in the quantitiesf

I, (R);1=1,2,3

and !
= 1,2,3,&1-

H
~~
«Q
~r

.
=
|

Making the transformationtb-é x and rée y in (17), we find for the

Cartesian case

1)

e 41 41 1 oS avSrty eSS vt
I.(R.) = Oy N, . WM VWX Ny _ 9% W dgean (26.1
,( >' I N (an & a@wan“)(aq B - anm)gn,< )
; i | '
e ot 5 3 éa €3S 3 _
&)=/ 1 <_>_<. MNn - ..z_l\ln>(_>s_Nm - ﬁﬂm)agan, (26.2)
"17-loggpete on on ok /g om on g
‘ ‘i '
: +1 +1l ¢ e j : :
L) =S T, B9l aan, (26.3)
e L. aye e .ez2 e e ej% B _
Il(c ) = ffl N, _E_[l + (X2 - Xl) /(YQ ‘.Eyl‘) 1Fag ;7 n=-1, (26.4)
S+l e 1

é e .
L(0) =S G T 65 - PGS -y P st =1, (26.5)

e e a : 2 1
IB(C ) = f+1 N, 5%— (1 +_(xi --xg) /(yfL - y§)2]v2dg i o= 1, _(126.6)
-1
T (Ce) —f Ne aye[l ( e . 8)2/( e 8)2]%(1 . = -1 . 6
i T my F Xy - X)) .Yl-:m’ n s &==1, (26.7)
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(27)

L ¥
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SOLUTION OF THE DIFFERENCE EQUATIONS

From (10) it is obvious that the matrix [S] is symmetric. Since
a given node is coupled only with the nodes of the elements which
share it,. [S] is block_ffidiagonal. In addition, if we assume that

Kp> 0 HL o > 0,
_ ‘ {28)
r> 0;2z >0 ,

(so that (1) is elliptic), it can be shown that [S] is positive def-
inite. We may therefore apply the method of "normalized successive
" block overrelaxation” [3] to the sclution of the system (13).

Partitioring [S] by rows into block tridiagonal form yields

By Cp ]

[s] (29)

Cr, By

-

where the submatrices Bi and Ci are of order n., n, being the number
of mesh points on the ith row, and are all tridiagonal. Also, since
[s] is symmetric and positive definite, it follows that all of the

submatrices B; 5 i = lyee,D are'symmetric and positive definite:'
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(30)

Since Bi is a real symmetric and positive definite tridiagonal
matrix, it has thé unique factorization
‘' B, = D,T.T,D,

. 1 3

;T3 % Dy 3 1= l,...L,

(51)

where
dy
1 L . %
. dr O : E . : o 2
0 ‘
q Jj=2,° 240
L = .
" and (32)
1 ey
T, = s ey = CJ/(dde+l)’
. Jd = la‘" :ni'l .
: . T en.-,l ‘ ’
o o . 1

With the'vector of ¢‘va1ues and the vector bf F Valueé‘for_the ith

~row denoted by &; and Gy fespéctiﬁely, and'With_

G s 1=l T, (33.1)
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-1 -1 ‘
5 Pi;: —Di_lCiDi 3 1l=2,.0.,0, - (33.

normalized successive block overrelaxation is defined by

2)

R T TR DO
(m+l) (X(m+l) gm)).%:xgm>’ .i- (51.2)

1 . i
where m is the iteration number and w is the overrelaxation faqtér.
| The system of equatnnlsdeflned by (Bh 1) can be solved dlrectly
-by the foTlow1ng algorlthm

hy =g hj+l_gfg5+l,- ehy 5 J = 1,..0,m-0, (35
S B S T R
where we have denoted the J = component of the right-hand side of
(34.1) vy gjiv_After thélitefatioﬁ given by (3L4.2) has éonverged, @i
can be obtained from the soigtioﬁ Xﬁ by application of the relation

-1

., =D X . (3
1 1 1 .

Note that the entire process defiﬁed by (34.1) énd (34.2) takeé
ét most nine multipliéatibns and tén additions per component pér
iteration, which is the same number as the point-overrelaxation

- method requires. If thé number of iterations is large, the time
required to $et:up the matrices D; , Tiv., Mi;énd P; ; énd to

obtain ¢3:fr§m xi, will be small compared to the total execution

time. Sincefthe rate of Convergencé.of.blockAiteration is theoreti-

cally faster than point iteration, its use in JASON will result in

more efficient computation.

1)

;g = l:'“)ni'l’ (552)

6)



-1k~ UCRL-18721 (Rev. 1)
’ Preprint

The optimum overrelaxation factor may be estimated from the vector

iterates just as in point overrelaxation [3]. Bounds on the largest

eigénvalue of the iteration matrix are obtained'by

; (m+1) , (m) - — (m+1), (m)
ozt OB L R A o

where m is the iteration number and'n is the total number of mesh

points. We now estimate w by the formula

wopy = al2/(L+N1a)] + pl2/(1+N1-xp)] . .(57,2)

The weighting factors a and b are to be.chosen éppropriateiy éécording
v‘tb thelesfimafed stabilify of the problem, and such ﬁhat'a_+ b = 1.

' When the differ%ﬁce-xm - lm is less than somevsmall vaiue,vit‘is assumed
that o '

oﬁt has been found, and no new estimates are made. .
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GENERAL DESCRIPTION OF THE PROGRAM

Mesh Generation

The ﬁse of quadrilaterals invthe derivation of the JASON algorithm
enableé us to approximate any.arbitrary boundary curve by a union of
element sides. In this manner, boundary curves will always lie along_
mesh lines. As finer mésh spaciﬁg will b¢ required in some regions to
fit boundariés than in others, a nonuniform mesh is required. Con-
structioﬁ of such a mesh by hand can be a formidable task, pérticularly

since, for reasons of stability arnd accuracy, mesh varigtions should

be smooth. To alleviate such problems), JASON'has been providéd with a

.mesh generator.

The method of generation used is that of "Equipotential Zoning"
[4]. 1In this method, the mesh lines are regarded as two intersecting
sets of equipotentials & and ¥, which satisfy Laplace's equation in the

interior of the region and take on successive integral values along the

-boﬁndary; Performing a hodogfaph transformation on the equations
» VQQJ = 0 and Ve‘l/ = O produces two new equations which will yield the

. coordinates of thé mesh points (intersections of & lines and ¥ lines)

directly. These equations are replaced by their representation in
finite differencéérand solved by successive point overrelaxation.

Input to the generator is by regions. Each‘region is defined by

7'specifying the logical and global coordinates of points on the region

boundary (logical coordinates specify which mesh lines the point belongs
to; global coordinates specify the position of the point). Ex¢ept in

the case of curves, it is sufficlient to specify only the points which
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are logical corners of the region. . Other boundary points will be com-
puted by linear interpolatidn..~For curved'boundaries, sufficiént
points to define the shape bf the curve must be specified. VThése &
points are assumed to be all of the mesh points én the curVe, and none
will be generated. Ih addition to the bOundary-point‘input for each
region, véiﬁes for'Kr sy Kg ,.and p, which afe'assumed to be constant
over the‘regidn,are.required. If they'are not specified in the input
for the region, they are'giVen the‘staﬁdard values K, = K, = 1,0 ;‘O:

‘After ali the region informationvhas 5éen input, thé~ﬁoundary
conditions for the problem'are spebified. Dirichlet boundary con-
ditions may be imposed at any.point'in tﬁé mesh. Logical'aﬁd global
coordinates for each'bdundary point, along with a value_of ¢, are
input to completely define the ﬁoundary. :Provision is made for gener-
ation of a Dirichlet bouhdary along a given mesh line; In thisvéase,¢
s assumed to be cbnétant-alqng thé boundary; To avoid costly test-
ing:when solying'thé system of eQuations (13), all Difichlet boundary
coﬁditions~are iﬁcorporatéd directly into‘the system by appropriate
modification of [8] and (F).

Neumann boundary conditions are restricted to "universe"
boundaries and to boundaries betwégﬁ regions having Kp s KZ#O and
kr y Ky = 0. The boundary is considered to be composed of the sides
. of elements.in the régioh‘having Ko ,'KZ¢Of As there is ' no coupling
to mesh points in the region having Kf s K, = 0, its elements need | e
not be considered in the~computation; Values of q for eagh element
-side.composing ﬁhe boﬁndary, along.with thevelement and side indices,

are input to define the boundary. Since the vector {F} incorporates



-7

-17- _ - UCRL-18721 (Rev. 1)
. Preprint .

these copditioﬁs direétly into the différéﬁce equations, no testing
will be required ﬁhen_solving the system (13). . |

Before generation is initiated, all mesh input is scanned for
errors. On'detecfioh of an error, the progfam prints out an éppro-
priate cbmment.and éets a flag to terminate‘execution at the end of the

scan. The generated mesh is scanned for errors in the same manner as

- the data. ‘A plot of the mesh (fig. 1), produced in all cases, aids in the

- elimination of errors and will reveal any poor "zoning." Since the

speed of convergence, as well as the quaiity of the solution, depends

on the smoothness of the mesh, good zoning is of utmost imporfancé.

A1l of the remaining "problem constants" are input following the

mesh géneration. A complete description of all the input-toﬁJASON'is

- given in Appendix C of reference [7]. The stendard values aséumed by

the prdblem constants, if unspecified in the input; are also given here.
Appendix D of [7] lists the input and output for several test cases.

Main Computational Phase.

This section of JASON contains the programming for the algorithm

» developéd in the first half of this paper. T@ ensure minimum execution

time,.key subroutines in this section have been o?timally coded in
machine lanégage‘(6600 COMPASS). Since it may_bé difficult to estimate
the execution time required for some problems, a.reétart procedure is
provided. The mesh coordinates and the iteration matrices are stored
on magnetic tape as soon.as they are generated. If it appears that the
time limit will be exceeded before the iteration has converged, the

current values for the elements of the solutiqn vector are dﬁmped on
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the tape. Execution may then be initiated at this pbint, in a éucceed—,' ’ z
ing.run, by reading in the tape. A flag, input at tﬁe start of the
?rogram, Qill cause the tape to be read and execution to skip directly | 4
to the iteration phase.

During,the iteration phase, selected parameters are printed every
'few cycles to monitor the convergence. Twp>of"these? € and O, we defiﬁe
in the following manner: : | | .

SR T (58.1)

Bl ST/ ST ST, (38e)
- where n denotes the iteration nﬁmber‘and'x denotes an elemént of the
 solution vector X, defined by (33.1). Obéervé that € is just fhei
Euclidean norm of the relative error. The parameter ® is a méasure of
-the rate of convergence. For convergence, it,is normaliy requiréq that
e <1077, Once thislgriterion'is satiéfied, the sOlﬁtioﬁ vector is
calculated from (36) and the result is bofhvprinted»and‘étoréd‘@n
:mégnetic tape. An equipoteptigl'blot (fig. 3 and 4) may'élso be produced

at this point.

. Edit

In most cases, it 1is n&t ﬁhe potential that is of interest, but
:? its derivatives. A set of_suﬁroutines for calculating derivatives is
therefére written into JASON. The edit réutine, similér to that ﬁsed
" in another nonuniform_mesh code, TRIM [5], fits a harmonic polynomial
in the 1east-s§uared sense to a specified set of mesh points. Ihe

. derivatives of theipolynomial'are then evaluated_as approximations to

the derivatives of the potential (to produce better averaging of error,
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the derivatives are eygluated at the centroids of meéh'elements), An

edit of all mesh elements is automatically taken following convergence.
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POSSIBLE EXTENSIONS OF JASON :

RS

General Anisotrbpy

In deriving the system‘of equations (13).from (1), it was assumed
that the tensor k ﬁas diaébnal in the global coordinate system. Ob-
viouély;‘this restricts us to conéidefation of problems'in'whiéh the
prinéipal-axes oftali materials are parallel to the global coordinate
 axes. ?his restriction can be rémoved by'aSSuming'K to be diagpnal in
soﬁe local coordinate system for each element in the mesh. vThe-axes of
this local coordinate system are then parallel to the principal axes of
the material in that element. Equatioh (}) is how‘the governing differen-
tial equatién in the local coordinate sysﬁem for each element;éna
expression (19) may be evaluated for each element using 10531 éoor—v
dinates. 'These results are then fransforﬁed to the global system
before:assembly, aé spegified by (14), into the tdﬁal [s] matrix and
(F) vector. Therefore, if we know the transformétioh from local to
globai éodrdinates fof each element, probleﬁs wifh general anisotropy
méy be qonsideyéd._ | |

Nonlinear Problems_

If Wevallow the tensor K ﬁo be a function of $ or its derivatives,
equation (1) becomes nbnlinear. This, hpﬁever, in né.way affects our
derivation of the system of equations (13). Only our_methoa_of
solution needs to be‘changéd. A method such as "Bloqk ﬁohlinear
Succeséive Overrelaxation" [6] could be applied to solve the'nOnlineaf
systém (13), ‘As K will change in value as-the_itération progressés;

- it is obvious from (18) that more storage will be required than for -

i
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linear problems.
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FIGURE LEGEND

Example of mesh generation results.

Comparison of JASON solution With'analytic.solution for a 7-cm~
radius grounded conducting sphere in aiuniform field.
Equipotential plot ofISOlution to'avproblem.with ﬁutiple
boundaries. |

s
&

Equipotential plot of solution to a problem with 3¢ = O on the
: dn

upper boundary.

Note: All examples have cyiindrigal symmetry sbout the z axis.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed' or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or _

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission"”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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