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JASON - A DIGITAL COMPUTER PROGRAM 

FOR NUMERICALLY SOLVING THE 

LINEAR POISSON EQUATION 

fl· f~eV .P) ;:: p 

~J 0 .. 

S. Sackett and R. Healey 
l 

·Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

February 1969 

ABSTRACT 

UCRL~l8721 (Rev. 1) 
Preprint 

This paper describes the development of a high-speed computer program 

·for the Solution of. the Linear Poisson Equation, 

V · (KVtP) ::: p, 

where tP and pare scalar functions of two independent variables, and K is 

a second-rank tensor whose components are functions of two independent· 
. 

variables. The mathematical model is given in detail. Examples showing 

the application of the program to the solution of problems in electro-

statics demonstrates its speed and accuracy. 

Outstanding characteristics of JASON, in addition to speed, are the 

following: 

(1) program may be used both for cylindrically symmetric systems 

and for two-dimensional Cartesian systems, 

{2) completely general boundary conditions {Neumann, Dirichlet), 

{3) generalized quadrilateral mesh, 

(4) utilization of algorithms which ensure continuity of tP across 

mesh lines, 



. . 

-ii- UCRL-18721 (Rev. 1) 
Preprint 

(5) use of block iterative methods for solution of the equations, 

(6) ease and simplicity of input,. 

(7) nonhomogeneous, anisotropic media may be considered through 

use of the tensor K • 

·--

... 
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MATHEMATICAL MODEL 

In this section, a mathematical model for numerical solution of 

the linear Poisson equation 

yr.(KVcf>) = p, (1) 

is constructed; cp and p are scalar functions of two independent variables 

and K is a second-rank tensor whose components are functions of two in-

dependent variables. The development is limited to systems· possessing 

cylindrical symmetry. In addition, it is assumed that the tensor, K, is 

diagonal in the coordinate system chosen: 

cp = cp(r,z) p = p(r,z) ; ( la) 

We will also show how the equations derived here for .the cylindrical 

case can be applied to two-dimensional Cartesian systems. The develop-

ment given here follows the work of Zienkiewicz [1]. 

For systems with cylindrical symmetry, equation (1) can be written 

as 

this is the Euler-Lagrange equation for the variational problem 

where 

2 2 
I( cp) = J :_ [K r ( 0cp) + K z ( (Jcp) + 2p<f>] drdz 

··. R 2 or dZ 

+ J qrcp ds = minimum, 

c 

R is open region of two-dimensional space, 

C is one or more differentiable curves bounding R, 

cp is assumed to be of class c1 on R·and C. 

(2) 

(3) 

Applying the variational principle, we find that any function, </>, which 

. renders (3) stationary in R, satisfied (2) in R subject to the natural 
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(4) 

on c, where c/cn denotes differentiation with respect to the outward 

normal on the contour C [2]. Note that the second integral in (3) is 

identically zero whenever r is zero (since cJ> is c1). This ensures that 

ccf>/cn == 0 whenever r is zero, a necessary condition for cylindrical 

symmetry. 

To construct a set. of difference equations approximating (2) in R, 

we use the "finite element method" [1]. We first divide the region, R, 

into a finite number of subregions, or elements, Re, e = 1, •.. N , such 

that 
N 
U Re R, 

e=l 

( 5) 

e,f = 1, · · · ,N, 

e:l:f 

e=f , 

and such that the contour C is approximated by an exclusive union of 

e sides of the R , e = 1, ·; · ,N. For our purposes, we take the elements 

to be polygons of four nodes (corners): 

2 

4 

1 XBL693-2271 
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It is clear that a construction of such elements can be easily ma<ie to 

satisfy conditions (5). 

Assuming that within each element the variation of~ is prescribed 

by the values of ~ associated with the nodes of the element, we have 

(6) 

in which the matrix [N]e involves suitable functions of coordinates. 

The condition for ~ .. to render I(~) stationary is that 

cH(~) = 0 
d~ . 

For a given set of values of {~} 
N 2 

= U {~} , therefore, minimization of 
e=l 

(3) may be accomplished approximately by satisfying the set of 

equations 

cH(~) = 0 
~ 

S=l,· .. ,m, 

.. where m is the total number of distinct elements in the set (~} 
N 

the number of distinct nodes in the region R = U Re· 
e=l 

( 7) 

i.e.' 

Let I(~)e be the contribution of an element, e, to the total integral' 

I(~). Then we have 

I(~) (8) 

provided none of the I(~)e is infinite. Since I(~), and cdnsequently 

I(~)e, depends only on the first derivative of ~' this condition will 

be satisfied if ~ is of class C 1 on R and C. This was one of our 
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assumptions in applying the variational principle .. A condition on the 

matrix [N]e is, therefore, that it b~ constru,cted of functions which 

are of class C l on Re and Ce, Ce denoting the boundary of the element 

Re. 

Using equations ( 3), ( 6), and ( 8 ), we have the following relation: 

e e e 
[ S] [ ¢} + {F} , 

where the elements of the matrix [S]e are· given by 

e 
s 

nm J . r"" e "" e 
= .·Kr ~n ~m drdz 

Re dr dr 

+J 
e 

R 

K r dNe dNe 
z -n -m drdz 

dz dz 
n,m = 1, .. ·, 4 

and the elements of the vector [F}e are given by 

e e e 
F = J qrN ds + J prN drdz 

n e· n e · n 
,C R 

n 1 ... 4 ' 
·' ' . 

(9) 

( 10) 

( 11) 

Equations giving the app:r:'oximate set of potentials can now be obtained 

from equations (7) and (8) together with (9): 

di( <P) L: 
di(<P)e = 0 ( 12) 

2l<Pn e 2l<Pn 

=> [s] [ ¢} + {F} = o, ( 13) 

e 
snm =L: s 

e nm, 

e ( i4) 

Fn =2:. F n . e 

• 

·--
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Note that the sums in (12) and (14) need to be taken only over those 

elements which share the node n, since 

e 
di(<I>) 

2l<Pn 
0 

if I(<P)e does not contain <P (and hence node n). 
n 

e 
We have yet to construct the matrix [N] . To do this, we need 

to find a function of the coordinates, r and z, which suitably describes ., 

the variation of <P over an element, and ensures convergence af the 

approximate minimization process given above. As was shown earlier, 

the function must also be of class c1 on Re and Ce to be admissible. 

This restriction can be shown to be sufficient to ensure convergence, 

provided the function can take on a constant value in an infini tesi-

mal element. 

Considering the above restrictions,an appropriate function is the 

bilinear form 

<P = ex +. ex ·~ + ex n + ex4 ~n 1 2 . 3'' S•J' 
( 15) 

where ~· and n are local. skewed coordinates defined as shown: 

4 

1 

2 XBLS93-2270 
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The values of cp at the four nodes of an element will then uniquely 

determine the four coefficients in (15) for that element, .and hence 

. the components of [N]e. Solving for the a's in terms of the nodal 

values of cf>, we have the following expressions for [N]e: 
e 

N1 = -ft{l-~)(1-TJ), 

(16) 

where the local ·coordinated s and 11 are related to the global coordi-

nates r and z by the formulas 

e 
z 

( 17) 

Equations (10) and ( 11) may now be used to obtain the elements of 

the :matrix [S]e and the vector (:F}e, respectively, fro~ (16) and (17): 

(18) 

( 19) 

where it has been assumed that the tensor K and the function p(r,z) 

are constant over a given element, and that the function q(s) is con-

stant over a given boundary section between nodes. The quantities in 

(18) and (19) denoted by I. (D) are easily evaluated by the application 
~ 

of Gaussian quadrature to the expressions listed below: 

.. 

... ' .... • 
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e +1 +1 e e I le I3 ( R ) = f f r N J d ~dT) • 
-1 -1. n 

e +1 . (J e 
I ( C ) = J reNe r [l+(z~-1 -1 . n df 

e +1 e e ere 
I 2(C ) = J 1 r N - [1 + ( ze -- n dT) 3 
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(20.3) 

1 

zD2/(r~ . e)2]2-- rl ~ ; T) =-1 ~ (20.4) 

ze)2/(re _ 
.1 

re)e]2 dTj t;=l, (20:5) 
2 3 .2 

(20.6) 

t;=-1. (20.7) 

where !J!e is the Jaeobian determinant 

(21) 

The total matrix [S] and the total vector (F} are.now obtained 

through the use of (14). 
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Modification of the Algorithm for 2-D Cartesian System,s 

' ' 
The mathematical model we have just given for ·cylindrically sym-

metric systems can, with ?nly minor modification, be applied to two-

dimensional Cartesian systems. 

In Cartesian coordinates,/ ~q_uations ( l) and ( 3) are, respectively, 

21 (K 214>) 21/K 214>) ( . ) dx x dx + dy \ y dy - P x,y = 0 (22) 

and 

I(<f>) = f ~[Kx(21 <f>)
2 

+ Ky'( 21 <f>)
2 

+ 2p<[>)dxdy 
R 21x . 2ly ' . -

(23)' 

+ J q_ f[> ds = minimum, 
c ' 

Carrying the transformation through, we find the following expres-
. ' . 

sions for the. coupling matrix [ S] and the boundary vector (F}: 

e ~ e ~ e 
s = J K ~m ~ dxdy 

nm Re x 21x 21x 

n,m=l, •.. ,4, ( 24) 

e e · e 
Fri = J q_ Nn ds + J p Nn dxdy n = 1, .... ,4. (25) 

Ce Re 

Since we have used the same type of element in both cases, all 

the statements made regarding regions and boundaries in the cylindrical 

development are valid here. In addition, the expressions given for 

the matrix [N]e in the cylindrical case are identical to those for 

the Cartesian case. 

.. 
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It is now apparent that all of the difference between the two 

systems is contained in the q_uanti ties: 

i = '1,2,3 

and ' 
i = :1,2,3,44 

! 

Making the transforll!-ation ~z -7 x and r 4 y in ( 17), we find for the 

Cartesian case 

+1 ~ e e e e e e e e 
1 (dy dNn _ dy pNn)(dy dN m _ dy dN m\d~d 

-1 ~ ~ <J~ <J£ ,~ ~ <J£ <J; ~ · I 11 
• 

I 
! 

e +1 +1 
I 2 (R ) = f f 

-1 -1 

e e +1 e d 
I ( C ) = f Nn fn [1 + 

2 . -1 T) 

-1 e 
e e dy 

I 3 ( C ) = j +l Nn d[ [1 + 

-1 e 
I4(Ce) 

e d . =I N 1 [1 + 
+1 n dT) 

( e e)2 /( e e)2 ~ 
x3 - x2 Y3 - Y2 ] dr] ; £ = 1' 

( e e)2/( e e 2 ~ x4 - x3 Y4 - y3) ] d£ T) = 1., 

1 

(x~ - x4)2/(y~ e 2 "> 
- Y4)-]~d·11 s = -1, 

(26.1) 

( 26.2) 

(26.4) 

(26.5) 

(26.6) 

(26.7) 
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SOLUTION OF THE DIFFERENCE EQUATIONS 

From (10) it is obvious that the matrix [S] is symmetric. Since 

a given node is coupled ?nly with the nodes of the elements which 

share it, [S] is block tridiagonal. In addition, if we assume that 

Kr > 0 ; . K 2 > 0, 

.(28) 
r > 0 z > 0 

(so that (l) is elliptic), it can be shown that [S] is positive def-

ini t e. We may therefore apply the method of "normalized successive 

block overrelaxation" [3] to the solution of the system (13). 

Parti tioriing [ S] by rows into block tridiagonal form yields 

0 

[ s] = (29) 

where the submatrices Bi and Ci are of order ni, ni being the number 

of mesh points on the ith row, and are all tridiagonal. Also, since 

[S] is symmetric and positive definite, it follows that all of the 

submatrices Bi ; i = l, ... ,L are symmetric and positive definite: 



-12-

0 

UCRL-18721 (Rev. l) 
Preprint 

(30) 

Since ~i is a real symmetric and positive definite tridiagonal 

matrix, it has the uniq_ue factorization 

where 

and 

.T. = 
l 

0 

l 

B. = D.T~T.D. ; i = l, ... L, 
l l l l l . 

el 

l e · 0 

0~~ 
l eni~l 

j = 2, · · · ,n. 
' l 

j = l , · · · , ni -1 . 

(31) 

(32) 

With the vector of ~ values and the vector of F Values for the ith 

rmv denoted by ci?i and Gi respectively, and with 

-1 
, Ml. _-D. G. ; i = 1, ... ,L, 

l l 
(33.1) 

... 
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-1 . -1 
P = -D CD ·_ . 2 L i - i-1 i i l = '.; • ' ' (33-2) 

normalized successive block overrelaxation is defined by 

( Tl~ T. ) ~~ m+ l) - P. i m+ll) + P. +lX~ ml) + Ml. ' 
l -l l l- l l+ 

=ill (34.2) 

where m is the iteration number and m is the overrelaxation factor. 

The system of equation's defined by (34.1) can be solved directly 

by the following algorithm: 

· j = l , . . . , n . -1, 
l 

.j - 1 , . . . , ni -1 , 

(35-l) 

(35-2) 

where we have denoted the 1 component of the right~hand side of 

Af'ter the _iteration given by (34.2) has converged, ~. 
l 

can be obtained from the solution Xi by application of the relation 

-1 
ci> = D X. • (36) 
i- i l 

Note that the entire process defined by (34.1) and (34.2) takes 

at most nine multiplications and ten additions per component per 

iteration, which is the same number as the point-overrelaxation 

method requires. If the number of iterations is large, the time 

required to set up the matrices Di 

obtain ci>i from ~' will be small compared to the total execution 

time. Since the rate of convergence of block.iteration is theoreti-

cally .faster than point iteration, its use in JASON will result in 

mor(~ eff:Lcient computation. 
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The optimum overrelaxation factor may be estimated from the vector 

iterates just as in point overrelaxation [3]. Bounds on the largest 

eigenvalue of the iteration matrix are obtained by 

' 
_ (m+l) (m) 

Am=max (x .. /x. ), 
l<i<n .l . l 

(37-1) 

where m is the iteration number and n is the total number of mesh 

points. We now estimate mopt by the formula 

mopt = a[2/(l+ ..J 1-:-~m)] + b[2/(l+ ..J l-Am)]. (37-2) 

The weighting factors a and b are to be chosen appropriately according 

to the_estimated stability of the problem, and such that at b = 1. 

When the difference A - A is less than some small value, it is assumed . m -m 

that illopt has been fo~d,and no new estimates are made.· 
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The use of quadrilaterals in the derivation of the JASON algorithm 

enables us to approximate any arbitrary boundary curve by a union of 

element sides. In this manner, boundary curves will always lie along 

mesh lines. As finer mesh spacing will be required in some regions to 

fit boundaries than in others, a nonuniform mesh is required. Con-

struction of such a mesh by hand can be a formidable task, particularly 

since, for reasons of stability and accuracy, mesh variations should 

be smooth~ To alleviate such problems, JASON has been provided with a 

;mesh generator. 

The method of generation used is that of 11Equipotential Zoning" 

[4]. In this method, the mesh lines are regarded as two intersecting 

sets of equipotentials w and '¥, which satisfy Laplace's equation. in the 

interior of the region and take on successive integral values along the 

boundary. Performing a hodograph transformation on the equations 

V2w = 0 andV2'¥ = 0 produces two new equations which will yield the 

. coordinates of the mesh points (intersections of w lines and'¥ lines) 

directly. These equations are replaced by their representation in 

finite differences and solved by successive point overrelaxation. 

Input to the generator is by regions. Each region is defined by 

specifying the logical and global coordinates of points on the region 

boundary (logical coordinates specify which mesh lines the point belongs 

to; global coordinates specify the position of the point). Except in 

the case of curves, it is sufficient to specify only the points which 
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are logical corners of the region. Other boundary points will be com-

puted by linear interpolation. For curved boundaries, sufficient 

points to define the shape of the curve must be specified. These 

points are assumed to be all of the mesh points on the curve, and none 

will be generated. In addition to the boundary-point input for each 

region, values for Kr , K z , and p, which are assumed to be constant 

over the regidn,are required. If they are not specified in the input 

for the region, they are.given the standard values Kr == Kz == l., p == 0. 

After all the region information has been input, the boundary 

conditions for the problem are specified. Dirichlet boundary con-

ditions may be imposed at any point in the mesh. Logical and global 

coordinates for each.boundary point, along with a value of~' are 

input to completely define the boundary. Provision is made for· gener-

ation of a Dirichlet boundary along a given mesh line. In this case,~ 

is assumed to be constant along the boundary. To avoid costly test-

ing when solving the system of equations (13), all Dirichlet boundary 

conditions are incorporated directly into the system by appropriate 

modification of [S] and {F}. 

Neumann boundary conditions are restricted to "universe" 

boundaries and to boundaries between regions having K , K ;eO and r z 

Kr , Kz == 0. The boundary is considered to be composed of the sides 

of elements in the region having K r , K z;eO. As there is ·no coupling 

to mesh points in the region having Kr , Kz == 0, its elements need 

not be considered in the computation. Values of q for each element 

·side composing the boundary, along with the element and side indices, 

are input to define the ·boundary. Since the vector [ F} incorporates 
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these conditions directly into the difference equations, no testing 

will be required when solving the system ( 13). 

Before generation is initiated, all mesh input is scanned for 

errors. On detection of an error, the program prints out an appro-

priate comment and sets a flag to terminate execution at the end of the 

scan. The generated mesh is scanned for errors in the same manner as 

the data. A plot of the mesh (fig. 1), produced in all cases, aids in the 

elimination of errors and will reveal any poor "zoning." Since the 

speed of convergence, as well as the quality of the solution, depends 

on the smoothness of the mesh, good zoning is of utmost importance. 

All of the remaining "problem constants" are input following the 

mesh generation. A complete description of all the input to ·JASON is 

given in Appendix C of reference [7]. The standard values assumed by 

the problem constants,. if unspecified in the input, are also given here. 

Appendix D of [7] lists the input and output for several test cases. 

Main Computational Phase 

This section of JASON contains the programming for the algorithm 

developed in the first half of this paper. To ensure minimum execution 

time,. key subroutines in this section have been optimally coded in 

machine language (6600 COMPASS). Since it may be difficult to estimate 

the execution time required for some problems, a restart procedure is 

provided. The mesh coordinates and the iteration matrices are stored 

on magnetic tape as soon as they are generated. If it appears that the 

ti1ne limit will be exceeded before the iteration has converged, the 

current values for the elements of the solution vector are dumped on 
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the tape. Execution may then be initiated at this point, in a succeed-. 

ing.~n, by reading in the tape. A flag, input at the start of the 

program, will cause the tape to be read and execution to skip directly 

to the i t·eration phase. 

During. the iteration phase, selected parameters are printed every 

few cycles to monitor the convergence. T'wo of· these, E and o, we define 

in the following manner: 

E = n-1 
-X 11/11 (38.1) 

D = II x n -x n-l II/ II x n-l -x n-2 II , (38.2) 

where n denotes the iteration number and x denotes an element of the 

solution vector X, defined by (33.1). Observe that E is just the 

Euclidean norm of the relative error. The parameter o is a measure of 

the rate of convergence. For convergence, it. is normally required that 

E < 10-7. Once this pri terion is satisfied, the solution vector is 

calculated from (36) and the result is both printed and'stored on 

magnetic tape. An equipotential plot (fig. 3 and 4) may also be produced 

at this point. 

Edit 

In most cases, it is not the potential that is of interest, but 

its derivatives. A set of subroutines for calculating derivatives is 

therefore written into JASON. The edit routine, similar to that used 

in another nonuniform mesh code, TRIM [5], fits a harmonic polynomial 

j_n the least- squared sense to a specified set of mesh points. The 

derivatives 9f the polynomial are then evaluated as approximations to 

the derivatives of the potential (to produce better averaging of error, 
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the derivatives are eyaluated at the centroids of mesh elements). An 

edit of all mesh elements is automatically taken following convergence. 
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fOSSIBLE EXTENSIONS OF JASON 

General Anisotropy 
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In deriving the system of equations (13) from (1), it was assumed 

that the tensor K was diagonal in the global coordinate system. Ob-

viously, this restricts us to consideration of problems in which the 

principal axes of all materials are parallel to the global coordinate 

axes. This restriction can be removed by assuming K to be diagonal in 

some local coordinate system for each element in the mesh. The axes of 

this local coordinate system are then parallel to the principal axes of 

the material in that element. Equation (1) is now the governing differen--

tial equation in the local coordinate system for each element,and 

expression (19) may be evaluated for each element using local coor-

dinates. These results are then transformed to the global system 

before assembly, as specified by (14), into the total (S] matrix and 

(F} ~ector. Therefore, if we know the transformation from local to 

global coordinates for each element, problems with general anisotropy 

may be considered. 

Nonlinear Problems 

If we allow the tensor K to be a function of ~or its derivatives, 

equation ( 1) be. comes nonlinear. This, however, in no way affects our 

derivation of the system of equations (13). Only our method of 

solution needs to be, changed. A method such as "Block Nonlinear 

Successive Overrelaxation" [6] could be applied to solve the non],.inear 

system (13). ,As K will change in value as the iteratio.n progresses, 

·. it :Ls obvious from ( 18) that more storage will be required than for 

\ .. ,:...-
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linear problems. 
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FIGURE LEGEND 

Fig. 1 Example of mesh generation results. 
) 

UCRL-18721 (Rev. 1) 
Preprint 

Fig. 2 Comparison of JASON solution with analytic solution for a 7-cm-

radius grounded conducting sphere in a uniform field. 

Fig. 3 .· Equipotential plot of solution to a problem with mutiple 

boundaries. 

Fig. l+ Equipotential plot of solution to a problem with d</> = 0 on the 
dn 

upper boundary. 

Note: All examples have cylindrical sym.rn.et:ty about the z axis. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed' or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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