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COMMENTARY

Advances in Primate Stable Isotope Ecology—Achievements and
Future Prospects

BROOKE E. CROWLEY1*, LAURIE J. REITSEMA2, VICKY M. OELZE3, AND MATT SPONHEIMER4

1Departments of Geology and Anthropology, University of Cincinnati, Cincinnati, Ohio
2Department of Anthropology, University of Georgia, Athens, Georgia
3Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
4Department of Anthropology, University of Colorado, Boulder, Colorado

Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates
for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been
used to address a diversity of ecological questions ranging from niche partitioning to nutritional
status to variability in life history traits. With this increasing array of applications, stable isotope
analysis stands to make major contributions to our understanding of primate behavior and biology.
Most notably, isotopic data provide novel insights into primate feeding behaviors that may not
otherwise be detectable. This special issue brings together some of the recent advances in this
relatively new field. In this introduction to the special issue, we review the state of isotopic
applications in primatology and its origins and describe some developing methodological issues,
including techniques for analyzing different tissue types, statistical approaches, and isotopic
baselines. We then discuss the future directions we envision for the field of primate isotope ecology.
Am. J. Primatol. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION
Stable isotopic approaches to primate diets are

based upon the principle that “you are what you eat.”
When you nibble a fig, or devour a slab of beef, carbon
and nitrogen isotopes (among others) in these foods
find their way into your tissues, such as hair or
developing tooth enamel. These isotope values are
archives of past meals that can then be “read” to
revealmuch about your diet, physiology, and habitat.
For decades, this approach has been used to answer
questions about the diets of humans and other
mammals, with a special emphasis on those long
extinct [e.g., Cerling et al., 1999; Kingston, 2011;
Koch, 1998; Lee-Thorp et al., 1989; Quade et al.,
1992; Vogel and van der Merwe, 1977].

By the 1980s, stable isotope analysis was used in
archaeology and anthropology departments to an-
swer questions about the adoption of C4 agriculture
[Vogel and van der Merwe, 1977], consumption of
animal foods [Krueger and Sullivan, 1984] and
marine resources [Schoeninger et al., 1983], and
to reconstruct paleoclimate [Sealy et al., 1986].
Applications were also expanded to answer more
sophisticated questions about seasonal mobility
[Sealy et al., 1986] and whether or not individuals
grew up in the areas where they were buried
[Ericson, 1985; Sealy et al., 1991].

Despite this florescence of studies on humans,
there was scant attention paid to non-human
primates. Sparse carbon, and sometimes nitrogen,
isotopic data appeared for wild non-human primates
adventitiously by the mid 1980s and early 1990s
[e.g., Ambrose, 1986; Ambrose and DeNiro, 1986;
Sealy et al., 1986; van derMerwe andMedina, 1991],
but these were only parts of larger studies with no
particular focus on the primates themselves. Proba-
bly the first study to explicitly address questions
about the dietary ecology of non-hominin primates,
albeit extinct ones, focused on Papio robinsoni and
Theropithecus oswaldi from the Pleistocene fossil
site Swartkrans in South Africa [Lee-Thorp et al.,
1989]. These authors exploited the well-known
difference in d13C values of C3 plants (most trees,
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bushes) and C4 plants (largely tropical grasses and
sedges), and found that fossil T. oswaldi, like its
closest living relative Theropithecus gelada, ate a
good deal of grass. Papio robinsoni, in contrast,
consumed much more C3 vegetation (as does modern
Papio) [Ambrose, 1986; Ambrose and DeNiro, 1986;
Lee-Thorp et al., 1989; Sealy et al., 1986]. This study
was soon followed by thefirst stable isotope studies of
early hominins [Bocherens et al., 1991; Lee-Thorp
et al., 1994].

By the mid 1990s, dozens of studies had been
published using stable isotopes to address questions
of interest to archaeologists and paleontologists, yet
there had never been a study using stable isotopes to
explore the ecology of extant non-human primates in
natural settings. This may have been, in part,
because such studies seemed to offer relatively little.
Why use stable isotopes to study modern primates if
you can just go out and observe them? Also, the kinds
of ecological data provided by stable isotopes are
generally much coarser than those provided through
observation, as stable isotopes are best at distin-
guishing between broad classes of foods (e.g., C3 vs.
C4 plants; plants vs. animals; terrestrial vs. marine
foods) and habitats (e.g., xeric vs. mesic). Francis
Thackeray and colleagues [1996] showed that
d13C and d15N values for collagen from South African
baboons (Papio) was affected by both diet and
climate. Shortly thereafter, Margaret Schoeninger
and colleagues produced a series of seminal papers
[Schoeninger et al., 1997, 1998, 1999] that argued
convincingly that carbon isotopes could be used to
track canopy cover, rainfall, and feeding height,
and nitrogen isotopes could be used to discriminate
between herbivores and those with more omnivorous
diets. They also maintained that among herbivorous
primates, nitrogen isotopes could be used to track
the importance of legume consumption. These argu-
mentswere not entirely novel. However, never before
had this complete constellation of ideas been applied
specifically to non-human primates.

One of the chief virtues of isotopic analysis is that
it allows one to study the foraging ecology of primate
species that are difficult (or impossible) to observe
because they are small, nocturnal, forage high in the
canopy, or are extinct. There also the potential also
exists to isotopically address questions about repro-
ductive status and weaning [Fuller et al., 2006;
Reitsema et al., 2016], resource allocation [Dalerum
et al., 2007; O’Brien et al., 2000], and life history
[Macho and Lee-Thorp, 2014]. Additionally, the
technique offers the possibility of broadening
the temporal scales at which we regularly operate.
One might, for instance, ask how human encroach-
ment has influenced the diets and habitats of
primates over time so long as archives of feces,
hair, or other tissues are available [e.g., Gibson,
2011]. One could just as readily trace ecological
change within a lineage over millions of years [e.g.,

Cerling et al., 2013]. Stable isotope analysis also
allows one to ask questions at different spatial scales
than traditional observational studies. For instance,
Codron and colleagues [2008] analyzed baboon feces
from eight localities in Waterberg and Kruger
National Park, South Africa (some sampling loca-
tions were more than 300km apart) nearly simulta-
neously. Fecal d13C values revealed differences in the
consumption of grasses and CAM succulents in the
two regions.Work at such a broad spatial scale would
be impractical, if not impossible, using observational
methods.

In the past few years, we have witnessed a
relative explosion of primate isotope studies. A
Google Scholar search indicates an exponential
increase in the number of papers on the stable
isotope ecology of non-human primates over the past
30 years (Fig. 1). Similarly, a search in the Web of
Science using “primate,” “diet,” “carbon,” and “iso-
tope,” produces eight publications for the year 2000,
but 56 for the year 2014. This is mirrored in terms of
citations, which grew from 287 to 1928 during the
same period. These increases reflect the growing
popularity of the technique as well as the increasing
diversity of isotopic applications in primatology. The
time has come to step back and take stock of what we
know, question our assumptions, retool our methods,
and evaluate new areas to explore. This special issue,
which stems from a session at the 2014 meeting for
the American Association of Physical Anthropolo-
gists, represents a small step in this direction. There
are three primary themes in this special issue
devoted to primate stable isotope ecology: (i) meth-
odological issues; (ii) environment and habitat
reconstructions; and (iii) diet and niche partitioning.

Fig. 1. Number of publications retrieved from a search onGoogle
Scholar in November 2015 using the search terms stable
isotope� þprimateþ ecologyþnon-human.Number of hits likely
reflects some citations in addition to publications.
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Methodological Issues
Choosing appropriate materials for stable isotopic
analysis

Given the omnipresence of carbonandnitrogen in
organic materials, these commonly used isotope
systems can be analyzed in a variety of Tissues and
products fromananimal’s bodyaswell as fromdietary
items in the animal’s habitat. Articles in this special
issue report isotopic data for blood serum [Reitsema
et al., 2016], hair [Loudon et al., 2016; Mundry and
Oelze, 2016; Oelze, 2016; Schoeninger et al., 2016],
bone collagen [Godfrey et al., 2016], bone carbonate
[Carter andBradbury, 2016], and plants [Blumenthal
et al., 2016; Carlson and Crowley, 2016]. Skeletal
tissues, such as bone collagen, bone apatite, dentine,
or enamel can provide valuable information about
long-term dietary or environmental trends. Skeletal
materials have been the most widely utilized in
primate isotope studies, in part because they are
relevant to extinct primate taxa, including fossil
hominins [e.g., Cerling et al., 2004, 2011, 2013;
Codron et al., 2005; Krigbaum et al., 2013; Lee-Thorp
et al., 1989; Smith et al., 2010; Sponheimer et al.,
2005, 2006; Thackeray et al., 1996].

Body tissues and products with relatively rapid
turnover times (on the order of hours tomonths) such
as blood, feces, urine, and hair increasingly are being
used to investigate the ecology of primates [e.g.,
Blumenthal et al., 2012; Codron et al., 2006, 2008;
Crowley et al., 2011; Loudon et al., 2007; Reitsema,
2012; Reitsema et al., 2016; Schillaci et al., 2014;
Schurr et al., 2012; Vogel et al., 2012]. These
materials provide shorter-term information about
an individual’s diet, habitat, or life history in
comparison to skeletal materials. For example, blood
plasma has one of the quickest turnover rates of any
body tissue; the half-life for carbon is on the order of
24 hours [e.g., Podlesak et al., 2005]. Given its rapid
turnover, blood plasma may prove particularly
valuable for future isotope validation studies con-
cerning diet and physiology in captive settings. In the
wild, blood can occasionally be obtained during
primate monitoring efforts that require capture-
recapture and often include veterinarian examina-
tion, although one should take caution to ensure
samples are preserved in a manner that will
minimally impact isotope values [Hobson et al.,
1997; Sweeting et al., 2004]. Oxygen and carbon
isotope values in exhaled CO2 also have very rapid
turnover rates, and closely track those in blood
plasma [e.g., Pantaleev et al., 1999; Podlesak et al.,
2005]. Sampling breath is less invasive than sam-
pling blood, although it does require briefly restrain-
ing individuals [Ayliffe et al., 2004; Voigt, 2010].

Hair keratin records a longer period than blood,
feces, or urine. Two papers in this special issue
present novel hair isotopic data from free-ranging
chimpanzee (Pan troglodytes) populations from

different regions in Africa [Loudon et al., 2016;
Schoeninger et al., 2016]. Isotopic differences among
populations, particularly for carbon, underscore the
effects of climate and microhabitat (including mean
annual precipitation, forest cover, and anthropogenic
influences) on stable isotope variation in hair
keratin. It is also possible to analyze sections from
a single strand of long hair to monitor ecological
changes over time for a single individual [Oelze,
2016]. Hair can be readily trimmed or shaved from
wild animals during capture-recapture studies. It
may also be possible to collect hair from primate
nests. In this special issue Oelze [2016] presents a
methodological framework for isotope studies using
hair to reconstruct temporal variation in feeding
behavior. This paper also highlights the potential
drawbacks of keratin, and suggests standardized
sample preparation guidelines for future work,
particularly for studies seeking to use sequential
sampling along the hair strand to gain an isotopic
chronology of single individuals.

Considering isotope baselines
It has long been recognized that climatic and

structural differences within and among habitats
affect the isotope values of plants [e.g., Amundson,
2003; Codron et al., 2005; Martinelli et al., 1999;
Medina and Minchin, 1980]. Several articles in this
special issue specifically address the influences of
baseline variation on interpretations of primate
behavior [Blumenthal et al., 2016; Carlson and
Crowley, 2016; Carter and Bradbury, 2016; Godfrey
et al., 2016; Oelze, 2016; Reitsema et al., 2016]. As
these manuscripts illustrate, the most appropriate
type of baseline data will depend on the research
question. Whereas studies explicitly focused on
quantifying primate diet (e.g., estimating differences
in consumed foods among individuals or assessing
the relative importance of a particular dietary
resource)may require samples of consumed resources
[Blumenthal et al., 2016; Carlson andCrowley, 2016],
studies interested in general ecological interpreta-
tions may not need this level of detail. Studies on
historic or fossil primates may use plant data from
comparable modern habitats. For example, Godfrey
and colleagues [2016] use d13C and d15N values for
plants from a diversity of localities in Madagascar to
explain spatial variability in the isotope values for the
extinct lemur Hadropithecus stenognathus. Alterna-
tively, researchers could rely on data from sympatric
taxa with relatively straightforward foraging ecolo-
gies, suchasungulatebrowsers orgrazers [Carterand
Bradbury, 2016]. While sampling a completely repre-
sentative baseline is unrealistic in most isotopic
studies, for most questions we ask of the fossil
record, approximated baselines should be adequate.
Researchers investigating suckling infants may
choose to use data from lactating females as an
isotope baseline [Oelze, 2016; Reitsema et al., 2016].
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Reitsema and colleagues point out that attention
should be paid to selecting the actual mothers as
baselines, as isotope values may vary among females
with different reproductive statuses.

In summary, the selection of accurate baseline
datasets is highly dependent on the research
question and the feeding regime of the group of
interest (taxon, age group, etc.). For those research-
ers interested in diet, themain aim should be to cover
the most important items consumed by the primate-
(s) of interest, including animal foods as well as
plants. Both the dietary diversity of a given primate
species and the diversity of isotope ratios among food
resources should be taken into consideration (includ-
ing habitat, plant part, canopy position, taxon, and
temporal variability), although this can be difficult,
and in some cases, impossible. This is where
understanding the study system in the context of
the research question is crucial. If one wants, for
instance, to quantify consumption of foods that differ
only moderately in their relevant isotopic composi-
tions (e.g., tree fruits and leaves), one must have
much better baseline control than if one onlywants to
distinguish between consumption of broader food
classes (e.g., C3 vs. C4 plants, plant vs. animal foods).

Statistics
Technological advancements combined with the

increasing accessibility of mass spectrometers have
resulted in larger and more complex isotopic data-
sets. Interpreting ecological patterns in these large
datasets can require advanced statistical ap-
proaches. For example, stable isotope mixing models
have proven to be a valuable tool for evaluating the
contribution of different food items to an individual’s
or population’s diet [e.g., Blumenthal et al., 2012].
Isotope mixing models incorporate categories of food
itemswith distinct isotope signatures such asC3- and
C4- plants, canopy and understory fruits or leaves,
legumes with nitrogen fixing symbionts, vertebrate
flesh, and arthropods [e.g., Phillips and Gregg 2001].
Mixing models can also account for differences in the
elemental concentration of sources [Isoconc; Phillips
and Koch, 2002]. Traditional mixing models are
somewhat limited in the number of discrete dietary
resources they can distinguish [reviewed in Phillips
and Gregg, 2001, 2003; Phillips et al., 2005]. As a
result, probabilistic models are increasingly being
used by researchers because they provide distribu-
tions of feasible resources and can also calculate
uncertainties in model estimates [e.g., Blumenthal
et al., 2016; Crowley et al., 2015a]. Several freely
available software packages offer Bayesian stable
isotope mixing models including “SIAR” [Parnell
et al., 2010] and “MixSIR” [Moore and Semmens,
2008]. It is also possible to use probabilistic models to
estimate niche overlap (or separation) between two
or more sympatric species [Jackson et al., 2011;
Crowley et al. 2015a]. Nevertheless, it is critical to

keep in mind that these models are not a panacea.
They can only producemeaningful results in somuch
as the user provides meaningful inputs of relevance
to the system and question.

Linear mixed models, and their extensions, the
generalized linear models (GLM) and generalized
linear mixed models (GLMMs), provide particularly
informative tools for hypothesis testing in large,
complex, natural datasets [e.g., Oelze et al., 2014;
Vogel et al., 2012]. These statistical models test
multiple predictor variables that potentially affect
isotope ratios in primates using likelihood ratio tests.
They additionally control for other factors (so called
random effects) that potentially explain some of the
isotopic variation observed. In this issue, Carlson
and Crowley use stepwise linear mixed models to
assess the influence of plant type, altitude, and
canopy level on plant carbon isotope values. They
find that plant part and canopy height have the
strongest influence on the d13C values of plants.
Linear mixed models also enable one to control for
potential biases resulting from multiple measure-
ments of the same sample (e.g., the same hair strand)
or individual. Mundry and Oelze [2016] discuss the
effect of pseudoreplication in stable isotope analysis
of primate hair and illustrate the potential draw-
backs for statistical analysis (type I and type II
errors) if pseudoreplication is not controlled for
during data analyses.

Environment and Habitat Reconstructions
Several of the manuscripts in this special issue

focus on the utility of stable isotope biogeochemistry
for characterizing modern habitats or reconstructing
past environments. Blumenthal and colleagues
[2016] determine that variability in the d13C and
d15N values of plant samples from Kibale National
Park is primarily driven by leaf age (young vs.
mature leaves) and plant part (leaves, fruit, or bark).
Carlson and Crowley [2016] also use carbon isotope
values in plants to define baseline isotopic variability
within and among twomoist forest sites with varying
structures and elevations in western Uganda.
The results from these studies demonstrate that
isotopic variability associated with vertical position
in the canopy, as well as food type, is inconsistent
among sites, reiterating the importance of site-
specific baseline isotopic data. Loudon and colleagues
[2016] and Schoeninger and colleagues [2016] both
examine stable isotope values in the hair of wild
chimpanzees, comparing new results with previously
published data for Pan [Carter and Bradbury, 2016;
Fahy et al., 2013; Macho and Lee-Thorp, 2014; Oelze
et al., 2011, 2014; Schoeninger et al., 1999; Smith
et al., 2010; Sponheimer et al., 2006]. Their results
suggest that carbon isotope values can distinguish
populations in open, closed, and anthropogenically-
disturbed habitats.
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Diet and Niche Partitioning

Stable isotope analysis may provide novel
insights into primate feeding behavior that cannot
be detected using direct observation or indirect
monitoring techniques such as fecal analysis or
camera trapping. Because isotope ratios in tissues
reflect what was consumed (and digested), and not
just what might have been consumed, isotopic data
may reveal “invisible” behaviors, such as cryptic
feeding in living primates or the diets of extinct
taxa.

Weaning is a cryptic, but important, aspect of
diet among non-human primates. Otherwise hidden
night-nursing and comfort nursing are rendered
visible through an isotopic approach. In this special
issue, Reitsema and colleagues [Reitsema et al.,
2016] report how stable isotopic data for blood
serum collected throughout the weaning process of
captive rhesus macaques provide an objective,
longitudinal record of infants’ transitions to nutri-
tional independence. Using carbon and nitrogen
isotope ratios in serum, these authors show how
characteristics of infants (e.g., infant sex) and
mothers (e.g., body size) relate to differences in
the timing of weaning events. Isotopic data have
also demonstrated that for most infants, suckling
persists into subsequent pregnancies, which con-
tributes to growing doubts about the inhibitory
effect lactation is presumed to have on ovulation
[e.g., Rosetta et al., 2011].

As articles in this special issue demonstrate,
stable isotopic data can also help identify how
multiple sympatric taxa coexist [Carter and Brad-
bury, 2016; Godfrey et al., 2016]. This is in part
because stable carbon, nitrogen, and oxygen isotope
ratios are variable across plant types, plant parts
(e.g., leaves vs. fruits), and microhabitats (e.g.,
vertical niches in a forest) [see Blumenthal et al.,
2016; Carlson and Crowley, 2016]. Teasing apart the
dual roles of microhabitat and diet on stable isotope
variation in animal tissue is important for interpret-
ing isotopic variation of extinct taxa and past forest
dynamics. In this issue, Carter and Bradbury
[2016] use d13C and d18O values from bone apatite
of Pan troglodytes, Papio anubis, Procolobus rufomi-
tratus, and Cercopithecus ascanius to confirm the
degree to which isotope values track differences in
diet as well as foraging height among species. Stable
oxygen isotope ratios differ significantly among the
taxa, with baboons exhibiting low values and
colobines exhibiting high values. Although canopy
height and vertical stratification of plant d18O ratios
may explain some of this variation, the authors draw
particular attention to the perhaps stronger influ-
ence of dietary sources of oxygen: leaves are 18O-
enriched compared to other foods, and the authors
document a positive relationship between folivory
and d18O values.

FUTURE DIRECTIONS

Looking forward, we discuss emerging directions
for thefield of primate isotope ecology. Articles in this
special issue reiterate and expand on the utility of
isotopic data for tracking diet and habitat. More
studies on habituated primate groups with well-
constrained diets will make it easier to interpret data
from free-ranging, non-habituated groups [e.g.,
Deschner et al., 2012; Koike and Chisholm, 1988;
O’Grady et al., 2012; Reitsema, 2012]. Studies
increasingly demonstrate that stress and growth
affect stable carbon and nitrogen isotope values in
animal tissues [Deschner et al., 2012; Fuller et al.,
2005; Hatch, 2012; Hatch et al., 2006; Mekota et al.,
2006; Reitsema, 2013; Reitsema and Muir, 2015;
Vogel et al., 2012; Waters-Rist and Katzenberg,
2010]. Some studies suggest that age, social rank,
sex, and reproductive status are factors that influ-
ence not only diet, but possibly also the fractionation
of isotopes within the body [Crowley et al., 2014;
Fahy et al., 2013; Oelze et al., 2011]. However, the
mechanisms and effects of these physiological
processes remain poorly understood. Given persis-
tent uncertainties surrounding tissue-diet isotopic
spacing, additional research in both controlled and
natural settings is warranted.

With the continued improvement of analytical
techniques, we anticipate seeing an increase in the
number of studies that use multiple isotope systems,
as well as “less traditional” isotope systems, such as
strontium (87Sr/86Sr), calcium (d44Ca), magnesium
(d26Mg), iron (d56Fe), copper (d65Cu), zinc (d66Zn), and
sulfur (d34S).Theirpotentialutility in the studyofnon-
human primates is virtually untapped. Additionally,
those elements thatarepreserved in toothenamel (Ca,
Mg, Fe, Cu, Sr, Zn) may be particularly useful for the
study of fossil primate species [Jaouen et al., 2013;
Martinetal., 2014,2015;Melinetal., 2014].Strontium
isotopes have the potential to track mobility of living
andextinctspecies [e.g.,Copelandetal., 2012;Crowley
et al., 2015b; Richards et al., 2008; Sillen et al., 1995,
1998] and to identify the provenance of confiscated
poached material [Beard and Johnson, 2000; Vogel
et al., 1990], which will be increasingly important as
primate populations continue to dwindle around the
world. Sulfur isotopes could be used to detect utiliza-
tion of coastal habitat or marine foods by primate
species (e.g., Barbary macaques, baboons, or crab-
eating macaques). They may also be able to identify
consumption of freshwater aquatic resources [re-
viewed inNehlich, 2015]. Additionally, sulfur isotopes
may be able to trace anthropogenic pollution in
primate food webs [Thode, 1991; Winner et al., 1988].

Afinal emerging researchdirection innon-human
primate isotope ecology is the combination of isotopic
and other measures of primate diets, habitats,
and physiology. Stable isotopes will never replace
traditional studies, but in some instances can be an
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important complement [Crowley et al., 2014; Fahy
et al., 2013], and provide extra value from material
(e.g., hair) collected for other reasons, such as DNA
analysis. Inmany instances, stable isotopic data have
proven most powerful when they are combined with
otherbehavioralandbiologicaldatasets.For example,
a combinationof stable isotopeandobservationaldata
have shown that stable isotopes track disease status
[e.g., Loudon et al., 2007; Reitsema and Crews, 2011],
anthropogenic habitat use [Gibson, 2011; Loudon
et al., 2007; Schurr et al., 2012], social dominance
[Oelze et al., 2011], and hunting prowess [Fahy et al.,
2013] in primates. Similarly, the combination of
dental wear and isotopic data can provide a more
refined picture of an individual’s long-term diet, and
may be particularly informative for palaeodietary
reconstructions of fossil hominin species [Ungar and
Sponheimer, 2011]. Lastly, the combination of endo-
crinological and isotopic analysis can clarify physio-
logical responses to nutritional or social stress
[Deschner et al., 2012; Surbeck et al., 2012; Vogel
et al., 2012]. While most hormone metabolites are
commonlymeasured in urine and feces, it may also be
possible tomeasure some (e.g., cortisol) inhairkeratin
[Carlitz et al., 2014].

In summary, isotopic analysis shines as a useful
tool for understanding non-human primates, whose
sociality, life history traits, omnivorous and learned
foraging behaviors, and diverse metabolic adapta-
tions to climate and food stress create unique
opportunities to explore the degree to which biology
and behavior impact isotopic variability. Isotopic
analysis, with its capacity to explore invisible
behaviors at individual (from a life history perspec-
tive) as well as population levels, stands to play a key
role in our understanding of primate diversity and
evolution. We anticipate that continued application
of isotopic analysis in non-human primates will
foster dialogues among paleoanthropologists, prima-
tologists, and human biologists, and as such, play a
critical role in advancing anthropology’s purpose to
explain the human condition.
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