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Recent advances in miniaturization and low-cost, low-power design have led to

active research in large-scale networks of small, wireless, low-power sensors and

actuators. Time synchronization is a critical piece of infrastructure in any dis-

tributed system, but wireless sensor networks make particularly extensive use

of synchronized time. Almost any form of sensor data fusion or coordinated

actuation requires synchronized physical time for reasoning about events in the

physical world. However, while the clock accuracy and precision requirements are

often stricter in sensor networks than in traditional distributed systems, energy

and channel constraints limit the resources available to meet these goals.

New approaches to time synchronization can better support the broad range

of application requirements seen in sensor networks, while meeting the unique re-

source constraints found in such systems. We first describe the design principles

we have found useful in this problem space: tiered and multi-modal architectures

are a better fit than a single solution forced to solve all problems; tunable methods

allow synchronization to be more finely tailored to problem at hand; peer-to-peer
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synchronization eliminates the problems associated with maintaining a global

timescale. We propose a new service model for time synchronization that pro-

vides a much more natural expression of these techniques: explicit timestamp

conversions.

We describe the implementation and characterization of several synchroniza-

tion methods that exemplify our design principles. Reference-Broadcast Synchro-

nization achieves high precision at low energy cost by leveraging the broadcast

property inherent to wireless communication. A novel multi-hop algorithm allows

RBS timescales to be federated across broadcast domains. Post-Facto Synchro-

nization can make systems significantly more efficient by relaxing the traditional

constraint that clocks must be kept in continuous synchrony.

Finally, we describe our experience in applying our new methods to the imple-

mentation of a number of research and commercial sensor network applications.
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CHAPTER 1

Introduction

It was the best of times, it was the worst of times...

—Charles Dickens, A Tale of Two Cities

1.1 Wireless Sensor Networks

Recent advances in miniaturization and low-cost, low-power design have led to

active research in large-scale, highly distributed systems of small, wireless, low-

power, unattended sensors and actuators [ASS02, ADL98, KKP99, EGH99]. The

vision of many researchers is to create sensor-rich “smart environments” through

large-scale deployment of microprocessors into the environment, each combined

with radios capable of short-range wireless communication and sensors that can

detect local conditions such as temperature, sound, light, or the movement of

chemicals or objects. There are a wide range of applications envisioned for such

sensor networks, including microclimate studies [CEE01, MPS02], groundwater

contaminant monitoring [KPH03], precision agriculture, condition-based mainte-

nance of machinery in complex environments, urban disaster prevention [BCY98]

and response, and military interests [SHM, NES].

Such applications are not well served by traditional sensing architectures.

Small numbers of high-powered, long-range sensors have traditionally worked well
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in unobstructed environments—for example, sky observations by weather radar—

but are not effective in these complex, cluttered environments where line-of-sight

paths are typically very short. The clutter effect can be reduced by distributing

larger numbers of shorter-range sensors closer to their targets. Such placement

also improves the signal-to-noise ratio, critical for sensing phenomena that are

transmitted with high path loss, such as magnetic fields and high-frequency seis-

mic motion. However, in many contexts, it is prohibitively impractical to deploy

large numbers of wired sensors in large areas, as they require co-deployed in-

frastructure (power, communications). Manual observation is a time-honored

tradition in fields such as environmental monitoring, but it is labor-intensive—to

cover a large area, observation must be very low-frequency, both temporally and

spatially. Thus, it fails to capture the events (signals) of interest, which often

occur at higher frequencies.

Ad-hoc deployable, wireless sensor networks can observe the environment in

a fundamentally different way than previous classes of systems—close to the

phenomena in question, over a wide area, and densely in both time and space.

They may succeed in applications where traditional solutions have failed. This

vision has captured the interest and imagination of many scientists; as Prof.

Tom Harmon has noted, sensor networks hold the promise of revealing previously

unobservable phenomena in the environment. Eventually, such systems will also

be capable of actuation—affecting the environment rather than solely observing

it [BCY98, SRS02, SHM].

The design of such systems poses serious challenges, and has become the fo-

cus of a broad range of active research. Sensor networks differ substantially in

many ways from traditional distributed systems. These differences often violate

assumptions on which many of the traditional techniques are predicated. Sen-
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sor networks have become a fertile ground for new designs that take the new

assumptions into account.

Perhaps the most important characteristic of sensor networks—and the one

that differentiates them most dramatically from traditional distributed systems—

is the crucial need for energy efficiency. To facilitate easy deployment without

an infrastructure, many nodes will necessarily be untethered, having only finite

energy reserves from a battery. Unlike laptops or other handheld devices that

enjoy constant attention and maintenance by humans, the scale of a sensor net-

work’s deployment will make replenishment of these reserves impossible. This

requirement pervades all aspects of the system’s design, and drives most of the

other requirements.

Fundamental physical limits dictate that, as electronics become ever more

efficient, communication will dominate a node’s energy consumption [PK00]. The

disproportionate energy cost of long-range vs. short-range transmission (r2 to r4),

as well as the need for spatial frequency reuse, precludes communication beyond

a short distance. Therefore, a common research theme has been in maximizing

local processing and minimizing the overhead of collaboration. Emerging designs

allow users to task the network with a high-level query such as “notify me when a

large region experiences a temperature over 100 degrees” or “report the location

where the following bird call is heard” [HSI01, MFH02]. If a node can correlate

an incoming audio stream to the desired pattern locally, and report only the

time and location of a match, the system will be many orders of magnitude more

efficient than one that transmits the complete time-series of sampled audio.

The use of local processing, hierarchical collaboration, and domain knowledge

to convert data into increasingly distilled and high-level representations—or, data

reduction—is key to the energy efficiency of the system. In general, a perfect
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system will reduce as much data as possible as early as possible, rather than

incur the energy expense of transmitting raw sensor values further along the

path to the user.

Another fundamental property of sensor networks is their dynamics. Over

time, nodes can fail—they may run out of energy, overheat in the sun, be carried

away by wind, crash due to software bugs, or be eaten by a wild boar. Even in

fixed positions, nodes’ communication ranges (and, thus, topologies) can change

dramatically due to the vagaries of RF propagation, a result of its strong environ-

mental dependence. These changes are difficult to predict in advance. Traditional

large-scale networks such as the Internet work in the face of changing configu-

rations and brittle software partly because the number of people maintaining

the network has grown along with the size of the network itself. In contrast,

there may be a single human responsible for thousands of nodes in a dense sen-

sor network. Any design in which each device requires individual attention is

infeasible. This leads to another important requirement: sensor networks must

be self-configuring, and adaptive to changes in their environment.

The unique design requirements in sensor networks affect virtually every

aspect of a system’s design—routing and addressing mechanisms, naming and

binding services, application architectures, security mechanisms, and so forth.

Indeed, even the development process itself—the iterative process of a system’s

design, construction, and evaluation—has required adaptation to this new regime

[EBB03].
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1.2 Time Synchronization in Sensor Networks

Time synchronization is a critical piece of infrastructure in any distributed sys-

tem. In sensor networks, a confluence of factors makes flexible and robust time

synchronization particularly important, while simultaneously making it more dif-

ficult to achieve than in traditional networks.

Collaboration among nodes is often required for the data reduction that is

critical to the energy-efficiency of a sensor network. A common view of physi-

cal time is a basic requirement for nodes to reason about events that occur in

the physical world. For example, precise time is needed to measure the time-

of-flight of sound [GE01, MGE02]; distribute an acoustic beamforming array

[WYM02]; form a low-power TDMA radio schedule [ADL98]; integrate a time-

series of proximity detections into a velocity estimate [CEE01]; or suppress redun-

dant messages by recognizing duplicate detections of the same event by different

sensors [IGE00]. In addition to these domain-specific requirements, sensor net-

work applications often rely on synchronization as typical distributed systems do:

for database queries [BGS00, MF02], cryptography and authentication schemes

[PSW01, EG02, LEH03], coordination of future action, interaction with users,

ordering logged events during system debugging, and so forth.

The many uses of synchronized time in a sensor network make it critical. How-

ever, the diversity of these roles also makes synchronization a difficult problem

to solve. Application requirements vary widely on many axes, such as precision,

lifetime, scope, availability, and energy budget. For example, acoustic applica-

tions require precision of several microseconds, while sensor tasking works on the

timescale of hours or days. Local collaborations often require only a pair of neigh-

bors to be synchronized, while global queries require global time. Event triggers

may only require momentary synchronization, while data logging or debugging
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often require an eternally persistent timescale. Communication with a user re-

quires a external, human timescale such as UTC, whereas only relative time is

important for purely in-network comparisons. Some nodes have large batteries

and run all the time; others are so constrained that they only wake up occasion-

ally, take a single sensor reading, and transmit it before immediately returning

to sleep.

Even in a traditional distributed system, creation of a synchronization scheme

that satisfies such a broad spectrum of requirements is challenging. The task

becomes particularly daunting in sensor networks, in light of their additional

domain requirements—including energy efficiency, scalability through localized

interactions, and automatic adaptation to dynamics. For example, the energy

constraints violate a number of assumptions routinely made by classical synchro-

nization algorithms: that using the CPU in moderation is free, listening to the

network is free, and occasional transmissions have a negligible impact. Network

and node dynamics require continuous, automatic configuration; this precludes

a priori selection of a particular node as the “master clock.” Indeed, as we will

argue in Chapter 5, the scale of the network and intermittency of its links may

preclude the very existence of any single master clock node.

A paradox of sensor networks, then, is that they make stronger demands

on a time synchronization system than traditional distributed systems, while

simultaneously limiting the resources available to achieve it. This paradox has

made current synchronization schemes inadequate to the task.
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1.3 Contributions

Computer clock synchronization is a well-studied problem, with a rich history

stretching back to the advent of the first computer networks [Mil03]. However,

the unique system architecture seen in sensor networks brings a new dimension

to many old problems. Our contributions fall into several categories:

Definition of the problem. We consider the various uses of time synchro-

nization in detail, and describe the axes along which these applications can be

characterized. A detailed understanding of the requirements is important in this

realm where efficiency is so critical.

New architecture directions. Based on our experience exploring this problem

space, we propose several general guidelines for the design of time synchronization

systems in sensor networks. Specifically, we propose new systems be:

• Multi-modal—No single synchronization scheme can be optimal on all axes

(e.g., precision, lifetime, scope, energy, availability), but most applications

do not require peak performance on all axes. A range of schemes should be

available to system designers, such that the synchronization that is provided

matches what is needed.

• Tunable—An ideal synchronization system will minimize its energy use by

providing service that is exactly necessary and sufficient for the needs of

the application. Tunable parameters can allow synchronization modes to

be matched more closely to the requirements of the application.

• Tiered—Although Moore’s law predicts that hardware for sensor networks

will inexorably become smaller, cheaper, and more powerful, technological

advances will never prevent the need to make trade-offs. Instead of choosing
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a single hardware platform that makes a particular set of compromises, we

believe an effective design is one that uses a tiered platform consisting of a

heterogeneous collection of hardware.

• Explicit—Most existing time synchronization schemes make a common as-

sumption: that their goal is to keep the clock synchronized all the time.

Applications assume that they can query the clock at any time, and it will

be synchronized. We argue that in sensor networks, synchronization should

not attempt to discipline the phase and frequency of oscillators. A better

approach is to let clocks run at their natural rate, and use synchroniza-

tion to build a set of relationships to other clocks or synthetic timescales.

Applications can query the local clock, then perform an explicit conversion

to another timescale. This has many advantages; for example, it enables

post-facto synchronization, peer-to-peer synchronization, and participation

in multiple timescales.

• Peer-to-peer—Traditional synchronization schemes assume the existence of

a global timescale, usually realized by a master clock. We argue that the

goal of a synchronization scheme should, instead, be to define the relation-

ship between nearby clocks in a peer-to-peer fashion, without necessarily

constructing a global timescale. This has a number of benefits—primarily,

error between nodes is proportional to the distance between them, rather

than their distance from a master clock that is likely to be far away.

Design, implementation, and characterization of new methods. We contribute

three new methods to the palette of synchronization schemes available to sensor

network developers:
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• Reference-Broadcast Synchronization—A form of time synchronization that

leverages the broadcast property inherent to wireless communication. A ref-

erence broadcast does not contain an explicit timestamp; instead, receivers

use its arrival time as a point of reference for comparing their clocks. We

use measurements from two wireless implementations to show that remov-

ing the sender’s nondeterminism from the critical path in this way produces

high-precision clock agreement (1.85 ± 1.28µsec, using off-the-shelf 802.11

wireless Ethernet), while using minimal energy.

• Multi-hop RBS—A novel algorithm that federates clocks across broadcast

domains, without losing the critical receiver-to-receiver property of RBS.

Our analysis shows precision should decay slowly; the standard deviation

grows as O(
√

n) after n hops. In our implementation, we measured an error

of 3.68±2.57µsec after 4 hops. The multi-hop algorithm allows coordination

of any size group; the error incurred is only as large as the distance between

the nodes using the synchronization.

• Post-Facto Synchronization—A technique that allows significant energy

savings in networks where time synchronization is needed occasionally and

unpredictably. Instead of keeping clocks synchronized all the time, clocks

run undisciplined (at their natural rate), and are reconciled after an event

of interest occurs. We show experimental results that explore the error

incurred with variations on this scheme.

Application experience. We describe a number of systems in which we have

applied our time synchronization techniques to the construction of distributed

sensor network applications. Most of these systems use RBS-synchronized clocks

to precisely measure the arrival time of acoustic signals. Audio codecs typically
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sample the channel at 48KHz, or ≈ 21µsec per sample. As we will see in Chap-

ter 6, RBS nominally achieves significantly better precision. Distributed acoustic

sensors have thus been able to correlate their acoustic time-series down to individ-

ual samples. We show how this was crucial for the implementation of distributed

acoustic ranging and blind beamforming and source localization of sound. We

also describe a commercial system that uses RBS for acoustic ranging.

1.4 Dissertation Overview

In the remainder of this dissertation, we will consider time synchronization in

sensor networks in more detail: its motivations, the inherent limitations, and our

new solutions.

Chapter 2 reviews related work in computer clock synchronization, and the

measurement of time and frequency.

Chapter 3 describes how synchronized time is a critical service in sensor

networks—it is a basic requirement for virtually all algorithms that reason about

time-varying observations made by distributed sensors. By examining several

typical applications and their synchronization requirements, we can more pre-

cisely define the problem that needs to be solved.

In Chapter 4, we explore a number of metrics that we have found relevant

for evaluating time synchronization in the sensor network domain. These metrics

are useful both for decomposing the synchronization required by an application,

and understanding what is provided by a particular synchronization method.

In Chapter 5, we present a more detailed argument that the new constraints

seen in sensor networks make traditional time synchronization methods ill-suited

for serving the diverse range of sensor network application requirements. We also
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describe general design principles for sensor network time synchronization that

we have found useful in the course of work: multi-modal synchronization, peer-

to-peer synchronization without a global timescale, tiered and tunable modes,

and integration with the application.

Chapter 6 describes Reference-Broadcast Synchronization in detail, building

up from its fundamental ideas to a description of its implementation and per-

formance characterization. This section also describes the first two platforms

on which RBS was implemented. The first is the Berkeley Mote, using TinyOS

[HSW00] and a narrowband low-bit-rate RF Monolithics radio. The second is a

commercial-off-the-shelf platform based around a Compaq iPAQ PDA running

Familiar Linux [FAM] and spread-spectrum 802.11b wireless Ethernet.

In Chapter 7, we present our novel algorithm that allows clocks to be fed-

erated across broadcast domains, without losing the critical receiver-to-receiver

property of RBS. We show an analysis of the scheme’s expected error, and test

it empirically using the 802.11-based wireless testbed described in Chapter 6.

In Chapter 8, we describe Post-Facto Synchronization, a technique that al-

lows significant energy savings in networks where time synchronization is needed

occasionally and unpredictably. We show experimental results that explore the

error incurred with variations on this scheme.

Chapter 9 relates our experience building a number of sensor networks systems

that use our time synchronization techniques. Our implementations show the

viability of our design principles (multi-modal and peer-to-peer synchronization)

and our methods (RBS, multi-hop RBS, and post-facto synchronization).

Finally, in Chapter 10, we summarize our work and present our conclusions.

We also describe directions for future research in this area.
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CHAPTER 2

Related Work

Time is God’s way of keeping everything from happening at once.

—Unknown

Computer clock synchronization is a well-studied problem, with a rich history

stretching back to the advent of the first computer networks [Mil03]. The science

of timekeeping itself has been a preoccupation of every civilization since the dawn

of history [NPL02, Lan83]. Of course, we can not review the complete body of

that work in detail here. In this chapter, we will consider selected work that is

particularly relevant to our research, or which we have found especially important

or inspirational.

We begin by sampling some of the extensive literature on computer clock syn-

chronization in traditional networks in Section 2.1. Section 2.2 reviews the recent

work from other groups who, like us, have extended network time synchronization

into the sensor network domain. In Section 2.3, we describe a number of projects

that have found ways to achieve tight synchronization by leveraging specialized

hardware.

The first three sections describe ways to synchronize clocks. In Section 2.4,

we describe somewhat more formally just what a clock is, and how the properties

of clocks themselves can interact with methods for synchronizing them. The

definition of a second is discussed in Section 2.5; in Section 2.6, we describe how

12



national laboratories use that definition to construct and disseminate persistent

timescales such as UTC.

Finally, in Section 2.7, we describe a slightly different approach time synchro-

nization: designing a system such that the problem does not need to be solved.

2.1 Network Time Protocols

Over the years, many protocols have been designed for maintaining synchro-

nization of physical clocks over computer networks [Cri89, GZ89, Mil94a, ST87].

These protocols all have basic features in common: a simple connectionless mes-

saging protocol; exchange of clock information among clients and one or more

servers; methods for mitigating the effects of nondeterminism in message deliv-

ery and processing; and an algorithm on the client for updating local clocks based

on information received from a server. They do differ in certain details: whether

the network is kept internally consistent or synchronized to an external standard;

whether the server is considered to be the canonical clock, or merely an arbiter

of client clocks, and so on.

There is extensive literature describing variations on these methods. Most of

it conforms to the basic model of a synchronization protocol described above and

proposes statistical and heuristic methods for improving robustness: better out-

lier rejection, reduction of the effects of jitter (non-determinism), synchronization

in the face of Byzantine failures, and so forth. For example:

• Cristian has observed that performing larger numbers of request/response

experiments will make it more likely that at least one trial will not encounter

random delays [Cri89]. This trial, if it occurs, is easily identifiable as the

shortest round-trip time.
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• Marzullo and Owicki have described an algorithm that produces a correct

estimate of the current time, given the information from n time servers,

provided that fewer than n/2 of the servers have failed [MO85].

• Mills has developed a control loop for disciplining the frequency of a local

oscillator so that it eventually matches an external time reference in both

phase and frequency [Mil98].

Mills’ Network Time Protocol, or NTP [Mil94a], stands out by virtue of its

scalability, self-configuration in large multi-hop networks, robustness to failures

and sabotage, and ubiquitous deployment. NTP allows construction of a hierar-

chy of time servers, multiply rooted at canonical sources of external time. The

protocol has evolved considerably over its three decades of continuous use, and

has gradually been updated to incorporate many of the new ideas from the re-

search community (including the three described above). NTP is now the de

facto standard for time synchronization on the Internet; we consider it the “gold

standard” by which other work should be judged.

Perhaps most closely related to our RBS protocol (described in Chapter 6)

are the CesiumSpray system [VRC97], the foundations of which were described

by Veŕıssimo and Rodrigues [VR92]; and the 802.11-based broadcast synchro-

nization described by Mock et al. [MFN00]. Their systems, like ours, make use

of the inherent properties of broadcast media to achieve superior precision. How-

ever, their methods require all nodes to lie within a single broadcast domain;

multiple domains can not be federated, except by depending on an out of band

common view of time (e.g., GPS, as described in Section 2.6). In contrast, RBS

incorporates a novel multi-hop algorithm; in Chapter 7, we show it can maintain

tight time synchronization across many hops through a wireless network without

external infrastructure support. In addition, we have fully decoupled the sender
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from the receiver—only synchronizing receivers with one another, even when re-

lating the timescale to an external timescale such as UTC. CesiumSpray retains a

dependence on the relationship between sender and receiver when synchronizing

nodes to UTC.

2.2 Time Synchronization for Sensor Networks

A number of other groups have considered synchronized time in sensor networks,

concurrently with our work.

Römer suggests that, for some applications, the time of events can be de-

scribed in terms of their age rather than as an absolute time [R01]. In essence,

when two nodes exchange a message that describes an event in terms of is age,

the time at which the message itself is sent becomes a common frame of reference

for time. The notion of “now” at the instant a message is sent is inexact, due to

nondeterministic and asymmetric latencies; this is an important source of error.

In the long term, error is dominated by frequency differences among nodes; the

effect is magnified as timestamps age. Römer’s analysis of his scheme concludes

it has a nominal precision of 1ms.

Su and Akyildiz describe the Time Diffusion Protocol, or TDP, for achieving

global time synchronization in sensor networks [SA02]. Their work has a number

of strengths, including a automatic self-configuration through dynamic topol-

ogy discovery. In addition, they quantitatively analyze the energy cost of their

scheme. However, to date, TDP has not been implemented, and the authors’

simulations leave out certain details—such as a realistic model of the channel’s

non-determinism—that are critical to understanding its expected performance.

The Berkeley Mote [KKP99], using the TinyOS operating system [HSW00],

15



has become a popular development environment for sensor network research.

TinyOS allows complete control over the network stack, making it possible to

integrate application code all the way to the MAC layer, and build timing-aware,

low-jitter bit detectors into the radio stack. Hill et al. predict that these methods

can achieve 2µsec precision for receivers within a single broadcast domain [HC01].

Ganeriwal et al., also using TinyOS, have implemented an algorithm that au-

tomatically constructs an NTP-like hierarchy of time-synchronized nodes. Similar

to TDP, their scheme automatically elects a node as the canonical source of time,

and is robust to topology changes. As in Hill’s scheme, their implementation

reduces jitter by tightly integrating the time synchronization algorithm with the

MAC; they report 25µsec-per-hop precision across multiple hops [GKA02].

Our RBS scheme (Chapter 6) does not require that the application be col-

lapsed into the MAC. This allows RBS to work over a broader class of network

technologies, including off-the-shelf radios where the MAC can not be modi-

fied. In Section 6.4, we will describe an RBS implementation on commodity

hardware—802.11 wireless Ethernet.

However, our methods can benefit from low-jitter radio stacks such as those

created by Hill and Ganeriwal, and we consider such work as being complemen-

tary to ours. Our focus has not been on building deterministic networks or

bit-detectors, but rather making the best use of existing detectors. That is, RBS

is a technique to achieve the best possible synchronization given a particular bit

detector. Better (i.e., more deterministic) bit detectors will lead to better RBS

performance. For example, by leveraging Hill’s 0.25µsec-precision bit detector,

RBS could achieve several times the precision of their scheme, based on their

2µsec jitter budget analysis.
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2.3 Support from Deterministic Hardware

The enemy of precise network time synchronization is non-determinism. Latency

estimates are confounded by random events that lead to asymmetric round-trip

message delivery delays; this contributes directly to synchronization error. Purely

software-based schemes are often designed to run in asynchronous environments

that do not have tight timing guarantees—networks like Ethernet, or in the ex-

treme, the Internet. In addition, software often runs on a general purpose oper-

ating system, where there are many opportunities for non-determinism to creep

in: the connection between the network interface and the host CPU, process

scheduling policies of the operating system, and so forth.

Consequently, a common way to reduce jitter in message delivery is to con-

struct special-purpose hardware that provides tight timing guarantees, or to elim-

inate software scheduling delay by putting software hooks as close to the “bare

metal” as possible. Some examples of this technique include the following:

• Liao et al. describe a system for synchronizing interfaces on a system-area

network, Myrinet, with microsecond accuracy [LMC99]. Myrinet allows

user code to be inserted into the network interface, executed synchronously

as messages arrive. This provides tight timing bounds on message delivery,

known a priori, if the topology is fixed.

• Abali et al. describe clock synchronization on the IBM SP/2 multicomputer

[ASB96]. By leveraging the special-purpose node interconnection hardware

unique to the SP/2, they achieved clock agreement within a cluster to within

25 to 200 nanoseconds, depending on the size of the network. Their method

also reckons the cluster time to an external timescale (e.g., UTC served via

NTP) to within several microseconds.
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• Mills’ nanokernel work [MK00] achieves sub-microsecond phase errors with

respect to an external standard—e.g., a primary frequency reference (Sec-

tion 2.5) or a radio-based standard such as a GPS or WWVB receiver

(Section 2.6). The external references generate “PPS” (pulse-per-second)

signals that are timestamped inside the operating system kernel. Strictly

speaking, this is not network time synchronization—it does not use the (IP)

network, and depends on the very low jitter of the external reference hard-

ware. (The NTP software package supports both this mode and normal

network synchronization.)

2.4 Clocks and Frequency Standards

So far, we have described schemes that produce various forms of clock agreement

among a distributed set of nodes. Implicit to these schemes is the existence of a

clock local to each node in the system. A clock, in essence, is a device that counts

events indicating the passage of some time interval (e.g., 1 second), and uniquely

labels each of these intervals (January 10, 1974, 10:14:03 AM). The events are

generated by a frequency standard, based on the observation of a physical process,

such as the transit of the Sun through a local meridian, the vibration of a quartz

crystal, the beat of a pendulum, or the resonance of a cesium beam tube.

The quality of a clock usually boils down to its frequency stability—that is,

the ability of its frequency standard to emit events at a constant frequency over

time. The absolute value of the frequency compared to the desired value—or, its

frequency accuracy—is also important, but calibration can easily compensate for

an inaccurate but stable standard.

The focus of our work is on methods of clock synchronization, not on con-
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struction of better clocks. However, clocks are very important: the error bound

achieved by a clock synchronization method is linked to both the error inherent

in the method itself, and the stability of the clocks’ frequency standards. In fact,

to some extent, the two are interchangeable. Stable clocks can compensate for

a synchronization channel between them that is prone to large (but unbiased)

errors: many synchronization events can be averaged over a long time. Similarly,

a precise synchronization channel can compensate for a poor-stability frequency

standard; frequent synchronization minimizes the time in-between when the clock

is left to fend for itself.

Many types of frequency standards exist. In general, as their stability and

accuracy increase, so do their power requirements, size, and cost, all of which

are important in sensor networks. Most commonly found in computer clocks

are quartz crystal oscillators, characterized by Vig in [Vig92]. Quartz crystals

are attractive because they are inexpensive, small, use little power, and perform

surprisingly well despite their low resource requirements.

The frequency generated by a quartz oscillator is affected by a number of en-

vironmental factors: the voltage applied to it, the ambient temperature, accelera-

tion in space (e.g., shock or attitude changes), magnetic fields, and so forth. More

subtle effects as the oscillator ages also cause longer-term frequency changes. The

inexpensive oscillators commonly found in computers have a nominal frequency

accuracy on the order of between 104 to 106—that is, two similar but uncali-

brated oscillators will drift apart between 1 and 100 microseconds every second,

or, between about 0.1 and 10 seconds per day [Vig92, EE01]. However, their

frequency stability is significantly better—with a change in frequency of one part

in 109 to 1011 when averaged over several seconds or more.1

1Historically speaking, this stability is remarkable: a $5 digital wristwatch can keep time to
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There are a number of variations on the basic crystal oscillator (XO). A

temperature-compensated oscillator (TCXO) contains either an analog circuit or

a microprocessor that corrects for temperature variations. An oven-controlled os-

cillator (OCXO) generates heat to keep the system constantly at the particular

temperature at which it exhibits the greatest frequency stability. These varia-

tions are more stable, but use much more energy, require longer startup times,

are larger, and cost many times more (e.g., $100 instead of $1).

Pásztor and Veitch have shown that the crystal oscillators used to drive typical

Pentium-class microprocessor cores have inaccurate but fairly stable frequencies,

making them useful in high-precision measurement applications [PV02]. The

CPU clock drives the Pentium’s TSC (instruction cycle) counter, which can be

queried with low latency, and has a resolution commensurate with the CPU core’s

clock frequency—1 nanosecond for a 1 GHz CPU. Because the TSC counter ex-

hibits high frequency stability, the relative frequency of distributed microproces-

sors can be determined with high precision by averaging over a long timescale.

Their method therefore provides a way to accurately measure relative time inter-

vals, but does not speak to distributed phase synchronization. (Our RBS scheme

benefits from high-resolution and high-stability local oscillators; as we will see

in Chapter 6, the standard 1-µsec clock resolution on our iPAQs is likely the

limiting factor in RBS’s performance. We also hope to use the TSC counter to

achieve better results in our future work.)

within one second after six months if its wearer first performs an experiment to determine the
difference between the watch’s frequency and a real second, as seen in [AAH97]. Consider, for
comparison, that in the 1714, the British Board of Longitude offered £20,000—the modern-day
equivalent of about $5 million—for a method of determining longitude at sea to within half a
degree [SA98]. To use a chronometer for this task implied it could gain or lose no more than two
minutes over a six-week voyage. The best mechanical clocks of that era typically accumulated
15 minutes of error per day.
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Figure 2.1: left) The NIST-F1 cesium fountain atomic clock—the most stable
in the world since its completion in 1999, developed by Steve Jefferts and Dawn
Meekhof at the U.S. National Institute of Standards and Technology. (Photo copy-

right 1999 Geoffrey Wheeler, used with permission of NIST.) right) A commercially
available cesium clock—the Agilent (formerly Hewlett-Packard) 5071A.

2.5 The Definition of a Second

Aside from crystal oscillators, the most important frequency standards for com-

puter clock synchronization are the class of atomic frequency standards. Unlike

mechanical standards such as pendulums or vibrating quartz crystals, atomic

standards are based around the observation of atomic properties of elements

such as cesium and rubidium.

Modern implementations of cesium clocks achieve accuracy far beyond that

possible with any mechanical clock. The current (2003) state-of-the-art is exem-

plified by the NIST-F1 cesium fountain created by the United States’ National

Institute for Standards and Technology. The F1 is a laboratory standard that

achieves an error bound of less than 2 × 10−15, which is about 0.2 nanoseconds

per day, or 1 second in nearly 20 million years [NPL02]. This clock is large (Fig-

ure 2.1) and custom-built, but less accurate cesium clocks are readily available
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commercially. For example, the Hewlett-Packard 5071A costs about $50,000, is

the size of an ordinary desktop computer, and is accurate to 1 second in 162,000

years.

The accuracy of these clocks is impressive, but an atomic basis for frequency

is attractive for a more fundamental reason. Einstein’s equivalence principle

predicts that atomic properties are the same in all places and at all times [AG01].

In other words, atomic clocks can act as primary standards—independent sources

of frequency that are available everywhere, rather than frequency sources that

must be calibrated against a prototype. In contrast, for example, the definition

of a kilogram is the mass of a particular prototype object stored in France.

This reproducibility (and, hence, accessibility) makes atomic observations an

ideal basis for a standard. Thus, in 1967, an atomic definition of time was

adopted within the SI system of measurements: The second is the duration of

9 192 631 770 periods of the radiation corresponding to the transition between the

two hyperfine levels of the ground state of the cesium 133 atom.

The change to an atomic second was truly a revolution. Throughout most of

human history, observation of the heavens was considered to be the final authority

on time. Noon was, by definition, when the Sun was directly overhead, and

modulo certain details, one second was simply 1/86400 of the average length of

a day. Cesium atomic clocks were the first widely available frequency standards

that were significantly more stable than the rotation of the Earth itself, and were

used to show that the length of a day can vary by 10s of milliseconds [AG01].

Depending on the application, the definition of an SI second may or may

not be relevant to computer clock synchronization. There are many situations

where distributed nodes need to be synchronized but not necessarily running at

a particular frequency known a priori, as we will see in Section 4.6.
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2.6 National Time Standards and Time Transfer

Some applications that need a reference to an SI second use their own primary

frequency reference, e.g., a local cesium clock. However, the majority instead refer

to the standard definition of a second that has been physically realized elsewhere.

In addition, many applications require more than just a reference frequency (how

long is a second?) but also need to know the time (when did 12:00:00 occur?).

In most industrialized countries, government agencies are tasked with main-

taining the country’s reference frequency, and using that frequency to construct

its official timescale. For example, in the United States, the responsibility lies

jointly with the U.S. Naval Observatory’s Time Service Department and the Na-

tional Institute of Standards and Technology’s Time and Frequency Division.

USNO’s “Master Clock #2” is steered by an ensemble of over 45 hydrogen maser

and cesium frequency standards [MMK99]. UTC, the most commonly used inter-

national civil timescale, is based on a weighted average of over 200 atomic clocks

at over 50 such national laboratories [Tho97]. It is calculated at BIPM (Bureau

International des Poids et Mesures) in Paris, France.

Many of these laboratories are involved in active research in the area of time

transfer—that is, wide-area dissemination of both frequency and time. This

capability is a fundamental requirement for any national laboratory whose mission

is to transmit time and frequency to outside users (industry, the military, private

individuals, and so forth). It is also the technology that enables computation

of aggregate time standards such as UTC. Many modern time transfer schemes

have been developed.

Historically speaking, they all harken back to much older methods. An un-

precedented surge of interest in timekeeping was seen in the 14th century as

23



mechanical clocks swept Europe, often found in the belfries and towers of city

halls and churches [Lan83]. Clocks in other forms had been known for at least

a thousand years beforehand, such as the sundial or water-driven clepsydra. But

these newer mechanical clocks were the first to be accompanied by automatically

ringing bells—a simple form of time transfer. In 1845, the U.S. Naval Observa-

tory began to disseminate time by dropping a “time ball” from atop a flagpole

every day precisely at noon [BD82]. The ball was often used by ships anchored

in the Potomac river that needed a calibrated chronometer for navigation before

setting out to sea [SA98].

In modern times, the state of the art is in radio time transfer methods. The

first of these, seen originally in the 1920’s, was a voice announcer on radio sta-

tion WWV operated by the National Institute of Standards and Technology. An

automated version of WWV is still in operation today, along with its more re-

cent cousin, WWVB, which provides computer-readable signals in stead of voice

announcements. The modern-day service provides references to U.S. time and

frequency standards within one part in 1013 [Bee81].

Satellite navigation systems have an important relationship to time—most

notably, the United States’ NAVSTAR Global Positioning System, commonly

called GPS [Kap96]. GPS provides localization service by allowing users to mea-

sure time of flight of radio signals from satellites (at known locations) to a receiver.

As we will discuss in the next section, the result of the localization computation

includes the offset between the user’s clock and GPS system time as a “side

effect.”

Since GPS system time is kept within several nanoseconds of the UTC(USNO)

timescale, GPS has emerged as the pre-eminent method for distributing UTC

time and frequency world-wide. Dramatic technological progress in receiver hard-
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Figure 2.2: The phase error between the PPS outputs of a Hewlett-Packard
58503A GPS-steered clock and a Kvarz CH1-76 Passive Hydrogen Maser on May
1, 2000. (A hydrogen maser exhibits exceptional short-term frequency stability,
but its long-term frequency must be tuned to a primary cesium standard.) The
removal of Selective Availability near MJD 51666.25 can be seen to dramatically
reduce the jitter in the GPS clock’s output. Figure courtesy of Tom Van Baak
at LeapSecond.com, used with permission.

ware has brought about both significant improvments in timing accuracy and a

precipitous drop in cost. By 1999, a typical receiver could achieve 200nsec accu-

racy with respect to UTC [MKM99]. Further, on May 1, 2000, U.S. President

Bill Clinton announced the removal of Selective Availability (SA) from GPS ser-

vice (Figure 2.2). SA is an intentional degradation of the GPS signal designed

to prevent civilians from accessing military-grade time and position services. In

2003, without SA, a relatively inexpensive ($500) GPS clock can achieve < 20nsec

phase error to UTC [CNS].

The most active subject of modern-day research in time transfer is two-way
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satellite time transfer [SPK00]. TWSTT allows two clocks connected by a satellite

relay to both compute their offset from their peer. It is superior to methods such

as GPS time or WWV’s radio broadcasts because it transfer is two-way, instead of

solely from sender to receiver. TWSTT methods are used to connect the time and

frequency standards of national laboratories to BIPM in France for computation

of international timescales.

One example of TWSTT is “GPS Common View,” which can define the re-

lationship of two user clocks to each other with greater accuracy than GPS can

provide UTC [LL99]. Using the orbital parameters of the satellites in the GPS

constellation, two sites that wish to synchronize pick a time when a particular

satellite will be within line-of-sight to both locations. The two sites then compare

the phase of the observed satellite broadcast to their own local clocks, correcting

for time-of-flight by computing the difference between the clock’s position and the

satellite’s position. (The satellite’s position is computed throughout the course

of the experiment using the orbital parameters contained within all GPS satellite

broadcasts.) This technique does not deliver UTC to either clock, but does define

the phase and frequency difference between the two clocks, which is the goal. The

precision is high because the two sites have a “Common View”—that is, they are

observing the same physical signal that was emitted at the same time. We will

see in Chapter 6 that schemes such as CesiumSpray and our single-hop version

of RBS resemble this technique: accuracy is improved by removing uncertainty

at the sender from the critical path.

2.7 Methods for Avoiding the Problem

In some cases, the time synchronization problem can be solved by not solving it—

designing a system to avoid the need for an explicitly synchronized clock. We will
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illustrate this philosophy by describing two types of systems that exemplify it:

Lamport’s idea of virtual clocks, and three different spatial localization systems

that use different tricks to work without synchronized clocks.

2.7.1 Virtual Time

A landmark paper in computer clock synchronization is Lamport’s work that

elucidates the importance of virtual clocks in systems where causality is more

important than absolute time [Lam78]. In his system, each computer has a local

clock which is incremented monotonically after each event that it observes. Each

message sent to another node also carries the timestamp of the sender with it.

When a node receives a message, it advances its local clock to a value greater than

the value in the received message. This simple scheme is enough to guarantee

that the timestamps on messages can be used to reconstruct the total ordering

of any sequence of events that were causal. That is, if event A causes event B,

the timestamp of A is less than the timestamp of B.

Lamport’s work focused on giving events a total order rather than quantify-

ing the time difference between them. While it is often not enough for sensor

network applications that require physical time synchronization, it has emerged

as an important influence. Many sensor applications require only relative time.

For example, when timing the propagation delay of sound to determine a range

[GE01], reference to an external time standard such as UTC may not be relevant.

2.7.2 Localization Without Synchronized Time

Time and space are closely intertwined; spatial localization systems are often

intimately tied to time synchronization. Many systems measure ranges by mea-

suring the time-of-flight of some phenomenon: the system emits a recognizable
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signal at a sender S, then times the interval required for the signal to arrive at

a receiver R. If the propagation speed of the phenomenon is known, the time

measurement can be converted to distance.

In such systems, there is often a circular dependency between the method for

performing time synchronization, and the need for synchronized clocks to perform

the time-of-flight measurement. It is instructive to consider three such systems

that use different tricks for breaking this dependency:

• PinPoint implicitly provides time synchronization between S and R because

they are both the same device.

• GPS avoids the need for time synchronization between by S and R by

over-constraining other relationships between the two.

• Active Bat explicitly time-synchronizes S and R using a modality whose

propagation speed is much faster than the ranging signal.

We will now briefly describe each of these systems in a bit more detail.

PinPoint RF-ID System

PinPoint, Inc.’s RF-ID system [WL98] avoids the synchronization problem by

setting S = R, i.e., making S and R the same node. The RF-ID system consists

of two types of components: a base that acts as both a signal emitter and receiver,

and a tag one that acts as a reflector. The bases are permanently mounted in the

environment, in known locations within a 3D coordinate system.

The bases periodically send interrogation signals. The tags can reflect the

signals back to the bases with extremely low and deterministic delay, modulated

with data that identifies the tag. Bases can estimate the one-way time-of-flight to
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the tag as half the round-trip-time for the reflected signal. A range from the base

to the tag can be computed based on the time-of-flight and c, the RF propagation

speed. After measuring several ranges from different bases at known locations,

the tag can be located in 3-space by multi-laterating.

GPS

The GPS satellite system, mentioned in Section 2.6, also localizes by measuring

the time-of-flight of RF signals [Kap96]. In this case, S is the GPS system (the

satellite constellation) and R is the user’s receiver (e.g., a hand-held device).

Each GPS satellite is in a known position relative to an Earth-based coordi-

nate system. The orbits are monitored by ground-based tracking systems; orbital

parameters are published in real-time using the GPS signal itself. As with Pin-

Point, the goal is to locate a user in 3-space by measuring the range from each

of these known positions to the user, and multi-laterating.

If some (imaginary) form of time synchronization between the satellite con-

stellation (S) and the user (R) existed, it would be easy to measure the ranges

between them. A satellite could send a signal, and tell the user when it was

sent according to the (imaginary) global clock. The user’s range to the satellite

could be computed based on the interval between the emission of the signal and

the time the user received it. Ranges from three satellites to the user would be

needed to solve for a three-dimensional (X,Y, Z) solution.2

Since no such synchronization exists, GPS instead requires four satellites, and

solves for a four-dimensional solution (X,Y, Z, T ), where T is the unknown offset

2Three spheres actually intersect at two points, not one. But, one of these points is near the
surface of the Earth, while the other is in space. The incorrect answer can be easily recognized
and discarded.
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between GPS system time and the user’s clock. Therefore, by over-constraining

the relationship between S and R, GPS prevents the need for S and R to share

a synchronized clock—indeed, such synchronization is provided as an output.

However, it is important to note that time synchronization is not completely

avoided: for the scheme to work, the GPS satellites (i.e., members of S) need

to be synchronized with each other. Without this inter-satellite synchronization,

each satellite used by the receiver would add both an equation and an unknown

to the system. By keeping the satellites in sync, there is only a single unknown

T , regardless of how many satellite observations are used by the receiver.

Active Bat

Finally, ORL’s Active Bat system [WJH97] demonstrates a third way of breaking

the circular dependency between localization and time. The Active Bat uses a

time-synchronization modality between S and R that is different than the time-

of-flight measurement modality. Modulo certain details, S simultaneously emits

a (fast) RF pulse and a (slow) ultrasound pulse. The time of flight of the RF

pulse is negligible compared to that of the ultrasound pulse. The RF pulse

can be considered an instantaneous phenomenon that establishes synchronization

between S and R with respect to the ultrasound signal.

While this solution seems simple and attractive, we will argue in Chapter 9

that keeping explicitly synchronized clocks actually can reduce the overall system

complexity in this case. Our acoustic ranging system uses RBS to keep clocks

synchronized. Having an explicit and self-contained synchronization service that

is separate from the acoustic subsystem has a number of benefits. For example,

the system becomes more decomposable and modular because there is no longer

a tight interdependence between the acoustic process and the radio.

30



2.8 Summary

In this chapter, we have reviewed a broad spectrum of work in synchronization

of computer clocks in both their time (phase) and frequency. Naturally, this begs

the question: why do we need something new? The essence of the answer lies

in the fact that many of these methods rely on assumptions that are violated in

the new sensor network regime. However, before examining this claim in more

detail, we must first answer one other prerequisite question: what uses are there

for synchronized time in a sensor network?
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CHAPTER 3

The Need for Synchronized Time

Come what come may,

Time and the hour run through the roughest day.

—William Shakespeare

Why do sensor networks need synchronized time?

Before discussing time synchronization methods, we must first clarify its moti-

vations. In this chapter, we will describe some common uses of synchronized time

in sensor networks. The wide net cast by the disparate application requirements

is important; we will argue in the next chapter that this diversity precludes the

use of any single synchronization method for all applications.

We begin in Section 3.1 by formulating the need for time synchronization in

sensor networks in its most generic terms: synchronized physical time is a fun-

damental requirement if our goal is to reason about a time-varying environment

that is observed by distributed sensors. Most emerging applications are special

cases of this single rule. In Section 3.2, we show that energy constraints make in-

network synchronization truly unavoidable because data reduction must happen

inside the network.

In Section 3.3, we describe the converse situation: coordinated actuation.

While sensor integration observes the state of the world, actuation changes it.
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Synchronized time is vital for coordinating actions across a distributed set of

actuators.

Sections 3.4, 3.5, and 3.6 describe some specific applications of our general

rules: energy-efficient radio scheduling, acoustic ranging, and distributed signal

processing.

Finally, in Section 3.7, we review some of the traditional uses for synchronized

clocks in distributed systems. At its core, a sensor network is also a distributed

system, and many of the same problems appear in both domains.

3.1 Multi-Sensor Data Integration

In Chapter 1, we described the situations that most often motivate sensor network

research: phenomena of interest that span a large geographic region, but can

not be sensed from far away. Remote sensing might be impossible because the

environment is cluttered, leaving only short line-of-sight paths, or because the

signal of interest simply can’t propagate very far through the environment. In

these situations, distributed sensing must be accomplished through placement of

large numbers of sensors close to the phenomena of interest.

One of the most powerful aspects of the design of such a network is multi-

sensor integration—the combination of information gleaned from multiple sensors

into a larger world-view not detectable by any single sensor alone. For example,

consider a sensor network whose goal is to detect a stationary phenomenon P ,

such as that depicted in Figure 3.1. P might be a region of the water table that

has been polluted, within a field of chemical sensors. Each individual sensor might

be very simple, capable only of measuring chemical concentration and thereby

detecting whether or not it is within P . However, by integrating knowledge
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Target

Figure 3.1: Individually, sensors may only be capable of a binary decision: they
are within the sensed phenomenon, or they are not. If the sensor positions are
known, integration of information from the entire field allows the network to
deduce the size and shape of the target, even though it has no “size” or “shape”
sensors.

across all the sensors, combined with knowledge about the sensors’ positions, the

complete network can describe more than just a set of locations covered by P : it

can also compute P ’s size. The whole of information has become greater than the

sum of the parts: the network can deduce the size and shape of P even though

it does not have a “size” or “shape” sensor.

3.1.1 The brute-force approach

This type of collective behavior does not always require synchronized time. This

was the case in the example above—because P was not moving, the situation was

time-invariant. However, what if P is mobile, and the objective is to report P ’s

speed and direction? At first glance, it might seem that the localization system

we described above can be easily converted into a motion tracking system by

performing repeated localization queries over time. If the data indicating the

location of P all arrive at a single, central location for integration, we might
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conclude that no time-synchronization of the sensors themselves is required. The

central node can simply (locally) timestamp each localization reading as it arrives

from the field. The timestamped locations can then be integrated into a track

that indicates speed and direction.

Such a brute force approach can work—in some situations. One example is

an asset tracking system that can locate pieces of equipment within an office

building. If we define the “motion” of an object as the history of all the rooms in

which it has been located, an equipment motion tracker might be implemented

by asking the object tracker for the equipment’s location several times a day,

and compiling a list of offices in which the equipment was spotted over time.

This works if we assume that the travel time of messages from the equipment

sensors back to the integration point was zero. In other words, if the system is

asked, “Where is object X?” we must assume it can generate a reply that is, in

effect, instantaneous and still correct when it is received. Such an assumption

is probably valid for asset tracking: objects are likely to stay in the same place

for hours or days—extremely slowly compared to the time needed by the object-

tracker to locate an object and report its location to the user or a data integrator.

3.1.2 Failure of the brute-force approach

Unfortunately, as the message latency grows relative to the speed of the phe-

nomenon being tracked, the brute-force approach fails. Consider a network in

which the range of possible message latencies (i.e., the jitter) is denoted by time

interval j. Using the brute-force approach, it is impossible to track a mobile

target with more precision than the distance that it can cover during time j.

This can be a serious limitation in sensor networks: j can be very large, and

phenomena can move quickly.
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j is large because sensors are distributed over a wide area, but their commu-

nication range is very short relative to the size of that area. Information can

only travel through such a network hop-by-hop, so the latency from a sensor to

a central integrator will vary with the number of hops that separate them. The

small communication range is a fundamental limitation, driven primarily by the

need for energy conservation: long-distance transmission has a disproportionate

energy cost (r2 to r4). Energy constraints have other effects on latency: sensor

networks use low-power radios that often have very low bit-rates, thus magni-

fying the delay caused by multi-hop routing. Wireless medium-access protocols

often trade latency for energy savings, through duty-cycling and other techniques.

Significant delay can be introduced by retransmissions as well, as packet loss is

common in wireless networks. Links may even become unusable over long time

intervals.

In addition to large values of j, the other side of the equation is also a problem:

fast-moving phenomena are a reality of nature. For example, in applications that

require acoustic localization or beam-forming (Chapter 9), there is no avoiding

the speed of sound. Even during a small j interval, sound can travel a distance

that may be larger than the desired spatial accuracy of the system.

These limitations suggest that sensor observations must be time-stamped in-

side of the network, as near as possible to the original event. Doing so dramati-

cally reduces the inaccuracy of timestamps because the many sources of jitter in

message delivery are no longer in the critical path. However, in-network times-

tamping implies that, unlike in the brute force solution, the sensors themselves

must be time-synchronized.
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3.2 In-Network Processing

In the previous section, we argued that the integration of observations from

sensors throughout the network requires time synchronization of the sensors

themselves. Jitter makes synchronization necessary even in a simple centralized-

processing scenario. However, such a scenario is unrealistic, and the role of time

synchronization becomes even more important in realistic designs.

Centralized processing is infeasible in sensor networks; such a design assumes

there is a practical way to transmit every raw sensor value generated throughout

the network to a single node that is responsible for processing it. Even in tradi-

tional distributed systems, this would be unwise: scaling tends to be clumsy or

impossible, and a single point of failure makes the system much less robust. In

sensor networks, centralization is particularly fatal due to a requirement not seen

in other distributed systems: energy efficiency.

We saw in Chapter 1 that energy efficiency is crucial because it defines the

longevity of the system. As communication is the primary consumer of energy

[PK00], and the low power budget of the nodes precludes communication beyond

a short distance, much research has been focused on maximizing local processing

and minimizing the overhead of collaboration. Emerging designs allow users to

task the network with a high-level query such as “notify me when a large region

experiences a temperature over 100 degrees” or “report the location where the

following bird call is heard” [HSI01, MFH02].

Such tasking can dramatically reduce the communications overhead (and,

thus, the energy use) by allowing sensor nodes to perform expensive computations

locally. For example, nodes can correlate an incoming audio stream to the desired

pattern, and report only the time and location of a match. This is many orders of
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magnitude more efficient than transmitting the complete time-series of sampled

audio. Unnecessary communication back to the user may be further reduced by

forming collaborations among spatially local nodes so that a match detected by

only one of them can be recognized as spurious.

The use of local processing, hierarchical collaboration, and domain knowledge

to convert data into increasingly distilled and high-level representations—or, data

reduction—is key to the energy efficiency of the system. In general, a perfect

system will reduce as much data as possible as early as possible, rather than

incur the energy expense of transmitting raw sensor values further along the

path to the user.

There are many examples of how different data reduction processes depend

on time synchronization. One is duplicate suppression, or, collaboration that

prevents redundant notification of an event by more than one member of a group

of nearby sensors that observed it. Intanagonwiwat et al. showed this technique

can produce significant energy savings [IGE00]. Synchronized clocks are needed

to resolve to otherwise ambiguous cases, as shown in Figure 3.2: Did the sensors

see different views of a single event? Or did they see two distinct events?

In many cases, in-network data reduction takes the form of multi-sensor inte-

gration, as we described in Section 3.1. For example, where possible, the group

of sensors that detect a tracked phenomenon should also compute its speed and

direction. Transmission of a locally computed velocity vector is far more efficient

than sending a complete time-series of proximity detections from every sensor

to a far-away processing point. The improvement is more significant if the tar-

get area is many hops away from the ultimate destination of the data (e.g., the

user). For such data reduction to be possible, the sensors near the target must

be time-synchronized.
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Figure 3.2: A network tracking a target may wish to eliminate redundant sightings
when the target is in view of more than one sensor. left) All four sensors see a
single, stationary target: only one event should be reported. right) A mobile
target is sighted by two sensor pairs at different times: two distinct events should
be reported. To disambiguate these two cases, the sensors must compare their
detection times. This implies the need for synchronized clocks.

3.3 Coordinated Actuation

Most of our discussion of sensor networks speaks of them as entirely passive

systems—capable of detecting the state of the environment, but unable to change

it or the network’s relationship to it. However, actuation can dramatically ex-

tend the capabilities of a network, and a number of research groups have made

significant progress in that direction.

One of the most commonly described forms of actuation is sensor mobility.

Sibley et al. have built a prototype RoboMote, which brings autonomous mobil-

ity to the Berkeley Mote sensor platform [SRS02]. They also describe its use in

connectivity-based robotic sensor networking—using changes in connectivity be-

tween nodes to understand their relative positions. Rahimi et al. analyze the

feasibility of using mobile robots to adaptively harvest energy from the envi-

ronment [RSS03]. Sukhatme et al. propose using mobile sensors for actuated

boundary detection—the extent of a target can be more precisely determined if

the sensors are mobile, as shown in Figure 3.3.
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Sensor

Target

Deduced Target Shape

Figure 3.3: left) A sensor field might deduce the shape of a target area (e.g., con-
taminated soil) by drawing a convex hull around the sensors that are within the
contamination, with concave deviations around uncontaminated sensors. right) If
the sensors are mobile, they can collaboratively adjust their positions, estimating
the shape of the target with greater accuracy.

Mobility is also central to the DARPA SHM program [SHM]. Nodes collab-

oratively draw a map of their relative positions via acoustic localization. Each

node is equipped with a mobility subsystem (small rocket motors); if a gap in

the sensor field is found, nearby nodes move in to fill the space. This system will

be described in more detail in Section 9.2.

Of course, there are many types of actuation other than mobility. For example,

sensors may emit sounds, release chemicals, apply pressure to support structures

[BCY98], or simply turn on and off [CE02]. In fact, the energy-efficient radio

scheduling we will describe in Section 3.4 is actually a special case of coordinated

actuation.

Broadly speaking, systems that incorporate actuation require synchronized

time in two ways. First, a sensor’s decision to act is motivated by knowledge

from the same sorts of in-network data reduction and multi-sensor integration

algorithms that are used by static sensor networks. These algorithms require
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synchronized time, as we have already described. The second use comes from

coordinated actuation; if more than one node plans to act, the actions often need

to be coordinated with each other. As with sensing, coordination of events in the

physical world requires a common reference frame in physical time and space.

3.4 Energy-efficient Radio Scheduling

Low-power, short-range radios of the variety typically used for wireless sensor

networks expend virtually as much energy passively listening to the channel as

they do during transmission [PK00, APK00]. As a result, MAC (Medium ACcess)

protocols are often designed around this assumption, aiming to keep the radio

off for as long as possible. TDMA is a common starting point because of the

natural mechanism it provides for adjusting the radio’s duty cycle, trading energy

expenditure for other factors such as channel utilization and message latency

[Soh00]. Precious energy can be conserved by turning the radio off, waking up

only briefly to exchange short messages before going back to sleep.

The energy savings is often directly correlated with the precision of time syn-

chronization. Consider two wireless sensor nodes that have agreed to rendezvous

on the radio channel once every 60 seconds to exchange a short message—say,

8 bits representing the current temperature. Using a 19.2kbit/sec radio such

as our testbed’s RF Monolithics [CEE01], 8 bits can be transmitted in about

0.5ms. However, in practice, the radio must be awakened early to account for

time synchronization error, as depicted in Figure 3.4.

An expectation of only 1ms phase error will triple the total amount of time

the radio is expending energy listening to the channel. The factor is even larger

for faster radios—with a 56kbit/sec radio, a 1ms guard band is more than 7
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Guard band due to clock skew; receiver can’t

predict exactly when packet will arrive

Figure 3.4: The effect of time synchronization on the efficiency of a TDMA radio
schedule. When nodes pick a rendezvous time for data exchange, a “guard band”
is required to compensate for imprecise clock synchronization. In sensor networks,
the guard band can be a major source of energy expenditure: applications may
transmit very few data bits, separated by long sleep times.

times longer than the time needed to transmit 8 bits. In addition, even assuming

perfect synchronization at the start of a sleep period, a typical quartz oscillator

on such a sensor will drift on the order of 1 part in 105 [Vig92], or 0.6ms after

60 seconds. Of course, sending synchronization packets during the sleep period

defeats the purpose of sleeping, so we must consider frequency estimation as part

of the time synchronization problem.

This example demonstrates not only the importance of time synchronization

in a sensor network, but also one of its difficulties: any resource expended for

synchronization reduces the resources available to perform the network’s funda-

mental task. Traditional TDMA systems (e.g., cellular telephone networks) often

do not have this constraint, and are engineered only to maximize channel utiliza-

tion. Good time synchronization is important in those systems because it reduces

the size of the guard time, but it is also easier because of the high data rate: each

frame received also implicitly gives information about the sender’s clock. This

information can be used to frequently re-synchronize a node with its peers [LS96].
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3.5 Acoustic Ranging

Spatial localization is a crucial building block for many sensor network applica-

tions. Indeed, virtually all of the application examples in this chapter—multi-

sensor integration, array processing, coordinated actuation, and so forth—require

a common reference frame in both time and space. In the smallest networks, it is

possible to implement spatial localization of nodes manually—by carefully mea-

suring and “hard-coding” the locations of the sensors. However, this is approach

does not scale, is ill-suited to ad-hoc deployment, and does not work in networks

with mobile nodes. Consequently, many researchers have focused attention on

building systems that discover location autonomously [WHF92, BHE03, GBE02,

WC02].

One common localization method is based on acoustic ranging, where a node

emits a sound that can be recognized by other nodes in the area. If the nodes

are time-synchronized, they can compute the time elapsed between the emission

and reception of the sound. Using an estimate of the speed of sound through

the medium, this delay can be converted into a distance. A maximum-likelihood

coordinate system can be constructed based on the constraints provided by many

such pairwise distance measurements. We have implemented such a system, which

is described in detail in Section 9.1.

3.6 Array Processing

For decades, the signal processing community has devoted enormous research

attention to seamless integration of signals from multiple sources, and sources

with heterogeneous sensing modalities. The signal processing literature some-

times refers to this as array processing; with heterogeneous sensors, it is often
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Figure 3.5: Acoustic beam-forming arrays localize the source of sound generated
by a source that is not time-synchronized with the array. Similar to the trick used
by GPS (Section 2.7.2), the system is over-constrained if the microphones are in
known positions and are synchronized with each other. Localization is possible
solely based on time-of-arrival differences across the array.

called data fusion. There are many applications, such as signal enhancement

(noise reduction), source localization, process control, and source coding. It

would seem to be a natural match to implement such algorithms in distributed

sensor networks, and there has been great interest in doing so. However, much

of the extensive prior art in the field assumes centralized sensor fusion. That

is, even if the sensors gathering data are distributed, they are often assumed to

be wired into a single processor. Centralized processing makes use of implicit

time synchronization—sensor channels sampled by the same processor also share

a common timebase.

For example, consider the “blind beamforming” array for localizing the source

of sound, described by Yao et al. [YHR98]. Their array computes phase differ-

ences of acoustic signals received by sensors at different locations. From these

phase differences, it can compute differences in the time of flight of the sound

from the source to each sensor (Figure 3.5). This allows the sound’s source to

be localized with respect to the spatial reference frame defined by the sensors
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in the array. However, their technique makes the implicit assumption that the

sensors themselves are time-synchronized with each other. In other words, the

beam-forming computation assumes that the observed phase differences in the

signal are solely due to differences in the time of flight from the sound source to

the sensor. The technique breaks down if there are variable delays incurred in

transmitting signals from the sensor to the processor. In a centralized system,

where there is tight coupling from sensors to a single central processor, it is usu-

ally safe to assume that the different sensor channels are in synchrony. For such

an array to be implemented on a fully distributed set of autonomous wireless

sensors, explicit time synchronization of the sensors is needed.

It is interesting to note that a blind beam-forming array makes use of a trick

similar to GPS, as we described in Section 2.7.2. In the acoustic ranging we

described in Section 3.5, the acoustic emitter and receiver were collaborative. In

contrast, a lion can not be time-synchronized with an acoustic array, just as the

GPS satellite constellation is not synchronized with GPS receivers. The acoustic

array works by over-constraining the system; similar to GPS, the time at which

the sound was generated is simply an unknown in the system of equations.

In Section 9.3, we will show how our time synchronization methods were a

key factor that enabled the implementation of the first fully-distributed version

of the centralized array described here.

3.7 Traditional Uses in Distributed Systems

The uses of time synchronization we have described so far have been specific

to sensor networks, relating to their unique requirements in distributed signal

processing, energy efficiency, and localized computation. However, at its core, a
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sensor network is also a distributed system, where time synchronization of various

forms has been used extensively for some time. Many of these more traditional

uses apply in sensor networks as well. For example:

• Logging and Debugging. During design and debugging, it is often necessary

correlate logs of many different nodes’ activities to understand the global

system’s behavior. Logs without synchronized time often make it difficult

or impossible to determine causality, or reconstruct an exact sequence of

events.

• State Consistency. Some systems use distributed agreement or voting

algorithms—polling a set of servers to find the most recent state, despite

node or network failures that might prevent state updates from reaching ev-

ery server [Gif79]. Synchronized time can play a key role in these algorithms

if state updates are emitted by more than one node.

• Database Queries. A number of research groups have extended traditional

database query semantics to the sensor network domain [BGS00, MF02].

These schemes seek to hide the complexity of the network from the user

by supporting distributed queries as if from a centralized database. To

maintain the same query semantics across a distributed set of nodes implies

the need for synchronized time, as Madden and Franklin described [MF02].

• Interaction with Users. People use “civil time”—their wristwatches—when

making requests such as “show me activity in the southeast quadrant be-

tween midnight and 4 A.M.” For this request to be meaningful, at least a

subset of the nodes in a sensor network need to be synchronized with a civil

time standard such as UTC.
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• Cryptography. Perhaps due to sensor networks’ applicability to military

missions, there has already been significant interest in applying crypto-

graphic schemes to them [PSW01, EG02, LEH03]. Authentication schemes

often depend on synchronized time to ensure freshness, preventing replay

attacks and other forms of circumvention. However, Davis and Geer point

out in [DGT96] that, in some contexts, a challenge-response protocol can

take the place of accurate timestamps.

3.8 Summary

In this chapter, we described how synchronized time is a critical service in sensor

networks—it is a basic requirement for virtually all algorithms that seek to reason

about time-varying observations made by distributed sensors. Target tracking,

energy-efficient radio scheduling, beam-forming, acoustic localization, and coordi-

nated actuation all need synchronized time in various forms. As sensor networks

are distributed systems, the traditional requirements are also seen: synchronized

clocks are assumed in areas of debugging and system analysis, interaction with

users, consistent state update protocols, and cryptography.

It seems clear that some form of time synchronization is needed in sensor

networks. However, the applications we described are quite varied. To better

understand how to satisfy their needs, we must first try to quantify their require-

ments. That is, we must describe a standard set of metrics that can be applied

both to applications that need synchronization, and the services that provide it.
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CHAPTER 4

Dimensions of Sensor Network Time

A man with a watch knows what time it is. A man with two watches

is never sure.

—Segal’s Law

In the previous chapter, we saw a wide range of sensor network applications—

acoustic ranging, integration of position estimates into a velocity, in-network

duplicate suppression, energy-efficient radio scheduling, and so forth. Each ap-

plication places different demands on a time synchronization service. Network

implementations also vary significantly: unlike the Internet, which presents a sin-

gle service interface to all users, sensor networks are highly application-specific.

Each can be unique in its task details, available hardware and resource con-

straints, scale of deployment, and expected lifetime.

This variation makes it impossible to characterize the exact requirements for

synchronized time in sensor networks in general. However, a number of com-

mon metrics arise that we have found useful—both for decomposing the synchro-

nization required by an application, and that which is provided by a particular

synchronization method. In this chapter, we will explore these metrics in detail.
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4.1 Phase Error

Phase error is the simplest and most commonly used synchronization metric: if

the goal is to keep clocks set to the same value, how far apart are they in reality?

There are a number of variations. Pairwise error is the time difference between

two nodes’ clocks. Group dispersion is the worst of the
(

n

2

)

pairwise errors in a

group. As we will discuss in Section 4.6, error may also be with respect to an

external standard.

Applications are sometimes more sensitive to the worst case than the average

case. For this reason, studies in the literature often report both the average and

various percentile bounds; for example, the worst error seen in 95% of trials.

As we discussed in Sections 3.1 and 3.2, the tolerable phase error in an ap-

plication is typically related to the rate at which the sensed phenomena in the

environment are changing. For example, in a motion tracking application, error

tolerance is informed by the speed of the target relative to the sensors’ effective

range and the desired spatial precision of the result. To suppress redundant no-

tifications of the same event by multiple sensors, the error tolerance is driven

by the event frequency; this might be hours or milliseconds, depending on the

application.

Of applications currently common in sensor networks, the most stringent error

bound probably comes from acoustic ranging. Typical audio codecs sample the

channel at 48KHz, or 20.8 µsec per sample. At room temperature, sound travels

about 7.1mm in this interval. As sub-centimeter spatial accuracy is often the goal

[GE01], ranging applications demand the phase error be small enough to correlate

individual audio samples with each other—or, a maximum error of about 10µsec.

Seismology applications measure the propagation of seismic wavefronts, which

49



also propagate quickly—about ten times faster than sound. However, the spatial

precision requirements in that domain are much lower. Phase errors on the order

of a millisecond are acceptable, implying about 3m of spatial error.

Traditionally, GPS receivers have been used in situations where microsecond-

scale phase accuracy is required. As long as Selective Availability remains off,

modern GPS receivers can typically reproduce UTC within about 20 nanoseconds

(0.2 µsec), as we described in Section 2.6.

4.2 Frequency Error

Phase error is an instantaneous metric: at a given moment, how far apart are

these clocks? Frequency error, in contrast, measures the difference in the clocks’

rates. This metric is important because it predicts the growth of phase error over

time. That is, if clocks are perfectly synchronized now, at what rate are they

drifting apart? How well will they be synchronized in 60 seconds?

As we discussed in Section 2.4, all clocks have an internal frequency standard

that defines their “natural” rate. Some time synchronization methods explicitly

estimate the difference between the clock’s native and desired frequencies; others

do not. Either way, most disciplined clocks1 look like the example depicted in

Figure 4.1, the main difference being the value of τ . For example, a trivial (and

surprisingly common) method for synchronizing a clock to a GPS receiver is to set

τ = 1 second. That is, every time the receiver generates a PPS (pulse-per-second)

signal, the clock is abruptly set to the correct value. In contrast, NTP estimates

the difference between the local and target frequencies so that it can apply a

series of small corrections on a much shorter timescale (e.g., on every clock tick,

1One exception is a computer with a VCXO, or Voltage Controlled Oscillator. Such hardware
allows the oscillator’s frequency output to be tuned by varying the voltage of one of its inputs.
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Figure 4.1: A computer clock disciplined to a rate other than its native frequency.
Some algorithms simply jump the clock into phase after relatively long intervals
(e.g., τ = 1 second). In contrast, algorithms such as NTP explicitly estimate the
difference between the native and desired frequencies so that τ can be kept short
(e.g., 50 msec). This reduces timescale discontinuities visible to the application,
and degrades more gracefully if contact with the frequency reference is lost.

such that τ = 50 milliseconds). NTP can discipline a node’s clock based on the

PPS output of a local reference such as a GPS receiver, or information received

via the network from other nodes running NTP.

In general, algorithms that estimate frequency are superior to those that do

not. Keeping τ short makes it far less likely that applications will see discon-

tinuities in the timescale, or grossly incorrect frequencies over short intervals.

In addition, if the reference clock becomes unavailable, algorithms that estimate

frequency will experience a much slower accumulation of phase error than al-

gorithms that work solely by periodic phase corrections. This is a particularly

important factor for sensor networks, where connectivity is often intermittent.
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4.3 Lifetime

Lifetime is the interval that clocks remain synchronized, or the interval over which

a particular timescale is defined. Sensor networks need synchronization over a

wide range of lifetimes, ranging from less than a second to timescales that are

persistent.

For example, recall the blind beam-forming array depicted in Figure 3.5. The

array localizes the lion by measuring the time of flight of sound—e.g., the lion’s

footsteps. In this case, sensors within “earshot” of the lion need only be synchro-

nized momentarily. In other words, the required lifetime of the synchronization

is only the fraction of a second required for the sound to reach all the sensors

from its source.

In contrast, consider an extended array that tracks the lion over long time

as it moves through the environment (Figure 4.2). To compute the lion’s speed

or direction over longer timescales, the synchronization lifetime must also be

longer—minutes or hours. Luckily, the lion itself moves much more slowly than

the sound it makes, making the phase error tolerance of this longer-lifetime syn-

chronization far more relaxed.

Other applications require lifetimes that are still longer: coordinated actua-

tion and tasking by users may require synchronization that lasts the lifetime of

the network. In the extreme, data logging and other archival applications often

require UTC—the international standard for civil time—because it is persistent,

existing even beyond the lifetime of a particular sensor network.
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Figure 4.2: A beam-forming array extended to track targets as they move be-
yond the detection range of a single sensor. Each subset of the array localizes
the lion at a single instant by measuring the time of flight of sound: synchroniza-
tion must have small phase error (microseconds), but only needs a short lifetime
(seconds) and small scope (the subset). In contrast, to track the lion’s movement
through the environment, synchronization must have a longer lifetime (minutes
or hours) and a larger scope (network-wide), but the phase error requirements
are significantly relaxed (seconds).

4.4 Scope

The scope is the size of the region in which a timescale is defined. In some cases,

the scope may be purely geographic (e.g., distance in meters). In other contexts,

it is more useful to think about the logical distance, such as the number of hops

through a network. Naturally, these two forms are correlated in a sensor network,

scaled by its radios’ nominal range.

Our example in Figure 4.2 demonstrates the need for varying scopes, and in-

deed suggests that scope, lifetime, and phase error are all strongly correlated with

each other. A single localization event only requires small-scope synchronization,

equal to the acoustic detection range of the sensors. Sensors that can not hear

a particular footstep can not participate in the source localization, and thus also

do not need to be synchronized. In contrast, to track the long-term behavior of
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the lion requires a much larger scope, e.g., equal to the area that the lion covers

during its journey through the environment.

Some protocols only synchronize nodes within a single broadcast domain—

for example, CesiumSpray, and the synchronization that is part of the 802.11

standard (Section 2.1). But, in general, most network time protocols can syn-

chronize nodes over a large area. As the scope increases, there is usually a cost in

cumulative phase error. GPS is a counterexample to this rule—it provides syn-

chronization that is Earth-wide in scope, with the same error bound regardless

of location.

The typical correlation of larger scope with larger error dovetails nicely with

a natural tendency in sensor networks that comes from their connection to the

physical world: tasks over longer timescales and distances tend to tolerate greater

absolute error.

4.5 Availability

We use availability to mean the completeness of coverage within a method’s scope.

Some methods may synchronize every node within a region, while others may only

synchronize a subset of nodes.

Incomplete availability can arise if a scheme requires special resources that are

not uniformly available, such as special hardware, access to infrastructure, or large

energy reserves. GPS, for example, is Earth-wide in scope, but its availability

is limited to nodes that have GPS receivers. GPS is also not available indoors,

under dense foliage, underwater, or during Mars exploration. In contrast, a purely

network-based scheme is available to every node that has a radio.
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4.6 Internal vs. External

In many distributed systems, network time synchronization simply means, “get

the correct time from the network.” Of course, this definition implies that a

notion of the correct time exists. Typically, the time is UTC—the international

standard for civil time. However, in sensor networks, UTC not always needed.

Indeed, in some cases, the definition of an SI second itself may not be relevant.

In other words, there are situations where distributed nodes need to be synchro-

nized, but not necessarily running at a particular frequency known a priori. For

example:

• Total ordering of events—some applications need to record a sequence of

events in their temporal order, but do not need the events’ absolute time. In

this case, the frequency of clocks is unimportant, as long as their phase offset

is the same. Lamport’s work (Section 2.7) takes this idea to its extreme by

doing away with physical clocks entirely, in favor of virtual clocks that only

“tick” when an event occurs.

• Coordinated actuation—some applications need to plan for collaborative

action. In many cases, the exact time at which the plan is executed is

far less important than ensuring that all nodes act simultaneously. Exam-

ples include TDMA frame scheduling (Section 3.4) and distributed robotics

(Section 3.3).

This class of applications is sometimes said to require internal or relative

synchronization: the network must be internally consistent, but its relationship

to outside time standards is not needed or known.

A second class of applications require external synchronization—that is, each

node is synchronized to an outside timescale such as UTC. For example, this
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need can arise in interactions with people, who for the most part wear wrist-

watches that are set to UTC (or, an integral number of hours offset from it).

To understand a request such as “Show me all targets detected between 2PM

and 8PM,” the network and the requestor must share a common time frame.

External synchronization is also important in applications such as data archival,

because the synchronization lifetime must exist beyond the lifetime of the network

collecting the data.

Finally, there is a third class of applications: a hybrid of internal and external

synchronization. In some cases, nodes need a frequency standard, but do not

need a standard time. That is, some applications must know the length of an

SI second (as we described in Section 2.5), but do not care which second is

currently elapsing according to UTC. Applications that measure phenomena in

the physical world often fall into this category. For example, acoustic ranging

and beamforming applications assume that they know the speed of sound: about

345 meters/second2. To convert propagation delay to distance, the delay must be

measured using the same definition of a “second” as that which is implicitly part

of the speed-of-sound constant. Similarly, motion-tracking applications need the

correct definition of a second to report a target’s speed in units (meters/second)

that are meaningful.

4.7 Energy Budget

We saw in Chapter 1 that the need for energy efficiency pervades virtually all

aspects of sensor networks’ design. The exact energy constraints are difficult to

quantify because there is a wide range of hardware found across the spectrum of

2The speed of sound in air varies with temperature; it is actually 331.4 + 0.6Tc m/s.
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network implementations, and often within a single network. Some nodes have

large batteries and run all the time; others are so constrained that they only wake

up occasionally, take a single sensor reading, and transmit it before immediately

returning to sleep.

Synchronization methods are similarly diverse: some require only a single

packet; others are very chatty, sending and receiving energy-consuming mes-

sages frequently. Some methods require special hardware: GPS receivers, oven-

controlled oscillators, and rubidium frequency standards all require extra energy.

Even moderate use of the CPU for time synchronization can dramatically change

the energy profile of a node if it would otherwise be in an energy-conserving sleep

mode.

We do not consider number of bytes sent or channel utilization as a separate

metric. Communication is a major consumer of energy, so energy budget is a

good proxy metric for channel utilization. In addition, an energy metric can

capture aspects of a scheme such as CPU use or the need for special hardware.

4.8 Convergence Time

Some time synchronization methods can reach an answer almost immediately—

for example, a (relatively imprecise) phase error estimate can be made after a

single packet exchange. Other methods take significantly longer—for example,

GPS receivers typically need between 5 and 10 minutes to acquire from “cold

start,” during which time they download satellite ephemeris data that are grad-

ually broadcast over the GPS signal.

The importance of convergence time as a metric is directly tied to the need for

energy efficiency. If energy were not a concern, our chosen form of synchronization
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could simply be left running continuously. Though convergence time might be

important due to its effect on network startup, it would make no difference in

the steady-state. However, in this energy-constrained world, systems are often

forced to power down as many services as possible for as long as possible. This

makes convergence time important to consider.

In addition to energy use, convergence time is often tied intimately to two

other metrics: phase and frequency error. Most algorithms gradually refine the

quality of their synchronization over time. As more information is accumulated,

outlier rejection becomes easier. Measurement of precise frequency differences is

also easier over long timescales.

For example, Figure 4.3 shows the phase error between two nodes being syn-

chronized with NTP. (Our testbed and data collection methodology are described

in Section 6.4.) After 9 minutes of data collection, NTP was confident enough in

its enough information to make its first frequency adjustment. However, the best

steady-state phase accuracy (about 50µsec) was not achieved until the software

had run for about an hour.

4.9 Cost and Form Factor

Finally, for synchronization methods that use special hardware, it is important

to consider the components’ monetary cost and physical size. These factors can

fundamentally change the economics of a sensor network, making a scheme a

non-starter. For example, it makes little sense to put a $50 GPS receiver or a

$500 Rubidium oscillator on a sensor node that would otherwise cost $5. It may

be difficult to integrate special hardware of any kind with dust-mote sized nodes

[KKP99].
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Figure 4.3: The gradual improvement in phase error between two nodes running
NTP shows the tradeoff between error and convergence time. These data were
collected using two Compaq iPAQ PDAs running Familiar Linux [FAM] connected
by Orinoco 802.11 wireless Ethernet cards. Synchronization was provided by NTP
version 4.1.74 set to poll every 16 seconds, the maximum rate allowed. Phase error
was tested every 10 seconds. NTP was started at t = 0, after which it collected
data for 9 minutes before acting. During this time, the two nodes drifted apart
by about 2µsec/sec. Peak error was about 70,000µsec after 16 minutes. Error
was reduced to 7,000µsec after 29 minutes, 700µsec after 39 minutes, and 70µsec
after 53 minutes.
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4.10 Summary

In this chapter, we explored a range of metrics that are relevant to time synchro-

nization in sensor networks. We have also seen that these dimensions of time are

forever intertwined; it is impossible to optimize one without affecting others. For

example:

• It is impossible to correct phase error without introducing temporary fre-

quency error.

• In multi-hop networks, larger-scope synchronization inevitably leads to

poorer phase error.

• In single-event forms of synchronization (e.g., a single packet to serve as

a reference beacon), phase error grows with lifetime at a rate dictated by

frequency error.

• The best phase and frequency error bounds are often achieved when algo-

rithms are given a longer time to converge, but longer convergence time

implies more energy use.

• Synchronization methods that offer the best combination of error, scope,

lifetime, and availability sometimes require extra hardware that is too large

or costly to be viable for a sensor network node.

• . . .

These metrics gives us an important basis for evaluating existing schemes,

and designing new ones. In addition, we are now in a position to answer the

question posed in earlier chapters: are existing schemes sufficient in the new

sensor network regime? Do we really need something new?
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CHAPTER 5

A New Regime for Time Synchronization

Time is what we want most, but. . . what we use worst.

—William Penn

For three decades, Mills’ Network Time Protocol [Mil94a] has been the gold

standard for network time synchronization. It is the oldest continuously operating

protocol in the Internet, and currently serves over 100,000 clients; virtually every

server in the world uses it to keep tightly synchronized to UTC [Mil03]. The

NTP protocol and its implementation have been battle-tested: they are robust,

scalable, and provide excellent service. Why do sensor networks need something

new?

The essence of the answer is that sensor networks are, in some ways, a radical

departure from traditional networking; they break many of the assumptions on

which prior work is based. While existing solutions are critical building blocks,

we argue that new solutions are needed. This chapter explores the issue in more

detail by revisiting some of the related work we described in Chapter 2. We

will compare the service that existing methods such as NTP can provide against

the range of requirements seen in Chapter 3, using the metrics we described in

Chapter 4.

In this chapter, we also propose a number of general guidelines for the design

of new time synchronization systems for sensor networks. As we will see in
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later chapters, these design themes are common to many of the synchronization

methods we have developed or encountered during our exploration of this problem

space.

5.1 The Need for Something New

Computer clock synchronization has seen dramatic improvements in recent times.

The current state of the art provides error bounds that are orders of magnitude

better than just ten or twenty years prior. It is now common for an ordinary

desktop machine to be continuously synchronized to UTC within perhaps 100–

200µsec. Such accuracy has been made possible through the confluence of two

main technologies: the Global Positioning System (GPS) and the Network Time

Protocol (NTP).

As we described in Section 2.6, GPS has emerged as the pre-eminent method

for distributing time and frequency world-wide. Today (2003), without Selective

Availability, a relatively inexpensive ($500) GPS clock can achieve < 20nsec phase

error to UTC [CNS]. It is interesting to note that the level of service provided

by modern GPS receivers has, in some sense, turned time synchronization on its

head. Years ago, methods for synchronizing to an external clock such as UTC

was were much lower precision than methods for keeping a local cluster kept

internally consistent. Today, the opposite is true: GPS receivers both provide

an external, persistent, global clock and can produce higher precision agreement

among nodes than most methods of network time synchronization.

There are practical limitations to using GPS, of course: special receiver hard-

ware is required and an antenna must be mounted on a roof or some other location

that has a view of the sky. While this is done for certain applications that re-
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quire high precision timing, the cost and effort of using GPS is not justified for

most desktop users. However, now that the Internet provides ubiquitous access

to network time servers, most computers no longer require direct access to GPS.

The second major technological piece, therefore, has been the development

of Mills’ Network Time Protocol. NTP effectively delivers a proxy UTC signal

via the Internet to those machines (the majority) that do not have a direct

view of GPS time.1 It has been adopted by the vast majority of users who

need synchronization but do not require the sub-microsecond precision that GPS

provides. The exact precision achieved by NTP over an IP network depends on

the network topology, but in the best cases it can achieve between 50 and 100

µsec, as we will see in Section 6.4.

The combination of GPS and NTP has proved very successful. Both the NTP

protocol and its implementation have been battle-tested: they are robust, scal-

able, and provide high accuracy. Many in the sensor-network research community

have asked: “Why not use NTP here, too?” As we saw in Section 2.2, a num-

ber of groups have moved in this direction, implementing NTP-like hierarchical

time distribution for sensor networks [GKA02, SA02]. But is this truly the best

choice? Many of the assumptions that NTP makes, while true in the Internet,

are not true in sensor networks. It is important to understand those assumptions

and how they are broken.

5.1.1 Energy Aware

As we saw in Chapter 1, finite energy is a crucial constraint in sensor networks.

The need for energy efficiency violates a number of assumptions routinely made

1NTP servers can use sources of UTC other than GPS: the WWVB radio station and GOES
satellites, for example. However, GPS is the most common.
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by classical synchronization algorithms:

• Using the CPU in moderation is free.

• Listening to the network is free.

• Occasional transmissions have a negligible impact.

These assumptions are true in traditional networks and consequently have

become fundamental to many synchronization schemes. For example, NTP as-

sumes that the CPU is always on. As we saw in Figure 4.1, it performs frequency

discipline of the oscillator by adding small but continuous offsets to the system

clock. In addition, NTP does not attempt to predict the time at which packets

will arrive; it simply listens to the network all the time. Finally, while NTP is

conservative in its use of bandwidth, it assumes a continuous ability to transmit

packets during normal operation. While it does deal with a loss of network access

by continuing to discipline the clock using the last known frequency, connectivity

loss is assumed to be a rare event.

Pottie and Kaiser articulated why these assumptions do not hold in sensor

networks [PK00]. In a low-power radio, receiving a packet requires nearly as

much energy as sending one; the RF energy radiated is small compared to the

cost of the electronics behind it. Listening to an idle channel while waiting for a

packet to arrive requires nearly as much energy as reception of a packet.

Because of the cost of listening, the radio can (and often must) remain powered

off until an event of interest occurs. Intermittent connectivity may indeed be the

norm, and not a special case. This is a problem for NTP; it can take a long time

after network access has been restored before it achieves its optimal accuracy, as

we saw in Figure 4.3.
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CPU cycles can also be a constrained resource: the limited energy mandates

the use of slow processors which spend most of their time powered down. For

example, Pottie and Kaiser’s original WINS design included a low-power pre-

processor that awakens the main processor after an event of interest. A scheme

that assumes continuous access to the CPU, even for short intervals, will not

work properly if the CPU is completely off most of the time.

5.1.2 Infrastructure-Supported vs. Ad Hoc

Two commonly held perceptions are that NTP is used to synchronize “the entire

Internet” and that it can synchronize clocks to a precision of several hundred

microseconds. While these statements are individually accurate, the resulting

assumption is not: that NTP alone can produce clock agreement that is world-

wide in scope and has sub-millisecond phase error. When we examine just how

Internet-scale time synchronization is achieved, we see that this is not quite true.

NTP gets help from something that, often times, is not available in a sensor

network: infrastructure.

NTP allows construction of time synchronization hierarchies, each rooted at

one of many canonical sources of external time in the Internet. The canonical

sources (“Stratum 1” servers, in NTP terminology) are synchronized with each

other via a variety of “out of band” mechanisms—for example, radio receivers for

time signals from the Global Positioning System or the WWVB radio broadcast

we described in Sections 2.6 and 5.1. This infrastructure provides a common view

of a global timescale (UTC) to the Stratum 1 servers throughout the Internet.

Consequently, nodes throughout the Internet enjoy being synchronized to a single,

global timescale while rarely finding themselves more than a few hops away from

a local source of this canonical time.
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Sensor networks, on the other hand, may often consist of large-diameter net-

works without an external infrastructure. Often it is not an option to equip sensor

nodes with receivers for out of band time references—GPS requires line of sight

to the satellites, which is not available inside of buildings, beneath dense foliage,

underwater, when jammed by an enemy, or during Mars exploration. In addi-

tion, in many contexts, GPS receivers are too expensive in terms of their energy

consumption, size, or cost. GPS may not be practical, for example, in a network

made up entirely of nodes on the scale of a dust-sized mote, or even the Berkeley

COTS mote.

In this scenario, NTP-style algorithms must create a hierarchy rooted at a

single node that is designated as the system’s master clock. For this to work, we

must first develop an algorithm that automatically maintains such a hierarchy in

the face of node dynamics and partitions. (Partitioning has problems of its own,

as we will see in Sections 5.1.3 and 5.1.4.) However, even assuming this problem

has been solved, there is still a fundamental stumbling block: if there a single

source of canonical time, most nodes will be far away from it. Error accumulates

at each hop, so nodes that are far away from the master clock will be poorly

synchronized to the global timescale.

This is a particularly unfortunate situation in a sensor network, where nodes

often need the best synchronization to nearby neighbors—e.g., for distributed

acoustic beamforming as we saw in Section 3.6. Consider the scenario shown in

Figure 5.1. Nodes A, B, and C are close to one another, but far away from the

master clock. Because A and C have different paths to the master, their errors

will be uncorrelated. In an NTP-like scheme, B must choose either A or C as

its synchronization source. Either choice will lead to poor synchronization when

sharing data with the opposite neighbor. For example, if B synchronizes to C,

66



A C

B

Master

Stratum 2

Stratum 3

Figure 5.1: A global timescale can lead to poorly synchronized neighbors, if
the neighbors are far from the master clock and have uncorrelated loss due to
divergent synchronization paths.

its synchronization error to A will be quite large; the synchronization path leads

all the way to the master and back. (Alternatively, B can take the average of

A and C, in which case it is not particularly well synchronized to either one of

them.)

The point of this example is to demonstrate that the quality of the synchro-

nization among the group is proportional to the distance of the group from an

arbitrarily selected master node. That node may be far away. Because of the in-

herently localized computation in sensor networks, we would prefer that a nodes’

synchronization be commensurate with their distance from each other, not their

distance from an unrelated location. As we will discuss in Section 5.2.5, this

constraint suggests that sensor networks should have no global timescale.
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5.1.3 Static Topology vs. Dynamics

Most synchronization algorithms assume that the network topology is relatively

stable. Of course, the Internet suffers from transient link failures, but it works

most of the time. This leads to an insidious problem: because network outages

are considered rare, most schemes do not provide a way to correct the timestamps

that were acquired during an outage.

Consider a network that is partitioned into two disconnected regions. Assume

a synchronization algorithm such as NTP is running, extended to dynamically

elect a master clock (e.g., as described in [GKA02] or [SA02]). Nodes within each

region will be internally synchronized. However, lacking some form of infrastruc-

ture, the two time domains will have no known relationship to one another.

Imagine now that during the network partition, events of interest occur in

each region, and are timestamped. Some time later, a change in the topology al-

lows communication between the two regions. This may happen for any number

of reasons: perhaps a source of RF interference disappeared, a node moved, or a

sleeping node was activated. Even though the entire network can now communi-

cate, it is impossible to compare events that were witnessed in different regions:

their timestamps have no relationship to one another.

This problem arises because existing time synchronization schemes generally

do not provide a way to correct old timestamps based on new information. It

is one symptom of a deep-seated assumption implicitly made by virtually all

schemes: that a node’s clock is kept synchronized all the time. Applications are

not concerned with the details of synchronization—how, when, or with which

nodes it is performed; they simply expect a “correct” clock to be available at any

instant that it is needed. We believe that in sensor networks, this service model

is fundamentally and fatally flawed; in Section 5.2.4, we propose an alternative.
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Figure 5.2: A disconnected network that requires time synchronization. Some
form of time synchronization is needed to compare the event detections by nodes
1 and 2. However, these devices are never in direct communication, and the
indirect communication they share (via node 3) only comes after the events in
question. Figure courtesy of Kay Römer, ETH Zurich. Used with permission.

5.1.4 Connected vs. Disconnected

In the previous example of a partitioned network, synchronization was needed

at a time that a link was not available. An even more extreme condition might

sometimes exist—synchronization may be needed between nodes that never com-

municate.

Consider the scenario depicted in Figure 5.2, in which three nodes (1, 2, and

3) are collaboratively monitoring pollution in a river. At time t1 (left), Node 1

detects a oil stain. Node 2 detects the same phenomenon at t2. At t3, Node 2 is

close enough to Node 3 that it can inform Node 3 of the detection event (E2).

Finally, at t4, Node 1 informs Node 3 of E1.

The times of E1 and E2 must be compared according to a common timebase;

however, Node 1 and Node 2 have never exchanged information that could have

been used to synchronize their clocks. As in the example from Section 5.1.3, this

situation will confound traditional synchronization algorithms that assume nodes

must be synchronized a priori, before they detect events of interest.
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5.1.5 Single-Hop vs. Multi-Hop

Although NTP synchronizes over multi-hop networks, much of the other, non-

Internet (“LAN”) work in distributed clock agreement assumes that all nodes in

the system can directly exchange messages. In other words, they assume a single

latency and jitter bound is common to all messages in the system. Some methods

that exploit the broadcast property of the physical media [MFN00, VRC97] do not

speak to the problem of federating the clocks of multiple (overlapping) broadcast

domains.

Sensor networks span many hops; the end-to-end latency is much larger than

a single hop. The required synchronization scope is often significantly larger than

a broadcast domain. This makes it difficult to apply methods that assume a fully

connected or common-latency topology.

5.2 Design Principles

Having described the shortcomings of traditional time synchronization schemes

in the previous section, we can begin to formulate new directions for time syn-

chronization in sensor networks. In this section, we present general design themes

that have been culled from both our own work (Chapters 6–9) and the experi-

ences of others in the area (e.g., Römer [R01, ER02], Su [SA02] and Ganeriwal

[GKA02]).

Of course, our design guidelines have not yet withstood the test of time in

the way that NTP has for the Internet. However, they are a reasonable starting

point for thinking about how time synchronization might meet all the special

requirements in this domain: energy efficiency, scalability, robustness, ad-hoc

deployment, and so on.
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5.2.1 Multi-Modal Synchronization

As we saw in Chapter 2, there are many different ways to achieve time synchro-

nization. Even within the new sensor network domain, many methods have been

proposed. These schemes all fall into many disparate points in the parameter

space we described in Section 4, including energy, phase and frequency error,

scope, availability, lifetime, cost, and convergence time. Every scheme makes

trade-offs—no single method is optimal along all axes. For example:

• Typical GPS receivers access a timescale that is persistent and Earth-wide

in scope to a precision of 20ns or better [CNS]. However, receivers require

several minutes of settling time, and may be too large, costly, or high-power

to justify on a small sensor node. In addition, the GPS infrastructure is

not always available (§5.1.2).

• Römer’s scheme described in [R01] achieves 1ms precision, creates an in-

stantaneous timescale with little overhead, and works on unidirectional

links. However, the synchronization is localized and rather short-lived.

• Our RBS scheme (Chapter 6) can achieve several µsec of phase error, and

sufficient frequency estimates to extend the timescale for several minutes.

RBS synchronizes all nodes within a broadcast domain. However, it requires

a bidirectional broadcast medium and several packet exchanges.

• The multihop extension to RBS described in Chapter 7 allows the timescale

to be extended across multiple broadcast domains, but at the cost of (some-

what) degraded accuracy.

None of these methods can be considered the best; each has advantages and

disadvantages. The details of a particular application and hardware will dictate
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Figure 5.3: Sensor network designers need a palette of synchronization methods
that fall into a diverse set of points in the parameter space. This makes it more
likely that a method will be necessary and sufficient for an application. The
distance between the requirements and the method represents waste—resources
such as energy that are being expended to provide service that the application
doesn’t need.

the method that should be used in each situation.

Ideally, we would like to have a large enough palette of methods available so

that we can choose an overall scheme that is both necessary and sufficient for the

application on all axes, as seen in Figure 5.3. Unnecessary synchronization wastes

resources; insufficient synchronization leads to poor application performance.

5.2.2 Tuning Parameters

Most synchronization methods have flexibility in the way they operate—they can

make trade-offs that improve one metric at the expense of another. For example,

a scheme might send a larger number of packets, trading energy use for lower

phase and frequency error bounds. Setting radios to their maximum transmit

power can trade energy for scope.

These kinds of parameters should be exposed and easily changeable by the ap-
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plication designer user so that the service provided matches the requirements as

closely as possible. Without tunability, the synchronization methods depicted in

Figure 5.3 would be points. The more tuning parameters, the larger the region—

making it more likely that at least one region will precisely overlap the application

requirement. Distance from the requirement to the synchronization method, if

any, represents waste—resources such as energy that are being expended to pro-

vide service that the application doesn’t need.

5.2.3 Tiered Architectures

Although Moore’s law predicts that hardware for sensor networks will inexorably

become smaller, cheaper, and more powerful, technological advances will never

prevent the need to make trade-offs. Even as our notions of metrics such as

“fast” and “small” evolve, there will always be compromises: nodes will need

to be faster or more energy-efficient, smaller or more capable, cheaper or more

durable.

Instead of choosing a single hardware platform that makes a particular set

of compromises, we believe an effective design is one that uses a tiered platform

consisting of a heterogeneous collection of hardware. Larger, faster, and more

expensive hardware (beacons, aggregation points) can be used more effectively

by also using smaller, cheaper, and more limited nodes (sensors, tags). An anal-

ogy can be made to the memory hierarchy commonly found in desktop computer

systems. CPUs typically have extremely expensive, fast on-chip cache, backed

by slower but larger L2 cache, main memory, and ultimately on-disk swap space.

This organization, combined with a tendency in computation for locality of ref-

erence, results in a memory system that appears to be as large and as cheap

(per-byte) as the swap space, but as fast as the on-chip cache memory.
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In sensor networks, where localized algorithms are a primary design goal, sim-

ilar benefits can be realized by creating the network from a spectrum of hardware

ranging from small, cheap, and numerous, to large, expensive, and powerful. For

example, if at least one of the nodes in a sensor network can be equipped with

GPS, this can help enormously in applications that require an external time ref-

erence (e.g., for data logging). Of course, nodes many hops away from a single

GPS-equipped node will not have optimal precision to the UTC timescale.

5.2.4 Explicit Timestamp Conversion

In Section 5.1.3, we described an important problem that arises when using tradi-

tional synchronization methods in sensor networks: event timestamps are useless

if an event occurs at a time when the clock is not synchronized. This is certainly

a problem if outages are common, but it also points to a more fundamental issue:

the usual synchronization service model implies that the clock must be synchro-

nized all the time. Applications simply assume a synchronized clock is always

available—that they can ask “What time is it?” at any time, and receive a

correct answer. (Ignore for a moment the thorny question of what “correct”

means—we address this in the next section.)

The traditional service model is easy to understand; asking “What time is it?”

matches our experience in the real world. However, it is enormously limiting: it

forces the synchronization service to make a set of assumptions about the way in

which applications use time that are, at best, compromises. We have found a new

interface to be far more more flexible, based around the following two questions:

• What time is it here?

• At time t here, what time is it there?

74



In other words, we suggest that every node keep time according to its own

clock. A node should never set its clock or discipline its frequency, but rather let

it run at its natural rate. “What time is it here?” simply returns the value of the

local clock. It is always available. Time synchronization schemes—regardless of

the underlying method—don’t set the clock, but rather build a set of parameters

relating the phase and frequency of the local clock to other timescales in the

system. The remote timescales may be other nodes’ clocks, standard timescales

or frequency references such as UTC, average timescales that represent a fed-

eration of clocks, or even virtual timescales (alá Lamport) that represent event

ordering. The second of our two service-model questions can be answered using

these parameters: timestamps from different nodes can be compared by using the

conversion parameters to transform timestamps into the same time-base.

This service model disconnects time-stamping from time-synchronization, and

has many advantages. For example:

• The clock is freed from the requirement that it must be synchronized con-

tinuously. Instead, a node can query the clock for a timestamp when an

event occurs, and perform synchronization after the fact. This idea of post-

facto synchronization is described in more detail in Section 5.2.6, and an

implementation is demonstrated in Chapter 8.

• Intermittent and disconnected operation (as described in Sections 5.1.3 and

5.1.4) is handled much more naturally. In the old service model, events must

be discarded if they occur at a time when synchronization is not available.

Or, even worse, erroneous data may be used if the application is not aware

of the current (incorrect) state of the clock. In the new service model, times-

tamps can be collected at the time of the event, then converted whenever

sufficient synchronization data are available. The conversion might be pos-
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sible immediately, or might not be possible until later due to a temporary

service outage. If conversion can not be performed, it fails explicitly.

• The clock is no longer forced to keep a single definition of the “correct”

definition of time. Explicit conversion allows the application to specify

which timescale is needed, which frees the system from needing a global

timescale. We will explore this idea in more detail in Section 5.2.5.

• The local clock runs undisciplined, and thus is monotonic and relatively

stable—a critical feature to many signal processing algorithms. While fre-

quency drift will occur due to the oscillator’s instability (affected by tem-

perature, shock, and voltage variations), there will be no sudden changes

in the frequency or phase due to new information arriving at a disciplining

algorithm.

• An undisciplined clock requires no continuous corrections to the clock by

the CPU or kernel, as are required by algorithms such as NTP. This is

important for energy conservation, as we saw in Section 5.1.1.

5.2.5 No Global Timescale

We have seen that many different timescales exist in a sensor network that might

be of interest to a node, depending on its task. For example, in some cases, a

node may need access to UTC, but can tolerate high error (e.g., general debug

messages). In other cases, UTC is irrelevant, but the node needs very high pre-

cision agreement with other nodes in the area (e.g., acoustic ranging). However,

as we saw in Section 5.1.2, schemes that keep all nodes synchronized to a single,

global timescale can lead to unwanted compromises. Unless multiple canonical

sources of that timescale are available throughout the network, most nodes will
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be far away from it. Phase error between nearby nodes can be proportional to

the nodes’ distance from an arbitrary master clock, rather than their distance

from each other.

By separating local timestamping from timestamp conversions, as we de-

scribed in the previous section, we also make it easy to perform per-neighbor

conversions. That is, there is no global timescale. The situation shown in Fig-

ure 5.1 is no longer a problem—B can simply use its A conversion parameters

when communicating with A, and its C parameters when communicating with

C. In fact, time conversion can be built into the packet forwarding mechanism

itself. That is, nodes can perform successive time conversions on packets as they

are forwarded from node to node—keeping timestamps with respect to the local

clock at each hop.

5.2.6 Post-Facto Synchronization

As we discussed in earlier sections, most traditional schemes keep the clock syn-

chronized at all times so that it can be consulted if an event occurs. Among other

problems, this is wasteful of energy: if events occur infrequently, nodes waste the

resources that are used to maintain synchronization during idle periods.

With the traditional service model, little can be done about this situation,

except perhaps to predict when synchronization will be needed in the future.

However, using our model of local clocks and explicit conversions, a far superior

solution falls out quite naturally: post-facto synchronization. That is, a node’s

local clock runs, unsynchronized, at its natural rate, and is used to timestamp

events when they occur. After an event of interest, a synchronization process can

be started, allowing timestamps from distributed nodes to be reconciled. Waste

is reduced because the system avoids performing synchronization at times when
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it’s not necessary. This scheme works much better than the predictive version:

it is much easier to characterize the past than it is to predict the future.

In Chapter 8, we will discuss post-facto synchronization in more detail and

show several experiments with a real implementation.

5.2.7 Exploitation of Domain Knowledge

Much of the design of the Internet—and, in fact, the Internet Protocol (IP)

itself—is meant to put a consistent interface on top of a heterogeneous and in-

consistent tapestry of underlying transport media and protocols. NTP shares a

similar philosophy: it makes a reasonable set of “lowest common denominator”

assumptions about the environment in which it expects to operate. In the In-

ternet, this is the right choice: it has allowed NTP to become deployed nearly

ubiquitously, despite the wide variety of processors, oscillators, network media,

node topologies, and cross-traffic it encounters.

The disadvantage of such a design is that it precludes the system from taking

advantage of any special features that might be available. In a sensor network,

where every possible resource must often be squeezed from the system, it may not

be feasible to give up performance for the sake of generality. It often makes sense

for each application to take advantage of whatever special features are available

at every layer of the system.

For example, the inherent properties of some communication media can be

leveraged for time synchronization. In networks that provide a physical-layer

broadcast channel, we have shown Reference-Broadcast Synchronization (RBS)

can achieve much better precision than NTP by exploiting the properties inherent

to broadcast messages (Chapter 6). In time-division based MAC layers, some

form of synchronization already exists between radios, and can often be accessed
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by a synchronization process on the CPU [Rub79]. Some radio standards such

as Bluetooth [BLU] provide a separate synchronous communication channel with

low delay jitter, which can be used for exchanging synchronization pulses.

Time synchronization can also use domain knowledge about the application.

For example, Römer’s scheme [R01] piggybacks round trip time measurements to

ordinary data packets sent by other processes. This achieves time synchronization

without imposing any additional load on the network. Similarly, RBS can work

by observing extant broadcasts in the system instead of sending its own special

packets.

5.3 Summary

Many forms of time synchronization have been developed over the years. But, in

some ways, sensor networks are a radical departure from traditional networking;

they break many of the assumptions on which prior work is based. While existing

solutions are critical building blocks, we have seen a number of important issues

that sensor networks bring to bear, requiring many aspects of traditional designs

to change. Unlike the Internet, sensor networks must be synchronized with an eye

toward energy efficiency; they must often work without infrastructure; timescales

of mutually disconnected nodes must be reconciled.

Based on both our own work and the experience of others designing in this

problem space, we have proposed a number of guidelines that are useful in for-

mulating new synchronization schemes for sensor networks. Perhaps foremost

on this list is that there can never be a single scheme: each makes different

trade-offs, and none are optimal on all axes. We can gain enormous flexibility

in designing a palette of such schemes by changing the service interface of time
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synchronization—making timestamping and timestamp synchronization separate

and explicit steps. The lack of infrastructure can be embraced by doing away

with the idea of a global timescale.

Using these guidelines, we have designed, implemented, and characterized a

number of new synchronization schemes that have proved themselves very useful

in sensor networks. In the chapters to come, we turn to a examination of those

schemes in greater detail.
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CHAPTER 6

Reference Broadcast Synchronization

If you liked this broadcast, we hope you’ll watch it again tomorrow

night, and maybe tell your neighbors about it.

—Dan Rather on the CBS Evening News, November 29, 1999

Many network synchronization algorithms have been proposed over the years,

but most share the same basic design: a server periodically sends a message

containing its current clock value to a client. In this chapter, we explore a form

of time synchronization that differs from the traditional model. The fundamental

property of our design is that it synchronizes a set of receivers with one another,

as opposed to traditional protocols in which senders synchronize with receivers.

In our scheme, nodes periodically send a message to their neighbors using the

network’s physical-layer broadcast. Recipients use the message’s arrival time as

a point of reference for comparing their clocks. The message contains no explicit

timestamp, nor is it important exactly when it is sent. We call this Reference-

Broadcast Synchronization, or RBS.

In this chapter, we use measurements from two wireless implementations to

show that removing the sender’s nondeterminism from the critical path in this

way results in a dramatic improvement in synchronization over using NTP. Us-

ing off-the-shelf 802.11 wireless Ethernet, RBS can produce high-precision clock

agreement (1.85± 1.28µsec), while using minimal energy. We also show that this
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is a significant improvement over NTP when tested under similar conditions.

The most significant limitation of RBS is that it requires a network with a

physical broadcast channel. It can not be used, for example, in networks that

employ point-to-point links. However, it is applicable for a wide range of appli-

cations in both wired and wireless networks where a broadcast domain exists and

higher-precision or lower-energy synchronization is required than what NTP can

typically provide.

The organization of this chapter is as follows. In Section 6.1, we describe the

design of traditional time synchronization protocols in more detail, and contrast

it to the RBS design philosophy. In Section 6.2, we describe the basic build-

ing blocks of RBS, including estimation of phase offset (§6.2.1) and clock skew

(§6.2.2). We then present empirical data from two wireless implementations of

single-hop RBS—on Berkeley motes (§6.3) and on a commercial-off-the-shelf plat-

form based on an 802.11 wireless Ethernet network (§6.4). Finally, in Section 6.5,

we summarize the advantages of RBS.

6.1 Traditional Synchronization Methods

Before discussing RBS in detail, we describe how existing time synchronization

protocols typically work, and their usual sources of error.

Many synchronization protocols exist, and most share a basic design: a server

periodically sends a message containing its current clock value to a client. A

simple one-way message suffices if the typical latency from server to client is small

compared to the desired accuracy. A common extension is to use a client request

followed by a server’s response. By measuring the total round-trip-time of the

two packets, the client can estimate the one-way latency. This allows for more
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accurate synchronization by accounting for the time that elapses between the

server’s creation of a timestamp and the client’s reception of it. NTP [Mil94a] is

a ubiquitously adopted protocol for Internet time synchronization that exemplifies

this design.

6.1.1 Sources of Time Synchronization Error

The enemy of precise network time synchronization is non-determinism. Latency

estimates are confounded by random events that lead to asymmetric round-trip

message delivery delays; this contributes directly to synchronization error. To

better understand the source of these errors, it is useful to decompose the source

of a message’s latency. Kopetz and Schwabl characterize it as having four distinct

components [KS89]:

• Send Time—the time spent at the sender to construct the message. This

includes kernel protocol processing and variable delays introduced by the

operating system, e.g. context switches and system call overhead incurred

by the synchronization application. Send time also accounts for the time

required to transfer the message from the host to its network interface.

• Access Time—delay incurred waiting for access to the transmit channel.

This is specific to the MAC protocol in use. Contention-based MACs (e.g.,

Ethernet [MB83]) must wait for the channel to be clear before transmitting,

and retransmit in the case of a collision. Wireless RTS/CTS schemes such

as those in 802.11 networks [ISO99] require an exchange of control packets

before data can be transmitted. TDMA channels [Rub79] require the sender

to wait for its slot before transmitting.
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• Propagation Time—the time needed for the message to transit from sender

to receivers once it has left the sender. When the sender and receiver share

access to the same physical media (e.g., neighbors in an ad-hoc wireless

network, or on a LAN), this time is very small as it is simply the physical

propagation time of the message through the media. In contrast, Propaga-

tion Time dominates the delay in wide-area networks, where it includes the

queuing and switching delay at each router as the message transits through

the network.

• Receive Time—processing required for the receiver’s network interface to

receive the message from the channel and notify the host of its arrival.

This is typically the time required for the network interface to generate

a message reception signal. If the arrival time is timestamped at a low

enough level in the host’s operating system kernel (e.g., inside of the network

driver’s interrupt handler), the Receive Time does not include the overhead

of system calls, context switches, or even the transfer of the message from

the network interface to the host.

Existing time synchronization algorithms vary primarily in their methods for

estimating and correcting for these sources of error. For example, Cristian ob-

served that performing larger numbers of request/response experiments will make

it more likely that at least one trial will not encounter random delays [Cri89].

This trial, if it occurs, is easily identifiable as the shortest round-trip time. NTP

filters its data using a variant of this heuristic.

Our scheme takes a different approach to reducing error. Instead of estimating

error, we exploit the broadcast channel available in many physical-layer networks

to remove as much of it as possible from the critical path. Our contributions

in this paper stem from the observation that a message that is broadcast at the
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Figure 6.1: A critical path analysis for traditional time synchronization protocols
(left) and RBS (right). For traditional protocols working on a LAN, the largest
contributions to nondeterministic latency are the Send Time (from the sender’s
clock read to delivery of the packet to its NIC, including protocol processing)
and Access Time (the delay in the NIC until the channel becomes free). The
Receive Time tends to be much smaller than the Send Time because the clock
can be read at interrupt time, before protocol processing. In RBS, the critical
path length is shortened to include only the time from the injection of the packet
into the channel to the last clock read.

physical layer will arrive at a set of receivers with very little variability in its delay.

Although the Send Time and Access Time may be unknown, and highly variable

from message to message, the nature of a broadcast dictates that for a particular

message, these quantities are the same for all receivers. This observation was

also made by Veŕıssimo and Rodrigues [VR92], and later became central to their

CesiumSpray system [VRC97].

The fundamental property of Reference-Broadcast Synchronization is that a

broadcast message is only used to synchronize a set of receivers with one another,

in contrast with traditional protocols that synchronize the sender of a message

with its receiver. Doing so removes the Send Time and Access Time from the

critical path, as shown in Figure 6.1. This is a significant advantage for syn-

chronization on a LAN, where the Send Time and Access time are typically the

biggest contributors to the nondeterminism in the latency. Mills attributes most

of the phase error seen when synchronizing an NTP client workstation to a GPS

85



receiver on the same LAN (500µsec–2000µsec in his 1994 study [Mil94b]) to these

factors—Ethernet jitter and collisions.

To counteract these effects, an RBS broadcast is always used as a relative

time reference, never to communicate an absolute time value. It is exactly this

property that eliminates error introduced by the Send Time and Access Time:

each receiver is synchronizing to a reference packet which was, by definition,

injected into the physical channel at the same instant. The message itself does

not contain a timestamp generated by the sender, nor is it important exactly

when it is sent. In fact, the broadcast does not even need to be a dedicated

timesync packet. Almost any extant broadcast can be used to recover timing

information—for example, ARP packets in Ethernet, or the broadcasted control

traffic in wireless networks (e.g., RTS/CTS exchanges or route discovery packets).

6.1.2 Characterizing the Receiver Error

Previously, we described the four sources of latency in sending a message. Two

of these—the Send Time and Access Time—are dependent on factors such as

the instantaneous load on the sender’s CPU and the network. This makes them

the most nondeterministic and difficult to estimate. As described above, RBS

eliminates the effect of these error sources altogether; the two remaining factors

are the Propagation Time and Receive Time.

For our purposes, we consider the Propagation Time to be effectively 0.

The propagation speed of electromagnetic signals through air is close to c,1 and

through copper wire about 2

3
c. For a LAN or ad-hoc network spanning tens of

feet, propagation time is at most tens of nanoseconds, which does not contribute

significantly to our µsec-scale error budget. (In sensor networks, the error budget

1A convenient rule of thumb is 1nsec/foot.
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is often driven by the need to sense phenomena, such as sound, that move much

more slowly than the RF-pulse used to synchronize the observers.) In addition,

RBS is only sensitive to the difference in propagation time between a pair of

receivers, as depicted in Figure 6.1.

The length of a bit gives us an idea of the Receive Time. For a receiver to

interpret a message at all, it must be synchronized to the incoming message within

one bit time. Latency due to processing in the receiver electronics is irrelevant

as long as it is deterministic, since our scheme is only sensitive to differences in

the receive time of messages within a set of receivers.2 In addition, the system

clock can easily be read at interrupt time when a packet is received; this removes

delays due to receiver protocol processing, context switches, and interface-to-host

transfer from the critical path.

To verify our assumptions about expected receiver error, we turned to our

laboratory’s wireless sensor network testbed [CEE01]. Specifically, we tested the

Berkeley Mote, a postage-stamp sized narrowband radio and sensor platform de-

veloped by Pister et al. at Berkeley [KKP99]. Motes use a minimal event-based

operating system developed by Hill et al. specifically for that hardware platform

called TinyOS [HSW00]. We programmed 5 Motes to raise a GPIO pin high

upon each packet arrival, and attached those signal outputs to an external logic

analyzer that recorded the time of the packet reception events. An additional

Mote emitted 160 broadcast packets over the course of 3 minutes, with random

inter-packet delays ranging from 200msec to 2 seconds. For each pulse transmit-

ted, we computed the difference in the pulse’s packet reception time for each of

the 10 possible pairings of the 5 receivers. Some pulses were lost at some receivers

due to the normal vagaries of RF links. A total of 1,478 pairings were computed.

2It is important to consider effects of any intentional nondeterminism on the part of a
receiver, such as aggregation of packets in a queue before raising an interrupt.
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Figure 6.2: A histogram showing the distribution of inter-receiver phase offsets
recorded for 1,478 broadcast packets, grouped into 1µsec buckets. The curve
is a plot of the best-fit Gaussian parameters. (µ = 0, σ = 11.1µsec, confi-
dence=99.8%)

A histogram showing the distribution of the receivers’ phase offsets is shown

in Figure 6.2. The maximum phase error observed in any trial was 53.4µsec. The

Mote’s radios operate at 19,200 baud and thus have a bit time of 52µsec. This

correspondence supports our reasoning that a receiver’s jitter is unlikely to be

much greater than a single bit time, as long as the receiver electronics have a

deterministic delay between packet reception and host notification.

The phase offset distribution appears Gaussian; the chi-squared test indicates

99.8% confidence in the best fit parameters—µ = 0, σ = 11.1µsec. This is useful

for several reasons. As we will see in later sections, a well-behaved distribution

enables us to significantly improve on the error bound statistically, by sending

multiple broadcast packets. In addition, Gaussian receivers are easy to model re-

alistically in numeric analyses. This facilitates quick experimentation with many

different algorithms or scenarios whose systematic exploration is impractical, such

as examining the effects of scale.
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6.2 Reference-Broadcast Synchronization

So far, we characterized the determinism of our receiver hardware. We now

turn to the question of using that receiver to achieve the best possible clock

synchronization.

We should note that our research does not encompass the question of how to

build a more deterministic receiver. This is best answered by those who design

them. Plans for forthcoming revisions of the Mote’s TinyOS are reported to

include better phase lock between a receiver and incoming message. Instead,

we ask: How well can we synchronize clocks with a given receiver? How is the

precision we can achieve related to that receiver’s jitter?

In this section, we build up the basic RBS algorithm for nodes within a single

broadcast domain. (Applying RBS in multihop networks will be considered in

Section 7.) First, we consider how RBS can be used to estimate the relative phase

offsets among a group of receivers. Next, we describe a slightly more complex

scheme that also corrects for clock skew. We also describe implementation of RBS

on both Berkeley Motes and commodity hardware, and quantify the performance

of RBS vs. NTP.

6.2.1 Estimation of Phase Offset

The simplest form of RBS is the broadcast of a single pulse to two receivers,

allowing them to estimate their relative phase offsets. That is:

1. A transmitter broadcasts a reference packet to two receivers (i and j).

2. Each receiver records the time that the reference was received, according

to its local clock.
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3. The receivers exchange their observations.

[ For simplicity, we will not delve into the details of the protocol here. Instead,

we will simply assume that all receivers can exchange observations with each

other, so as to focus on the essence of the algorithm. However, it is important to

note that this assumption does bring with it an unwanted topology constraint:

receivers must be able to hear reference broadcasts and be within transmission

range of each other. In our real RBS implementations, this constraint does not

exist—receivers report observations of a broadcast back to the node that sent it.

This scheme reduces the complexity of information exchange, and only requires

that links be bi-directional. ]

Based on a single broadcast, the receivers have sufficient information to form a

local (or relative) timescale. Global (or absolute) timescales such as UTC are im-

portant, and we will see in Section 7.4 how RBS can be extended to provide them.

However, in this section we will first consider construction of local timescales—

which are often sufficient for sensor network applications. For example, if node i

at position (0, 0) detects a target at time t = 4, and j at position (0, 10) detects it

at t = 5, we can conclude that the target is moving north at 10 units per second.

This comparison does not require absolute time synchronization; the reference

broadcast makes it possible to compare the time of an event observed by i with

one observed by j.3

The performance of this scheme is closely related to three factors:

1. The number of receivers that we wish to synchronize (n). We assumed

above that n = 2; however, collaborative applications often require syn-

3Our prototype implementation never sets the local clock based on reference broadcasts;
instead, it provides a library function for timestamp conversion. That is, it can convert a time
value that was generated by the local clock to the value that would have been generated on
another node’s clock at the same time, and vice-versa.
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chronization of many nodes simultaneously. As the set grows, the likeli-

hood increases that at least one will be poorly synchronized. We define the

group dispersion as the maximum phase error between any of the
(

n

2

)

pairs

of receivers in a group.

2. The nondeterminism of the underlying receiver, as we discussed in Sec-

tion 6.1.2.

3. Clock skew in the receivers, as their oscillators all tick at different rates. A

single reference will provide only instantaneous synchronization. Immedi-

ately afterward, the synchronization will degrade as the clocks drift apart.

Precision will therefore decay as more time elapses between the synchroniza-

tion pulse and the event of interest. Typical crystal oscillators are accurate

on the order of one part in 104 to 106 [Vig92]—that is, two nodes’ clocks

will drift 1–100µsec per second.

We will see in the next section how clock skew can be estimated. However,

assume for the moment that we already know the clock skew and have corrected

for it. Let us instead consider what is required to correct for the nondetermin-

ism in the receiver. Recall from Figure 6.2 that we empirically observed the

Mote’s receiver error to be Gaussian. We can therefore increase the precision of

synchronization statistically, by sending more than one reference:

1. A transmitter broadcasts m reference packets.

2. Each of the n receivers records the time that the reference was observed,

according to its local clock.

3. The receivers exchange their observations.
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4. Each receiver i can compute its phase offset to any other receiver j as the

average of the phase offsets implied by each pulse received by both nodes i

and j. That is, given

n: the number of receivers

m: the number of reference broadcasts, and

Tr,b: r’s clock when it received broadcast b,

∀i ∈ n, j ∈ n: Offset[i, j] =
1

m

m
∑

k=1

(Tj,k − Ti,k). (6.1)

Because this basic scheme does not yet account for clock skew (a feature added

in §6.2.2), it is not yet implementable on real hardware. We therefore turned to

a numeric simulation based on the receiver model that we derived empirically

in Section 6.1.2. In each trial, n nodes were given random clock offsets. m

pulse transmission times were selected at random. Each pulse was “delivered” to

every receiver by timestamping it using the receiver’s clock, including a random

error matching the Gaussian distribution parameters shown in Figure 6.2 (σ =

11.1). An offset matrix was computed as given in Equation 6.1. Each of these

O(n2) computed offsets was then compared with the “real” offsets; the maximum

difference was considered to be the group dispersion. We performed this analysis

for values of m = 1 . . . 50 and n = 2 . . . 20. At each value of m and n, we

performed 1,000 trials and calculated the mean group dispersion, and standard

deviation from the mean. The results are shown in Figure 6.3.

This numeric simulation suggests that in the simplest case of 2 receivers (the

lower curve of Figure 6.3a), 30 reference broadcasts can improve the precision
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Figure 6.3: Analysis of expected group dispersion (i.e., maximum pairwise error)
after Reference-Broadcast Synchronization. Each point represents the average
of 1,000 simulated trials. The underlying receiver is assumed to report packet
arrivals with error conforming to the distribution in Figure 6.2. a) Mean group
dispersion, and standard deviation from the mean, for a 2-receiver (bottom) and
20-receiver (top) group. b) A 3D view of the same dataset, from 2 to 20 receivers
(inclusive).

from 11µsec to 1.6µsec, after which we reach a point of diminishing return.4 In

a group of 20 receivers, the dispersion can be reduced to 5.6µsec. Figure 6.3b

shows a 3D view of the same dataset for all receiver group sizes from 2 to 20.

This view also shows that larger numbers of broadcasts significantly mitigate the

effect of larger group size on precision decay.

6.2.2 Estimation of Clock Skew

So far, we have described a method for estimating phase offset assuming that

there was no clock skew—that is, that all the nodes’ clocks are running at the

same rate. Of course, this is not a realistic assumption. A complete description

of crystal oscillator behavior is beyond the scope of this paper;5 however, to a

411µsec is the expected average result for a single pulse delivered to two receivers; this is
the standard deviation of the inter-receiver phase error, found in Section 6.1.2, upon which the
analysis was based.

5[Vig92] has a good introduction to the topic and pointers to a more comprehensive
bibliography.
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first approximation, the important characteristics of an oscillator are:

• Accuracy—the agreement between an oscillator’s expected and actual fre-

quencies. The difference is the frequency error; its maximum is usually

specified by the manufacturer. The crystal oscillators found in most con-

sumer electronics are accurate to one part in 104 to 106.

• Stability—An oscillator’s tendency to stay at the same frequency over time.

Frequency stability can be further subdivided into short-term and long-term

frequency stability. Short-term instability is primarily due to environmental

factors, such as variations in temperature, supply voltage, and shock. Long-

term instability results from more subtle effects, such as oscillator aging.

The phase difference between two nodes’ clocks will change over time due to

frequency differences in the oscillators. The basic algorithm that we described ear-

lier is not physically realizable without an extension that takes this into account—

in the time needed to observe 30 pulses, the phase error between the clocks will

have changed.

Complex disciplines exist that can lock an oscillator’s phase and frequency to

an external standard [Mil98]. However, we selected a very simple yet effective

algorithm to correct skew. Instead of averaging the phase offsets from multiple

observations, as shown in Equation 6.1, we perform a least-squares linear regres-

sion. This offers a fast, closed-form method for finding the best fit line through

the phase error observations over time. The frequency and phase of the local

node’s clock with respect to the remote node can be recovered from the slope

and intercept of the line.

Of course, fitting a line to these data implicitly assumes that the frequency is

stable, i.e., that the phase error is changing at a constant rate. As we mentioned
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earlier, the frequency of real oscillators will change over time due, for example,

to environmental effects. In general, network time synchronization algorithms

(e.g., NTP) correct a clock’s phase and its oscillator’s frequency error, but do not

try to model its frequency instability. That is, frequency adjustments are made

continuously based on a recent window of observations relating the local oscillator

to a reference. Our prototype RBS system is similar; it models oscillators as

having high short-term frequency stability by ignoring data that is more than a

few minutes old.

6.3 Implementation on Berkeley Motes

To test these algorithms, we first built a prototype RBS system based around

the Berkeley Motes we described in Section 6.1.2. In the first configuration we

tested, 5 Motes periodically broadcasted a reference pulse with a sequence num-

ber. Each of them used a 2µsec resolution clock to timestamp the reception times

of incoming broadcasts. We then performed an off-line analysis of the data. Fig-

ure 6.4a shows the results of a typical experiment after automatic rejection of

outliers (described below). Each point is the difference between the times that

the two nodes reported receiving a reference broadcast, plotted on a timescale

defined by one node’s clock. That is, given

Tr,b: r’s clock when it received broadcast b,

for each pulse k that was received by receivers r1 and r2, we plot

x =Tr1,k

y =Tr2,k − Tr1,k

95



0

100

200

300

400

500

600

700

0 50 100 150 200
-25

-20

-15

-10

-5

0

5

10

15

20

25

P
ha

se
 o

ffs
et

 (
us

ec
)

F
it 

er
ro

r 
(u

se
c)

Time (sec)

Figure 6.4: An analysis of clock skew’s effect on RBS. Each point represents
the phase offset between two nodes as implied by the value of their clocks after
receiving a reference broadcast. A node can compute a least-squared-error fit to
these observations (diagonal lines), and thus convert time values between its own
clock and that of its peer. a) Synchronization of the Mote’s internal clock. The
vertical impulses (read with respect to the y2 axis) show the distance of each
point from the best-fit line.
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For visualization purposes, the data are normalized so that the first pulse

occurs at (0, 0). The diagonal line drawn through the points represents the best

linear fit to the data—i.e., the line that minimizes the RMS error. The vertical

impulses, read with respect to the right-hand y axis, show the distance from each

point to the best-fit line.

The residual error—that is, the RMS distance of each point to the fit line—

gives us a good idea of the quality of the fit. We can reject outliers by discarding

the point that contributes most to the total error, if its error is greater than some

threshold (e.g. 3σ). In this experiment, the RMS error was 11.2µsec. (A more

systematic study of RBS synchronization error is described in later sections.)

The slope of the best-fit line defines the clock skew, when measured by receiver

r1’s clock. We can see, for example, that these two oscillators drifted about

300µsec after 100 “r1 seconds.” The line’s intercept defines the initial phase

offset. When combined, we have sufficient information to convert any time value

generated by r1’s clock to the value that would have been generated by r2’s clock

at the same time. We will see in Section 7.4 that “r2” may also be an external

standard such as UTC. However, even the internally consistent mapping is useful

in a sensor network, as we saw in Section 6.2.1.

6.4 Commodity Hardware Implementation

The performance of RBS on Berkeley Motes was very encouraging. However, it

is reasonable to wonder if its success was due to the algorithm itself or simply

the fact that it was implemented on a tightly integrated radio and processor plat-

form. In addition, we were curious about the relative performance of RBS and

NTP. To answer these questions—and provide RBS on a platform more gener-
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ally available to users—we implemented RBS as a UNIX daemon, using UDP

datagrams instead of Motes. We used a commodity hardware platform that is

part of our testbed: StrongARM-based Compaq IPAQs with Lucent Technologies

11Mbit 802.11 wireless Ethernet adapters. Our IPAQs run the “Familiar” Linux

distribution [FAM] with Linux kernel v2.4. In this test, all the wireless Ethernet

adapters are connected to a wireless 802.11 base station.

To make the comparison as fair as possible, we first implemented RBS under

the same constraints as NTP: a pure userspace application with no special kernel

or hardware support, or special knowledge of the MAC layer (other than that it

supports broadcasts). Like NTP, our Linux RBS daemon uses UDP datagrams

sent and received via the Berkeley socket interface. Packet reception times are

recorded in userspace by using the standard gettimeofday() library function (and

underlying system call). The daemon records the time after learning that a new

packet has arrived via an unblocked select() call. The IPAQ’s clock resolution is

1µsec.

Our RBS daemon simultaneously acts in both “sender” and “receiver” roles.

Every 10 seconds (slightly randomized to avoid unintended synchronization), each

daemon emits a pulse packet with a sequence number and sender ID. The daemon

also watches for such packets to arrive; it timestamps them and periodically sends

a report of these timestamps back to the pulse sender along with its receiver ID.

The pulse sender collects all of the pulse reception reports and computes clock

conversion parameters between each pair of nodes that heard its broadcasts.

These parameters are then broadcast back to local neighbors. The RBS daemons

that receive these parameters make them available to users. RBS never sets the

nodes’ clocks, but rather provides a user library that converts UNIX timevals

from one node ID to another.
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The clock conversion parameters are the slope and intercept of the least-square

linear regression, similar to the examples shown in Figure 6.4. Each regression

is based on a window of the 30 most recent pulse reception reports. In practice,

a small number of pulses are outliers, not within the Gaussian mode shown in

Figure 6.2, due to random events such as concurrent serial and Ethernet inter-

rupts. These outliers are automatically rejected based on an adaptive threshold

equal to 3 times the median fit error of the set of points not yet rejected. (Early

versions used a more traditional “3σ” approach, but the standard deviation was

found to be too sensitive to gross outliers.) The remaining points are iteratively

re-fit, and the outlier threshold recomputed, until no further points are rejected.

If more than half the points are rejected as outliers, the fit fails.

To test the synchronization accuracy, we connected a GPIO output from each

of two IPAQs to an external logic analyzer. The analyzer was programmed to

report the time difference between two pulses seen on each of its input channels.

We wrote a Linux kernel module that accepts a target pulse-time from a userspace

application, then emits a GPIO pulse when the local clock indicates that the

target time has arrived. By implementing the pulsing service inside the kernel,

with interrupts disabled shortly before the target time arrives, there is virtually

no phase error between the GPIO pulse and the node’s clock. In other words, the

kernel module ensures that error between the pulses as seen by the logic analyzer

is entirely due to the nodes’ clock synchronization error, not an artifact of the

test. (This kernel module purely facilitates testing; it was not used to help the

synchronization of either NTP or RBS.)

Using this experimental framework, we tested three different synchronization

schemes:

• RBS—Our reference broadcast synchronization. A third IPAQ was used as
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a pulse sender to facilitate synchronization between the two test systems.

NTP was off during this test.

• NTP—The standard NTP package, version 4.1.1a, ported to our IPAQs.

The ntpdate program was first used to achieve gross synchronization. Then,

the ntpd daemon was run, configured to send synchronization packets every

16 seconds (the maximum frequency it allows). The clients were allowed

to synchronize to our lab’s stratum 1 GPS-steered NTP server for several

hours at this high sampling frequency before the test began. The NTP

server was on the wired side of our network (i.e., accessed via the wireless

base station).

• NTP-Offset—In our test, RBS has a potentially unfair advantage over NTP.

Although NTP maintains a continuous estimate of the local clock’s phase

error with respect to its reference clock, it also limits the rate at which it

is willing to correct this error. This is meant to prevent user applications

from seeing large frequency excursions or discontinuities in the timescale.

Our initial RBS implementation has no such restriction. Since our test only

evaluates phase error, and does not give any weight to frequency stability,

it might favor RBS. To eliminate this possible advantage, we created NTP-

Offset synchronization. This was similar to the NTP method; however,

during each trial, the test application queried the NTP daemon (using the

ntpq program) for its current estimate of the local clock’s phase error. This

value was subtracted from the test pulse time.

For each of these synchronization schemes, we tested two different traffic sce-

narios:

• Light network load—The 802.11 network had very little background traffic

100



other than the minimal load generated by the synchronization scheme itself.

• Heavy network load—Two additional IPAQs were configured as traffic gen-

erators. Each IPAQ sent a series of randomly-sized UDP datagrams, each

picked uniformly between 500 and 15,000 bytes (IP fragmentation being

required for larger packets). The inter-packet delay was 10msec. The cross-

traffic was entirely among third parties—that is, the source and destination

of this traffic were neither the synchronization servers nor the systems under

test. The average aggregate offered load of this cross-traffic was approxi-

mately 6.5Mbit/sec.

Each of the six test scenarios consisted of 300 trials, with an 8 second delay

between each trial, for a total test time of 40 minutes per scenario. The results

are shown in Figures 6.5 and 6.6.

In the light traffic scenario, RBS performed more than 8 times better than

NTP—an average of 6.29 ± 6.45 µsec error, compared to 51.18 ± 53.30µsec for

NTP. 95% of RBS trials had an error of 20.53µsec or better, compared to a

131.20µsec bound for 95% of NTP trials.

Much of the 6.29µsec error seen with our userspace RBS implementation

is due to the jitter in software—the code path through the network stack, the

time required to schedule the daemon, and the system calls from userspace to

determine the current time. We will see in the next section that significantly

better precision can be achieved using packet timestamps acquired inside the

kernel’s network interrupt handler.

In our heavy traffic scenario, the difference was even more dramatic. As we

discussed in Section 6.1, NTP is most adversely affected by path asymmetries

that confound its latency estimate. When the network is under heavy load, it
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Synchronization Error with Light Network Load

RBS
NTP

NTP-Offset

Method Mean Error Std Dev 50% 95% 99%

RBS 6.29 6.45 4.22 20.53 29.61
NTP 51.18 53.30 42.52 131.20 313.64

NTP-Offset 204.17 599.44 48.15 827.42 4334.50

Figure 6.5: Synchronization error for RBS and NTP between two Compaq IPAQs
using an 11Mbit 802.11 network. Clock resolution was 1µsec. All units are µsec.
“NTP-Offset” uses an NTP-disciplined clock with a correction based on NTP’s
instantaneous estimate of its phase error; unexpectedly, this correction led to
poorer synchronization. RBS performed more than 8 times better than NTP on
a lightly loaded network.
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Synchronization Error with Heavy Network Load

RBS
NTP

NTP-Offset

Method Mean Error Std Dev 50% 95% 99%

RBS 8.44 9.37 5.86 28.53 48.61
NTP 1542.27 1192.53 1271.38 3888.79 5577.82

NTP-Offset 5139.08 6994.58 3163.11 15156.44 38897.36

Figure 6.6: A test similar to that in 6.5, but in the presence of cross-traffic with
an average aggregate offered load of approximately 6.5Mbit/sec. On this heavily
loaded network, NTP further degraded by more than a factor of 30, while RBS
was virtually unaffected.
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becomes far more likely that the medium access delay will be different during

the trip to and from the NTP server. RBS, in contrast, has no dependence on

the exact time packets are sent; variable MAC delays have no effect. While NTP

suffered more than a 30-fold degradation in precision (average 1,542µsec, 95%

within 3,889µsec), RBS was almost completely unaffected (average 8.44µsec, 95%

within 28.53µsec). The slight degradation in RBS performance was due to packet

loss, which reduced the number of broadcast pulses available for comparison with

peers. Several instances of RBS phase excursion were also observed when a packet

containing a clock parameter update was lost, forcing clients to continue using

aging data.

Surprisingly, the NTP-Offset method almost uniformly performed more poorly

than plain NTP. The cause was not clear, but we suspect this was due to the

inter-packet jitter in the 802.11 MAC. The low-pass filter built into NTP’s clock

discipline algorithm was better suited to model the high-jitter network than the

more responsive online phase estimator.

6.4.1 RBS using 802.11 and Kernel Timestamps

In the previous section, we described the performance of RBS when implemented

as a userspace application. This provided a fair comparison with NTP. However,

for practical use in our testbed, we give RBS the additional advantage of packet

timestamps acquired in the network interface’s interrupt handler. Timestamping

at interrupt-time, before the packet is even transferred from the NIC, significantly

reduces jitter and is a standard feature of the Linux kernel. The metadata is

accessible by reading packets using the LBNL packet capture library, libpcap

[MJ93], instead of the usual socket interface.

Using kernel timestamps, the performance of RBS improved considerably, to
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1.85 ± 1.28µsec (see Figure 7.3), from 6.29 ± 6.45µsec in the user-space imple-

mentation.

We believe this result was primarily limited by the 1µsec clock resolution of

the IPAQ, and that finer precision can be achieved with a finer-resolution clock.

In our future work, we hope to try RBS on a such a platform: for example, using

the Pentium’s TSC, a counter which runs at the frequency of the processor core

(e.g., 1GHz).

6.5 Summary

In this chapter, we have built up the basic RBS algorithm, showing how reference

broadcasts can be used to relate a set of receivers’ clocks to one another. Over

time, we can estimate both relative phase and skew. On Berkeley Motes, RBS can

synchronize clocks within 11µsec, with our relatively slow 19,200 baud radios. On

commodity hardware—Compaq IPAQs using an 11 Mbit/sec 802.11 network—

we achieved synchronization of 6.29 ± 6.45µsec, 8 times better than NTP under

the same conditions. Using kernel timestamps, precision nearly reached the clock

resolution—1.85 ± 1.28µsec.

The advantages of RBS include:

• The largest sources of nondeterministic latency can be removed from the

critical path by using the broadcast channel to synchronize receivers with

one another. This results in significantly better precision synchronization

than algorithms that measure round-trip delay.

• Multiple broadcasts allow tighter synchronization because residual errors

tend to follow well-behaved distributions. In addition, multiple broadcasts

allow estimation of clock skew, and thus extrapolation of past phase offsets.
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This enables post-facto synchronization, saving energy in applications that

need synchronized time infrequently and unpredictably, as we will see in

Section 8.2.

• Outliers and lost packets are handled gracefully; the best fit line in Fig-

ure 6.4 can be drawn even if some points are missing.

• RBS allows nodes to construct local timescales. This is useful for sensor

networks or other applications that need synchronized time but may not

have an absolute time reference available. Absolute time synchronization

can also be achieved, as we will describe in Section 7.4.

The primary shortcoming of RBS as we have described it thus far is that it can

only be used to synchronize a set of nodes that lie within a single physical-layer

broadcast domain. We address this limitation in the next chapter.
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CHAPTER 7

Multi-Hop RBS

If your time to you // Is worth savin’ // Then you better start swim-

min’ // Or you’ll sink like a stone // For the times they are a-

changin’.

—Bob Dylan

RBS, as we have described it until now, has used broadcasts to coordinate

a set of receivers that lie within a single broadcast domain. A natural question

that arises is how this technique might be extended so as to coordinate receivers

whose span is larger than a single physical-layer broadcast. For example, the

extent of wireless sensor networks is usually much larger than the broadcast range

of any single node. In traditional LANs, the broadcast domain of an Ethernet is

limited; LANs are interconnected with routers, bridges, or other gateways that

do not propagate broadcasts at the physical layer.

In these scenarios, an extension to basic RBS can be used to synchronize a

group of nodes that lie beyond the range of a single broadcast. Consider the

example topology shown in Figure 7.1. The lettered nodes, A and B, both send

a sync pulse. A and B can not hear each other, but each of them are heard by 4

receivers. Receivers that are in the same neighborhood (i.e., have heard the same

sync pulse) can relate their clocks to each other, as described in the previous

chapter. However, notice that receiver 4 is in a unique position: it can hear the
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Figure 7.1: A simple topology where multi-hop time synchronization is required.
Nodes A and B send sync pulses, establishing two locally synchronized neighbor-
hoods. Receiver 4 hears both A and B, and can relate nodes in either neighbor-
hood to each other.

sync pulses from both A and B. This allows receiver 4 to relate the clocks in one

neighborhood to clocks in the other.

7.1 Multihop Clock Conversion

To illustrate how the conversion works, imagine that we wish to compare the

times of two events that occurred at opposite ends of the network—near receivers

1 and 7. Nodes A and B both send synchronization pulses, at times PA and PB.

Say that receiver 1 observes event E1 2 seconds after hearing A’s pulse (e.g.,

E1 = PA + 2). Meanwhile, receiver 7 observes event E7 at time PB − 4. These

nodes could consult with receiver 4 to learn that A’s pulse occurred 10 seconds

after B’s pulse: PA = PB + 10. Given this set of constraints:

E1 = PA + 2

E7 = PB − 4

PA = PB + 10

=⇒ E1 = E7 + 16
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Figure 7.2: A more complex (3-hop) multihop network topology. a) The physical
topology. Beacons (lettered nodes), whose transmit radii are indicated by the
larger shaded areas, broadcast references to their neighbors (numbered nodes).
b) The logical topology. Edges are drawn between nodes that have received a
common broadcast, and therefore have enough information to relate their clocks
to each other. Receivers 8 and 9 share two logical links because they have two
receptions in common (from C and D).

In this example, it was possible to establish a global timescale for both events

because there was an intersection between A’s and B’s receivers.

This technique for propagating timing information has many of the same

benefits as in the single-hop case. A traditional solution to the multi-hop problem

might be for nodes to re-broadcast a timing message that they have previously

received. In contrast, our technique never depends on the temporal relationship

between a sender and a receiver. As in the single-hop case, removing all the

nondeterministic senders from the critical path reduces the error accumulated at

each hop, as we will show in Section 7.3.

For simplicity, the example above spoke of sending “a pulse.” Naturally,

the phase and skew relationship between receivers in a neighborhood can be

determined more precisely by using a larger number of pulses, as we described

in Section 6.2. To take advantage of this information, our RBS prototype does

not literally compare pulse reception times, as suggested by the constraints in
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the equations above. Instead, it performs a series of timebase conversions using

the best-fit lines that relate logically-adjacent receivers to each other. Adopting

the notation Ei(Rj) to mean the time of event i according to receiver j’s clock,

we can state the multihop algorithm more precisely:

1. Receivers R1 and R7 observe events at times E1(R1) and E7(R7), respec-

tively.

2. R4 uses A’s reference broadcasts to establish the best-fit line (as in Fig-

ure 6.4a) needed for converting clock values from R1 to R4. This line is

used to convert E1(R1) to E1(R4).

3. R4 similarly uses B’s broadcasts to convert E1(R4) to E1(R7).

4. The time elapsed between the events is computed as E1(R7) − E7(R7).

This algorithm is conceptually the same as the simpler version. However, each

timebase conversion implicitly includes a correction for skew in all three nodes.

7.2 Time Routing in Multihop Networks

In Figure 7.1, there was a single “gateway” node that we designated for con-

verting timestamps from one neighborhood’s timebase to another. However, in

practice, no such designation is necessary, or even desirable. It is straightforward

to compute a “time route”—that is, dynamically determine a series of nodes

through which time can be converted to reach a desired final timebase.

Consider the network topology in Figure 7.2a. As in Figure 7.1, the lettered

nodes represent sync pulse senders; numbered nodes are receivers. (This distinc-

tion between senders and receiver roles is purely illustrative; in reality, a node can
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play both roles.) Each pulse sender creates a neighborhood of nodes that have

known phase offsets by virtue of having received pulses from a common source.

These relationships are visualized in Figure 7.2b, in which nodes with known

clock relationships are joined by graph edges. A path through this graph repre-

sents a series of timebase conversions. For example, we can compare the time of

E1(R1) with E10(R10) by transforming E1(R1) → E1(R4) → E1(R8) → E1(R10).

It is possible to find a series of conversions automatically, simply by performing

a shortest-path search in a graph such as in Figure 7.2b. In addition, the weights

of the graph edges can be used to represent the quality of the conversion—for

example, the residual error (RMS) of the linear fit to the broadcast observa-

tions. A minimum-error conversion between any two nodes can be found using a

weighted-shortest-path search such as Dijkstra’s or Bellman-Ford.

Of course, such shortest-path algorithms do not scale to large networks due

to their dependence on global information. Although there is precedent for such

systems (e.g., the Internet’s early link-state routing algorithms), a more localized

approach is needed if the method is to scale. To this end, there is an interest-

ing alternative: time conversion can be built into the extant packet forwarding

mechanism. That is, nodes can perform successive time conversions on packets

as they are forwarded from node to node—keeping the time with respect to the

local clock at each hop. This technique, also suggested by Röemer [R01], is at-

tractive because it requires only local computation and communication. Instead

of flooding clock conversion parameters globally, they can be distributed using a

tightly scoped broadcast. In addition, the quality of time synchronization across

each link can be incorporated into the link metric used by the routing algorithm,

ensuring that routing is not completely orthogonal to the quality of the time

conversions available.

111



7.3 Measured Performance of Multihop RBS

In a multihop topology where a series of timestamp conversions are required, as

described in the previous section, each conversion step can introduce synchro-

nization error. We now consider the cumulative effects of such errors as the path

length grows.

We saw in Section 6.1.2 that the synchronization error introduced by a refer-

ence broadcast is Gaussian. In addition, each of the per-hop contributions to the

error are independent because the phase and skew estimates at each hop are based

on a different set of broadcasts. Therefore, we expect that total path error—a

sum of independent Gaussian variables—will also follow a Gaussian distribution.

If the average per-hop error along the path is σ, then we expect1 the average path

error for an n-hop path to be σ
√

n. This bound is pleasing in that it grows slowly,

and implies that we can synchronize nodes across many hops without significant

decay in precision.

We tested the precision of multihop RBS using the IPAQ and 802.11-based

testbed we described in Section 6.4, including the in-kernel packet timestamping

discussed in Section 6.4.1. We configured 9 IPAQs in a linear topology, alternating

between 5 (numbered) receivers and 4 (lettered) beacon emitters, as shown in

Figure 7.3. Each receiver could hear only the nearest sender on its left and right.

The test procedure was the same as we described in Section 6.4—in 300 trials,

two IPAQs were commanded to raise a GPIO pin high at the same time. A logic

analyzer reported the actual time differences. We tested a 1-hop, 2-hop, 3-hop

and 4-hop conversion, by testing the rise-time difference between nodes 1–2, 1–3,

1–4, and 1–5, respectively.

1From the variance’s identity that var(x + y) = var(x) + var(y); variance=σ2.
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1 32A B C DD4 53

Hops Mean Error Std Dev 50% 95% 99%
1 1.85 1.28 1.60 4.51 5.85
2 2.73 1.91 2.41 6.49 7.74
3 2.73 2.42 2.22 6.93 9.92
4 3.68 2.57 3.18 8.26 10.70

Figure 7.3: top) The topology used to test cumulative error when RBS is used
in a multihop network. bottom) Measured performance of multihop RBS, using
kernel timestamping, on IPAQs using 11 MBit/sec 802.11. All units are µsec.

The results, shown in Figure 7.3, generally seem to follow our σ
√

n estimate.

The average 4-hop error was 3.68 ± 2.57µsec, which is nearly σ
√

4, normalizing

σ to be the average 1-hop error.

7.4 Synchronization with External Timescales

So far, we have spoken entirely of creating local, internally consistent timescales.

Although relative synchronization is sufficient for many applications, others re-

quire absolute time as measured by an external reference such as UTC. Reference

timescales are typically distributed via governmentally sponsored radio systems

such as the short-wave WWVB station [Bee81] or the satellite-based Global Po-

sitioning System [Kap96]. Commercially available receivers for these systems can

synchronize computers by providing them with a “PPS” (pulse-per-second) signal

at the beginning of each second. The seconds are numbered out of band, such as

through a serial port.

RBS provides a natural and precise way to synchronize a network with such

an external timescale. For example, consider a GPS radio receiver connected to
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one of the nodes in a multihop network such as the one in Figure 7.2. GPS time

simply becomes another node in that network, attached via one edge to its host

node. The PPS output of the receiver can be treated exactly as normal reference

broadcasts are. That is, the host node timestamps each PPS pulse and compares

its own timestamp with the pulse’s true GPS time. The phase and skew of the

host node’s clock relative to GPS time can then be recovered using the algorithms

described in Section 6.2. Other nodes can use GPS time by finding a multihop

conversion route to it through the host node, using the algorithm we described

in Section 7.2.

7.5 RBS in Multihop Wired Networks

Our work is focused on using RBS in wireless sensor networks. However, its

use is not limited to that context—it can work on any network which supports

a physical-layer broadcast, such as our 802.11 implementation described in Sec-

tion 6.4. Can the RBS multihop algorithm be used in wired networks?

Consider the simple example topology in Figure 7.4, which depicts two LANs

connected by a router. RBS can be used to synchronize all of the end-stations

in this network if both LANs are capable of a physical layer broadcast and the

router participates in the protocol. The situation is equivalent to the wireless

multihop scenario depicted in Figure 7.1, with the router playing the part of

Receiver 4. Specifically, the router can record the reception times of broadcast

packets it receives from end-stations on both interfaces according to its local clock,

and periodically publish its observations back to stations on both sides. (These

publications may, themselves, be broadcast.) Queueing delay on the router would

not affect RBS because packets only queue while waiting for outgoing interfaces;

the critical path in RBS ends when the router records the reception time of a
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Figure 7.4: Two LANs connected by a router. RBS can be used to synchronize all
the end-stations in this network if each LAN supports broadcast and the router
participates in the protocol. The router must observe the reception times of
broadcasts on both interfaces, and publish that information to the end-stations
on both sides.

broadcast on an incoming interface.

RBS is not appropriate in the Internet, which consists of point-to-point links.

(The required router modifications also make it a non-starter.) However, our

future work will include an implementation of the external timescale reference

described in the previous section. We believe that it is possible to use RBS to

keep workstations within a laboratory—or even a campus—synchronized to UTC

within 1µs.

7.6 Summary

In this chapter, we have presented an extension to the basic RBS scheme that al-

lows locally coordinated timescales to be federated into a global timescale, across

broadcast domains. Our scheme preserves the fundamental property of RBS: that

synchronization is only based on the relationship of one receiver to another. As

with single-hop RBS, the multi-hop scheme avoids any dependance on the exact

time at which a message is sent. As a result, precision decays slowly—the average

error for an n-hop network is proportional to
√

n. In our test of kernel-assisted
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RBS across a 4-hop topology, average synchronization error was 3.68± 2.57µsec.

RBS-federated timescales may also be referenced to an external standard such as

UTC if at least one node has access to a source of reference time.
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CHAPTER 8

Post-Facto Synchronization

The past cannot be changed. The future is yet in your power.

—Hugh White

To save energy in a sensor network, it is a desirable to keep nodes in a low-

power state, if not turned off completely, for as long as possible. Sensor network

hardware is often designed with this goal in mind; processors have various sleep

modes or are capable of powering down high-energy peripherals when not in use.

This type of design is exemplified by the WINS platform [ADL98], which has

a low-power “pre-processor” that is capable of rudimentary signal processing.

Normally, the entire node is powered down except for the pre-processor. When

the pre-processor detects a potentially interesting signal, it powers on the general

purpose processor for further analysis. The CPU, in turn, can power on the node’s

radio if it determines that an event has occurred that needs to be reported.

Such designs allow the components that consume the most energy to be pow-

ered for the least time, but also pose significant problems if we wish to keep

synchronized time. Traditional methods try to keep the clock disciplined at all

times so that an accurate timestamp is always available. What happens if the

radio—our external source of time and frequency standards—is continuously off

for hours at a time? Or, in the case of a platform like WINS, what if the general-

purpose processor that knows how to discipline the clock is also off?
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Traditional synchronization schemes make the assumption that the clock must

be synchronized before the event occurs, as we described in Section 5.2. In this

case, little can be done in this situation except to try to predict when, in the fu-

ture, synchronization will be needed. However, using our model of local clocks and

explicit conversions (Section 5.2.4), a superior solution falls out quite naturally:

post-facto synchronization. That is, a node’s local clock runs, unsynchronized,

at its natural rate, and is used to timestamp events when they occur. After an

event of interest, a synchronization process can be started, allowing timestamps

from distributed nodes to be reconciled. Waste is reduced because the system

avoids performing synchronization at times when it’s not necessary. This scheme

works much better than the predictive version: it is much easier to characterize

the past than it is to predict the future.

In this chapter, we describe two forms of post-facto synchronization in more

detail. The first is single-pulse synchronization. To reach its best accuracy, this

method requires some advance calibration, but can reconstruct a precise timescale

quite quickly when needed. Second, we describe the application of our Reference-

Broadcast Synchronization scheme to the post-facto problem. In this scheme, the

required convergence time is longer, but effective post-facto synchronization can

be performed with no a priori knowledge.

8.1 Single-Pulse Synchronization

The simplest form of post-facto synchronization is single-pulse synchronization.

That is, nodes’ clocks are normally unsynchronized. When an event occurs,

each node records the time of the event with respect to its own local clock.

Immediately afterward, a “third party” node—acting as a beacon—broadcasts

a synchronization pulse to all nodes in the area using its radio. Nodes that
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receive this pulse use it as an instantaneous time reference and can normalize

their stimulus timestamps with respect to that reference.

This kind of synchronization is not applicable in all situations, of course: it is

limited in scope to the transmit range of the beacon and creates only an “instant”

of synchronized time. This makes it inappropriate for an application that needs

to communicate a timestamp over long distances or times. However, it is simple,

and can be useful if the required synchronization scope is entirely within the

broadcast domain of a single node.

8.1.1 Expected Sources of Error

There are three main factors that affect the accuracy and precision achievable

by single-pulse synchronization. Roughly in order of importance, they are the

receiver clock skew, variable delays in the receivers, and propagation delay of the

synchronization pulse.

• Skew in the receivers’ local clocks. Our scheme requires that each receiver

accurately measure the interval that elapses between their detection of the

event and the arrival of the synchronization pulse. However, nodes’ clocks

do not run at exactly the same rate, causing error in that measurement.

Since clock skew among the group will cause the achievable error bound to

decay as time elapses between the stimulus and pulse, it is important to

minimize this interval.

One way of reducing this error is to use NTP to discipline the frequency

of each node’s oscillator. This exemplifies our idea of multi-modal synchro-

nization. Although running NTP “full-time” defeats one of the original

goals of keeping the main processor or radio off, it can still be useful for
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frequency discipline (much more so than for phase correction) at very low

duty cycles.

• Variable delays on the receivers. Even if the synchronization signal arrives

at the same instant at all receivers, there is no guarantee that each receiver

will detect the signal at the same instant. Nondeterminism in the detection

hardware and operating system issues such as variable interrupt latency

can contribute unpredictable delays that are inconsistent across receivers.

The detection of the event itself (audio, seismic pulses, etc.) may also have

nondeterministic delays associated with it. These delays will contribute

directly to the synchronization error.

As in RBS, single-pulse synchronization avoids error due to variable delays

in the sender by considering the sender of the sync pulse to be a “third

party.” That is, the receivers are considered to be synchronized only with

each other, not with the beacon.

It is interesting to note that the error caused by variable delay is the same

irrespective of the time elapsed between the event and the sync pulse. In

contrast, error due to clock skew grows as time elapses between the event

and sync pulse.

• Propagation delay of the synchronization pulse. Our method assumes that

the synchronization pulse is an absolute time reference at the instant of

its arrival—that is, that it arrives at every node at exactly the same time.

In reality, this is not the case due to the finite propagation speed of RF

signals. Synchronization will never be achievable with accuracy better than

the difference in the propagation delay between the various receivers and

the synchronization beacon.
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This source of error makes our technique most useful when comparing ar-

rival times of phenomena that propagate much more slowly than RF, such

as audio. The six-order-of-magnitude difference in the speed of RF and

audio has been similarly exploited in the past in systems such as the ORL’s

Active Bat [WJH97] and Girod’s acoustic rangefinder [GE01].

8.1.2 Empirical Study

We designed an experiment to characterize the performance of our post-facto

synchronization scheme. The experiment attempts to measure the sources of er-

ror described in the previous section by delivering a stimulus to each receiver at

the same instant, and asking the receivers to timestamp the arrival time of that

stimulus with respect to a synchronization pulse delivered via the same mecha-

nism. Ideally, if there are no variable delays in the receivers or skew among the

receivers’ local oscillators, the times reported for the stimulus should be identical.

In reality, these sources of error cause the dispersion among the reported times to

grow as more time elapses between the stimulus and the sync pulse. The decay

in the error bound should happen more slowly if NTP is simultaneously used to

discipline the frequency of the receivers’ oscillators.

We realized this experiment with one sender and ten receivers, each of which

was ordinary PC hardware (Dell OptiPlex GX1 workstations) running the Red-

Hat Linux operating system. Each stimulus and sync pulse was a simple TTL

logic signal sent and received by the standard PC parallel port.1 In each trial,

each receiver reported its perceived elapsed time between the stimulus and syn-

chronization pulse according to the system clock, which has 1µsec resolution.

1This was accomplished using the author’s parallel port pin programming library for Linux,
parapin, which is freely available at http://www.circlemud.org/jelson/software/parapin
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We defined the dispersion to be the standard deviation from the mean of these

reported values. To minimize the variable delay introduced by the operating sys-

tem, the times of the incoming pulses were recorded by the parallel port interrupt

handler using a Linux kernel module.

In order to understand how dispersion is affected by the time elapsed between

stimulus and sync pulse, we tested the dispersion for 21 different values of this

elapsed time, ranging from 24µsec to 224µsec (16µsec to 16.8 seconds). For each

elapsed-time value, we performed 50 trials and reported the mean. These 1,050

trials were performed in a random order over the course of one hour to mini-

mize the effects of systematic error (e.g. changes in network activity that affect

interrupt latency).

We performed this entire experiment using three different configurations:

1. The experiment was run on the “raw clock”: that is, while the receivers’

clocks were not disciplined by any external frequency standard.

2. An NTPv3 client was started on each receiver and allowed to synchronize

(via Ethernet) to our lab’s stratum-1 GPS clock for ten days. The experi-

ment was then repeated while NTP was running.

3. NTP’s external time source was removed, and the NTP daemon was allowed

to free-run for several days using its last-known estimates of the local clock’s

frequency. The experiment was then repeated.

To compare our post-facto method to the error bound achievable by NTP

alone, we recorded two different stimulus-arrival timestamps when running the

experiment in Configuration 2: the time with respect to the sync pulse and the

time according to the NTP-disciplined local clock. Similar to the other configura-

tions, a dispersion value for NTP was computed for each stimulus by computing
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Figure 8.1: Synchronization error using post-facto time synchronization without
external frequency discipline, with discipline from an active NTP time source,
and with free-running NTP discipline (external time source removed after the
oscillator’s frequency was estimated). These are compared to the error bound
achievable with NTP alone (the horizontal line near 100µsec). The breakpoint
seen near 50msec is where error due to clock skew, which grows proportionally
with the time elapsed from stimulus to sync pulse, overcomes other sources of
error that are independent of this interval. Each point represents the dispersion
experienced among 10 receivers, averaged over 50 trials.

the standard deviation from the mean of the reported timestamps. The hori-

zontal line in Figure 8.1 is the mean of those 1,050 dispersion values—101.70

µsec.

Our results are shown in Figure 8.1. 2

2“The joy of engineering is to find a straight line on a double logarithmic diagram.” –Thomas
Koenig
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8.1.3 Discussion

The results shown in Figure 8.1 illuminate a number of aspects of the system.

First, the experiment gives insight into the nature of its error sources. The results

with NTP-disciplined clock case are equivalent to undisciplined clocks when the

interval is less than ≈ 50msec, suggesting that the primary source of error in these

cases is variable delays on the receiver (for example, due to interrupt latency or

the sampling rate in the analog-to-digital conversion hardware in the PC parallel

port). Beyond 50msec, the two experiments diverge, suggesting that clock skew

becomes the primary source of error at this point.

Overall, the performance of post-facto synchronization was quite good. When

NTP was used to discipline the local oscillator’s frequency, an error bound very

near to the clock’s resolution of 1µsec was achieved. This is significantly better

than the 100µsec achieved by NTP alone. Clearly, the combination of NTP’s

frequency estimation with the sync pulse’s instantaneous phase correction was

very effective. Indeed, the multi-modal combination’s maximum error is better

than either mode can achieve alone. We find this a very encouraging indicator

for the multi-modal synchronization framework we proposed in Section 5.2.1.

Without NTP discipline, the post-facto method still performs reasonably well

for short intervals between stimulus and sync pulse. For longer intervals, we are

at the mercy of happenstance: the error depends on the natural frequencies of

whatever oscillators we happen to have in our receiver set.

Perhaps the most exciting result, however, is shown in the experiment where

NTP disciplined the nodes’ local clocks using only the last-known-estimate of

frequency, after the external time source was removed. The achievable error

bound was 1µsec: the limit of our clock’s resolution and, more importantly,

exactly the same as the result with NTP and an active external time standard.
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This result is important because it shows that extremely low-energy and low-error

time synchronization is possible: after an initial frequency-training period, nodes

might be able to keep their radios off for days and still instantly acquire a timebase

within 1µsec when an event of interest arrives. That result is made possible

by the multi-modal synchronization; the frequency correction provided by free-

running NTP is not good enough to keep clocks precisely in phase over time

due to accumulated error. (In the free-running NTP experiment, the accuracy of

the timestamps when not normalized by the sync pulse was only in the tens of

milliseconds.)

All of these results, while encouraging, do come with a number of caveats.

Our experiments results were performed under idealized laboratory conditions,

using (equal-length) cables to directly connect the sender to the receivers. Real

world conditions will require wireless links that are likely far more complex with

more opportunities for variable delay. In addition, the relatively constant ambient

temperature reduced the oscillators’ frequency drift over time. A real sensor net-

work deployed outdoors might not be able let NTP free-run without an external

time source for as long as we did in our experiment.

8.2 Post-Facto Synchronization with RBS

Successful single-pulse synchronization after long (> 50ms) intervals, as described

in the previous section, really consists of two separate steps:

1. The relative clock skew of nodes is estimated a priori. Our example used

NTP to perform this estimation, which can take several hours, as we saw

in Figure 4.3.

2. After an event, a single pulse is used to correct phase, under the assumption
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that the frequencies of the clocks are still the same as when computed in

the first step.

There can, however, be situations where the a priori calibrations of frequencies

can not be performed. For example, nodes that have never previously been in

contact with each other may want to synchronize after an event they both witness.

An interesting question to ask, then, is: how well can we do when the nodes start

with no mutually shared information at all?

To test this scenario, we turned to our RBS implementation, as described

in Chapter 6. An interesting facet of the RBS clock skew estimator pictured in

Figure 6.4 is that it is is also an effective form of post-facto synchronization. After

an event of interest, nodes can power their radios up and exchange sync pulses

until the best-fit line that relates nodes’ clocks to each other has been computed

satisfactorily (e.g., the RMS error has fallen below some threshold). The best-fit

line can then simply be extrapolate backward to estimate relative phase errors

at times in the past—for example, at the time of the event.

Compared to the single-pulse, the RBS technique does have some disadvan-

tages. Since many pulses (e.g., 30) are required instead of just one, the conver-

gence time will be longer. The longer convergence time, in turn, implies higher

phase error: by the time the experiment is complete, the nodes’ relative frequen-

cies might have drifted away from the value at the moment of the experiment.

8.2.1 Empirical Study

To test post-fact RBS, we used Motes as “network interfaces,” rather than as

stand-alone nodes as described in Section 6.3. Motes were connected via a 9600-

baud serial link to PC104-based single-board-computers running the Linux oper-
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Figure 8.2: Post-facto synchronization using RBS to estimate both skew and
phase. RBS synchronized clocks on PC104-compatible single-board-computers
using a Mote as NIC. The points near x = 200 are reference pulses, which show
a synchronization error of 7.4µsec 60 seconds after the last sync pulse.

ating system. In some sense, this makes the problem more difficult because we

are extending the path between the receiver (the Mote) and the clock to be syn-

chronized (under Linux). We modified the Linux kernel to timestamp serial-port

interrupts, allowing us to accurately associate complete over-the-air messages

with kernel timestamps.

One of these “Mote-NICs” sent reference broadcasts to two receivers for two

minutes. Each reception was timestamped by the Linux kernel. After one minute

of silence, we injected 10 reference pulses into the PC’s parallel port; these pulses

appear at the right of the figure. We computed the best-fit line based on the

Mote-NIC pulses, after automatic outlier rejection. There was a 7.4µsec residual

error between the estimate and the reference pulses. The experiment is shown in

Figure 8.2.
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8.2.2 Discussion

To date, our simple experimentation with RBS for post-facto synchronization

has not been comprehensive. However, we believe the results are very encourag-

ing: even 60 seconds after an event, RBS can reconcile clocks to a phase error

that is below the mean jitter of the detector. (Recall from Section 6.3 that the

Mote’s RMS bit detection jitter was 11.2 µsec; in our experiment, phase error

was 7.4µsec.) Unlike single-pulse synchronization, RBS can achieve this result

when there is no a priori shared knowledge or calibration between the nodes in

question.

Of course, the best-fit line computed by RBS can be extrapolated either back-

ward or forward in time. That is, in addition to post-facto synchronization, this

technique is equally applicable to coordinated actuation of events in the future.

This can be important in sensor networks; we discussed a number of uses for

coordinated actuation in Section 3.3.

Finally, it is interesting to note the role played by our new “explicit conver-

sions” service model for time synchronization, proposed in Section 5.2.4. Under

this model, the normal way applications interface to the time synchronization

system is to first retrieve a local timestamp during events of interest, then ask for

explicit conversions to other time-bases. Using this model, post-facto synchro-

nization has the same interface as normal synchronization, except perhaps that

the conversion step does not succeed until some time significantly later than the

timestamping step. Synchronization services can also provide an API to allow

applications to indicate that they need synchronization—i.e., “start sending sync

pulses now.”
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8.3 Summary

In this chapter, we explored two different forms of post-facto synchronization.

The first, single-pulse synchronization, requires frequency calibration at the time

the network is deployed (and perhaps periodically afterward). With this infor-

mation, high-precision retrospective timescales can be quickly constructed using

a single packet. Second, we have shown that Reference-Broadcast Synchroniza-

tion can be used for post-facto synchronization. In our test, the phase error of

a retrospective RBS timescale was still less than the bit-detection jitter when 60

seconds elapsed between the last synchronization packet and first timestamped

event.

Post-facto synchronization can be a highly effective way to save energy in

a sensor network. In scenarios where synchronization is needed only occasion-

ally and unpredictably, traditional algorithms waste energy by keeping the clock

synchronized at all times, just in case it is needed. In contrast, post-facto synchro-

nization allows the clock to stay un-disciplined. Timestamps from free-running

clocks are reconciled after a node identifies an event of interest—specifically, one

that justifies the energy cost of performing synchronization.
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CHAPTER 9

Application Experience

Be wise in the use of time. The question in life is not how much time

do we have? The question is what shall we do with it.

—Anna Robertson Brown

To date, our RBS implementation has been applied, both within and without

our research group, in three distributed sensor network applications requiring

high-precision time synchronization. Each uses RBS-synchronized clocks to pre-

cisely measure the arrival time of acoustic signals. Most audio codecs sample

the channel at 48KHz, or ≈ 21µsec per sample. As we have seen in previous sec-

tions, the precision nominally achieved by RBS is significantly better. Distributed

acoustic sensors have thus been able to correlate their acoustic time-series down

to individual samples. This has been useful in a number of contexts.

9.1 Automatic Mote Localization System

Joint work with Lewis Girod and Vladimir Bychkovskiy

Spatial localization is a crucial building block for many sensor network ap-

plications. Indeed, virtually all the example applications we described in Chap-

ter 3—multi-sensor integration, array processing, coordinated actuation, and so

forth—require a common reference frame in both time and space. In the small-
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est networks, it is possible to implement spatial localization of nodes manually,

by carefully measuring and “hard-coding” the locations of the sensors. How-

ever, this is approach does not scale, is ill-suited to ad-hoc deployment, and

does not work in networks with mobile nodes. Consequently, many researchers

have focused attention on building systems that discover location automatically

[WHF92, BHE03, WC02].

In this section, we discuss the development of a system, based on commercial

off-the-shelf (COTS) components, which is capable of automatic localization and

time synchronization with sufficient precision (on the order of 10cm and 10µsec)

to support distributed, coherent signal processing. Our system’s time synchro-

nization is an implementation of Reference-Broadcast Synchronization (RBS),

described in Chapter 6. Localization is based on an underlying ranging system

that works by timing the flight of a wideband acoustic pulse, described in [GE01].

The remainder of this section is organized as follows. In Section 9.1.1, we

describe the hardware platforms that compose our testbed. We give an overview

of the software components of our system in Section 9.1.2. A more detailed

description of the subsystems is found in Section 9.1.3 (time synchronization)

and Section 9.1.4 (acoustic ranging and localization).

9.1.1 Hardware Platforms

Although Moore’s law predicts that hardware for sensor networks will inexorably

become smaller, cheaper, and more powerful, technological advances will never

prevent the need to make tradeoffs. Even as our notions of metrics such as “fast”

and “small” evolve, there will always be compromises: nodes will need to be faster

or more energy-efficient, smaller or more capable, cheaper or more durable.

Instead of choosing a single hardware platform that makes a particular set
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of compromises, we believe an effective design is one that uses a tiered plat-

form consisting of a heterogeneous collection of hardware. Small, cheap, and

computationally limited nodes (“motes”, after the Berkeley Smart Dust project

[KKP99]) can be used more effectively by augmenting the network with larger,

faster, and more expensive hardware (“cluster heads”). An analogy can be made

to the memory hierarchy commonly found in desktop computer systems. CPUs

typically have an expensive but fast on-chip cache, backed by slower but larger

L2 cache, main memory, and ultimately on-disk swap space. This organization,

combined with a tendency in computation for locality of reference, results in a

memory system that appears to be as large and as cheap (per-byte) as the swap

space, but as fast as the on-chip cache memory. In sensor networks, where local-

ized algorithms are a primary design goal [IGE00], similar benefits can be realized

by creating the network from a spectrum of hardware ranging from small, cheap,

and numerous, to large, expensive, and powerful.

9.1.1.1 Motes

The smallest nodes in our testbed are the “COTS Mote,” originally developed at

U.C. Berkeley [KKP99, HSW00] and now commercially available from Crossbow

Technologies1. The Mica 1 model is equipped with a low-power, 4MHz, 16-bit

microprocessor (Atmel 90LS8535), with 8K of program memory and 512 bytes of

SRAM. An integrated RF Monolithics 916.50 MHz transceiver (TR1000) provides

narrowband wireless connectivity at 19.2Kbps. Communication with a directly

attached host is possible via a serial port. A number of GPIO pins, A/D, and

D/A converters are also available for I/O purposes.

Different versions of the basic design have various combinations of sensors:

1http://www.xbow.com
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Figure 9.1: left) Pister’s “COTS Mote”, developed at U.C. Berkeley. right) The
“Acoustic Mote” used to support acoustic ranging, developed by Naim Busek at
the UCLA LECS laboratory.

temperature, light, humidity, acceleration, and so forth. In our localization

testbed, we use a locally developed variation of the mote, the “acoustic mote,” on

which one of the D/A converter outputs is attached to an audio amplifier circuit

and speaker. The original COTS Mote and our locally developed acoustic mote

are pictured in Figure 9.1.

The motes’ operating environment is TinyOS [HSW00], a small, event-based

operating system developed specifically for the mote by Hill, et.al. at U.C. Berke-

ley.

9.1.1.2 Cluster Heads

Although the motes have advantages (small, cheap, low-power, long-lived), they

have very limited capabilities. For example, it is impossible to do anything more

than the most basic forms of signal processing: the mote is too slow to process a

time series in real-time, and doesn’t have enough memory to buffer more than a

few dozen samples for offline analysis. We have found that it is possible to im-

plement much richer applications if there are a few larger, more computationally

endowed nodes available in the network as well.

Our cluster heads are Compaq iPAQ 3760s, which are handheld, battery-
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powered devices normally meant to be used as PDAs. We selected the iPAQ

because it has reasonable battery life, has the peripherals needed by our project,

supports Linux, is readily available, and is usable right off the shelf.2 The iPAQ

has a 206 MHz Intel StrongARM-1110 processor, 64MB of RAM and 32MB of

FLASH for persistent storage. The standard model also comes equipped with a

built-in speaker and microphone which we use for acoustic ranging, as we will

see in Section 9.1.4. Finally, the iPAQs have a serial port, and a PCMCIA bus,

for which a wide variety of peripherals are available. All of our iPAQs have

spread-spectrum wireless Ethernet cards (802.11b direct sequence, 11Mbit/sec),

making them capable of communicating at higher bandwidth, longer range, and

with greater reliability than the motes.

Our testbed’s iPAQs use the StrongARM port of the Linux operating system

(the “Familiar” distribution [FAM]). This combination of hardware and operating

system provides a powerful and convenient development environment similar to

a standard desktop operating system.

9.1.2 System Overview

Ultimately, the goal of our system is to first establish a coordinate system defined

by the positions of the iPAQs at startup, then continuously monitor the position

of the motes within this coordinate system. We assume the iPAQs are initially

placed around a room “at random” but then remain in fixed locations, or move

rarely. The iPAQs form an ad-hoc infrastructure, while the smaller motes are

assumed to be constantly in motion—perhaps attached to people or objects that

are being tracked as they move through the environment.

2Previous incarnations of our testbed [CEE01] were based on hardware platforms that we
integrated ourselves from components; we have since learned not to underestimate the value of
a platform that comes with its own integrated power supply, enclosure, I/O, etc.
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The functional components of the localization system are shown in Figure 9.2.

Localization is based on an acoustic ranging system that uses a wideband pseudo-

noise sequence to measure the time of flight of sound from one point to another

(bottom panel). Ranging is first used to determine iPAQ-to-iPAQ distances and

federate an iPAQ coordinate system; this mode uses both the iPAQ’s speaker and

microphone (center panel). Once the coordinate system has been established,

ranging from an acoustic mote’s emitter to the iPAQs’ microphones is used to

localize motes within this coordinate system (top panel).

Many existing acoustic ranging systems use a somewhat ad-hoc time synchro-

nization strategy that assumes there is a tight coupling between the acoustic and

RF components in the system. Those systems are designed to generate an acous-

tic pulse and an RF synchronization packet at exactly the same time. We have

found this to be a poor design choice for a number of reasons—for example, the

system tends to be more complex due to tight inter-module dependencies, and

ranging experiments are vulnerable to individual lost packets. In contrast, our

system contains a separate module that continuously maintains timebase conver-

sion metrics among all the components in the system, providing this information

to the ranging system when necessary. By abstracting this part of the system

away, the overall design is simplified and the system becomes much more robust

to packet loss. In addition, the precision of the synchronization is improved: by

averaging over many packet observations, outliers can be rejected and clock skew

corrections are possible.

We mentioned in the previous section that motes use narrowband 900MHz

radios to communicate with each other, while the iPAQs use 802.11b wireless

Ethernet cards. To bridge the gap between these two domains, several of the

iPAQs are configured with a “MoteNIC”—that is, a mote attached to the iPAQ
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Figure 9.2: High-level System Diagram. At the lowest layer, a ranging system
generates pairwise range values. These ranges are propagated to a cluster head
that runs an optimization algorithm to construct a consistent coordinate system
and reject the many forms of error in the source data. Once a coordinate system
has been computed, the system can localize devices in the region.
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via the serial port. Such motes can act as a network interface visible to processes

running on the iPAQ (under Linux). These iPAQs are then capable of routing

information between the mote and iPAQ domains.

9.1.3 Time Synchronization

The time synchronization module is responsible for computing parameters that

relate the phase and frequency of all of the system’s clocks to one another. This

is, perhaps, a more complex task than it might seem—in addition to being a

distributed system, it is a heterogeneous one. Specifically, there are three types

of components in the system whose clocks run independently and must be recon-

ciled:

• The system clock in each mote

• The system clock in each iPAQ

• Each iPAQ’s codec sample clock

The synchronization service builds up a table of conversion parameters that

relate many of the different clocks in the system to each other. A series of conver-

sions may be necessary to convert a timestamp in one timebase to a timestamp in

another. For example, consider the configuration shown in Figure 9.3. iPAQ 1 is

configured as a gateway node, i.e., with a MoteNIC as described in Section 9.1.2.

Imagine that we wish to measure the time of flight of a sound from an acoustic

mote to iPAQ 2. This means we need to relate the timebase of the acoustic

mote to the timebase of iPAQ 2’s codec sample clock. This requires a series of 4

conversions:

1. Network time synchronization (via mote radios) from the acoustic mote’s
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Figure 9.3: Our hardware configuration, where multi-hop timesync is required to
relate the acoustic mote’s timebase to the iPAQs.

clock to mote clock in iPAQ 1’s MoteNIC

2. Intra-node synchronization from iPAQ 1’s mote clock to iPAQ 1’s system

clock

3. Network time synchronization from iPAQ 1 to iPAQ 2 (via 802.11)

4. Intra-node synchronization from iPAQ 2’s system clock to iPAQ 2’s codec

sample clock

The methods for intra-node and network time synchronization will be dis-

cussed in detail below. On each iPAQ, those synchronization methods populate

a table of conversion parameters between the clocks in the system, annotated

with an estimate of the RMS error of each conversion.

Figure 9.4 shows a snapshot of our GUI visualizing a running time synchro-

nization system. Given the parameters that make up this graph, the series of pa-

rameters that make up the minimum-error conversion between the desired source

and destination timescales is automatically computed, using a weighted shortest-

path search algorithm.
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Figure 9.4: “Syncview”, our GUI that visualizes the state of the time synchro-
nization system. All time-sync relationships in the system are shown. Intra-node
synchronization forms relationships from an iPAQ’s CPU to its audio codec, and
from an iPAQ CPU to a directly attached MoteNIC (if any). RBS is used to
form relationships from Mote to Mote, and from iPAQ to iPAQ CPU via 802.11.
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9.1.3.1 Network time synchronization

In our system, network time synchronization (mote-to-mote and iPAQ-to-iPAQ)

is performed using an implementation of Reference-Broadcast Synchronization as

we described in Chapters 6 and 7. Our RBS daemon simultaneously acts in both

“sender” and “receiver” roles. Every 10 seconds (slightly randomized to avoid

unintended synchronization), each daemon emits a pulse packet with a sequence

number and sender ID. The daemon also watches for such packets to arrive; it

timestamps them and periodically sends a report of these timestamps back to the

pulse sender along with its receiver ID. The pulse sender collects all of the pulse

reception reports and computes clock conversion parameters between each pair

of nodes that heard its broadcasts. These parameters are then broadcast back

to local neighbors. The RBS daemons that receive these parameters make them

available to users. (RBS never sets the nodes’ clocks, but rather provides a user

library that converts UNIX timevals from one node ID to another.)

As described in Section 6.2.2, our RBS implementation performs a least-

squares linear regression on the time series of phase differences between nodes,

after automatic outlier rejection. This offers a fast, closed-form method for find-

ing the best fit line through the phase error observations over time. The frequency

and phase of the local node’s clock with respect to the remote node can be re-

covered from the slope and intercept of the line. An example of such a linear

regression on real data from our system is shown Figure 9.5. Each regression is

based on a window of the 30 most recent pulse reception reports.

Motes and iPAQs both participate in this scheme separately. That is, iPAQs

synchronize with each other using 802.11 broadcasts, while motes synchronize

with each other using their narrowband radio broadcasts. The basic scheme is

the same on both motes and iPAQs, except that motes do not compute their
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Figure 9.5: Typical linear regression to recover relative phase and skew between
two nodes in the system using RBS. This picture shows synchronization between
two Compaq iPAQs via 11Mbit/sec 802.11 wireless Ethernet. Each point repre-
sents the phase offset between two nodes as implied by the value of their clocks
after receiving a reference broadcast. A node can compute a least-squared-error
fit to these observations (diagonal line), and thus convert time values between its
own clock and that of its peer. The vertical impulses (read with respect to the
y2 axis) show the distance of each point from the best-fit line.
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own conversion parameters, as iPAQs do—they forward all of their broadcast

reception reports to an iPAQ for post-processing instead.

In practice, iPAQ-to-iPAQ synchronization via 802.11 has an error of ≈

1.5µsec; this is limited primarily by the iPAQ’s 1µsec clock resolution. Motes

use slower (19.2kbit/sec) radios with a bit time of 53µsec; nevertheless, RBS

achieves 10µsec error through averaging and outlier rejection.

Of course, motes and iPAQs can not directly observe each other’s broadcasts

since they use different radios (different frequencies, different MAC layers, etc.).

An extra piece is needed to relate the mote timescales with the iPAQ timescales.

This is where intra-node synchronization comes into play.

9.1.3.2 Intra-node Synchronization

As we discussed at the beginning of this section, each iPAQ can consist of three

separate clocks: 1) the system clock; 2) the audio codec’s sample clock, and 3)

if the iPAQ has a MoteNIC attached via serial port, the mote’s system clock. In

addition to supporting RBS as described above, our time service daemon also sup-

ports synchronization between components within a system. The system’s device

drivers periodically inject pairs of time values into the time daemon, where each

pair represents the value of two of the system’s clocks at the same instant. This

allows the clocks to be related. There are two types of intra-node synchronization

in our system:

• iPAQ to MoteNIC. One of the output pins of the serial port is attached

to an interrupt-generating input on the MoteNIC. Periodically, the iPAQ

raises its output high and records the time according to its CPU clock.

The MoteNIC timestamps the resulting interrupts according to its internal
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clock, and reports the timestamps back to the iPAQ via the serial link.

Once the MoteNIC device driver receives this interrupt time back from the

MoteNIC, it injects the pair of time values into the time daemon. Each

of these points represents a single mapping of the iPAQ’s system clock

timescale to the MoteNIC’s system clock timescale.

• iPAQ to codec sample clock. Cheap consumer-grade audio codecs such as

the variety typically found in a low-end PC or handheld device tend to have

non-deterministic latency bounds when they are asked to start recording

or playback. It is important to minimize these effects—delay between the

time we ask the codec to start sampling and the time it actually starts

contribute directly to errors in the time-of-flight measurement. We have

found that this problem can be avoided by running the codec continuously,

timestamping each block of audio data as it arrives. Our system includes

an “audio server” that continuously records, buffering the most recent 10

seconds of input and making it available to the acoustic ranging process.

With the help of a modification to the Linux kernel’s codec device driver, the

audio server also timestamps each DMA transfer from the codec’s chipset

as it arrives. It then injects synchronization pairs into the time daemon,

each consisting of an audio sample number and corresponding system clock

time when the DMA transfer completed.

As these time pairs are fed to the time synchronization daemon, it com-

putes conversion parameters that allow the iPAQ CPU clock to be related to

the MoteNIC and codec clocks. The daemon uses the same linear least-squares

regression and outlier rejection as it does for RBS. This makes it very robust

against outliers due to (for example) an occasional late DMA transfer or late

interrupt on the mote.
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These intra-node parameters allow us to complete the synchronization chain:

from acoustic mote to MoteNIC (via RBS); MoteNIC to attached iPAQ 1 (via

pairs synchronization); iPAQ 1 to iPAQ 2 (via RBS over 802.11), and finally iPAQ

2 to its codec sample clock (via pairs synchronization). The exact synchronization

path is computed automatically, transparently to users of the time sync service.

This significantly simplifies the localization service, as we will describe in the

next section.

9.1.4 Localization

The localization subsystem consists of two main components. First, the acoustic

ranging component estimates the distances between nodes in the network. Next,

a coordinate system is constructed using the range estimates. In this section,

we will describe the acoustic ranging system in detail. The details of coordinate

system construction can be found in [GBE02].

Our acoustic ranging system, based on Girod’s idea described in [GE01], uses a

wideband pseudo-noise sequence to measure the time of flight of sound from one

point to another. In the current implementation, the detector is implemented

in software, and requires considerable memory and CPU time (far beyond the

capabilities of a Mote). However, the high process gain of the detector enables

long ranges, accurate phase determination, and excellent noise and multipath

immunity. The use of wideband coded signals has two positive effects. The first

advantage is that the frequency diversity of the wideband ranging signal enables

it to work well in a variety of environments. Because we use audible sound, the

wavelengths of sound making up the signal spans from a meter to a centimeter,

increasing the resilience of the signal to scattering. The second advantage is that

different emitters can select orthogonal codes that can be detected even when
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they collide. This enables a drastic reduction in the system complexity, as it

reduces the need for tight coordination and synchronization.

Because of the limited capabilities of the Mote as an emitter, we emit a

position-modulated pulse train by toggling a digital output pin. Passed through

the filter of a speaker, each pulse results in a decaying oscillation. The pseudo-

noise code is represented by variations in the inter-pulse spacing, with an overall

rate that is low enough to allow most of the oscillations to decay during each

gap. The advantage of this scheme is that, even without exercising control over

the dynamics of the speaker, precise timing on the Mote can reproduce the pulse

timing with high precision, yielding a high degree of phase accuracy.

The bottom panel of Figure 9.2 shows how the ranging system works. Time-

base conversion metrics between the sender and receiver are maintained by the

synchronization service we described in Section 9.1.3. To compute the range be-

tween two devices, one device sends a message to the other, advertising that it is

planning to emit an acoustic signal with a given code at a particular time, refer-

enced in terms of its local timebase. Using the conversion metrics, the receiver

can know approximately when to start listening. The audio DSP’s are then sam-

pled, and the resulting time series is compared with a locally generated reference

signal using a sliding correlator.

In a sliding correlator, the correlation of two signals is computed at different

relative phase offsets. Figure 9.7 shows a graph of correlation as a function of

“lag.” By analyzing this correlation function, we can estimate the most probable

time of arrival of the ranging signal. The maximum value of the correlation

function indicates the time of arrival of the strongest component of the signal.

Figure 9.6 shows a portion of the observed signal, aligned with the reference

signal at the “best” offset.
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Echoes and other environmental distortions result in many successive peaks,

among which the earliest peak represents the most direct path. The directional

nature of speakers and microphones means that the maximum value of the corre-

lation function often represents a strong reflection; for example, if the speaker is

pointed at the ceiling. To resolve this problem, we use an adaptive noise thresh-

old function based on a low-pass filter of the correlation function. We use this

low-pass filter to select the earliest “cluster” of peaks, by finding the first region

in which the low-pass filter crosses a fixed threshold of 1.5 times the RMS average

of the correlation function. Within that region, we select the first peak after the

low-pass filter crosses the RMS average. This algorithm tends to locate the first

peaks from the region in which the power level abruptly increases.

Using the timebase conversion metrics and the offset of the earliest peak in

the correlation function, the time of flight can be calculated. Given a model

for the speed of sound in air, the time of flight can be converted to a distance.

Since the speed of sound varies based on temperature and humidity, a value from

a temperature sensor may be integrated into the model to get a more accurate

distance estimate.

Once distance estimates are collected, multiple trials are combined statisti-

cally into a mean and variance, with outlier rejection. However, as we will see

below, in general outliers cannot be completely filtered at this layer: long ranges

resulting from detection of reflections in obstructed conditions typically exhibit

a low variance.

We tested our prototype implementation by allowing iPAQ to form their initial

coordinate system, then using it to measure the positions of motes in several

locations. The results of these measurements are shown in Figure 9.9. The RMS

position error in this set of nodes is 9.2cm.
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Figure 9.8: Positions of receivers af-
ter the configuration step. In this di-
agram only the receivers and four ad-
ditional points are considered.

Figure 9.9: Positions of receivers and
other observed devices. In both dia-
grams, ’X’ indicates computed posi-
tions and ’+’ indicates ground truth.
The lines represent cubicle walls and a
table in the room. Figures courtesy of
Lewis Girod, UCLA LECS Laboratory

In order to evaluate the performance of our localization system, we compared

the results produced by our system to our ground truth measurements. For

each position that our system estimated, we computed the distance between the

computed value and ground truth. A histogram of these values is shown in Figure

9.10. This histogram plots position error on the X axis, and shows the percentage

of measurements exhibiting less than that amount of error on the Y axis.

9.2 The DARPA SHM Program

Joint work with William Merrill, Lewis Girod, William Kaiser, Fredric Newberg,

and Katayoun (Kathy) Sohrabi

Merrill et al. describe Sensoria Corporation’s use of RBS in their implementa-

tion of a distributed, wireless embedded system capable of autonomous position
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Figure 9.10: CDF of position error for the observations in our computed coordi-
nate system. With 80% probability, the position error is less than 10cm.

location with accuracy on the order of 10cm [MGE02, SME02]. This system was

built under the auspices of the DARPA SHM program [SHM] and has been field

tested three times at Fort Leonard Wood, Missouri, in configurations of up to 75

nodes. The goal of the SHM application is to create a network of sensor nodes

(pictured in Figure 9.11) that automatically maintain a minimum deployment

density. That is, the nodes collaboratively build a geographic map of their rela-

tive positions, and physically rearrange themselves using solid-propellant rocket

thrusters if a breach is detected.

SHM nodes are autonomous and self-configuring. At boot-up, or if network

connectivity is lost, they perform automatic, distributed network construction:

neighbor discovery, TDMA cluster formation, and leader election, as described

in [SME02]. The neighbor discovery algorithm uses broadcast packets, so are

also used as observable reference-broadcast events for RBS time synchronization.

As in our mote localization system, nodes that observe broadcasts send their

observations back to the broadcaster. The cluster-head computes relative phase

and skew among the members of its cluster as described in Chapter 6; a typical

fit is shown in Figure 9.12.
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Figure 9.11: An SHM node built by the SAIC-led SHM team, including Sensoria,
Ensign-Bickford, and Universal Propulsion. The node is 12cm in diameter. The
top and bottom each have four solid-propellant rocket thrusters capable of moving
the node approximately 8 meters in one of the four cardinal directions. The four
holes on the top of the unit are the thruster nozzles. Photo courtesy of Sensoria
Corporation.
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Figure 9.12: Typical RBS output using SHM’s WIT2410 radios. Sending packets
has high jitter (10s of milliseconds) because the radio has an RS-232 interface and
uses a TDMA MAC layer. However, as seen in the figure, the reception process
is very deterministic: most points fit within 3 microseconds.
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The RBS daemon makes the conversion parameters available to the routing

algorithm and packet forwarding mechanisms. Timestamps contained in data

packets are time-converted hop-by-hop as they are forwarded through the net-

work. The physical layer of the SHM radios forces each cluster to be a “star”

topology; this guarantees that nodes serving as cluster-heads both have the RBS

conversion parameters and are on the route of any packet leaving the cluster.

After RBS time synchronization is established, nodes begin an acoustic rang-

ing and multilateration process, described in [MGE02]. The ranging process is

similar to our Mote Localization system described in Section 9.1, but the multi-

lateration process is a closed form computation that does not use a mass-spring

model. The nodes collaboratively build a map of their relative positions after

several minutes. Each node periodically checks that its neighbors are still alive.

If a node is disabled or destroyed, those that remain detect the absence, and the

network makes a “healing decision”—that is, one or more nodes move to fill in

the open space.

The mobility subsystem consists of solid-propellant rocket thrusters on the top

and bottom of the node that can be fired at the command of the host processor.

Each charge produces a 100ms impulse, generating thrust that launches the node

in a parabolic arc such that it comes to rest about 8 meters from its starting

position. The thruster nozzles are oriented so that each charge can move the node

in one of the four cardinal directions. Each node also has an internal compass

and up/down sensor (accelerometer) so that subsequent healing decisions can

take into account the final resting position of the node after its previous motion.

Although the network requires no control input, it does have a graphical

interface that allows interactive debugging and inspection of system state. An

example of this interface is shown in Figure 9.13.
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Figure 9.13: “Viz,” the SHM GUI, shows information including the nodes’ collab-
oratively computed geographic map, and their healing decisions. In this example,
nodes 140 and 144 (lower right, denoted with “???”) have been turned off to sim-
ulate destruction by an enemy. Nodes 133, 135 and 145 have displayed their
healing decisions: they plan to move south, south and east, respectively. If the
dead nodes are not revived within 30 seconds, the others will execute their healing
decisions by firing rockets.
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The SHM application is notable for a number of reasons. First, it repre-

sents a third hardware and radio platform on which RBS has been successfully

implemented. Sensoria’s “WINS NG” node is based around the Hitachi SH4

processor running Linux 2.4. Each node has two low-power 56Kbit/sec hybrid

TDMA/FHSS radios with an RS-232 serial interface to the host processor. As

with our 802.11 implementation, the firmware of this radio was opaque, making

schemes that rely on tricks at the MAC layer impossible. The success of RBS

here lends more weight to our proposition that RBS is not simply a peculiarity

of one platform, but is likely to work across a wide variety of network hardware

and MAC layers.

SHM is also noteworthy because it is a complete, fully realized sensor network

application. RBS is central to its success, but it also relies on many other crucial

services (e.g., soft-state neighbor discovery, automatic topology configuration,

ad-hoc routing, reliable groupcast, acoustic ranging, distributed multilateration,

collaborative healing), sensors (microphone, compass, accelerometer), and actu-

ators (rockets, speakers). Many of our research systems demonstrate solutions to

one aspect of problem, but SHM is a complete implementation of a real applica-

tion. Its success was dramatic, and the system is now being considered by various

branches of the armed forces for transition from a DARPA research program into

a deployable system.

9.3 Blind Beamforming

Joint work with Hanbiao Wang, Len Yip, Lewis Girod, Daniela Maniezzo, Joe

C. Chen, Ralph E. Hudson, and Kung Yao

Finally, we will briefly describe a third application of RBS: distributed blind
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beamforming. Blind beamforming on acoustic signals has been studied by Yao et

al. for a number of years [YHR98]. Their prototype arrays localize the source of

sounds by computing phase differences of an acoustic signature received by sensors

at different locations. This technique is similar to acoustic ranging, but does not

require time-synchronization between the acoustic emitter and receiver. Instead

of measuring the absolute value of the propagation delay, the array measures time

difference of arrival across multiple receivers. By adding additional microphones,

the solution matrix can be over-constrained such that send time is not needed.

This is a similar trick to that used by GPS, as we described in Section 2.7.2.

Yao’s group had previously restricted their empirical studies to centralized

systems, as they did not have a platform capable of synchronizing distributed

audio sampling with sufficient temporal precision. Indeed, their analysis showed

that the spatial precision of their scheme is limited primarily by the variance in

the underlying time synchronization, as shown in Figure 9.14.

Recently, using our iPAQ testbed—including RBS time synchronization and

the audio server daemon described in Section 9.1.3.2—Wang et al. were able to

build their first distributed beam-forming testbed. Their prototype system was

characterized in [WYM02], and later extended to applications such as target

classification [WEG03].

9.4 Summary

In this section, we examined three systems that were enabled through the use of

Reference-Broadcast Synchronization:

• In our Mote Localization testbed, RBS was used in many ways. Ba-

sic RBS was used to synchronize the domain of Berkeley motes with RF
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Figure 9.14: An analysis of the effect of time synchronization variance on the
expected spatial precision of Yao’s beamforming algorithm (AML) and the the-
oretically optimal result (CRB, or Cramer-Rao Bound). As AML already comes
very close to the Cramer-Rao bound, improvements in spatial precision must
come from improvements in time synchronization. Figure courtesy of Hanbiao
Wang.

156



Monolithics narrowband radios; and, separately, the domain of 802.11-

based iPAQ PDAs. The two synchronization domains were linked using

a “MoteNIC,” combined with an implementation of the RBS multi-hop al-

gorithm. The automatic synchronization-path selection made the sequence

of conversions from any mote to any iPAQ transparent to the application

developers.

• The SHM system, commercialized by Sensoria Corporation, used acoustic

ranging and time synchronization that was conceptually similar to the Mote

Localization system. However, this system incorporated localization into a

complete, end-to-end application: an autonomous, mobile sensor network

that physically reconfigures node positions in response to breaches. This

system was a commercial success, as well as demonstrating a successful use

of RBS on a third hardware platform—a Hitachi SH4-based host with a

hybrid TDMA/FHSS radio.

• Wang et al. used our iPAQ testbed to implement the first distributed acous-

tic beam-forming array, and later extended their work to a target classi-

fication application. RBS was an enabling technology for distributing the

acoustic sampling data collection; for the lack of appropriate time synchro-

nization, they had previously been constrained to centralized sampling.

Of course, the success of these applications is, in some sense, anecdotal. How-

ever, we believe they make a strong case that our time synchronization methods

are robust and practical enough to be used in support of real-world applications.
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CHAPTER 10

Conclusions and Future Work

The bad news is time flies. The good news is you’re the pilot.

—Michael Althsuler

Recent advances in miniaturization and low-cost, low-power design have led

to active research in large-scale networks of small, wireless, low-power sensors

and actuators. Time synchronization is a critical piece of infrastructure in any

distributed system, but wireless sensor networks make particularly extensive use

of synchronized time. Almost any form of sensor data fusion or coordinated

actuation requires synchronized physical time for reasoning about events in the

physical world. However, while the requirements along axes such as tolerable

error are often stricter in sensor networks than in traditional distributed systems,

energy and channel constraints limit the resources available to meet these goals.

New approaches to time synchronization can better support the broad range

of application requirements seen in sensor networks, while meeting the unique

resource constraints found in such systems. In our work, we have characterized

the unique application requirements in this domain, proposed new synchroniza-

tion methods that meet those requirements, and successfully implemented and

characterized these schemes in the context of several research and commercial

systems.
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10.1 Contributions

In this section, we review our contributions described earlier in the dissertation.

We believe one of the strengths of our work is in its breadth: we have character-

ized a new problem, described relevant metrics, proposed novel new approaches,

implemented and quantitatively characterized our solutions, and seen the im-

plementation through to a number of complete systems—one of which has been

commercialized. In the sections that follow, we will review our contributions in

each of these areas in more detail.

10.1.1 Characterization of Time in Sensor Networks

An important step toward understanding the problem domain has been the ar-

ticulation of the relevant metrics. In Chapter 4, we described these metrics and

used them to characterize application requirements.

• Energy utilization—Some synchronization schemes require extra, energy-

hungry equipment (e.g., GPS receivers). Others may have virtually no

energy impact (e.g., listening to extant packets already being transmitted

for other reasons).

• Phase and frequency error—either the dispersion among a group of peers, or

maximum error with respect to an external standard. The error tolerance

might be as strict as microseconds (e.g., for coherent signal processing on

audio signals) or as relaxed as seconds (e.g., to track a slow-moving mobile

target).

• Lifetime—the duration for which nodes are synchronized. This might be

nearly instantaneous (e.g., to compare views of a single event from multiple
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vantage points), as long-lived as the network (to track the motion of an

object through a sensor field), or persistent forever (e.g., data logging using

UTC).

• Scope and Availability—the geographic span of nodes that are synchronized,

and completeness of coverage within that region. The scope might be as

small as a pair of nodes exchanging data, or as large as the entire network.

• Internal vs. External—In some applications, the network must be kept in-

ternally consistent, but requires no reference to the outside world. In other

cases, such as when interacting with people, the network needs a common

time reference such as UTC.

• Cost and Size—These factors can make a scheme a non-starter. It is un-

reasonable to put a $50 GPS receiver or a $500 Rubidium oscillator on a

node that would otherwise cost $5, or on dust-mote sized nodes.

10.1.2 New Architecture Directions

In some ways, sensor networks are a radical departure from traditional network-

ing; they break many of the assumptions on which prior work is based. In Chap-

ter 5, we saw that these differences have required us to question and modify the

design of traditional time synchronization schemes in this new domain. Unlike

the Internet, sensor networks must be synchronized with an eye toward energy

efficiency; they must often work without infrastructure; timescales of mutually

disconnected nodes must be reconciled.

Based on both our own work and the experience of others in this problem

space, we have proposed a number of guidelines that are useful in formulating

new synchronization schemes for sensor networks:
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• Multi-modal—No single synchronization scheme can be optimal on all axes

(e.g., precision, lifetime, scope, energy, availability), but most applications

do not require peak performance on all axes. A range of schemes should be

available to system designers, such that the synchronization that is provided

matches what is needed.

• Tunable—An ideal synchronization system will minimize its energy use by

providing service that is exactly necessary and sufficient for the needs of

the application. Tunable parameters can allow synchronization modes to

be matched more closely to the requirements of the application.

• Tiered—Although Moore’s law predicts that hardware for sensor networks

will inexorably become smaller, cheaper, and more powerful, technological

advances will never prevent the need to make trade-offs. Instead of choosing

a single hardware platform that makes a particular set of compromises, we

believe an effective design is one that uses a tiered platform consisting of a

heterogeneous collection of hardware.

• Explicit—Most existing time synchronization schemes make a common as-

sumption: that their goal is to keep the clock synchronized all the time.

Applications assume that they can query the clock at any time, and it will

be synchronized. We argue that in sensor networks, synchronization should

not attempt to discipline the phase and frequency of oscillators. A better

approach is to let clocks run at their natural rate, and use synchroniza-

tion to build a set of relationships to other clocks or synthetic timescales.

Applications can query the local clock, then perform an explicit conversion

to another timescale. This has many advantages; for example, it enables

post-facto synchronization, peer-to-peer synchronization, and participation

in multiple timescales.
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• Peer-to-peer—Traditional synchronization schemes assume the existence of

a global timescale, usually realized by a master clock. We argue that the

goal of a synchronization scheme should, instead, be to define the relation-

ship between nearby clocks in a peer-to-peer fashion, without necessarily

constructing a global timescale. This has a number of benefits—primarily,

error between nodes is proportional to the distance between them, rather

than their distance from a master clock that is likely to be far away.

10.1.3 Reference-Broadcast Synchronization

In Chapters 6 and 7, we explored a new form of time synchronization, Reference-

Broadcast Synchronization, that provides more precise, flexible, and resource-

efficient network time synchronization than traditional algorithms. The funda-

mental property of our design is that it synchronizes a set of receivers with one

another, as opposed to traditional protocols in which senders synchronize with

receivers. In addition, we have presented a novel multi-hop algorithm that allows

this fundamental property to be maintained across broadcast domains.

In our scheme, nodes periodically send beacon messages to their neighbors

using the network’s physical-layer broadcast. Recipients use the message’s arrival

time as a point of reference for comparing their clocks. The message contains no

explicit timestamp, nor is it important exactly when it is sent.

RBS has a number of properties that make it attractive. First, by using the

broadcast channel to synchronize receivers with one another, the largest sources

of nondeterministic latency are removed from the critical path. This results

in significantly better-precision synchronization than algorithms that measure

round-trip delay. The residual error is often a well-behaved distribution (e.g.,

Gaussian), allowing further improvement by sending multiple reference broad-
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casts. The extra information produces significantly better estimates of relative

phase and frequency, and allows graceful degradation in the presence of outliers

and lost packets.

We presented a quantitative study that compared an RBS implementation to

a carefully tuned installation of GPS-steered NTP. Both used IPAQ PDAs with

802.11 wireless Ethernet. We found that the average synchronization error of

RBS was 6.29 ± 6.45µsec, 8 times better than that of NTP in a lightly loaded

network. A heavily loaded network further degraded NTP’s performance by a

factor of 30 but had little effect on RBS. With kernel timestamping hints, RBS

achieved an average error of 1.85± 1.28µsec, which we expect was limited by the

IPAQ’s 1µsec clock resolution.

Our multihop scheme allows locally coordinated timescales to be federated

into a global timescale, across broadcast domains. Precision decays slowly—

the average error for an n-hop network is proportional to
√

n. In our test of

kernel-assisted RBS across a 4-hop topology, average synchronization error was

3.68± 2.57µsec. RBS-federated timescales may also be referenced to an external

standard such as UTC if at least one node has access to a source of reference

time.

We have implemented RBS on a variety of hardware platforms, where it has

proven to be robust and reliable for both performance measurement and in sup-

port of real applications. We are confident that these techniques are widely appli-

cable, based on our experience with Berkeley Motes running TinyOS, Linux-based

IPAQs, PCs, and Sensoria’s WinsNG radios. Each has quirks that have taught

us important lessons about RBS.
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10.1.4 Post-Facto Synchronization

To save energy in a sensor network, it is a desirable to keep nodes in a low-power

state, if not turned off completely, for as long as possible. However, traditional

synchronization schemes make the assumption that the clock must be synchro-

nized before the event occurs. They must therefore keep clocks synchronized all

the time—which is very wasteful if synchronized clocks are needed infrequently

and unpredictably.

Using our model of local clocks and explicit conversions (Section 5.2.4), a

superior solution falls out quite naturally: post-facto synchronization. That is,

a node’s local clock normally runs unsynchronized; after an event of interest, a

synchronization process is started, allowing timestamps from distributed nodes

to be reconciled. Waste is reduced because the system avoids performing syn-

chronization at times when it’s not necessary. This scheme works much better

than the predictive version: it is much easier to characterize the past than it is

to predict the future.

In Chapter 8, we explored two forms of post-facto synchronization. The first,

single-pulse synchronization, requires frequency calibration at the time the net-

work is deployed (and perhaps periodically afterward). With this information,

high-precision retrospective timescales can be quickly constructed using a single

packet. Second, we saw that Reference-Broadcast Synchronization can be used

for post-facto synchronization. In our test, the phase error of a retrospective

RBS timescale was still less than the bit-detection jitter when 60 seconds elapsed

between the last synchronization packet and first timestamped event.
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10.1.5 Application Experience

As the size and cost sensors and actuators has fallen, it has become feasible to

build distributed sensor nodes capable of being embedded in the environment at

high density. In Chapter 9, we presented a practical system capable of exploiting

that density, achieving 10µsec time synchronization and 10cm spatial localization

on a low-cost, low-power, ad-hoc deployable sensor network. This is possible

on COTS hardware by making using of novel techniques, including Reference-

Broadcast Synchronization and wideband acoustic ranging.

Our group has developed a implemented a centimeter-scale localization ser-

vice for Berkeley Motes based on acoustic time-of-flight ranging [GBE02]. A

set of IPAQs set around the room first establish their own positions within a

relatively coordinate system by ranging to one another. Each IPAQ emits an au-

dible “chirp” which has an encoded pseudo-noise sequence [GE01]. IPAQs run a

matched filter over their incoming audio data to find the most likely audio sample

indicating arrival of the chirp. 802.11-based RBS corrections are then applied to

convert this into the equivalent sample number in the sender’s timebase, allow-

ing time of flight and therefore range to be computed. Once this startup phase

is complete, our “acoustic Motes,” specially equipped with small amplifiers and

speakers, periodically emit a similar pseudo-noise chirp; IPAQs in the region each

compute their ranges to the Mote, and can localize it by trilaterating. In this

case, RBS is used to synchronize all Motes in the system to each other. A spe-

cial “MoteNIC”—a Mote physically attached to an IPAQ—provides translations

between the Mote and IPAQ time domains.

Under the auspices of the DARPA SHM program, Sensoria Corporation has

developed and commercialized a system that also performs acoustic ranging and

multilateration based on RBS time synchronization. Sensoria’s system goes be-
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yond basic localization, incorporating it into a complete, end-to-end application:

an autonomous, mobile sensor network that physically reconfigures node posi-

tions in response to breaches. Its success was dramatic, and the system is now

being considered by various branches of the armed forces for transition from a

DARPA research program into a deployable system.

10.2 Future Work

Although much has been accomplished, there is (as always) much more to be

done. In this final section, we describe some areas of interest for future research.

10.2.1 The New Service Model

In Chapter 5, we proposed a significant change in the way that users interact with

a time synchronization service. In some cases, the differences are rather dramatic;

the idea of discarding a global timescale, for example, is often met with initial

skepticism. The old model is very compelling in its simplicity: “What time is

it?” is a universally understood interface that matches our experience in the real

world. We argued that the new service model enables enormous flexibility, but

is it worth the cost in complexity? Or, does the new model fail to go far enough,

and will it be insufficiently expressive to support some future applications? We

do not yet have enough experience to be certain one way or the other.

10.2.2 Reference Broadcast Synchronization

RBS has evolved into a reasonably stable system that has been used outside of

our research group. However, there is still much work to be done.

One of the most important issues surrounding the use of RBS is that, so far,
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RBS has required customization for each of the applications that have used it. It

is not yet clear if a small, standard set of these configurations will be usable across

a broad class of applications, or if RBS will always require application-specific

binding. The basic method leaves the implementor a great deal of flexibility (or,

said less charitably, RBS is underspecified). For example:

• Which nodes are broadcasters? An easily implemented answer is “every

node,” but this produces far too much redundant information to be worth

the impact on network utilization. Real networks need automatic beacon

election, but such algorithms may be difficult to generalize across applica-

tions. For example, the Sensoria/SHM leader election algorithm used by

RBS was really an artifact of the star topology of the network that arose

due to the TDMA radios. It is not clear that automatic beacon election can

be solved in a way that works across a broad set of applications—each of

which may have a unique physical network topology, routing infrastructure,

and robustness requirement.

• How is information disseminated? Do nodes compute their own conversion

parameters, or (as in the case of our first Mote implementation) send the

observations to a larger node that can more easily handle them? Are the

conversion parameters broadcast globally to every other node in the net-

work, or is synchronization integrated with routing and applications such

that timestamps can be converted hop-by-hop as packets are forwarded?

Again, it is not clear that there are “plug-and-play” answers to these ques-

tions. As with so many other areas (e.g., routing, data aggregation), in-

teraction with the application is complex. This makes standard services

much more difficult to pre-package than in networks such as the Internet

that encourage stronger abstractions between layers.
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• How does RBS scale? The previous questions have important scaling con-

siderations. For example, a global broadcast of all conversion parameters

does not work as the network grows larger. We believe RBS has elegant

ways of dealing with scale (e.g., the hop-by-hop conversions), but do not

yet have a large-scale implementation as proof.

A number of interesting algorithmic improvements are possible with RBS that

we would also like to explore. As the number of beacon nodes per broadcast do-

main grows, so does the amount of redundant information: can this be leveraged

to gain even more accuracy or better rejection of outliers? Recent work by Karp

et al. has shown some tantalizing results: in an RBS-like scheme, provably opti-

mal time synchronization can be achieved by distributing complete information to

all neighbors [KEE03]. Further, the authors also suggest that a mostly-localized

version of their scheme can achieve nearly optimal results. We hope to apply

their ideas for collaborative outlier rejection to improve the error bounds in RBS.

Finally, there are a number of quantitative performance questions we would

like to explore more fully. For example: precision vs. both the bandwidth used

for beacons, and their frequency; minimum time to acquire synchronization to

within a given precision bound; post-facto synchronization precision vs. time

elapsed from event to reference pulses; and precision with different data filtering

algorithms. We would also like to quantify the performance of RBS when used for

external (UTC) synchronization over multiple hops, vs. using NTP in the same

topology.

10.2.3 Post-Facto Synchronization

The most important open question surrounding post-facto synchronization (PFS)

is a simple one: is it worthwhile? If synchronization is needed occasionally and
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unpredictably, it seems that PFS should be a clear choice. However, to date, we

have not seen an application where the energy saved by turning timesync off is

worth the resulting increase in system complexity.

It is possible that this is simply an artifact of our field’s immaturity. Most

of our work so far has been in the context of prototype or demonstration sys-

tems. We seem just on the verge of the next generation: deployments of the first

long-lived, in-situ systems where energy-efficiency is of a practical rather than

academic concern. It could be that when we reach that point, PFS will become

quite compelling. Or, it could be that even in regimes where maximum efficiency

is required, there is always some background radio traffic, and the incremental

benefit of stopping timesync is not worthwhile.

Part of the cost/benefit analysis is the loss in precision: as greater times elapse

between an event and the start of PFS, the precision decays. In applications that

require the utmost precision, PFS may never be viable. In answering this side

of the question, deeper performance analysis of PFS is needed. Our experiments

with it so far have been a proof-of-concept, but we have yet to perform a sys-

tematic exploration of the effects of longer silence intervals on the accuracy and

variance of synchronization.

10.2.4 Applications

At its heart, time synchronization is mostly a means to an end. It has little signif-

icance without applications that need it. We look forward to continuing our col-

laborations with colleagues in the sensor network community who have research

interests that require precise time synchronization: distributed signal process-

ing, acoustic ranging, object tracking, coordinated actuation, and so forth. Our

existing application work has been an enormous milestone, but represents only
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demonstration systems: they have been deployed for, at most, a few days. Our

ambition is to see an implementation of our techniques through to a fully-fielded,

operational system—one that goes beyond only an embodiment of systems re-

search, and produces real scientific results.

Two such systems are in development: a 100-node tiered-architecture mi-

croclimate array, and a 50-node collaborative multi-hop seismic array. We are

working with our partners in the natural sciences to create a system that is both

scientifically useful and advances the state of the art in sensor system design.
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