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ABSTRACT OF THE THESIS

Efficient Quantum Block Encoding of Dense, Low Entropy Data

by

Jeffrey Chifang Ma

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Jens Palsberg, Chair

Efficient Quantum Block Encodings of non-unitary data are key for realizing quantum advan-

tage for linear algebraic operations. Dense, low entropy matrices, which have a low amount

of unique values with the distribution of values concentrated largely on one value, have a

variety of applications such as DNA analysis. To enable efficient block encodings of dense,

low entropy data, we introduce a new paradigm for developing quantum block encodings by

reducing the block encoding problem to controlled quantum state preparation and quantum

state preparation problems. Through this reduction, we are able to construct three novel

block encoding algorithms that incorporate the elements of state preparation algorithms. We

then evaluate these algorithms on dense, low entropy data and find that our three block en-

coding algorithms significantly reduce circuit depth with little ancilla and additional CNOT

cost.
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CHAPTER 1

Introduction

1.1 Motivation

Currently, one of the most promising areas in quantum computing is to significantly speed

up linear algebraic calculations for higher-dimensional data. Quantum algorithms involving

linear algebra, such as HHL [14], have demonstrated quadratic or even exponential speedup

over their classical counterparts, leading to polylogarithmic time complexity with respect to

the size of the input.

1.1.1 QDNA Project

DNA analysis is a critical field which benefits from said speedup. While the field is capa-

ble of analyzing large samples of individuals to find predictors of genetic diseases, such as

prostate cancer [17], current DNA analysis algorithms cannot scale to meet the increasing

size of biobanks as increasingly more genotype/phenotyope data of a population are added

to the datasets. Quantum computing could bridge the gap between genetic differences in

populations by allowing us to evaluate multiple massive datasets that span multiple popu-

lations.

As part of the qDNA project, we have identified three classical algorithms that can be

enhanced via a quantum counterpart. These algorithms can identify enrichment of heritabil-

ity of various disorders [1], infer population structure [25], and identify several genome-wide

signals of recent positive natural selection [9] by performing data analysis on a SNP matrix.

In each of the algorithms, we can replace key linear algebra steps with their quantum coun-
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terparts. Specifically, by performing principal component analysis, trace estimation, and

non-negative matrix factorization more efficiently via quantum computing, we can theoreti-

cally achieve an exponential speedup over the purely classical algorithms.

1.1.2 QSVT

The QSVT quantum algorithm is an optimal choice to implement the various required lin-

ear algebra mechanisms. QSVT (Quantum Singular Value Transformation) is based off the

quantum signal processing framework introduced by Low et al [19]. Quantum signal pro-

cessing enables arbitrary polynomial transformations on a scalar value by first encoding the

scalar into the top of a unitary matrix U(a) ∈ SU(2), then repeatedly applying both ”signal-

processing” single qubit rotations and the unitary. Gilyen et al. then demonstrated that

quantum signal processing can be generalized to arbitrary matrices by encoding a matrix

into a larger unitary matrix U (known as a block encoding), then performing polynomial

transformations on the singular values of said matrix via repeated applications of the signal

processing operation and controlled applications of U and U † [12]. However, repeated appli-

cations of U leads to leakage (due to having undefined behavior on the ”garbage”)— Low

further refined this notion of a block encoding by applying ”qubitization” to it, essentially

creating a new block encoding that avoids this problem via a single ancilliary qubit [20].

The QSVT algorithm is both widely applicable and efficient, assuming a sparse block

encoding. It has been demonstrated that many quantum algorithm staples, such as quantum

search and amplitude amplification, can be unified back into a QSVT problem [22]. The core

idea of QSVT is that we can create a non-unitary subsytem of a quantum system, and perform

operations directly on said subsystem. Thus, there have been direct applications of QSVT to

principal component analysis, non-negative matrix factorization and trace estimation [18],

[11], [21]. All of these applications demonstrate quadratic or exponential speedup over their

classical counterparts.
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1.2 Block Encoding

A block encoding is the embedding of a (scaled) matrix into a sub-block of a larger unitary

matrix. For our purposes, we assume that the matrix is embedded in the principal block of

the larger matrix (ie the top left).

In a quantum circuit, this appears as follows:

Figure 1.1: Example Block Encoding Circuit (Figure from Sunderhauf et al[28])

There are a variety of ways to block encode a matrix in a quantum circuit, as detailed in

sections 3, 1.5.

1.3 UK Biobank Dataset

The efficiency of QSVT-based algorithms is predicated upon an efficient block-encoding

representation of the data. For our purposes, we decided to focus on the UK Biobank dataset

[5]. This dataset is rich with the genotype and phenotype data of 500,000 individuals, aged

between 40 and 69. In the data matrix, each row represents a specific SNP (single-nucleotide

polymorphism), and each column represents a specific individual. A data entry can take on

the values of 0, 1, or 2, representing the count of mutations of a specific SNP inherited from

the specific individuals mother or father. Specifically, 0 indicates no mutation for the SNP

from the mother or father, 1 indicates a mutation from the mother or the father, and 2

indicates a mutation of the SNP from both the mother and the father. An example of the

data is shown here 1.2:

We intentionally take a square matrix subset of the data for convenience in working

with block encodings. The largest matrix we intend to work with is of size 218 × 218, which
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Figure 1.2: An Example 2x2 SNP matrix

corresponds to data on roughly a quarter million individuals and SNPs.

1.3.1 Low Entropy Data

An analysis of the data suggests that the SNP matrix has a lower entropy of data, specifically

in terms of the columns. A table with the counts of each value is shown here 1.3:

Figure 1.3: Summary Statistics of UK Biobank Dataset from the QDNA Project

One characteristic of the data is that the distribution of 0’s, 1’s and 2’s among the

columns is fairly regular. This implies that most individuals carry roughly the same amount

of mutations from their parents overall, irrespective of SNP. This characteristic of the data

implies low entropy. The Shannon entropy of a data matrix can be defined as:

H(A) = −
∑

d∈A pdlog(pd)

where d corresponds to unique values of a matrix (in our case d ∈ {0, 1, 2}), and pd is

the probability of seeing the value in the matrix. A lower entropy corresponds to a lower

informational value of a message in information theory, and thus corresponds to a potentially

more efficient way of representing the data. For example, we could solely represent the data

by denoting the positions of just the 1s and 0s in each column– thus obtaining an NMlogN
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representation of the data in a N ×N SNP Matrix with sparsity M (which denotes number

of non-two values) in each column.

All in all, this data analysis suggests that dense, low entropy data might be a good

candidate for block encodings that haven’t been extensively studied in the past.

1.4 Quantum State Preparation and Controlled Quantum State

Preparation

We now briefly discuss an alternate set of techniques to encode a classical dataset in the

quantum realm. An amplitude encoding of a classical dataset consists of the following

statevector:

ψ =
∑m

i αi|i⟩

where for some classical dataset x(1), ..., x(m) of m data elements, αi corresponds to the

normalized ith element of x, and |i⟩ correponds to the index of the ith element.

State Preparation involves preparing an arbitrary state on a set of qubits, similar to

initializing a variable in classical computing. Typically, a state preparation algorithm con-

structs a unitary Uprep such that:

Uprep|0n⟩ = |ψ⟩

where |ψ⟩ is the target state. Similarly, controlled quantum state preparation involves

a set of pre-initialized qubits |i⟩, and a set of possible amplitude encodings |ψ0⟩, ..., |ψk⟩.

Controlled quantum state preparation generates a unitary such that:

Ucqsp|i⟩|0n⟩ = |i⟩|ψi⟩.∀i ∈ {0, 1}k

These alternative quantum data loading problems are relevant due to a number of factors.

For one, research into quantum state preparation is slightly more mature, simply because

quantum block encodings are a newer concept. So, ideas from quantum state preparation can

be applied to quantum block encoding. Furthermore, quantum state preparation can also

give us a general idea of circuit depth for quantum data loading of the same data. Later on,
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we also show that the problem of block encoding can also be reduced to controlled quantum

state preparation and state preparation problems.

1.5 Previous Work with Block Encodings

Most previous works involving quantum block encodings have focused on sparse matrices and

structured dense matrices. Furthermore, most previous works assume either oracle access

or QRAM to load data values. For our goals, we want a clear idea of circuit depth, circuit

width and subnormalization cost. Thus, we avoid using QRAM and oracle access in this

work, but we consider such approaches here.

1.5.1 Sparse Matrix Block Encodings

In Gilyen et al’s seminal paper [12], block encodings for certain sparse matrices were shown

to be efficient, given oracle access. Further work in the area demonstrates that sparse block

encodings can be represented using fewer qubits and clearer costs of oracle gates. Because all

of the mentioned sparse block encodings use some form of oracle access, we decide to avoid

comparing our block encoding constructions to these papers directly, and instead focus on

the qubit and subnormalization cost of the introduced papers.

1.5.1.1 Explicit Quantum Circuits for Block Encoding of Certain Sparse Ma-

trices

Linlin’s paper [6] introduces a general block encoding scheme for encoding sparse matrices

through the use of two oracles, OA and OC . The block encoding scheme is efficient in the

number of qubits, only using s+1 qubits (where s is the log of the sparsity S), and has a

subnormalization cost of α = S||Amax||, where Amax is the greatest value of the matrix. The

paper also details several explicit constructions of specific types of matrices, such as banded

circulant matrices and extended binary trees.

The OC oracle and the OA oracles act as sparse value row lookup per column and a sparse
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value initialization for current sparse coordinate respectively. The core idea behind these

oracles is that through a function c(j, l) that gives the row index of the jth non-zero value

in the lth column, one can avoid having to use more qubits to refer to a sparse value in a

matrix. Specifically, the oracles take up the form:

OC |l⟩|j⟩ = |l⟩|c(j, l)⟩

OA|0⟩|l⟩|j⟩ = (Ac(j,l),j|0⟩+
√

1− |Ac(j,l),j|2|1⟩)|l⟩|j⟩

By using a diffusion operator H⊗n to search through all the possible sparse values, the

paper is able to correctly initialize the amplitudes of the matrix through the OA oracle, then

correctly initialize |j⟩ to have the correct resulting row values through the OC oracle. A final

diffusion operator uncomputes the ancilla qubits in order to properly move the matrix to

the principal block.

While the explicit constructions of block encodings are not useful for our use case, the

ideas of using Hadamard gates to search over the rows of the matrix and the use of an extra

rotation qubit are important for our work and prevalent through the literature.

1.5.1.2 Block-encoding structured matrices for data input in quantum comput-

ing

Sunderhauf et al. [28] construct sparse block encodings that are more focused on subnormal-

ization. Similar to Linlin’s paper, they reduce the number of required qubits by using a form

of sparse indexes, this time by converting a sparse column index (corresponding to row of

sparse value) and column to a data index and multiplicity ”coordinate” and converting that

into a spare row index (corresponding to column of sparse value) and row. Thus, the block

encoding scheme uses three oracles: Or to get the sparse row index and row from a data

index and multiplicity, O†
c to get the data and multiplicty from a sparse column index and

column, and Odata to initialize the corresponding matrix value on a rotation qubit, just like

with Linlin’s paper. In this base scheme, it uses s+1 qubits and achieves a subnormalization

of α =
√
Sr

√
Sc||Amax||.
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By removing the dependence of the Odata matrix on |j⟩, more quantum circuit machinery

can be introduced. A delete oracle and delete qubit can remove the dependence of a certain

amount of required numbers to delete out-of-range data and multiplicity ”coordinates”. A

preamplification scheme (introduced by Gilyen et al [12]), can be achieved by separating the

data oracle into two pieces to be singular value amplified. A PREP and UNPREP scheme

can be used to commute out the Odata oracle to reduce subnormalization again by moving the

row/column oracles into a PREP and UNPREP oracle that act parallel with the diffusion

operations, resulting in a smaller quotient in the oracle.

The quantum machinery introduced in this paper is in general useful for lowering the

subnormalization of block encodings. We end up using a similar technique to the delete

oracle in the BDD block encoding 3 through a path qubit that indicates whether a path is

legitimate or not.

1.5.2 Dense Matrix Block Encoding

Most dense Block Encoding constructions also similarly use oracle access or QRAM, to

construct the block encoding circuit. This is because in general block encodings for dense

matrices are prohibitively expensive. Thus, either underlying structure of the matrix, oracle

access, or QRAM must be used to reduce the required number of qubits and circuit depth.

1.5.2.1 Quantum Resources Required to Block-Encode a Matrix of Classical

Data

The Quantum Resources paper [10] considers the use of QRAM for encoding an arbitrary

matrix, and details the implementation and resource estimation of such a QRAM block

encoding. QRAM is specifically defined to perform the following action:∑
j αj|0⟩|j⟩

QRAM−−−−→
∑

j αj|j⟩|bj⟩

where bj is some classical data (like an index) loaded into a quantum state. The general

strategy of the block encoding is to use two unitaries, UL and UR, to load in a matrix’s
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normalized row and its row normalization relative to the overall Frobenius norm ||A||F . The

overall subnormalization of this approach is the Frobenius norm. This general block encoding

framework is directly related to our column block encoding approach described later 1, where

we prepare a matrix’s normalized columns instead.

The reduction of block encoding to controlled-quantum state preparation and thus state

preparation is introduced in this paper but is not well explored (only considers the controlled

state preparation of rows). We expand on this idea in the next chapter, which is the key

behind our block encoding approach.

The Quantum Resources paper [10] introduces several QRAM variations (SS-QRAM,

BB-QRAM) that have varying tradeoff of T-depth and T-count, as well as Fixed precision

and Pre-rotated approaches to constructing the state preparation unitaries using the various

previously-defined QRAMs. The paper focuses on T-count and T-depth as well as subnor-

malization. Overall, the paper gives an exact estimate of qubit count, t-depth and t-count

for each QRAM and state preparation framework. In the event of QRAM being realized

efficiently, this quantum resource paper probably provides the best depth/gate count for all

reviewed dense block encodings.

1.5.2.2 Block-encoding dense and full-rank kernels using hierarchical matrices:

applications in quantum numerical linear algebra

Nguyen et al. [24] address block encodings for a certain subset of matrices called kernel

matrices, which arise from discretizing or smoothing a kernel function k(x, x′). The paper

produces block encodings that are efficient for matrices that are neither low-rank or sparse.

It does this through hierarchical splitting (splitting the matrix along its off-diagonal blocks)

and approximating each block with a low rank matrix. Through a kernel oracle Ok|i⟩|j⟩|z⟩ =

|i⟩|j⟩|z ⊕ k(xi, xj)⟩, a kernel matrix K can be block encoded through hierarchical splitting

into admissible blocks through two uses of the Ok oracle and polylog(N
ϵ
) one and two-qubit

gates. The admissible blocks, which are approximated with a low rank truncated Taylor

series, are then combined through Linear Combination of Unitaries.
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This approach can be generalized to arbitrary Hermitian matrices through an oracle

Oa|i⟩|j⟩|z⟩ = |i⟩|j⟩|z ⊕ αij⟩, where αij is a bit string description of Aij. This uses two uses

of the Oa oracle, polylog(N
ϵ
) ancilla qubits and polylog(N

ϵ
) gates. This uses a generalized

hierarchical splitting to split the matrix into sparse components.

In our approach to block encodings, we use the techniques of LCU and splitting of a state

into sparse components inspired by this paper extensively.

1.5.3 FABLE: Baseline Block Encoding Comparison

The Fast Approximate BLock Encodings (FABLE) paper [8] is the only block encoding

paper examined that proposes a generalized block encoding for any matrix without any

oracle access or QRAM usage. Thus, it is the one we mainly refer to as the baseline for our

block encoding constructions.

The FABLE construction is simple. It consists of a diffusion operator, a uniform con-

trolled rotation gate on the rotation qubit, a swap network and a final diffusion operator.

Thus, it has a qubit cost of (n+1) and a subnormalization cost of 2n. The block encoding

matrix is defined as:

UA = (I1 ⊗ H⊗n ⊗ In)(I1 ⊗ SWAP )OA(I1 ⊗ H⊗n ⊗ In)

where OA|0⟩|i⟩|j⟩ = (Ai,j|0⟩+
√

1− |Ai,j)|2)|1⟩|i⟩|j⟩ is implemented with a uniform con-

trolled rotation gate. The construction of this uniform controlled rotation gate is detailed in

the Appendix A.3. A general overview of the construction is that it uses O(N2) alternating

CNOTs and Ry gates to encode a set of angles θ′ which are related to the angles that en-

code the actual state θ by a linear system. This transforms N2 multi control rotations for a

dense matrix into a more manageable amount. Thus, the general idea of the FABLE block

encoding is to search over all the possible rows, rotate to the correct values of the rows, swap

in the resulting rows into the correct spot, and uncompute the ancilla.

FABLE also enables approximation by compressing the uniform controlled rotation gate.

By removing some of the Ry gates with angles less than a cutoff threshold δc, FABLE can
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reduce the amount of Ry gates and cancel some of the CNOT gates at the cost of an error of

ϵ = N3δc. While for our purposes we mostly focus on implementing exact block encodings,

we acknowledge that the topdown block encoding described in a later section can benefit

from this tradeoff as well.

In our work, we use both the idea of the SWAP gate to properly initialize |j⟩ as well as

the idea of an efficient uniform controlled rotation gate. Furthermore, the reduction from

block encoding to CQSP 1 directly reflects the FABLE block encoding construction, showing

that FABLE itself is a reduction to controlled quantum state preparation.
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CHAPTER 2

Block Encoding Based on Quantum State Preparation

We show that there are reductions between the various different quantum data loading

problems of block encoding, state preparation and controlled state preparation. Specifically,

the different quantum algorithms can be shown to be reduced to sub-problems of each other.

By demonstrating this equality, we can more directly apply state preparation algorithms to

block encoding problems. This is important as this avenue of thought is only briefly explored

in a previous work [10], and it opens up the block encoding space to use algorithms from the

slightly more mature field of quantum state preparation and apply them more directly.

2.1 Equality between Quantum Data Loading Problems

Thm 1

Thm 2

Lem 3

Def 1

Block Encoding

QSP Controlled QSP

Figure 2.1: Reduction diagram between various quantum data input problems corresponding

to the theorems, definitions and lemmas shown below

As shown above 2.1, we intend to show that a block encoding problem can be reduced

to a controlled quantum state preparation problem, which in turn can again be reduced into
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a quantum state preparation problem. In order to aid this discussion, we formally define

the previously introduced data loading algorithms. We note that we only focus on encoding

real-valued positive data.

Definition 1 (Block Encoding). Let a, n,m ∈ R, a = m + n, N = 2n. For a given NxN

matrix A that operates on n qubits, we construct a (α,m, ϵ)-block encoding of A if

||A− α(⟨0m| ⊗ IN)UA(|0m⟩ ⊗ IN)||2 ≤ ϵ

Note that there are three additional variables of a block encoding that are relevant to

the overall circuit complexity, in addition to the circuit depth and cnot cost. First, the

sub-normalization of the matrix α directly leads to an increase in the number of shots as α

indicates the probability of measuring a garbage result (non-zero ancilla qubits). A larger

sub-normalization decreases the probability of reading a relevant result at all. Second, m,

which denotes the number of ancilla qubits, directly corresponds to circuit width and thus

qubit cost. Finally, if ϵ > 0, then the block encoding is an approximate block encoding and

additional shots must also be used to account for the introduced error.

While various quantum state preparation algorithms introduce similar costs as well, the

current literature does not define it as formally for state preparation as for block encodings.

We introduce alternate definitions for state preparation and controlled state preparation to

account for this.

Definition 2 (Quantum State Preparation (SP)). For a given amplitude encoding |ψ⟩ that

occupies n qubits, Usp is a (α,m, ϵ)-state preparation of |ψ⟩ if

|||ψ⟩ − α(⟨0m| ⊗ IN)Usp(|0m⟩ ⊗ IN)|0n⟩||2 ≤ ϵ

where |0n⟩ is simply equivalent to |e1⟩

Note that state preparation differs from block encodings in that the sub-normalization

is often required to be the norm of the vector itself, i.e. the necessary sub-normalization

to encode the data in the quantum realm. This means that state preparation introduces a

sub-normalization of 1 compared to the normalized vector. In contrast, block encodings do
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not need to have a sub-normalization related to the normalized vector, and thus have a more

relaxed sub-normalization requirement. Instead, block encodings must strictly uncompute

the garbage of the ancilla qubits such that they measure 0, so the matrix is encoded in

the top-left of the unitary. For state preparation, the garbage of the ancilla qubits doesn’t

matter.

For our purposes, we relax the requirement of sub-normalization of state preparation, such

that state preparation can introduce an arbitrary amount of sub-normalization to encode an

un-normalized vector. We also enforce that a state preparation algorithm doesn’t introduce

garbage in ancilliary qubits, so it fits the block encoding scheme better.

Finally, controlled quantum state preparation depends on both a given set of amplitude

encodings as well as the initialization of additional qubits denoted |i⟩

Definition 3 (Controlled Quantum State Preparation (CQSP)). For a given set of amplitude

encodings |ψ0⟩, ..., |ψk⟩, Ucsp is a (αi,m, ϵ)-controlled state preparation of |ψ0⟩, ..., |ψk⟩ if

∀i ∈ {0, 1}k.|||i⟩|ψ⟩ − αi(⟨0m| ⊗ IN)Ucsp(|0m⟩ ⊗ IN)|i⟩|0n⟩||2 ≤ ϵ

where the sub-normalization αi depends on |i⟩. m denotes additional qubits beyond the

initial n needed to encode the data.

One can think of the controlled quantum state preparation problem as encoding the set

of amplitudes in a staggered fashion across the unitary matrix (such that they correspond

to the different i’s).

Now, with a more consistent set of definitions, we can formally prove the reduction

between the different quantum data loading algorithms. We assume that we are working

with exact algorithms for now.

2.2 Reduction from State Preparation to Block Encoding

It’s simple to reduce a quantum state preparation problem to a block encoding problem.

For a target state |ψ⟩, one can simply construct a random matrix A such that the leftmost

14



|0⟩

Ucqsp

|0⟩

|0n⟩ ... × H

|j⟩ × A|j⟩
α

Figure 2.2: Circuit construction of Block Encoding using CQSP unitary

column in the matrix is equal to |ψ⟩. Thus, one can construct a state preparation circuit of

|ψ⟩ with one use of a block encoding unitary, with some additional greater subnormalization

cost. This is simply a result of our (α,m, ϵ) definitions 1, 2.

2.3 Reduction from Block Encoding to Controlled QSP

Theorem 1 (Reduction from BE to CQSP). Given an algorithm CQSP (|ψ0⟩, ..., |ψk⟩)that

finds a (αi,m)-controlled state preparation of |ψ0⟩, ..., |ψk⟩ and encodes it via unitary Ucsp,

one can construct a (α1,m+ 1, ϵ)-block encoding of a NxN matrix A called UA as follows:

UA = (I1 ⊗ H⊗n)(I1 ⊗ SWAP )(Ucsp)

where the constructed Ucsp is outputted from CQSP (β1A|e1⟩, β2A|e2⟩, ...βnA|en⟩) for input

j and SWAP indicates a swap network between qubits |j⟩ and |0n⟩ ancillas. βi indicates the

required normalization such that the values in one vector are equivalent to the values in the

vector with the max sub-normalization. Specifically, βi = αi/αmax. The construction is

shown on a quantum circuit in Figure 2.2.

The reduction introduces one ancilla qubit for easier normalization, and introduces an

additional normalization of
√
2
n ∗ αmax/αi. Thus, the resulting block encoding is a (

√
2
n ∗

αmax,m+ n+ 1)-block encoding of A.

Proof. Assume wlog that m=0 as by our assumptions any additional qubits must be uncom-

puted to 0 anyway.
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We need to verify that

⟨0|⟨0|⊗n⟨i|UA|0⟩|0⟩⊗n|j⟩ = 1√
2
n∗αmax

Aij

On the right part of the inner product we have

|0⟩|0⟩⊗n|j⟩
Ucsp−−→ αj

αmax
|0⟩A|ej⟩|j⟩+

√
1− αj

αmax

2|1⟩A|ej⟩|j⟩

−→ αj

αmax
|0⟩

∑N−1
k=0

Akj

αj
|k⟩|j⟩+

√
1− αj

αmax

2|1⟩
∑N−1

k=0
Akj

αj
|k⟩|j⟩

Considering only the ”correct” case where ancillas are 0, we get

−→
∑N−1

k=0
Akj

αmax
|0⟩|k⟩|j⟩

SWAP−−−−→
∑N−1

k=0
Akj

αmax
|0⟩|j⟩|k⟩

On the left part of the inner product we have

|0⟩|0⟩⊗n|i⟩
H⊗n

−−−→ 1√
2n

∑N−1
s=0 |0⟩|s⟩|i⟩

The inner product then yields

⟨0|⟨0|⊗n⟨i|UA|0⟩|0⟩⊗n|j⟩

= 1√
2n
(
∑N−1

s=0 ⟨0|⟨s|⟨i|)(
∑N−1

k=0
Akj

αmax
|0⟩|j⟩|k⟩+

∑N−1
k=0

√
1− αj

αmax

2 Akj

αmax
|1⟩|j⟩|k⟩)

= 1√
2
n∗αmax

∑N−1
s=0

∑N−1
k=0 Akj⟨s||j⟩⟨i||k⟩

= 1√
2
n∗αmax

Aij

Thus, with one use of a CQSP unitary, one can construct a block encoding. This also

shows that the FABLE block encoding construction is performing a CQSP construction

through its use of the Uniform Controlled Rotation Gate.

2.4 Reduction from Controlled QSP to QSP

Theorem 2 (Reduction from CQSP to SP). Given an algorithm QSP (|ψ⟩)that finds a (α,m)

state preparation of |ψ⟩ and encodes it as unitary Usp, one can construct a (α1,m)-controlled
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quantum state preparation circuit Ucsp for a set of states using only applications of the SP

unitaries or controlled SP unitaries.

Proof. We show by induction that a CQSP circuit can be constructed via QSP unitaries.

Note that CQSP is defined as performing the following operation:

|i⟩|0n⟩ −→ |i⟩|ψi⟩

For the base case of i ∈ 0, there is only state |ψ0⟩ that needs to be prepared. Thus, the

CQSP problem directly translates into a QSP problem, and we can directly apply one use

of Usp0 to get the desired result. This is also known as the canonical CQSP problem.

Assume that we can construct a CQSP circuit from SP unitaries for |i⟩ ∈ {0, 1}n. Then,

we can construct a CQSP circuit for |j⟩ ∈ {0, 1}n+1 by constructing two CQSP subproblems.

First, we split the Hilbert space into two parts based on the value of the additional qubit of

j.

|j⟩|0n⟩ = α|0⟩|i⟩|0n⟩+ β|1⟩|i⟩|0n⟩

Then, we can apply two controlled CQSP unitaries that are constructed off of |ψ0, ..., ψi⟩

and |ψi+1, ..., ψk⟩ with no additional SP cost. Note that this scheme assumings the same sub-

normalization between the amplitude encodings of the CQSP unitaries (ie we can choose α

to be the same for the two CQSP unitaries).

(|0⟩⟨0| ⊗ Ucqsp0 + |1⟩⟨1| ⊗ Ucqsp1)|j⟩|0n⟩ = α|0⟩|i⟩|ψi0⟩+ β|1⟩|i⟩|ψi1⟩

This somewhat trivial theorem has some important implications. First, this theorem is

the basis for the column-based block encoding construction we detail in a later section 5,

enabling an easy way to generate many different block encoding algorithms by plugging in

different kinds of state preparation algorithms. This is shown by the following corollary 2.1.

Corollary 2.1 (Column-indexed CQSP). For a given set of amplitude encodings |ψ0⟩, ..., |ψk⟩,

one can construct a Controlled QSP given a QSP algorithm as follows:

Ucspi =
∏k

i=0(|i⟩⟨i| ⊗ Uspi)

17



where Uspi is the resulting unitary of QSP (|ψi⟩)

Second, this theorem can be extended by considering the problem of controlled quantum

state preparation as a subset of quantum state preparation problems. One key idea of this is

that controlled quantum state preparation can be thought of as a ”partial” state preparation

problem.

|0n⟩|0n⟩ SP−−→ |j⟩|0n⟩ partial−−−−→ |j⟩|ψj⟩

Lemma 3. Given an algorithm CQSP (|ψ0⟩, ..., |ψk⟩) that finds a (αi,m)-controlled state

preparation of |ψ0⟩, ..., |ψk⟩ and encodes it as unitary Ucsp as well as a (α,m) state prepa-

ration unitary Ui that prepares state |i⟩, one can construct a (α,m)-state-preparation of an

amplitude encoding |ψ⟩ as long as |ψ⟩ can be decomposed in the following manner:

|ψ⟩ =
∑

i∈{0,1}k |i⟩|ψi⟩

Usp = (Ucsp)(Ui ⊗ I⊗n)

In other words, if we can separate out the initialization of the ”i” qubits and the target

state |ψ⟩ spans all possible values of i in some fashion, then the problem can be reduced into

a simpler SP and CQSP problem.

Another way of thinking about this is that the initialization of |i⟩ can be commuted out

and thus does not need to be initialized later, only needed to be used for entangling the

state. This also suggests that controlled state preparation spans an ”easier” problem space

than general state preparation for the same number of qubits.

With these findings, we can construct a CQSP circuit by alternating between CQSP and

QSP problems. For this purpose, we consider the subset of exact QSP algorithms that are

constructed a set of qubits at a time sequentially. These ”head recursive” or ”tail recursive”

algorithms largely fall into two categories: those that construct the amplitude encoding by

inputting one state at a time, and those that construct the encoding by decomposing the

state and constructing the decomposed states. We formally define such algorithms like so:

Definition 4 (Recursive State Preparation). A state preparation algorithm is a recursive

state preparation if, for a given amplitude encoding |ψ⟩ that occupies n qubits, it constructs
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the (α,m, ϵ) − Usp circuit by calling itself as a subroutine in some manner. The number of

subproblems of a state preparation algorithm depends on how many times the Hilbert space of

|ψ⟩ is split up on each iteration. Specifically, a state preparation algorithm that decomposes

the state can be classified as recursive if the algorithm forming the resulting state preparation

unitary consists of the form:

Usp = Uspn

Uspi = ENTANGLE((I⊗ic ⊗ Upi ⊗ I⊗(n−i)c), {Uspi−1,0
, ..., Uspi−1,j

})

where Upi denotes a state preparation unitary for c qubits and the ENTANGLE algo-

rithm produces a circuit that entangles the orthonormal subspace of Upi|0⟩ with the states of

Uspi−1,0
|0⟩, ..., Uspi−1,j

|0⟩ such that the product of the resulting constant factors equal to the

intended constant factors of |ψ⟩.

So the resulting state of applying the unitary to |0⟩ is of the form:

Upi |0c⟩ = |ψi⟩ =
∑2c−1

l αil|l⟩

Uspi =
∑2c−1

l αil|l⟩Uspi−1,j
|0(n−i)c⟩ =

∑2c−1
l

∑
j αilβ(i−1)lj|l⟩|j⟩ = |ψ⟩ =

∑
r γr|r⟩

Note that Usp0 denotes a base case that is unique to the specific algorithm, which may add

additional circuitry.

State preparation algorithms which construct the overall state one basis state at a time

can be constructed similarly, just at the state-level.

Usp =
∏

s Ustates

Ustates = Uspsn

Uspsi = ENTANGLE((I⊗ic ⊗ Upsi ⊗ I⊗(n−i)c), {Uspsi−1,0
, ..., Uspsi−1,j

})

We can show that for recursive state preparation problems that operate on a set of qubits

at a time, a ”control” qubit of a cqsp built on the recursive state preparation can be loaded

similarly to a ”target” qubit of the qsp problem.

Theorem 4 (Alternate CQSP construction). Given a recursive algorithm QSP (|ψ′⟩) that

constructs a (α,m) state preparation of |ψ′⟩ =
∑

r γr|r⟩ by calling itself as a subroutine,
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one can can modify the QSP construction to construct a CQSP on the control qubit in the

following manner:

Uspi = ENTANGLE(|0⟩⟨0|⊗ I⊗n⊗Ry0+ ...+ |c⟩⟨c|⊗ I⊗n⊗Ryc, {Uspsi−1,0
, ..., Uspsi−1,j

})

where Ry0, ..., Ryc introduce rotations on a separate ancilla qubit in order to adjust the

subnormalization of the state to be equal. Specifically, Ryl|0⟩ = αj|0⟩ +
√

1− α2
j |1⟩ where

αj = normj/normmax corresponding to the norms of Uspsi−1,j
|0⟩.

Proof. First, we refer to Lemma 3 and note that a CQSP problem can be represented as a

QSP problem with the prior initialization of the control qubit. Thus, we just need to show

that

ENTANGLE(|0⟩⟨0|⊗ I⊗n⊗Ry0+ ...+ |c⟩⟨c|⊗ I⊗n⊗Ryc, {Uspsi−1,0
, ..., Uspsi−1,j

})(I⊗ic⊗

Ui ⊗ I⊗(n−i)c)

= ENTANGLE((I⊗ic ⊗ Upi ⊗ I⊗(n−i)c), {Uspi−1,0
, ..., Uspi−1,j

})

where ∃Upi for all possible Ui such that the above equality is true up to some degree of

normalization (as we can account for that in the subnormalization cost).

Note that Ui is an arbitrary matrix allowing for any possible states within the Hilbert

space of c qubits while Upi encodes information relevant to the state itself, specifically

Upi |0⟩ =
∑c

l αl|l⟩, where αl =
norml√∑c
p norm2

p

.

For the LHS we have:

ENTANGLE(|0⟩⟨0|⊗ I⊗n⊗Ry0+ ...+ |c⟩⟨c|⊗ I⊗n⊗Ryc, {Uspsi−1,0
, ..., Uspsi−1,j

})(I⊗ic⊗

Ui ⊗ I⊗(n−i)c)

= (
∑c

l |c⟩⟨c| ⊗ Ryc ⊗ Uspi−1,c
)(I⊗ic ⊗ Ui ⊗ I⊗(n−i)c)

Applied to |0⟩−−−−−−−−→

(
∑c

l |c⟩⟨c| ⊗ Ryc ⊗ Uspi−1,c
)(I⊗ic ⊗ Ui ⊗ I⊗(n−i)c)|0c⟩|0n⟩

= (
∑c

l |c⟩⟨c| ⊗ Ryc ⊗ Uspi−1,c
) 1
norml

∑c
l αl|l⟩|0n⟩

= 1
normlnormmax

∑c
l

∑
j αlβjl|l⟩|j⟩

By setting Upi = Ui, on the RHS we have:
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ENTANGLE((I⊗ic ⊗ Upi ⊗ I⊗(n−i)c), {Uspi−1,0
, ..., Uspi−1,j

})
Applied to |0⟩−−−−−−−−→

= 1√∑c
p norm2

p

∑
l

∑
j αlβjl|l⟩|j⟩

Thus we have shown the ability to reduce a QSP problem to a CQSP problem and

vice versa, at least for a subset of QSP problems. This enables a different way of thinking

about block encoding problems, making more “inline” ways of preparing cqsp unitaries which

ultimately make block encoding unitaries.
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CHAPTER 3

Block Encoding Circuit Construction

Thm 1

Block Enc

CQSP

Column BE

Cor 2.1 Thm 4

Alternating BE

Figure 3.1: Block Encoding Construction Process showing the various reductions taken to

construct the BE

Corollary 2.1, Theorem 1 and Theorem 4 form the basis for our new block encoding

constructions 3.1. First, we reduce the block encoding construction to a QSP problem using

Theorem 1. Then, we can apply either the the column based block encoding construction

2.1 or we can recursively construct the CQSP from a given state preparation algorithm 4.

3.1 Column Based Block Encoding

By the prior Corollary 2.1, we can formally construct a ”column-based” block encoding

scheme. This idea of splitting the matrix into separate state preparation vectors is similar

to the idea proposed in [10], but is more formally supported by the proofs of the prior
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|0⟩ • •

|0⟩ Ryj

|0n⟩ OPrepj
... × H

|j⟩ ⊘ ⊘ × A|j⟩
α

Figure 3.2: Column Block Encoding Circuit, where j denotes a column of the matrix

chapter. The main motivation behind column-based block encoding for our purposes is the

regularity in the data distribution over the columns (individuals) of the SNP data set. If

we can guarantee a certain amount of entropy in the columns, which we later show can be

translated to sparsity of the matrix, then we could theoretically get a better circuit depth.

We formally define the column-based block encoding algorithm like so:

Definition 5 (Column Block Encoding). Given a N ×N matrix A that operates on n qubits

and an QSP algorithm QSP (|ψ⟩) that generates an (α, c, ϵ)-state preparation circuit given an

arbirary |ψ⟩, we construct a (
√
N ∗αmax, l+n+ c+2, ϵ column-based block encoding by com-

bining Corollary 2.1 and Theorem 1. l ancilla qubits are used for the different modifications

we introduce below.

Ube =
∏N

j MCX(q0..qn, tq)(|1⟩⟨1| ⊗ Ryj ⊗ Oprepj ⊗ I⊗n)MCX(q0..qn, tq)

For each column of the matrix Aj, we generate a state preparation circuit Oprepj that

constructs the amplitude encoding of the column. Depending on the value of j, the state

preparation is selectively applied via a multi-control CNOT gate denoted by the symbol ⊘,

with correct anticontrols and controls corresponding to the bit representation of |j⟩. We

apply a controlled state preparation circuit by using the correctly toggled multi-control ancilla

qubit. This successfully entangles each resulting column vector |ψj⟩ with its corresponding

column index |j⟩, and thus results in a correct CQSP of (A|e1⟩, ..., A|eN⟩). The required βj

sub-normalization is introduced by a controlled Ry gate. Thus, by Theorem 1 we have a block

encoding of A.
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With this simple but general definition, we can take advantage of the large suite of existing

quantum state preparations and generate different variations of block encodings that scale

differently according to data distribution. Furthermore, this also gives us a baseline circuit

scaling of O(N2+NlogN), with N columns generating 2N multicontrol CNOTs (which have

a depth linear in the number of qubits) and with N quantum state preparation circuits with

an upper bound of 23
24
N circuit depth complexity [31].

However, we find in practice that the scaling of the circuit depth complexity is higher

than the baseline fable implementation. This is because the uniform controlled rotation

gate is highly efficient whereas the multi-control CNOT and the controlled application of

the state preparation circuit can introduce a dominating amount of constant factors. Thus

it is preferable to pursue sparse state preparation problems, where circuit depth can be

significantly lower relative to a large input size.

3.1.1 Linear Combination of Unitaries

One way to enforce a sparser state is to split the state based on the value of the column entry.

This way, while the circuit depth scales more with the number of unique values in the column,

the sparsity for each state preparation algorithm is higher. We employ the linear combination

of unitaries technique from block encoding literature to enforce sparsity, described more in

Appendix A.2. This is done by using d = log(D) additional ancilla qubits, where D denotes

the number of unique data values in a column. We employ a state preparation pair in the

following form:

PL|0⟩ =
∑D

i

√
counti∗vi√∑D
j countj∗v2i

|i⟩

PR|0⟩ = 1√
D

∑D
i |i⟩

where countj denotes the number of values in the column with the value corresponding

to index j. With this state preparation pair, we can employ linear combination of unitaries

with state preparations of the ”binary” states |ψ0⟩, ..., |ψD⟩ where the states are binary

representations of the indexes of the value in the original matrix. Thus, while |ψ0⟩, ..., |ψD⟩
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|0⟩

OPrepj

Ry(θ)

|0⟩ =
LCUprep

• • H

|0⟩ • • H

|0n⟩ Binprep0 Binprep1 Binprep2

Figure 3.3: Linear Combination of Unitaries Circuit for encoding SNP column via binary

states

should span the whole subspace, the individual states themselves are relatively sparser.

We note that the linear combination of unitaries introduces a greater sub-normalization

cost– however the sub-normalization matters less depending on the dominance of the most

frequent value and the relative size of the most frequent value. That is, the state preparation

algorithm now produces a (
√∑D

j countj ∗ v2i ∗
√
2
d
, c+d, ϵ) state preparation circuit 3.3 with

the added modifications.

Note that in this situation we can drop the binary state preparation circuit corresponding

to a 0 value, as the empty basis states don’t need to be initialized.

By using an additional D qubits instead of d qubits, we can reduce the added depth from

the controlled applications of unitaries by using only one control instead of d. We call this

”wide” binary state preparation for now. Furthermore, by adding some ”padding” to the

LCU input such that the result of PL|0⟩ does not include the basis state |0⟩, we can avoid

having to control the application of the binary state preparations when we construct the

controlled OPrepj unitary. Instead, we can apply controlled-LCUprep unitaries then apply the

controlled binary state preparation unitaries as in normal Linear Combination of Unitaries

circuits.

3.1.2 Frequency Based Centering for Low Entropy Data

We can take this concept a step further by assuming a ”dominance” of the most frequent

data value, like in the case of low entropy data. This means that all the other data values

have very sparse binary states. In this case, we can instead center our data around the most
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|0⟩

OPrepj

Ry(θ)

|0⟩ =
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Figure 3.4: Linear Combination of Unitaries Circuit with frequency centering for encoding

SNP column via sparse binary states

frequent value. Specifically, we subtract all the other values by the most frequent value. This

makes the state preparation for the most frequent case trivial, as we simply prepare the state

by spanning the whole subspace of n qubits with a simple diffusion operation (Hadamard

gates). The addition between the binary state of the most frequent element and the other

values subtracted by the most frequent element corresponds to the original values. Thus,

we only have to deal constructing efficient state preparation circuits for the resulting sparse

binary states 3.4.

Just like before, the frequency based centering results in an additional subnormalization

cost. We end up having to use a similar state preparation pair. Let r denote the index of

the most common value, and D′ = D\{r}

PL =
√
N∗vr√

N∗v2r+
∑D′

j countj∗(vj−vr)2
|r⟩+

∑
i∈D′

√
counti∗(vi−vr)√

N∗v2r+
∑D′

j countj∗(vi−vr)2
|i⟩

PR = 1√
D

∑D
i |i⟩

Thus we now have a (
√
N ∗ (vi − vr)2 +

∑D′

j countj ∗ v2i ∗
√
2
d
, c + d) state preparation

circuit. The block encoding itself introduces an additonal
√
N subnormalization and n

qubits.
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Algorithm 1 Column Block Encoding Algorithm

Input: QSP algorithm that returns (α, c)-sp for data sizeN , input data matrix A ∈ RN×RN

Output: Unitary Ube which is (α, n+ c+ l + 2)-block encoding of A

n← log(N),

d←MaxCountUniqueV alues(A), D ← 2d

l←


d if lcu prep

D if wide bin prep

0 else

q ← QuantumRegister(2 ∗ n+ c+ l + 2 qubits)

maxNorm← max(||Aej||)

tq ← q2∗n+c+l+1, rq ← q2∗n+c+l+1 ▷ Denotes target qubit and rotation qubit

for j in 1..N do ▷ Prepare the state of each column

mcx(q1..qn−1, tq)

|1⟩⟨1|(tq)⊗ PL(q2∗n+c+1..q2∗n+c+l)

states←


BinStates(A|ej⟩) if lcu prep

BinStates(A|ej⟩ −MostFreqElement(A|ej⟩)) +H if freq centering

A|ej⟩ else

for i, state in 1..len(states), states do

|ϕ⟩ ← StatePrep(state)

|i⟩⟨i|(q2∗n+c+1..q2∗n+c+l)⊗ QSP (|ϕ⟩, qn..q2n+c)⊗ Ry(2cos−1(|||ϕ⟩||/maxNorm))(rq)

end for

|1⟩⟨1|(tq)⊗ PR(q2∗n+c+1..q2∗n+c+l)

mcx(q1..qn−1, tq)

end for

for i in 1..n do

SWAP (qi, qn+i)

H(qn+i)

end for
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3.1.3 Example

A =


2 0 1 2

0 0 2 2

1 2 2 1

2 2 2 2


For our examples, we walk through the process of encoding (a portion of) of the above

4 × 4 example SNP matrix. We demonstrate column block encoding by encoding the first

column of the example matrix using the linear combination of unitaries and frequency based

centering techniques. This results in the following circuit 3.5.

First, we check the input |j⟩ and conditionally mark a flag qubit |0flag⟩ with a multi

control CNOT gate, specifically a toffoli with two anticontrols (for the first column) in our

case. Then we examine the column to prepare and construct the LCU state preparation pair.

For the first column 2|00⟩ + 0|01⟩ + 1|10⟩ + 2|11⟩ with unique values v1 = 0, v2 = 1, v3 = 2,

the most frequent element is v3 = 2 (note that the value indexes are shifted to avoid the 0

index). Thus, we center around the value of 2 and only have to construct state preparation

unitaries to prepare the binary states of |10⟩ and |01⟩ corresponding to the indexes of the

values v1 = −2, v1 = −1 respectfully. These binary states can be simply prepared with a not

gate on the first and second qubit respectively.

We must also construct a unitary to encode the LCU left unitary PL|00⟩ =
√
4∗2√
21
|11⟩ −

√
1∗1√
21
|10⟩−

√
1∗2√
21
|01⟩. In the example, this is done by constructing a controlled top-down state

preparation consisting of Ry gates. The LCU unitary is conditionally applied based off the

flag qubit. Then, the binary state preparation unitaries are conditionally applied based off

the lcu qubits. Because the 0 index is avoided, we know that if the lcu qubits are not |0⟩ then

the flag qubit is set, and can thus avoid an additional control. Finally, the PR unitary, which

corresponds to a diffusion operation across the lcu qubits, is conditionally applied based off

the flag qubit as well, and the flag qubit is uncomputed in order to allow for setting up the

next column.

28



|j0⟩

|j1⟩

|0⟩ H

|0⟩ H

|0flag⟩ • • • •

|0lcu0⟩ Ry(4.044) • • • H

|0lcu1⟩ Ry(3.6) Ry(π) • • H

Figure 3.5: CQSP portion of the top-down block encoding circuit for the example matrix

3.2 Top Down SP Inspired Block Encoding

Theorem 4 suggests that the column-based block encoding is simply a subset of the possible

CQSP algorithms that can be generated by the reduction of cqsp to qsp and vice versa. We

demonstrate the strength of this revelation by showing an alternating CQSP construction

based off the top down state preparation algorithm, which simply prepares a state based off

a state binary tree which ultimately determines the resulting angles of a uniform controlled

rotation gate.

3.2.1 Alternating CQSP construction

From Theorem 4, we know that recursive state preparation algorithms can allow for a more

“inline” CQSP construction. We further demonstrate that we can construct a state prepa-

ration circuit in an alternating fashion as described below:

Corollary 4.1. Given a recursive algorithm QSP (|ψ′⟩) that constructs a (α,m) state prepa-

ration of |ψ′⟩ by calling itself as a subroutine, one can construct a CQSP of states |ψ0⟩, ..., |ψk⟩

and a given |j⟩ where j ∈ {0, 1}k in the following manner:
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Usp = Uspn

Uspi =



ENTANGLE(|0⟩⟨0| ⊗ I⊗n ⊗ Ry0 + |1⟩⟨1| ⊗ I⊗n ⊗ Ry1, {Uspsi−1,0
, Uspsi−1,1

})

if i refers to a ”control” qubit

ENTANGLE((I⊗ic ⊗ Upi ⊗ I⊗(n−i)c), {Uspi−1,0
, ..., Uspi−1,j

})

otherwise

where if i is even, then it corresponds to a control qubit of |j⟩

We now look at top-down state preparation [4] as a potential candidate recursive state

preparation algorithm to use for this alternating approach.

3.2.2 State Binary Tree and Angle Tree

For a state preparation problem that prepares a state |ψ⟩ =
∑

p αp|p⟩, some existing methods

of state preparation can be understood as walks down a state binary tree which represents

the encoded data, with top-down state preparation as one such example. Essentially, each

branch of the binary tree represents a split of the Hilbert space into two subspaces, where

each have a different overall ”magnitude”. After n layers of the tree, we are left with 2n

subspaces corresponding to the different bases of the n qubit subspace (the indexes of the

values), with the magnitude of the leaf nodes being equal to the corresponding initial value

of the state (ie αp for index p). An example of a state binary tree and angle tree is shown

here 3.6:

Figure 3.6: Example state tree and angle tree (Figure from paper [4])

The non-leaf nodes can be thought of as subproblems of its parent node (with the root
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node being the entire state preparation problem) corresponding to the state preparation

states entangled with |1⟩ and |0⟩ respectively, where the ”left” child on the state tree denotes

the state entangled with |1⟩. The corresponding magnitude of each of these non-leaf nodes

is determined by the magnitudes of its own subproblems. Specifically, the magnitude of a

node is determined like so:

νi,k =
√
νi+1,k + ν2i+1,k+1

The state binary tree can then be converted to an angle tree which contains the rotation

angles for Ry gates needed to allocate probability to each respective subproblem. This is

determined by performing a simple calculation.

θi,k = 2 ∗ cos−1(νi+1,k/νi,k)

That is, we simply determine the angle based off how much we allocate probability to

the ”right” case which corresponds to a |0⟩ state of the qubit.

By conjecture, we suggest that tree-based state preparation algorithms are inherently

recursive.

Proposition 1. Let QSP (stateTree) be a state preparation algorithm that constructs a state

from some form or derivation of a state binary tree. Then, QSP can be defined in the form

of Definition 4, where the children of a node denote the Uspi−1,0
and Uspi−1,1

unitaries and

the state is prepared one qubit at a time.

3.2.3 Top Down State Preparation

Top down state preparation is a linear transformation that performs a sequence of uniformly

controlled rotations based off the angles of each layer of the angle tree. Because it performs

these rotations sequentially in a level-order traversal of the angle tree, it is called a top-down

approach. First, the initial state is initialized to match the rotation of the root node. Then,

to load the states into the next level, the current state is sequentially combined with the

values of the next state. Thus, the state is loaded one qubit at a time in a recursive fashion

3.7, matching the requirements of the prior lemma.
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Figure 3.7: Top Down State Preparation for 3 qubits (Figure from paper [4])

This generates n Uniform Controlled rotations with increasing number of controls up to

n, thus generating a circuit depth of O(
∑N

i i). Thus, this is a (norm, 0) exact sp algorithm.

3.2.4 Top Down Inspired Block Encoding

We can construct a encoding scheme based off the prior lemma for recursive state preparation

algorithms.

On the state binary tree, we differentiate between nodes for control and target qubits.

Control qubits are already ”prepared” for us, so we don’t have to rotate the control qubits

themselves. Thus, they don’t have an ”angle” for allocating probability, and we can cut out

the uniform controlled rotations for the control qubits. Thus, with the alternating scheme, we

can ”cut out” half the rotation gates corresponding to the control qubits. In the alternating

scheme as proposed, this corresponds to the even qubits.

We pay for the cost of not preparing the control qubits ourselves by having an additional

subnormalization cost, as detailed in the earlier theorem. At ctrl nodes, we still have to selec-

tively allocate more or less probability mass due to the irregularity of the data (ie difference

in normalization between two amplitude encodings). Thus, for the state preparation tree,

we adjust the magnitude to correspond to the max of the subproblem magnitudes instead of

the square root of the sum of the magnitudes squared for a control node.

νi,k = max(νi+1,k, νi+1,k+1), ∀i st i is ctrl

This way, we also don’t have to introduce a greater subnormalization cost as compared to

a state preparation problem of the same size. However, this magnitude does not correspond

to an angle of the angleTree node, but instead to an added variable of the node that we dub
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node ”subnormalization” or norm. A subnormalization at a corresponding node (given that

the parent is a control node) is based on the subnormalization of the parent node as well

as the ratio between the magnitude of the parent and the magnitude of the current node.

Otherwise the subnormalization is the same as the parent node’s.

normi,k = normi−1,k ∗ (νi−1,k/νi,k)

which leads to a corresponding angle on the rotation qubit.

We note that this rotation is only necessary at leaf (terminal) nodes as the angle tree’s

subnormalization already accounts for the normalization of the parent nodes in the variable

itself.

We define the full algorithm in pseudocode 2.

While this block encoding scheme does ultimately result in the same kind of scaling as

FABLE of O(N2), we note that we are effectively able to almost halve the circuit depth

with a minimal increase in the number of CNOTs (from performing the parallel uniform

control rotation gate). The reason why we are able to gain this advantage is because the

state preparation algorithm splits the state into two per target qubit. Thus, splitting the last

target qubit only uses a unifrom control rotation gate of n-1 controls rather than n controls

for FABLE.

3.2.5 Efficient Parallel Uniform Control Rotation Gate

While there is an additional subnormalization cost for the control qubits, we show that the

normalization depth cost can be mostly amortized into the last uniform controlled rotation.

This can be shown in the following circuit 3.8:

Because the Uniform RY Gate consists of 2n CNOTs targeted on a single target qubit,

we can easily ”parallelize” another uniform RY gate on the rotation gate. We simply just

convert each CNOT of the original uniform RY gate into two CNOTs, one on the rotation

qubit and one on the target qubit. Thus, by using the Walsh-Hadamard transform and

gray code permutation ordering as shown by FABLE A.3, we can effectively parallelize the
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Algorithm 2 Top Down Block Encoding Algorithm

Input: input data matrix A ∈ RN × RN

Output: Unitary Ube which is (α, n+ 1)-block encoding of A

reorderedA←MatrixOrder(A)

q ← QuantumRegister(2 ∗ n+ 1 qubits)

qubitOrder ← qn, q2n, qn−1, q2n−1..

stateTree← StateDecomposition(reorderedA, qubitOrder)

angleTree← AngleTree(stateTree, qubitOrder)

TopDown(angleTree, {})

procedure TopDown(node, controlNodes)

if Node does not exist then

exit

end if

targetNodes← children(targetNodes) ▷ node if targetNodes is empty

if node does not refer to a control qubit then

if node is leaf then

UCRY (targetNodes.normAngles, controlNodes.qubits, node.qubit)

end if

UCRY (targetNodes.magAngles, controlNodes.qubits, node.qubit)

end if

controlNodes← controlNodes+ node

TopDown(node.left, controlNodes)

end procedure

for i in 1..n do

SWAP (qi, qn+i)

H(qn+i)

end for
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operation, as the two CNOTs operate on two different qubits.

Ry(θ0,0) Ry(θ0,1) Ry(θ0,2) Ry(θ0,3)

• •

• •

Ry(θ1,0) Ry(θ1,1) Ry(θ1,2) Ry(θ1,3)

Figure 3.8: Parallel Uniform RY Gate on two qubits

3.2.6 Circuit Depth

The circuit consists of n uniform control rotation gates with 1, 3, ..., 2n − 1 control qubits

per gate. The last uniform control gate requires two rotations; however, as discussed above,

this can be done efficiently in the same circuit depth. Thus, we have an overall circuit depth

of 2 + 8 + ...+ 22n−1 = 22n−2
3

. at most, which can be reduced by overlapping more CNOTs.

3.2.7 Example

We walk through an example for the CQSP portion of the top down block encoding circuit

of the same SNP matrix A of the prior example. First, we construct the state tree 3.2.7 and

angle tree 3.2.7 of the matrix. Note that because we construct in an alternating manner

between control and target qubits, we must reorder the input matrix in order to match the

qubit ordering. This is why the order of the leaf nodes of the state tree are different from

|0⟩ • • • •

|0⟩ • • • • •

|0⟩ Ry(2.21) Ry(1.57) Ry(1.57) Ry(2.21) Ry(1.57) Ry(2.21) Ry(π) Ry(0)

|0⟩ Ry(1.57) Ry(1.91) • • • •

|0⟩ Ry(1.32) Ry(1.32) Ry(1.03) Ry(1.65) Ry(π) Ry(1.03)

Figure 3.9: CQSP portion of the top-down block encoding circuit for the example matrix
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4.00

4.00 3.46

2.83 2.83

2.24 2.83

2.00 1.00 2.00 2.00

2.83 2.24

2.00 2.00 2.00 1.00

2.83 2.00

2.83 2.24

2.00 2.00 2.00 1.00

0.00 2.00

0.00 0.00 0.00 2.00

Figure 3.10: State Binary Tree representing the example SNP matrix

the order of simply the unraveled matrix. Every odd level of the state tree corresponds to

a row index (target qubit), and every even level of the state tree corresponds to a column

index (control qubit) in decreasing order.

After constructing the angle tree, the resulting circuit 3.9 is constructed in a linear

fashion. For the ”target” qubit levels, an Ry gate corresponding to each node is controlled by

the qubits on the path to the node in the tree, with 0 branches corresponding to anticontrols

and 1 branches corresponding to controls. The ”control” qubit levels are skipped. At the last

level, an additional Ry gate is needed for each node to introduce the overall sub-normalization

for each path. Note that this Ry gate is also responsible for preparing empty values because

the state preparation cannot zero out values (must be populated by at least one value).

3.3 BDD SP Inspired Block Encoding

While the top down inspired block encoding scheme seems to be the current best option for

dense unstructured block encodings, beating out the scaling of the current SOTA FABLE,

the circuit depth still scales quadratically with the size of the matrix. Instead, we can choose

a sparse state preparation algorithm and convert them into a block encoding scheme.

We choose the BDD state preparation algorithm [23] as it naturally lends itself to the

state preparation tree and angle tree construction described earlier.
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3.14
1.00

1.57
1.00

1.91
0.87

3.14
1.00

3.14
1.00

2.21
0.79

1.57
1.00

1.57
1.00

2.21
0.79

3.14
0.87

3.14
0.87

1.57
0.87

2.21
0.68

3.14
0.00

0.00
0.87

Figure 3.11: Angle Tree derived from the State Binary Tree

3.3.1 BDD Based State Preparation

BDD state preparation builds a state preparation given a BDD, more specifically a Reduced

Ordered Binary Decision Diagram, of the state which we derive from the state binary tree.

BDD state preparation is constructed in a path-wise fashion in a pre-order traversal. Gates

are appended to the circuit for each path, with an ancilla ”path” qubit determining whether

the path had been prepared or not. This allows the paths to be prepared without interfering

with existing paths.

In order to construct the state preparation, first the path qubit is initialized to |1⟩ to

indicate that the current path is not yet computed. Then, a path is traversed in a pre-order

fashion, taking the 1 branch first. For the current node q in the traversal, we do as follows.

First, we check if there are any reduced nodes between q and its parent. For each reduced

node, a 2-controlled Ry gate with angle π/2 on the reduced node qubit is applied with
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controls corresponding to the path qubit and the last node on the path that has a one-child

taken. Then, we initialize q depending on q’s node characteristics. If q is a branching node,

which means it has both a zero-child and a one-child (next possible values of qubit can be

0 or 1), we apply to the quantum circuit, a 2-controlled Ry gate on q with the path qubit

and the last node on the path that has a one-child as control qubits, and the angle being

determined by the angle tree. Otherwise, q either has a one-child or a zero-child. If q has a

one-child, then we apply a Toffoli on q with the same control qubits as before. Otherwise,

we do nothing.

In order to finish initializing the path, we must also ”commit” it by applying a multi-

control CNOT to the path qubit. This marks the path as computed, and prevents other

path computations from interfering with the existing state. The controls of the multicon-

trol CNOT correspond to the branching nodes on the path, with controls or anticontrols

corresponding to if the one or zero branch was taken.

3.3.2 Converting the State Binary Tree to a Binary Decision Diagram For Block

Encoding

Converting the state binary tree to a state BDD is a simple task. A BDD can be obtained

from the state binary tree via a reduction process. In reverse level order, we can either merge

two nodes in the same level or delete nodes. Two nodes are merged (with incoming edges

redirected to the merged nodes) if they are terminal nodes with the same magnitude or if

they are non-terminal nodes with the same sub-graphs (ie same subproblems). A node can

be deleted if its left and right child point to the same child node.

The angle BDD is constructed from the BDD in the same manner as the angle tree, with

some additional considerations for the case of preparing it for a block encoding. If nodes

are deleted between a target node and its child, then the calculated angle should be based

on the magnitude of the highest deleted node. For subnormalization calculation, iterate

through all the levels from the level above the child’s level to the parent level and keep track

of what the magnitude should be. If the level corresponds to a control qubit, multiply its

38



subnormalization to the current subnormalization.

3.3.3 Efficient Path-based State Preparation for BDDs

We modify the original state preparation algorithm in a similar way to the topdown encoding.

After constructing the angle BDD as described above, with the added modifications to have

correct subnormalization and angle calculation, we construct the block encoding by following

the general outline of the BDD state preparation algorithm. When we encounter a control

node on the path, we treat it like a branching node but do not initialize it. Thus, control

qubits contribute to the commit multicontrol and the various multicontrol rotations for

initializing the state, the gates do not operate on the qubit themselves. One thing to note

is that now instead of only considering the last 1 branch node, we have to consider a list of

them, only ”consuming” the list on initializing a target qubit in some way. This makes it so

that we can account for 1 childs of control nodes, which don’t necessarily indicate that the

current state matches the state of the qubit. Thus, instead of a 2-ctrl Ry or Toffoli like in

BDD state prep, we utilize either a multi control Ry or MCX.

3.3.4 Frequency Based Centering

We can use the same LCU technique in order to force the matrix to be sparser. We do this

at the matrix-level granularity instead of the column-level granularity for efficiency, and we

can choose to only eliminate the most common case. The state preparation pairs are of the

following form:

PL =
√
N∗vr√

sparseMag2+N∗v2r
|0⟩ − sparseMag√

sparseMag2+N∗v2r
|1⟩

PR = 1√
2

∑1
i=0 |i⟩

where sparseMag corresponds to the root node of the reduced and recalculated BDD

after centering. The most common element is deleted from the BDD by simply removing

its corresponding node and removing the edges that connect to it. The BDD is recalculated

in a post-order fashion, with the magnitude of the subproblems being calculated before the
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magnitude of the current node. This matches the prior construction, with the magnitude

being adjusted for the deleted nodes through a power of two.

3.3.5 Efficient Parallel MCNOT and MCRY

We can modify the Iten construction A.1 to efficiently parallelize the construction as well.

Note that a controlled Ry gate can be constructed like so 3.12:

• •

Ry(θ/2) Ry(−θ/2)

Figure 3.12: Controlled RY rotation gate Decomposition

In the Iten construction for CNOTs with n ≥ 5, ancilla dirty qubits n/2, we have an

”action” part and a ”reset” part of the circuit, where the action toggles corresponding qubits

allowing the target qubit to be correctly set, while the reset part untoggles the qubits. Note

that toggling and untoggling the qubits just corresponds to doing two CNOTs. Thus, we

can use the prior construction to first do a ry gate on the rotation qubit, do the ”action”

part with parallel toffolis on the target and rotation qubit, then do a ry gate and reset the

rotation qubit as well.

3.3.6 Circuit Depth

The BDD consists of k ≤ NM paths. Thus, the resulting circuit consists of a sequence of

up-to-n-controlled gates and a parallel multicontrol CNOT and controlled rotation gate. We

note that for the sequence of up-to-n controlled gates, even in the worst case each controlled

gate operates on a separate set of controls, and thus we only need O(n) CNOTs. Computing

the ancilla qubit and rotation qubit is done with the above construction in O(n) CNOTs as

well. Thus, the overall circuit depth is O(klogN).
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|0⟩ • • •

|0⟩ • • •

|0⟩ Ry(π/2)

|0⟩ Ry(1.57) • Ry(0.68) •

|1⟩ • • • •

|0⟩ Ry(2.16) Ry(2.16) Ry(π/2)

Figure 3.13: CQSP portion of the top-down block encoding circuit for the example matrix

3.00

1.41 3.00

1.00 1.00

1.00

-1.00

2.83

-2.00

2.00

Figure 3.14: Derived BDD for the example SNP matrix
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Figure 3.15: Angle Tree paths derived from the BDD

3.3.7 Example

We once again construct the CQSP portion of the circuit for the example SNP matrix.

We can construct the following BDD 3.14 from the state preparation tree shown previously

3.2.7. First, we can force the BDD to encode a sparse state via frequency centering. This

means that we remove the leaf nodes of the most common magnitude, two, and merge the

resulting leaf nodes with the new difference magnitudes. This can be done either before or

after the BDD is constructed. We construct the BDD bottom up, following reduction rules

and magnitude calculation rules when applicable. For example, on the first level above the

leaf node, we merge the first, fifth and sixth nodes from the left in the level into one node

as they all point to the same child of 0 on the ”one” path and ”-1” on the ”zero” path. We

can also delete the seventh node in the same layer, as its two children point to the same ”-2”

value node. For the second level above the leaf node, we can merge the second and third

nodes from the left as they have the same subtrees.

Once the BDD is constructed, we can construct the angle tree 3.15 in the same fashion as

in the topdown state preparation construction, via post-order traversal. One thing to note
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is that while two paths might traverse along the same nodes, their subnormalizations might

differ. This can be seen with how the middle path on the angle tree does not merge back

into the left nodes like how it does in the BDD.

We then are able to construct the CQSP portion of the block encoding 3.13 by following

the paths of the angle tree. This results in 5 multi control CNOTS corresponding to each

path with four other controlled gates that prepare either a branch or a one-child of a path.

The encoding of the first 2 paths works like so: First, we start at the root control node and

add it to the list of last1Nodes, as we take the one-child left path first. Then, we encounter

a branching target node, and thus add a multi-controlled Ry gate with angle corresponding

to the node’s angle in the angle tree, with controls being the path qubit and the last1Node

qubits. For the left path from this node, we clear its last1Node list and add only the target

qubit that we just initialized, as we know that the target can only be initialized on the

current path. From there, we encounter no other branching or one-child target nodes, and

thus just add the commit parallel multicontrol CNOT and ry gates. On both the paths, we

have incurred the same subnormalization of 0.47, which corresponds to a rotation on the

rotation qubit of θ = 2∗ cos−1(0.47) = 2.16. Note that while the control nodes in the second

layer from the root node are non-branching, we still have to account for them in the commit

multicontrol, as the control qubit initialization is not dependent on the current path.
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Algorithm 3 BDD Block Encoding Algorithm

Input: input data matrix A ∈ RN × RN

Output: Unitary Ube which is (α, n+ 1)-block encoding of A

Prepare stateTree and qubitOrder the same as in TopDown algorithm

Get Reduced BDD and angleTree using same initial stateTree

BDD(angleTree, {}, {})

procedure BDD(node, currentPath, last1Nodes)

for Each reduced node between last node and node that is not control do

MCRY (π/2, pq + lastOneNodes.qubits, node.qubit)

end for

last1NodesL← last1Nodes

if node does not refer to a control qubit then

if node is a branching node then

MCRY (node.magAngle, pq + lastOneNodes.qubits, node.qubit)

last1NodesL← {}

else if node has only the one branch then

MCX(pq + lastOneNodes.qubit, node.qubit) , last1NodesL← {}

else if node is leaf node then

MCX(pq + lastOneNodes.qubit, node.qubit)

MCRY (node.normAngle, pq + lastOneNodes.qubit, node.qubit)

exit

end if

end if

BDD(node.left, currentPath + (node, left), last1NodesL + node)

BDD(node.right, currentPath + (node, right), last1Nodes)

end procedure

for i in 1..n do

SWAP (qi, qn+i), H(qn+i)

end for
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CHAPTER 4

Experimentation

4.1 Questions to answer

Our experimental evaluation seeks to quantify how the proposed block encoding algorithms

scale and compare them against one another and against a set of baseline block encoding

algorithms, with a focus on circuit depth. We seek to answer three main questions:

• How do the proposed block encodings compare to the baseline block encoding schemes?

The Topdown-inspired block encoding scheme always outperforms the baseline dense

block encoding (FABLE), with a 38% decrease in depth with a 12.5% increase in the

number of CNOTs overall. The best performing column block encoding, using the

merge state preparation algorithm [13], has an 61% decrease in depth compared to its

baseline for the example case. The BDD with forced sparsity decreases it’s depth by

29% over its baseline in the example case.

• How do the proposed block encoding schemes scale with size of input and sparsity (pro-

portion of 0s and 1s per column of the SNP matrix) of input?

The dense block encodings scale quadratically with the size of the input, with no

dependence on the sparsity of the input. The circuit depth of the topdown block

encoding increases in depth by roughly 1.25 gates for each increase in input size squared,

and the circuit depth of the FABLE block encoding increases roughly by 2 for each

increase in input size squared.

The sparse block encodings scale linearly with the sparsity of the matrix M and sub-

quadratically with the size of the input (O(NlogN)). For example, the depth of the
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column block encoding circuit using the merge state preparation algorithm increases

by roughly 5340 gates for each additional non-two value added to each column for an

input size of n=6. This increases to 9140 for n=7. This suggests an overall scaling of

O(NMlogN) for most of the sparse block encodings. This is mostly verified by the ex-

perimental comparisons with the baseline algorithms, with some algorithms performing

worse or better but having the same overall scaling as the baseline.

• How do the proposed block encoding schemes compare to one another? In which situa-

tions is one preferable to another?

Column block encodings seem to perform the best for SNP matrices, assuming that the

matrix is significantly sparse per column. In the example 4.6, the best column block

encoding approach overtook the topdown block encoding approach at an input size of

NxN,N = 29 , so an input of 9 qubits. The topdown block encoding performs the best

for lower dimension matrices (when the sparsity advantage can’t be realized) and for

matrices which don’t meet the sparsity requirement. The sparse BDD block encoding

didn’t perform as well in the context of SNP matrices, showing that the BDDs for the

alternating approach weren’t sparse enough.

4.2 Experimental Setup

We evaluate the proposed algorithms on Google Colab using the CPU runtime which uses a

single core hyper threaded Intel Xeon Processor @2.3Ghz.

All algorithms are implemented on top of the qiskit library [26]. We also use state

preparation algorithms implemented in the qclib library [2] for column block encodings, and

use the FABLE library [7] to provide an overall baseline algorithm for dense matrices.

All our code and tests can be found in the following repository: https://github.com/

Jeff848/column_block_encoding.
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4.2.1 Input Data

We evaluate our algorithms on generated random SNP matrices of set sizes with a set amount

of sparsity per column, determined by setting the number of zeroes and ones per column.

We then compare the produced circuit’s depth and CNOT cost. Because the CNOT cost

is largely correlated with the circuit depth, we focus our analysis mainly on the produced

circuit depth.

4.2.2 Baseline Algorithms

We use three baseline block encoding schemes that are simple in construction and are thus

easy to understand in terms of circuit depth complexity relative to the size of the input

and ”sparsity” of the input (ie fraction of non-majority element per column). This helps

us more easily quantify the circuit depth complexity of the block encoding schemes with

similar setups. These three baseline block encoding constructions correspond to the three

main categories of our block encoding construction: dense block encodings, block encodings

that are encoded with a column-based approach (sparsity enforced column-wise), and sparse

block encodings that are encoded all at once (ie the BDD block encoding discussed previously

3). We denote this last category as sparse non-column block encodings for convenience.

• FABLE

The original SOTA dense block encoding with O(N2) depth. We assume no approxi-

mation is used.

• “Simple” column block encoding

We take advantage of the state preparation to block encoding reduction to construct

a simple column block encoding algorithm that constructs a state using multi-control

Ry gates to set the rotation qubit to encode the matrix value (see naive OA oracle im-

plementation in FABLE [8]). This provides an easy baseline for column block encoding

schemes, with O(NMlogN +NlogN) depth corresponding to the depth complexity of
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the CNOTs.

• “Direct” block encoding

We take the above approach and skip the column check, directly use multi-control

Ry gates to implement the controlled qsp oracle OA. This corresponds to a sparse

non-column block encoding baseline with a depth of O(NMlogN).

4.3 Comparison of Block Encodings to Baseline Algorithms

Here, we initially compare each new block encoding construction with the baseline construc-

tions defined previously. We evaluate our algorithms on a N = 25 N ×N SNP matrix with

a sparsity of two 0’s and two 1’s per column.

For the column based block encodings, we see that most non-sparse column based block

encodings perform worse than the baseline in the results 4.1, which is to be expected. Of

the tested state preparation algorithms, only the merge [13], lowrank [3], BDD [23], and

baalowrank [3] (bounded approximation of the lowrank preparation) state preparation algo-

rithms are designed to work on sparse states. Thus, they benefit from the enforced sparsity

from the LCU and frequency centering techniques, and thus use less circuit depth with the

added variations. In contrast, the O(N2) state preparation algorithms, such as qiskit’s base

state preparation algorithm which uses quantum multiplexing [27], perform worse with the

enforced sparsity. We also see that the column based block encoding with the merge state

preparation algorithm performs the best in the column block encoding category with the

current experimental setup, with a 61% decrease in depth and 55% decrease in cnots.

For the dense block encodings 4.2, we see that the topdown block encoding utilizes around

half the depth for a minimal increase in cnot count (40% decrease in depth with a 12.5%

in cnots). This lines up with the expected circuit depth complexity. Sparsity does not

contribute to the circuit depth for these algorithms, as the dense block encodings always

attempt to encode the whole state binary tree without reduction.

For the sparse non-column block encodings 4.3, we see once again that enforcing the
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n sparsity method lib qubits cnots depth

5 0.125 simple baseline 12 10255 19795

5 0.125 base no lcu qiskit 12 9999 19365

5 0.125 base all variations qiskit 15 17377 33592

5 0.125 lowrank no lcu qclib 12 8913 18411

5 0.125 lowrank all variations qclib 15 9039 16445

5 0.125 merge no lcu qclib 12 178186 364875

5 0.125 merge all variations qclib 15 4609 7701

5 0.125 svd no lcu qclib 12 10513 21678

5 0.125 svd all variations qclib 15 17455 33593

5 0.125 topdown no lcu qclib 12 9673 18355

5 0.125 topdown all variations qclib 15 15617 28233

5 0.125 baalowrank no lcu qclib 12 8913 18411

5 0.125 baalowrank all variations qclib 15 9039 16445

5 0.125 isometry no lcu qclib 12 9231 18981

5 0.125 isometry all variations qclib 15 17647 35140

5 0.125 BDD all variations BDD, itenmc 17 16864 28329

Table 4.1: Results of running various column block encodings on a 25 × 25 matrix with a

sparsity of 4. A ”no lcu” method indicates a column block encoding using just the controlled

state preparation unitary of the whole state, while a ”all variations” method indicates that

both the lcu and frequency centering techniques were used. Lower depth is better.

n sparsity method lib qubits cnots depth

5 0.125 fable fable 11 1039 2041

5 0.125 topdown columnblockenc 11 1167 1282

Table 4.2: Results of dense block encodings on a 25 × 25 matrix with sparsity of 4
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n sparsity method lib qubits cnots depth

5 0.125 direct columnblockenc 12 29199 53116

5 0.125 BDD sparse columnblockenc 14 21199 37537

5 0.125 BDD no sparse columnblockenc 13 78727 139004

Table 4.3: Results of sparse non-column block encodings on a 25 × 25 matrix with sparsity

of 4.

sparsity in the BDD is worth the sacrifice in CNOT cost due to LCU controlled unitaries.

The BDD with forced sparsity improves over its baseline by 29% depth in the example

case. One thing to note is that the BDD approach without enforced sparsity with LCU

is significantly worse than the baseline approach, and seems to indicate that there is some

inefficiency with the path commitment stage, which contributes the most to circuit depth.

4.4 Scaling of Block Encodings with regards to input size

We check that the improvements of the proposed block encodings are maintained for increas-

ing input size. With the same sparsity of 4, we evaluate the block encoding algorithms on

varying input matrix size from n=2 to n=6.

For the dense block encoding and sparse non-column block encoding schemes, we find

that the scaling between the size of the input and the circuit depth is consistent between the

algorithms and the baseline. For the dense block encodings 4.4, both algorithms produce

circuits that increase in circuit depth at a similar rate of O(N2). This can be modeled with

the following equations:

Topdown depth = 1.24998877(2n)2 + 4.36565551

FABLE depth = 1.99943658(2n)2 − 9.88427763

This matches the expected depth improvement (with the actual number being slightly

lower due to CNOT overlapping)in the Topdown block encoding section. Similarly, the BDD

and the direct baseline block encodings also increase in circuit depth at the same rate 4.4.
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The nonsparse BDD block encoding increases at a far faster rate, indicating that the BDD

block encoding has O(NMlogN) scaling of depth.

Figure 4.1: Input size vs Circuit Depth of dense and sparse non-column block encoding

The column-based block encodings 4.4 have more variation when it comes to the scaling

of circuit depth with respect to input size. We specifically examine the sparse column

block encodings, with the topdown column block encoding as a reference O(N2) scaling

algorithm. First, we note that the lowrank column block encoding algorithm seems to scale

quadratically with respect to the size of the input. This matches the worst-case scenario of

the low rank state preparation algorithm [3] where it is unable to find an efficient bipartition.

The likelihood of an efficient bipartition depends on a low Schmidt measure, which is not

guaranteed with a sparse random state. We also notice that the circuit depth of the merge

column block encoding algorithm seems to be increasing at a slower rate as compared to the

baseline. This also matches with the original paper’s data [13], which suggests that as long

as the sparsity condition is met o(2n/n), the method is asymptotically more effective. The

circuit depth of the column block encoding using BDD state preparation also increases at

the same rate as the baseline block encoding.
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Figure 4.2: Input size vs Circuit Depth of the sparse column block encodings and the topdown

column block encoding for comparison

4.5 Scaling of Block Encodings with regards to sparsity

We also check the scaling of the block encoding algorithms with respect to the sparsity of

the input to both an n=6 and n=5 input SNP matrix. For n=5, we check up to a sparsity

of 0.5 the size of the input, and for n=6 we check up to a sparsity of 0.2 of the input.

For the column block encodings, we see that all of the sparse encoding algorithms scale

linearly with the sparsity of the input 4.5, 4.5. The low-depth column block encoding barely

scales with respect to sparsity, but as shown previously suffers from a worst case quadratic

depth with respect to the size of the input. The BDD column block encoding approach in-

creases the most per increase in sparsity, while the simple and merge column block encodings

increase in depth at roughly the same rate. Specifically, the simple and merge column block

encoding depth wrt sparsity can be modeled like so for n=5:

Merge depth = 5379.625M − 14827.5

Simple depth = 5049.95M + 2747

and for n=6:
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Figure 4.3: Sparsity vs circuit depth scaling for column block encodings of data matrix size

n=5 and n=6 (ie 2n × 2n)

Merge depth = 9140M − 18975

Simple depth = 12541.5M + 3884.66666667

This seems to verify that the merge column block encoding performs the best, as its

scaling with respect to sparsity increases less than the baseline block encoding as n increases.

Another difference between the n=5 and n=6 experiments is the sparsity at which the sparse

block encodings perform better or worse than the non-sparse block encodings. We use the

low depth block encoding as reference. For n=5, that sparsity is around 6 non-two values per

column, while for n=6 its around 10 non-two values per column. Once again, this matches

with the idea of a required sparsity condition that depends on the size of the input in order

for sparse column block encodings to get less depth than dense block encodings.

The same result is reflected in the non-column sparse block encodings 4.5, 4.5. One

thing to note is that the sparse BDD circuit depth increases at a rate less than the baseline

approach. Specifically, their circuit depths can be modeled like so for n=5:

sparse BDD depth = 6965.425M + 10578.5

direct depth = 17032.M − 4396.5

and for n=6:

sparse BDD depth = 19489.75M + 9478.67
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Figure 4.4: Sparsity vs circuit depth scaling for sparse non-column block encodings of data

matrix size n=5 and n=6 (ie 2n × 2n)

direct depth = 43579.875M −−21713.33

This seems to reflect the idea that with somewhat less sparsity, the BDD encoding algo-

rithm is able to find a more efficient BDD tree due to more overlap in the binary tree and

thus encode the data more efficiently.

4.6 Overall evaluation

We ultimately evaluate the best block encodings of each category and directly compare their

circuit depth with respect to input size for a fixed sparsity of 4.

The results 4.6 reflect the insights that we have seen with the other experiments. With a

low enough sparsity, the column block encoding using the merge state preparation algorithm

outperforms the topdown-block encoding at around an input size of n=9. Unfortunately,

this means that for the target matrix size of 218 by 218, the sparsity of M = 216 is too high

for gaining an advantage with the current sparse block encoding algorithms, as the sparsity

condition:

4 ≤ c(29/9); c ≥ 9/27

M = c(218/18) = 18432
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only seems to indicate efficient sparse block encodings for M = 18432 for the target

matrix size. However, state preparation algorithms that trade width for circuit depth could

provide a more feasible column block encoding circuit depth at greater input sizes for less

sparse matrices.

The topdown block encoding remains the best block encoding for lower dimensional ma-

trices as well as higher dimensional matrices with little to no sparsity, as it does not linearly

scale with sparsity like the other block encodings. Finally, the BDD sparse block encoding

did not perform well in comparison to the other block encoding algorithms. However, the

smaller scaling with respect to sparsity seems to suggest that the BDD sparse block encoding

would perform better in the case of a sparse/low entropy data matrix that did not have data

evenly distributed across the columns, thus reducing the size of the BDD. This way, entire

quadrants of the matrix can be skipped in the BDD block encoding algorithm. Perhaps with

different variable orderings the BDDs could be sparse enough to compete with the other

block encoding algorithms.

Figure 4.5: Direct comparison of the performance of the best block encodings of each category

for a sparsity of 4 non-majority values per column
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CHAPTER 5

Conclusion

In this work, we present three new block encoding algorithms motivated by a new understand-

ing of the relations between various quantum data loading problems. Such block encodings

are necessary for implementing key linear algebraic mechanisms via QSVT, which could ac-

celerate DNA analysis of SNP matrices. We focus on block encoding algorithms that encode

low density data, which can be translated to sparse data at an additional subnormalization

cost.

We introduce the idea of equality between quantum data loading problems that is cur-

rently not as considered in the literature. Through reduction and a more general set of

definitions, we are able to demonstrate the key idea that the block encoding problem is

easily reducible to a controlled quantum state preparation problem. Similarly, we are able

to show that controlled quantum state preparation can be defined as a state preparation

problem, and for a subset of state preparation algorithms that we denote ”recursive”, we are

able to treat the encoding of controlled qubits the same as regular ”target” qubits of a state

preparation.

Through our introduced techniques, we are able to construct a block encoding scheme

that can consistently improve on the depth the state-of-the-art dense block encoding scheme

FABLE, as well as introduce several sparse block encoding schemes that are able to out-

perform the dense block encoding schemes after a set input size, given the sparsity meets

a sparsity condition. We are able to consistently outperform the baseline algorithms that

we define which use simple multicontrol rotation and cnot constructions. We analyze the

relationship between the circuit depth and size/sparsity of the input and determine that it
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is subquadratic with respect to the input size for sparse block encoding algorithms.

Future Steps As mentioned previously, there seems to be several inefficiencies in the BDD

block encoding algorithm. For one, the introduced subnormalization in a control node makes

it so a path does not merge back into other paths, losing out on efficiency. Efficiency can

be improved by allowing for an early commit of subnormalization on the rotation qubit.

Additionally, there are some situations where a control qubit can be potentially treated as

a non-branching node.

Another direction is to take more depth-efficient but wider recursive state preparation

algorithms and apply the alternating construction technique on them. This could potentially

lead to a better tradeoff between circuit depth and circuit width that is currently not studied

by this paper. Similarly, one can simply take depth-efficient state preparation algorithms

and apply them directly via the column based block encoding construction. Furthermore,

it still remains to be seen if state preparation algorithms that are based off different divide-

and-conquer strategies, such as via shortest path [30], can be converted into an alternating

CQSP formulation. The research into state preparation is vast, and some state preparation

algorithms not studied in this paper might be applicable to our block encoding construction.

Furthermore, additional experiments can be performed between the various block encod-

ings in order to evaluate compilation/optimization improvement as well as accuracy cost on

actual quantum computers. The proposed block encoding algorithms could possibly benefit

differently from optimization and compilation, as they differ in the amount of overlapping

gate operations and target qubit diversity. For example, an optimizer like VOQC [15] could

find more replacement and propagate-cancel optimizations for the non-column sparse block

encoding as opposed to the topdown block encoding scheme. Similarly, a compiler targeting a

specific quantum architecture such as Atomique [29] might be able to find better qubit map-

pings/more efficient controlled QSP for the column block encoding which has a more regular

qubit access pattern, reducing expensive SWAP operations and increasing gate parallelism

in the process.
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APPENDIX A

Appendix

A.1 Iten Multicontrol Scheme

Iten’s paper provides an efficient construction for multicontrol cnots with linear depth [16].

There are two main circuit contructions that are used:

Lemma 5. Let n ≥ 5 denote the total number of qubits considered and k denote the number

of controls of the multicontrol cnot gate, k ∈ {1, ..., ⌈n/2⌉}. Then a multi control cnot gate

Ck,n(σx) can be implemented with at most (8k-6) CNOT gates with the following general

construction:

Figure A.1: Iten Multi control cnot construction

Lemma 6. Let n ≥ 5 denote the total number of qubits considered. Then a multi control

cnot gate Cn−2,n(σx) can be implemented with two Ck,n(σx) and two Cn−k−1,n(σx) gates for

k ∈ {2, ..., n− 3}.
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A.2 Linear Combination of Unitaries

We use Linear Combination of Unitaries to enforce sparsity in our block encoding problems.

Definition 6 (State Preparation Pair). Let y ∈ Cm and ||y||1 ≤ β, the pair of unitaries

(PL, PR) are called a (β, n, ϵ) state preparation pair of y if PL|0⊗n⟩ =
∑2n−1

j=0 cj|j⟩ and

PR|0⊗n⟩ =
∑2n−1

j=0 dj|j⟩ such that∑m−1
j=0 |βc∗jdj − yj| ≤ ϵ1 and c∗jdj = 0 for any j ∈ m, ..., 2n − 1

Lemma 7 (Linear Combination of Unitaries). Let A =
∑m−1

j=0 yjAj be a s-quibit opera-

tor where ||y||1 ≤ β. Suppose (PL, PR) is a (β, n, ϵ1)-state preparation pair for y, W =∑
j |j⟩⟨j| ⊗ Uj + ((I −

∑
j |0⟩⟨0|)⊗ Ia ⊗ Is) is an (n+ a+ s) qubit unitary such that for all

j we have that Uj is an (α, a, ϵ2)-block encoding of Aj. Then the unitary

W ′ = (P †
L ⊗ Ia ⊗ Ib)W (PR ⊗ Ia ⊗ Ib) is a block encoding of A

A.3 Uniform Rotation Gates

We follow FABLE’s approach for implementing Uniform Controlled Rotation Gates.

With a gate sequence of 2n gates alternating between cnot and ry gates on a single rotation

qubit, we can implement the uniform controlled rotation gate. Note that the control qubit

for the lth CNOT gate is determined by the bit where the lth and the (l + 1)th Gray code

differ. That is, the gray code permuatations determine the CNOT control ordering. The

angles of the circuit are related through a linear system which can be solved via a fast

Walsh-Hadamard transform.
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