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Abstract of the Dissertation
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Autism
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Professor Damla Şentürk, Co-chair

Professor Catherine Ann Sugar, Co-chair

Event-related potential (ERP) studies are a subset of experimental frameworks within

the field of electroencephalography (EEG) that focus on ERPs, the electrical poten-

tial outputted by a subject’s brain when presented with an implicit task in the form

of stimuli. Data comprise an ERP repetition observed for each stimulus across elec-

trodes on the scalp, producing a complex data structure consisting of a functional,

longitudinal and spatial dimension. In typical ERP studies, the dimension of data

is reduced into a single measure for each subject by cross-sectionally averaging ERP

across longitudinal and spatial repetitions. Features are then extracted from the av-

eraged ERP and analyzed using simple statistical methods, ignoring additional infor-

mation that may be found in the collapsed dimensions. In this dissertation, three

types of methodology are proposed for preserving and analyzing the lost dimensions

of ERP data. The first method, moving average processed ERP (MAP-ERP), is a

two-step approach comprised of a meta-preprocessing step to preserve longitudinal in-

formation and a weighted mixed effects regression framework to allow modeling of the

resulting meta-preprocessed data. The proposed robust functional clustering (RFC)

algorithm identifies substructures in features of the longitudinal ERP processes while

accounting for subject-level covariance heterogeneity induced by meta-preprocessing.

Finally, the proposed multidimensional functional principal components analysis (MD-
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FPCA) utilizes a two-stage procedure to summarize important characteristics across

all three dimensions of the ERP data structure into an interpretable, low-dimensional

form. Proposed methods are applied to a study on neural correlates of visual implicit

learning in young children with autism spectrum disorder (ASD). Applications of the

proposed methods reveal meaningful trends and substructures in the implicit learning

processes of ASD children when compared to typically developing controls. Results

indicate proposed methodology effectively preserves important information contained

within the multiple dimensions of ERP.
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CHAPTER 1

Introduction

The continuous evolution in our ability to measure, record and process complex biomed-

ical data has led to new opportunities as well as new challenges in the development of

evidence based medical care and treatment. These rapid technological advances have

resulted in a wealth of highly detailed patient level data and have provided the compu-

tational resources necessary to process this information. Through the use of modern

computing, the development of new statistical methodology to analyze these data can

potentially provide a more in depth understanding of the underlying mechanisms to

certain diseases and disorders as well as epidemiological patterns. One such medium

for recording data containing a highly complex structure that may benefit from these

methodological advances is the electroencephalogram (EEG). EEG is a noninvasive

method for measuring the communication between neurons of the brain (in the form

of electrical impulses) over time. Since the 1950’s, this approach has been utilized in

the evaluation of numerous brain disorders, including epilepsy, sleep disorders, major

affective disorder, schizophrenia, alcoholism and bipolar mood disorder [1, 2]. The

data structure of EEG is quite complex, spanning the functional, longitudinal and

spatial dimensions. EEG curves are functionally observed across a continous time

domain and segmented into meaningful, functional repetitions that are spatially ob-

served across several electrodes on the scalp. EEG functions may contain systematic

changes in signal across repetitions, producing longitudinally observed functional data.

Although EEG data contain a plethora of information on the cognitive processes of

an individual, the majority of statistical methods used to make inference on these

disorders do not take full advantage of the large amounts of information contained

within the EEG. Standard techniques involve averaging EEG across the longitudinal

and spatial dimensions to increase the signal-to-noise ratio of the observed curves and
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to simplify the data structure for analysis, contributing to the loss of potentially use-

ful information on the evolution of EEG signal across electrodes over the course of an

experiment. Single measures are then extracted from these averaged curves, ignoring

the remaining information contained across the functional domain. In addition, data

preprocessing unnecessarily suppresses segments of EEG that are thought to affect

inference during subsequent analyses. This dissertation proposes a series of statistical

methods to analyze and interpret complex EEG data while preserving information

that is typically lost across multiple dimensions in standard analyses. Methods are

discussed under two experimental frameworks of EEG analysis, resting-state EEG and

event-related potentials. Resting-state EEG methods used to mitigate data loss during

preprocessing and averaging are introduced in the context of two co-authored publi-

cations within this chapter. Three statistical methodologies for analyzing data from

event-related potentials frameworks are proposed throughout the dissertation and are

the primary focus of this research.

1.1 Resting-state EEG Experiments

Resting-state EEG studies record brain activity when a subject is not performing

an explicit task, such as when subjects are sleeping, laying with their eyes closed or

presented with a constant or neutral stimulus. The primary goal of these studies is

to understand the brain’s sensory, cognitive and motor functions within and across

groups of interest by observing the cooperation of the brain’s neuronal structures

[3]. Although resting-state EEG is recorded in the temporal domain, data from these

studies are typically analyzed in the frequency domain. A famous example of a resting-

state EEG study is the Sleep Heart Health Study designed to investigate the impact

of sleep disorders on health outcomes using polysomnography [4]. Other examples of

resting-state EEG studies include those of Kim et al. (2013), Wang et al. (2013) and

Lee et al. (2014) [5, 6, 7].

Data resulting from resting-state EEG experiments consist of functional curves ob-

served over time collected across several electrodes on the scalp. Due to the noisy be-
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havior and complex data structure of resting-state data, EEG must undergo a series of

preprocessing steps in order to convert the data into an interpretable and manageable

form prior to analysis. These include filtering (to smooth out noise outside a specified

range of frequencies), bad channel replacement (a smoothing procedure performed

when signals from an individual scalp electrode are compromised), voltage thresh-

olding (to eliminate EEG with exceedingly high magnitudes), baseline correction (to

standardize a subject’s measurements to their own baseline period) and re-referencing

(to standardize measurements to an average across all the electrodes). In addition,

segments containing artifacts (eye blinks, saccades or muscle contractions) are usually

removed due to their influence on inference during analysis. The data structure of

the resulting preprocessed data is quite complex, consisting of a functional dimension

(EEG curves observed over time) and a spatial dimension (EEG curves observed across

several electrodes on the scalp). Segmentation of EEG into non-overlapping epochs

adds a third additional repetition-specific dimension to the data. In order to reduce

the repetition and spatial dimensions, EEG segments are averaged across repetitions

and electrodes within regions of interest for each subject, resulting in a single EEG

curve per region per subject. Averaged EEG curves are then represented as a function

of frequency via Fast Fourier Transform. The frequency domain of the spectral curves

is partitioned into bands where power levels extracted from these bands are analyzed

using a variety of statistical methods.

1.1.1 Methods for Artifact Removal in Resting-State EEG

An important step in the preprocessing procedure described above is the removal

of artifacts. Although visual inspection is an effective approach for removing trials

affected by artifacts, removal of entire artifact segments may result in the loss of

important EEG signal. Portions of EEG data recorded during an artifact occurrence

may not be affected by a particular artifact and EEG signal may be salvagable. Effects

of physiologic artifacts on resting state oscillations are investigated in McEvoy et al.

(2014) where they develop methodological considerations for dealing with noisy data

attributed to artifacts [8]. The goal of the study was to propose artifact rejection
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methods during preprocessing of resting state EEG data. Mean spectral power of

artifact data (eye blinks, saccades and muscle contractions) were statistically compared

to mean spectral power of artifact-free data across different power band frequencies

(theta (4-7 hz), alpha (8-12 hz), beta (13-30 hz) and gamma (35-45 hz)) and regions

of the scalp to identify regions and power bands most affected by specific artifact

occurrences.

Statistical analysis was performed using the log transformed absolute and relative

power estimates of the theta, alpha, beta and gamma bands. Eight log-power bands (4

bands × 2 power types) were modeled with a linear mixed effects model using artifact

type, region, and all higher order interactions and predictors. All models contained a

random intercept term to account for subject-specific heterogeneity and controlled for

unequal averaging across each segment category. Mean contrasts between artifact-free

power and artifact power were calculated for the eight power bands, three artifact

categories (eye blinks, EMG, saccades) and nine regions, totaling 27 tests per model

and 216 tests overall. Inference was adjusted for multiple testing in all 216 tests using

the false discovery rate. The 216 contrasts of the eight linear mixed effects models

indicated that mean absolute and relative power was affected differently by artifacts

in separate regions. Results suggest the systematic removal of artifact segments depend

on the power and region of interest and the nature of the visual stimulus. Specifics

on the methodological considerations for artifact removal in resting state EEG studies

are discussed thoroughly in McEvoy et al. (2014).

1.1.2 Spatial Dimension Reduction in Resting-State EEG

In resting-state EEG experiments, EEG from electrodes that are spatial neighbors

usually exhibit similar behavior, therefore electrodes are typically grouped into regions

of spatial proximity. Averaging data across electrodes within these regions results in

the loss of information on the variability of EEG power. In addition, EEG is averaged

across all relevant electrodes when differences between power across regions is not

found to be significant using standard statistical tools. In a 2015 study, Jeste et al.

(2015) proposed principal components analysis (PCA) for spatial dimension reduction
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to summarize EEG power across electrode regions into a set of scores accounting for

the majority of EEG power variability [9]. They used PCA to reduce EEG power

across nine regions of the scalp into a single component in order to investigate the

association between resting state EEG oscillations and cognition in preschoolers with

ASD. The sample for this study included 54 ASD and 43 TD children whose verbal IQ

(VIQ) and non-verbal IQ (NVIQ) scores were recorded as measures of cognition and

language. Absolute power from the theta, alpha and gamma bands were extracted

from the FFTs of the EEG and log transformed for analysis.

The log transformed powers were analyzed using PCA separately across the theta,

alpha and gamma bands in order to summarize the power data across nine regions

of interest into comprehensive scores. VIQ and NVIQ were regressed on the PCA

scores of the first component to test whether each power band in the ASD and TD

groups significantly predicted cognition. VIQ and NVIQ have a censored distribution

due to a lower bound in IQ measures. To cope with this distributional structure,

Tobit models were also fit to account for IQ floor effects. Multiple linear and Tobit

regressions found gamma band power to significantly predict VIQ in the TD group

and theta band power to robustly predict both VIQ and NVIQ in the ASD group.

The results of this study emphasized the plausibility of using EEG in investigating the

heterogeneity of language cognition in ASD and suggested EEG band power may serve

as a electrophysiological marker or predictor of cognitive function for young children

with ASD. In addition, this study introduced Tobit regression as an additional tool

to account for IQ censoring in phenotype analyses. Finally, this study shows PCA

is a viable approach to spatial dimension reduction and EEG analysis under certain

conditions.

1.2 Event-related Potentials (ERP) Experiments

Event-related potentials studies focus on the electrical potential of a subject when

presented with a sequence of stimuli and provides insight into the evolution of brain

activity across a learning task. EEG recorded in response to these stimuli are known as
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event-related potentials (ERP) and are the primary focus of this dissertation. Analysis

of ERP data is quite challenging due to its complex structure and noisy behavior. ERP

waveforms are recorded across multiple electrodes for each stimulus, producing data

consisting of a spatial dimension (electrodes), a functional dimension (EEG recorded

over time) and a longitudinal dimension (EEG recorded at each stimulus). Since EEG

has high time resolution and low spatial resolution, primary analyses typically focus

on the amplitude (microvolts) and latency (milliseconds) of temporal features (peaks)

in the ERP waveforms for each subject (Luck, 2005). Electrical response to sensory

stimuli is very small (on the order of a few microvolts) relative to the magnitude of

spontaneous EEG, yielding a low signal-to-noise ratio in observed ERP, making the

ERP features of interest unidentifiable. To cope with this well-known phenomenon,

stimuli are applied repeatedly and the resulting ERP waveforms are averaged across

the stimulus repetitions (longitudinal dimension) for each subject [1, 2, 10]. ERP also

undergo additional preprocessing, similar to the steps described for resting-state EEG

data. Subsequently, features are extracted from the preprocessed ERP, producing a

single observation for each subject. Experiments involving multiple stimulus conditions

(different sequences of stimuli) may produce multiple feature observations for each

subject. In addition, ERP may be averaged within predefined regions of the scalp if

region-specific effects are of particular interest. Following extraction of these features,

the data are analyzed using simple statistical methods such as t-tests and repeated

measures ANOVA.

Standard preprocessing procedures for the analysis of ERP result in information

loss on all three data dimensions. As a result of collapsing the longitudinal dimension

by averaging ERP across trials within subjects, methods fail to capture potentially in-

formative changes in ERP signals that may emerge over the course of the experiment.

Averaging ERP across electrodes results in the loss of spatial covariation at the elec-

trode level. If spatial information is retained, information on within-region variability,

which can provide insight into brain connectivity, is still lost due to within-region av-

eraging. Furthermore, these methods selectively incorporate single measures of ERP

features into their analyses, reducing the entire functional dimension of the observed
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ERP into a single observation. In this dissertation, three types of methodology are

developed for preserving and analyzing the lost dimensions of ERP data. Since ERP

studies focus on the electrical response to a sequence of stimuli presented over time,

the focus of this dissertation is on the longitudinal component of the data structure

corresponding to the trials resulting from the repeated stimuli. The motivating appli-

cation for the proposed methods is a co-authored study on neural correlates of visual

implicit learning in young children with autism spectrum disorder (ASD). The goal of

the study was to provide insights about pathways to core deficits in ASD through a

better understanding of implicit learning, which is thought to play a critical role in

social behavior [11]. Implicit learning, defined as the detection of regularities in one’s

environment without a conscious awareness or intention to learn [11, 12], is measured

through differences in the ERP, specifically the ERP features, across multiple stimulus

conditions. Although the study successfully identified differences in learning between

the ASD group and typically developing (TD) controls as well as heterogeneity within

the ASD group, analysis was performed exclusively in the cross-sectional domain, fail-

ing to capture the evolution of the TD and ASD implicit learning processes over the

course of the experiment.

1.3 Summary of Methods Developed for ERP Analysis

In order to preserve the longitudinal information in the ERP data, a meta-preprocessing

step based on applying a moving average across trials is proposed in Chapter 2. The

proposed meta-preprocessing procedure strikes a balance between the need to average

over trials to enhance the signal-to-noise ratio and ‘over-averaging’ to the point where

the data for each subject are reduced to a single overall ERP and all longitudinal

information is lost. This procedure is embedded in a weighted mixed effects regres-

sion framework to allow modeling of the resulting longitudinal data. Spatial observa-

tions across electrodes are incorporated into the model using a multilevel covariance

structure to account for within-subject correlation. The proposed unified framework

comprising the meta-processing and the weighted linear mixed effects modeling steps

is referred to as MAP-ERP (Moving-Averaged-Processed ERP) throughout the dis-
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sertation. The proposed MAP-ERP procedure is able to effectively estimate the mean

processes of ERP features over the course of the experiment as well as provide inference

on group differences using ERP features defined at the electrode level.

MAP-ERP was designed to analyze ERP feature processes under the mean and

covariance homogeneity assumption. Autism spectrum disorder contains a wide array

of neurodevelopmental disorders with varying severity. The wide spectrum of autism

suggests the existence of heterogeneous learning processes over time that are poten-

tially observable through individuals’ EEG. Identification of these subgroups is vital

in understanding the diversity of learning within groups and identifying the differences

and similarities in learning between groups. The method proposed in Chapter 3 is a

robust functional clustering (RFC) algorithm applied to meta-preprocessed ERP data

and is used to identify subgroups in the learning processes of ASD and TD children.

Robustness in this context refers to the special care taken to incorporate information

on covariance heterogeneity induced by meta-preprocessing into the RFC algorithm,

setting it apart from prior functional clustering algorithms proposed in the literature.

Application of RFC to the implicit learning paradigm identifies multiple clusters in the

TD and ASD groups, supporting the ASD heterogeneity findings of Jeste et al. (2015)

[11] and providing new insight into how these implicit learning subgroups evolve over

time.

The purpose of MAP-ERP and RFC are to extract and analyze temporal infor-

mation about specific features of the ERP waveforms while incorporating information

on the multilevel spatial structure. Although these algorithms preserve the longitu-

dinal and spatial dimensions of the data, analysis is focused on a single measure of

the entire ERP curve, ignoring the remaining data on the functional curve and the

additional information it provides. The proposed multidimensional functional princi-

pal components analysis (MD-FPCA) algorithm of Chapter 4 takes into account all

three dimensions of the ERP data structure and summarizes its most important char-

acteristics into an interpretable, low-dimensional form. Multilevel FPCA is applied to

each longitudinal trial point across the functional ERP time domain and the scores

from these decompositions are then modeled using a single-level FPCA across the trial
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domain. Resulting model parameters include the mean surfaces, eigensurfaces, eigen-

values and score distributions of the ERP processes. Due to the complexity of the

MD-FPCA algorithm summarizing functional, longitudinal and spatial information,

the major challenge of this “three-dimensional” approach is correctly interpreting its

components. In addition to an in-depth description of the MD-FPCA algorithm, a

short discussion on model interpretation in the context of the the implicit learning

paradigm is provided.

MAP-ERP and RFC explore a longitudinal dimension that is typically lost in ERP

studies. MD-FPCA incorporates the functional dimension of ERP into the longitudi-

nal and spatial analysis. The methods proposed in this dissertation are able to provide

insight into the learning processes of ASD and TD children and lead to interpretable

group differences over time with respect to patterns of implicit learning. The disserta-

tion explores these approaches in detail and is organized into the following chapters.

Chapters 2 and 3 introduce the proposed MAP-ERP and RFC methods, respectively,

as stand alone papers and can be found in Hasenstab et al. (2015) [13, 14]. A descrip-

tion of the MD-FPCA algorithm and the interpretation of its model components are

located in Chapter 4. Discussion of the methods proposed and future directions for

research are located in Chapter 5.
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CHAPTER 2

Identifying Longitudinal Trends within EEG

Experiments

This chapter proposes a method for preserving the longitudinal and spatial dimen-

sions of ERP data by salvaging potentially important changes in the magnitude and

form of ERP signals over the course of the experiment. This is a stand-alone pa-

per taken from a first author publication in Biometrics [13]. We develop a meta-

preprocessing step utilizing a moving average of ERP across sliding trial windows,

to capture such longitudinal trends. We embed this procedure in a weighted linear

mixed effects model to describe longitudinal trends in features such as ERP peak am-

plitude and latency across trials while adjusting for the inherent heteroskedasticity

created at the meta-preprocessing step. The proposed unified framework, including

the meta-processing and the weighted linear mixed effects modeling steps, is referred

to as MAP-ERP (Moving-Averaged-Processed ERP). We perform simulation studies

to assess the performance of MAP-ERP in reconstructing existing longitudinal trends

and apply MAP-ERP to data from young children with autism spectrum disorder

(ASD) and their typically developing counterparts to examine differences in patterns

of implicit learning, providing novel insights about the mechanisms underlying social

and/or cognitive deficits in this disorder.

2.1 Introduction

Both spontaneous electroencephalogram (EEG) signals and event-related potentials

(ERP), which represent EEG recorded in response to stimuli, are noninvasive meth-

ods for measuring brain activity with very high time resolution. They have been
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in use since the 1950’s in diverse biomedical settings including epilepsy, sleep disor-

ders, multiple sclerosis, brain tumors, lesions, major affective disorder, schizophrenia,

alcoholism, bipolar mood disorder, assessment of surgical outcomes, confirmation of

brain death and clinical trials for drug development [1, 2, 15]. An ERP waveform

(curve/signal/morphology) consists of characteristic components that span time. A

typical ERP waveform from an implicit learning paradigm, containing the commonly

studied P3 and N1 phasic components in this literature, is given in Figure 2.1 (a).

Note that ERP waveforms can contain multiple phasic components, and the focus of

analysis may be on different features in other applications. In our working example

the N1 dip has a short latency (time-delay) and signifies early category recognition,

while the P3 peak is task dependent due to its long latency and is traditionally related

to cognitive processes such as signal matching, decision making and memory updating

[11, 16, 17].

The analysis of ERP data is usually performed in the time domain. Differential

brain response to sensory stimuli is very small (on the order of a few microvolts) as a

fraction of spontaneous EEG, yielding a low signal-to-noise ratio (SNR) in ERP stud-

ies. To cope with this well-known phenomenon, stimuli are applied repeatedly and

the resulting ERP waveforms are averaged across the trials for each subject [1, 2, 10].

Other common preprocessing steps include artifact detection (of irregularities in the

signals caused by events such as blinks, saccades or muscle contractions), bad chan-

nel replacement (a smoothing procedure performed when signals from an individual

scalp electrode are compromised), referencing (to standardize measurements to an av-

erage across all the electrodes) and baseline corrections (to standardize a subject’s

measurements to their own baseline period).

Since EEG has high time resolution and low spatial resolution (the space component

corresponds to the ERP signals measured simultaneously at different electrodes placed

on the skull), primary analyses typically focus on the amplitude (microvolts) and

latency (milliseconds) of specific peaks (e.g., N1, P3) in the averaged ERP curves for

each subject instead of spatial features [18, 19, 20, 21, 22]. As a result of averaging

ERP across trials within subjects, the traditional methods fail to capture potentially
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Figure 2.1: (a) A typical ERP waveform containing the P3 and N1 phasic compo-
nents from the implicit learning paradigm. (b) Visualization of the implicit learning
paradigm. The continuous stream of six colored shapes (pink squares, blue crosses,
yellow circles, turquoise diamonds, gray triangles and red octagons) are organized into
three familiar pairs. The ‘expected’ condition is defined as the transition from shape
1 to shape 2 in the familiar shape pair (with probability 1) and the ‘unexpected’ con-
dition is defined as the transition from shape 2 to shape 1 of any shape pair (with
probability 0.33).
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informative changes in ERP signals that may emerge over the course of the experiment.

In this paper we focus on modeling the longitudinal component of the data structure

corresponding to the trials resulting from the repeated stimuli. We propose a meta-

preprocessing step based on applying a moving average across trials to preserve the

longitudinal information in ERP data. The proposed meta-preprocessing procedure

strikes a balance between the need to average over trials to enhance the signal-to-noise

ratio and ‘over-averaging’ to the point where the data for each subject are reduced to a

single overall ERP and all longitudinal information is lost. This procedure is embedded

in a weighted mixed effects regression framework to allow modeling of the resulting

longitudinal data. The proposed unified framework comprising of the meta-processing

and the weighted linear mixed effects modeling steps is referred to as MAP-ERP

(Moving-Averaged-Processed ERP) throughout the manuscript.

Our working example is from a study on neural correlates of implicit learning in

young children with autism spectrum disorder (ASD) [11]. ASD is a neurodevelop-

mental disorder defined by impairments in social behavior, communication and the

presence of restricted interests. Implicit learning is characterized by detection of reg-

ularities in one’s environment without a conscious awareness or intention to learn

[11, 12, 23, 24]. The goal of the study is to provide insights about pathways to core

deficits in ASD through a better understanding of implicit learning, which is thought

to play a critical role in social behavior [11]. The study involved 2 to 5 year old typi-

cally developing (TD) and ASD children, exposed to a continuous stream of six colored

shapes (pink squares, blue crosses, yellow circles, turquoise diamonds, gray triangles

and red octagons; see Figure 2.1 (b)). The shapes were organized into three pairs

such that the sequence within the pairs was always the same but the pairs themselves

occurred in random order across the experiment. For example, a pink square was

always followed by a blue cross (pair) but the symbol that followed a blue cross could

be any of the three ‘first’ symbols of a pair. As a result, the transitions within a pair

(pink square to blue cross) were ‘expected’ or could be ‘learned’ while the transitions

between pairs were ‘unexpected’ or not predictable. Each transition from one shape

to the next was considered a stimulus, resulting in an ERP waveform. Differences
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in the ERP signals (amplitude, shape, timing) between the expected and unexpected

trials were thought to reflect the degree of implicit learning in young children while

longitudinal changes in this contrast would indicate how the learning process evolves.

The paradigm included 120 trials (repeated stimuli) for each of the two conditions,

resulting in 240 ERP waveforms per child.

The goal of the original study was to look at differences in implicit learning be-

tween TD and ASD children in order to provide insights about mechanisms underlying

social and/or cognitive deficits in this disorder. While the traditional analysis simply

compares the average difference between expected and unexpected trials, determining

whether the groups differ in terms of how the ERP signals change as the children learn

the shape patterns over the course of the task is also important, e.g., for seeing whether

implicit learning occurs at different speeds. Due to the low signal-to-noise ratio, it is

also not feasible to analyze the original longitudinally collected ERP curves on a trial

by trial basis. As an example, in Figure 2.2 (top left panel), an ERP waveform is

plotted for one subject from a single trial in the right frontal region of the brain. Due

to the low signal-to-noise ratio in a single trial, the N1 dip and P3 peak are not recog-

nizable in their standard respective time intervals as defined in Jeste et al. (2015) [11].

Now consider an average of 30 ERP waveforms from adjacent trials, plotted in Figure

2.2 (top right panel). The N1 dip and P3 peak are easily recognizable due to the

enhancement in the signal-to-noise ratio. Our proposed meta-preprocessing procedure

relies on moving averages of ERP waveforms over trials to preserve trends in implicit

learning, focusing on the longitudinal analysis of features such as the P3 amplitude.

These features are then assessed via a weighted mixed effects model, which adjusts for

inherent heteroskedasticity created at the meta-preprocessing step.

Previous studies in neuroscience and biomedical engineering have acknowledged

that ERP morphology may change over the course of a task. However, most prior work

has focused on controlling for longitudinal trends [25, 26, 27, 28, 29, 30] rather than

viewing them as one of the central research questions. Moreover, most of the work on

modeling longitudinal trends has been limited to parametric forms [31, 32, 33, 34, 35].

In contrast, our proposed meta-preprocessing step, utilizing the moving average idea
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Figure 2.2: (a) ERP waveform for a single subject, trial, electrode and condition in
the frontal region after preprocessing, (b) average of the first 30 consecutive ERP
waveforms for a single subject, electrode and condition, (c) simulated ERP waveform
for a single subject, trial and electrode, (d) average of 30 simulated ERP waveforms
for a single subject and electrode. Vertical boundaries denoted by the dotted and
dashed lines in (a) and (b) correspond to the search of the locations of the N1 and
P3 components and are [100ms, 250ms] and [190ms, 350ms], respectively (Jeste et al.,
2014).
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described above, does not make any parametric assumptions. It is only after extract-

ing the longitudinal features of the ERP morphology via a flexible nonparametric

approach that we utilize a parametric model, the proposed weighted linear mixed ef-

fects regression, to describe changes in ERP features over the trials. Techniques such

as sub-ensemble averaging and block averaging, which combine disjoint subsets of ERP

waveforms across trials, require long recording sessions and still result in coarse-grained

repeated measurements that do not take full advantage of the information on continu-

ous longitudinal trends that is inherently available in the raw data [36, 37, 38]. These

studies provide snapshots of the longitudinal information, while the proposed moving

average captures the continuum of longitudinal dynamics.

The paper is organized as follows. In Section 2.2, we outline a novel meta-

preprocessing step for ERP experiments which preserves the longitudinal structure

of the data while enhancing the signal-to-noise ratio. A weighted linear mixed effects

modeling approach following the meta-preprocessing step of Section 2.2 is outlined in

Section 2.3. In Section 2.4, we present a simulation to assess the performance of MAP-

ERP, the proposed unified modeling framework. The analysis of the ERP data from

the motivating implicit learning study on ASD is given in Section 2.5. We conclude

with final remarks in Section 2.6.

2.2 Proposed meta-preprocessing step to preserve longitudi-

nal information in ERP data

Our working example is the first to date to study implicit learning in young children

with ASD via the use of EEG. Prior studies on implicit learning have typically focused

exclusively on high-functioning children with ASD, as they can more readily follow

directions and engage in paradigms requiring sustained attention [12, 39, 40, 41, 42].

Use of EEG, which does not require as much direct engagement, made it possible to

include a younger group of children with ASD, with a focus on characterizing differ-

ences in implicit learning patterns that will distinguish them from typically developing

peers. EEG data were recorded for 120 trials per condition (expected and unexpected)
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for each subject at 128 electrodes and were preprocessed using NetStation 4.4.5 soft-

ware (Electrical Geodesics, Inc.). The standard preprocessing steps outlined in Web

Appendix A produced trajectories of ERP waveforms for 37 ASD and 34 TD chil-

dren to be fed into the proposed meta-preprocessing algorithm. The number of trials

with usable data ranged from 10 to 120 per subject per condition. The EEG signals

were sampled at 250Hz, producing 250 within-trial time points per waveform spanning

1000ms. To illustrate the methods, we focus on data from 12 electrodes in the frontal

region which are described in Jeste et al. (2015) [11].

The proposed meta-preprocessing step is a moving average designed to increase

the signal-to-noise ratio of ERP to a level at which curve attributes such as peak

amplitudes and latency are identifiable, while preserving longitudinal information. Let

Xijk`(t) represent the micro-voltage of the ERP of subject i from electrode j, on trial

k in condition ` (expected/unexpected) observed at time t, i = 1, . . . , N , j = 1, . . . , J ,

k ∈ Ki, ` ∈ Lik and t = 1, . . . , T , where N is the total number of subjects, J is the

total number of electrodes, T is the total number of time points within a trial, Ki is

the set of non-missing trials for subject i and Lik is the set of non-missing conditions

at trial k for subject i. The maximum number of conditions per subject per trial,

denoted by L, is 2 in our application. The maximum possible number of trials per

subject per condition, denoted by K, is 120. Further, let Bk represent overlapping sets

of trials of varying lengths with the maximum number of trials within a set denoted

by b,

Bk =


[1, 2k − 1], if k < b

2
,

[k − b/2 + 1, k + b/2], if b
2
≤ k ≤ K − b

2
,

[2k −K,K], if j > K − b
2
.

Sets not on the boundary contain b elements and the number of elements shrink lin-

early towards 1 at the boundaries. The Bk are used as sliding trial windows in the

moving average of ERP within the meta-preprocessing step. Since the goal is to ex-

tract continuous longitudinal trends within EEG experiments, including overlapping

sets of trials helps to target the continuum of features across several ERPs. Alter-

native options include kernel smoothing; we chose to utilize a moving average in our
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applications to simplify the quantification of heterogeneity in these averages due to

missingness. As will be outlined in Section 2.3, in the proposed weighted linear mixed

effects model framework, longitudinal attributes captured from averaging over smaller

numbers of ERP waveforms, as in the boundary sets or sets with a larger proportion

of missing trials, will receive lower weights. This will help to mitigate boundary effects

and place more weight on intervals with more trials, and hence more information.

In the algorithm introduced below, we let X̃ijk`(t) represent the cross-sectional

averages of ERPs within the sliding trial windows Bk and let Ỹijk`, i = 1, . . . , N ,

j = 1, . . . , J , k ∈ Mi, ` ∈ Qik, represent longitudinal features (such as amplitude

or latency of peaks) of ERPs captured from these cross-sectional averages, where

Mi is the set of non-missing trials for subject i and Qik is the set of non-missing

conditions for subject i at trial k after meta-preprocessing. Note that the notation

Yijk` is reserved to represent the true features of the underlying ERP signal to be used

in subsequent sections and that different set notations, Mi and Qik, are used to index

the observed trials for subject i and the observed conditions for subject i at trial k,

respectively, to accommodate differences in the missingness structure which may be

induced by the proposed meta-preprocessing step on the longitudinal features. The

meta-preprocessing is applied separately for each subject, electrode and condition.

The proposed algorithm can be summarized in the following steps.

1. For fixed i, j, k and `, consider the set of ERP waveforms {Xijk`(t) : k ∈ Bk}.

If the set is empty, Ỹijk` will be missing and the algorithm proceeds to consider

the set associated with trial k + 1.

2. Calculate the cross-sectional mean curve, X̃ijk`(t) = (1/cijk`)
∑
k∈Bk

Xijk`(t), of the

subsetted waveforms, where cijk` equals the number of trials in the set {Xijk`(t) :

k ∈ Bk}.

3. Smooth X̃ijk`(t) over t to identify the locations of the ERP features of interest.

4. Use the locations from step 3 to define the longitudinal features Ỹijk` for i =

1, . . . , N , j = 1, . . . , J , k ∈ Mi, ` ∈ Qik. If the feature of interest is a peak
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latency, then step 3 will be enough for the assignment of Ỹijk`; if on the other

hand it is a peak amplitude, then the locations from step 3 will be used for

assignment of peak amplitudes. The assignment of peak amplitudes will utilize

the values of the original cross-sectional mean waveforms, X̃ijk`(t), rather than

those from their smoothed versions in order to minimize bias.

5. Repeat steps 1 through 4 for k = 1, . . . , K.

The meta-preprocessing step extracts features from the dense ERP curves using a

moving average across trials k, producing longitudinal features across trials for each

subject, electrode and condition. Since the analysis after the meta-preprocessing is

performed on the longitudinal time component (trials), the argument (t) is omitted

from Ỹijk`, denoting the longitudinal features. We use a loess smooth in the third step

of the proposed algorithm where the bandwidth is selected via 10-fold cross-validation.

To identify the feature locations on the smooth, which correspond to the locations of

the P3 component in our application, we utilize a peak detection algorithm which

identifies optima within the time interval t ∈ [190ms, 350ms] [11]. If the peak location

is on the boundary of the specified time interval, the time interval is gradually widened

in the direction of the initial boundary peak until a new peak is identified that is not

on the boundary [11]. If the interval is widened to twice the range of the initial interval

and the peak still lies on the boundary, the peak observation is considered missing.

While the locations of the features are identified on the smoothed data to minimize the

effects of random noise, the features themselves, such as peak amplitudes, are assigned

on the original cross-sectional averages to minimize bias. In our application, the size

of the sliding trial window, b, is chosen to be 30, which corresponds to the minimum

number of curves required to increase the signal-to-noise ratio to a level where the

desired features are recognizable. However we also include a sensitivity analysis to

show that the data analysis results are sufficiently robust to this choice. For cases

where the focus of interest may be the entire ERP waveform instead of the particular

features, automatic selection of b was proposed by Turetsky et al. (1989) [30], based

on minimizing the estimated mean average square error of the smoothed data.
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2.3 Analysis of meta-preprocessed ERP data via a weighted

linear mixed effects model

Mixed effects regression is a powerful modeling tool which accounts for multi-level

heterogeneity and complex temporal trends via the use of fixed and random effects.

We propose a weighted linear mixed effects model to analyze the longitudinal features

Ỹijk`, i = 1, . . . , N , j = 1, . . . , J , k ∈Mi, ` ∈ Qij, extracted by our meta-preprocessing

algorithm. We reiterate that the longitudinal components of the proposed linear mixed

effects model are the extracted features defined across trials k (not ERP time t). Our

application focuses on ERP data from 12 electrodes in the front of the scalp, from

left, middle and right regions. Each region contains four electrodes and electrodes

within each region are spatial neighbors. Our goals in the application to the implicit

learning paradigm are to model the dynamics of P3 amplitude across trials and to

study differences between the TD and ASD groups. We utilize multi-level random

effects at the subject and electrode region levels to model dependency of the data for

a given subject in a particular electrode region where the spatial correlations are the

strongest. We further utilize spline basis functions in modeling both fixed and random

effects to describe the functional dependency of the P3 amplitudes across trials in a

reduced dimensional space.

In addition, our proposal includes an adjustment to the standard linear mixed ef-

fects framework to account for the heteroskedasticity induced by averaging different

numbers of trials at different time points during the meta-preprocessing step. More

specifically, consider the plot of the P3 amplitudes (denoted by Ỹijk`) produced by

the proposed meta-preprocessing algorithm against values of cijk`, the number of ERP

waveforms averaged in the Bk trial window in step 2 of the algorithm, displayed in

Figure 2.3 (a). There is a sharp decrease in the variance of the amplitudes with in-

creasing cijk`, suggesting that features extracted from averages in sliding trial windows

with fewer ERP waveforms are less precise, as would be expected. In order to account

for this systemic heteroskedasticity, separate variance components are allowed for dif-

ferent bins of cijk` in the linear mixed effects formulation below. Note that similar
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weighting ideas have been considered previously to correct for heteroskedasticity in

the context of averaging of ERP curves but only for cross-sectional data [43].
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Figure 2.3: (a) P3 amplitudes as a function of number of trials averaged, cijk`, in
the analysis of the ERP data from the implicit learning paradigm, (b) studentized
residuals obtained from the mixed effects model without weights as a function of
cijk`, (c) studentized residuals from the proposed weighted mixed effects model as a
function of cijk`. Variance of the P3 amplitudes and the residuals are shown (solid
line) corresponding to the y-axes given on the right hand side.

Let s index a partition (grouping/binning) of the range of cijk` = 1, . . . , b. The

choice of the total number of bins will be a trade-off between model parsimony and re-

alistic representation of the heteroskedasticity in the longitudinal features. Let Ỹ
(s)
ij(r)k`

represent the longitudinal features of the meta-preprocessed ERP, from subject i, at

electrode j within region r, with trial window Bk and condition `, where the number,

cijk`, of ERPs averaged in Bk falls into the sth partition. Note that the region index r
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is added in this notation, since our proposed modeling will be addressing dependencies

in the data within electrodes from the same part of the scalp. We model the Ỹ
(s)
ij(r)k`

using fixed effects and a two level random effects structure (subject and region). Fixed

effects parameters include an intercept, trial (represented by a natural cubic B-spline

with 5 knots), condition (expected vs. unexpected) and group (ASD vs. TD), along

with all two-way and three-way interactions, totaling 24 fixed effects components. Let

wik` be the 1 × 24 row vector corresponding to trial k and condition ` of the fixed

effects matrix W i and let β be the 24 × 1 column vector of fixed effects parameters.

Further let zij(r)k represent the 1 × 6 row vector (including an intercept and trial,

represented by a natural cubic B-spline with 5 knots) corresponding to trial k of the

random effects matrix Zij(r) for electrode j in region r. Index ` for condition is not

needed for zij(r)k in our application, since the random effects design matrix contains

spline bases to model within subject correlations over trials. Vectors bi and bir of

dimension 6 × 1 represent subject and region level random effects. We model Ỹ
(s)
ij(r)k`

by

Ỹ
(s)
ij(r)k` = wik`β + zij(r)kbi + zij(r)kbir + ε

(s)
ij(r)k`, (2.1)

bi ∼MVN(0,D1
6×6), bir ∼MVN(0,D2

6×6), ε
(s)
ij(r)k` ∼ N

(
0, σ2

s

)
,

where D1 and D2 represent the random effects covariance matrices at the subject and

region levels, respectively, and ε
(s)
ij(r)k` represents the error term for the sth partition

with variance σ2
s and uncorrelated over different subjects, regions, electrodes, trials

and conditions. The subject and region level random effects are assumed to be inde-

pendent of the error term, leading to the following covariance structure: Var(Ỹ
(s)
ij(r)k`)

= zij(r)kD
1z′ij(r)k + zij(r)kD

2z′ij(r)k + σ2
s , cov(Ỹ

(s)
ij(r)k`, Ỹ

(s)
ij(r)k′`) = zij(r)kD

1z′ij(r)k′

+zij(r)kD
2z′ij(r)k′ , ∀i, j(r), k 6= k′ and cov(Ỹ

(s)
ij(r)k`, Ỹ

(s)
ij′(r)k`) = zij(r)kD

1z′ij′(r)k +

zij(r)kD
2z′ij′(r)k, ∀i, j(r) 6= j′(r), k, for within region correlation and cov(Ỹ

(s)
ij(r)k`,

Ỹ
(s)
ij′(r′)k`) = zij(r)kD

1z′ij′(r′)k, ∀i, j(r) 6= j′(r′), k, for within subject across region corre-

lation.

We use a common design matrix Zij(r) for the subject and region random effects

but they can be taken to be different in other applications. The degree of smoothness
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for the natural B-splines is determined through the selection of the number of knots

which are typically equispaced. Automatic selection methods for the number of knots

include AIC, BIC and cross-validation [44, 45]; we use AIC in our applications. Note

that the mixed effects framework can easily be extended to adapt to the application at

hand, for example by modeling further dependency structures or including baseline co-

variates. Restricted maximum likelihood (REML) is used to estimate model (2.1) due

to its ability to produce unbiased estimates of the variance and covariance parameters.

The proposed framework for addressing heteroskedasticity by using separate variance

components assigns higher weights to the outcome values with lower variability (i.e.

from trial windows with more ERP waveforms and therefore more information), and

hence is referred to as a weighted model.

2.4 Simulation

We conduct simulations to study the performance of MAP-ERP, including both the

meta-preprocessing and the weighted mixed effects modeling, in reconstructing longi-

tudinal trends over trials in ERP studies. In particular, we include comparisons of our

approach with a simple procedure that uses raw single-trial ERP to model longitudi-

nal trends under various signal-to-noise ratios (SNR). Results are presented for four

sample sizes, N = 20, 40, 80 and 160, which are typical for ERP studies, and are based

on 200 Monte Carlo runs. Detailed explanations of the simulation setup along with

definitions of mean error (ME) and prediction error (PE) used to evaluate proposed

methodology are given in Web Appendix B.

The medians, 2.5th and 97.5th percentiles of the MEs and PEs for the two modeling

procedures are given in Table 2.1 for varying SNRs and sample sizes. As expected, since

the meta-processing step enhances the overall SNR, MAP-ERP leads to consistently

smaller ME and PE compared with the single-trial approach across all SNR settings

and sample sizes. This is also displayed in Figure 2.4, which gives the estimated fixed

effects means and pointwise confidence intervals from the run with the median ME

value for each approach for three SNR settings at N = 40. Asymptotic pointwise
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Table 2.1: Median and (2.5th, 97.5th) percentiles of simulation performance metrics
(ME and PE) for varying SNRs from 200 Monte Carlo runs with sample sizes N =
20, 40, 80 and 160.

ME PE

N SNR Single MAP-ERP Single MAP-ERP

0.4 .531 (.493, .563) .040 (.020, .067) .526 (.476, .572) .164 (.141, .200)
20 0.6 .225 (.190, .258) .032 (.014, .069) .222 (.194, .253) .116 (.100, .137)

0.8 .108 (.073, .148) .039 (.013, .076) .111 (.097, .129) .094 (.082, .108)

0.4 .530 (.503, .558) .033 (.019, .053) .528 (.498, .559) .164 (.144, .187)
40 0.6 .224 (.198, .248) .030 (.014, .058) .221 (.205, .243) .115 (.104, .129)

0.8 .109 (.081, .135) .037 (.013, .064) .112 (.102, .122) .093 (.085, .102)

0.4 .530 (.501, .553) .029 (.019, .043) .529 (.507, .551) .164 (.150, .180)
80 0.6 .222 (.203, .242) .030 (.016, .049) .223 (.210, .236) .115 (.108, .125)

0.8 .107 (.087, .127) .037 (.021, .058) .112 (.104, .119) .093 (.087, .100)

0.4 .531 (.503, .548) .026 (.019, .034) .528 (.515, .545) .163 (.152, .175)
160 0.6 .224 (.203, .236) .029 (.017, .045) .222 (.214, .232) .115 (.109, .122)

0.8 .109 (.090, .122) .037 (.025, .054) .111 (.107, .117) .093 (.089, .098)

confidence intervals for the estimated fixed effects means are formed using variance-

covariance estimates of the model components. The true fixed effects mean trajectory

lies within the 95% pointwise confidence intervals based on MAP-ERP and outside

those based on the single-trial approach, further emphasizing the effectiveness of MAP-

ERP at capturing longitudinal trends.

The single-trial modeling approach shows a clear improvement in both ME and PE

with increasing SNR, but these summary metrics do not change with increasing sample

size. For low SNRs, the single-trial approach primarily captures the noise component of

the raw ERP, producing highly inflated and inaccurate amplitude estimates. As SNR

increases (i.e. as noise in the raw ERP reduces), the amplitude estimates produced by

the single-trial approach shrink towards the true values as depicted by the relatively

sharp decreases in the two performance metrics. However the single trial approach

still cannot handle the noise in the ERP trajectories effectively enough where the

performance can show improvement within the considered range of sample sizes.
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Figure 2.4: Estimated fixed effects mean trajectories along with 95% confidence inter-
vals corresponding to the median of the ME in simulations based on the single curve
(trial) approach and MAP-ERP for (a) SNR=0.4, (b) 0.6 and (c) 0.8.
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The ME values for MAP-ERP are consistently low regardless of the varying SNR,

showing the effectiveness of the proposed meta-preprocessing step in enhancing the

signal, especially compared to the single-trial approach. Even though the proposed

method is effective for a wide range of SNRs, there are still some subtle issues. Specif-

ically, there are two opposing dynamics, noise and latency jitter, which are still ob-

servable in the estimated mean fixed effects trajectories. While noise tends to inflate

the amplitude estimates, latency jitter (the fact that the timing of the P3 peak differs

across trials and subjects) tends to dampen the amplitude estimates due to possible

misalignment in averaging. As illustrated in Figure 2.4 (a) for SNR=0.4, noise and

latency jitter effects roughly cancel each other and the estimated mean appears to have

little visible bias. In contrast, the effects of latency jitter dominate for SNR=0.6, 0.8

and the estimated mean curve consistently lies below the true curve. The effect of

sample size on ME of MAP-ERP is observable at SNR=0.4 where the noise effects

cancel with the latency effects; in this case ME decreases with increasing sample size

as expected. However, since increasing sample size does not particularly help with

the effects of latency jitter, ME does not significantly improve with increasing sam-

ple size for SNR=0.6 or 0.8. We ran additional simulations without latency jitter to

solidify the above interpretations on bias with varying SNR and sample size (Web

Appendix C). Results reveal that ME decreases with increasing SNR and sample size

as expected when latency effects are not present, dampening the mean amplitude esti-

mates. Dampening effects of the latency jitter are discussed further in the Discussion

Section.

Similarly, the PE for MAP-ERP improves with increasing SNR due to the reduced

levels of noise, but is constant over sample sizes due to the flexible modeling of subject

specific effects in the proposed mixed effects model via the inclusion of the spline terms.

The proposed modeling allows for reconstruction of complex subject specific functional

trends which leads to small PE values across sample size, especially compared to the

single curve approach.
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2.5 Analysis of the ERP data from the implicit learning

paradigm

In order to compare the ASD and TD groups in the expected and unexpected condi-

tions over the course of the task, the longitudinal P3 peak amplitudes Ỹ
(s)
ij(r)k` from 12

electrodes were obtained using our proposed meta-processing procedure for N = 71

subjects with up to K = 120 trials obtained per condition and were then analyzed

via the weighted linear mixed effects model described in Section 2.3. Five knots were

used for the spline fits. This choice was made using a combination of AIC and subject

matter expertise, and was found to reflect the complexity of the data well without

undersmoothing. Six equal sized groups (i.e. s = 1, . . . , 6) of cijk` ∈ [1, 30] were used

to model effects of heteroskedasticity. The random effects for the subject and region

levels were allowed to have a unique variance for each random effect but were assumed

to be independent. The number of averaged curves cijk` was also included as a predic-

tor in the mixed model but was not found to be significant and is hence omitted from

the final analysis presented here. For comparison, we model P3 amplitudes using both

weighted and unweighted linear mixed effects models, where the unweighted model

does not allow for separate variance components with varying cijk`. Both models were

fit using SAS PROC MIXED-REML.

The two model fits lead to largely similar fixed effects mean trajectories except at

the boundaries where the unweighted fit displays more extreme values. This is not

surprising since the reduction in cijk` at the boundaries produces noisy cross-sectional

averages and inflated amplitude estimates. The weighted model effectively stabilizes

amplitude estimates by down-weighting these noisy observations. In addition, even

though the difference is small in magnitude, the standard errors for the fixed effects

estimates from the weighted model are consistently smaller than those from the un-

weighted model. In standard regression analysis, conventional standard errors bias up

when observations with high leverage (far from predictor mean) are associated with

smaller residual variance. Consistent with this observation, most of the spline basis

predictor observations with high leverage are associated with smaller residual vari-
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ance. The variances of the studentized residuals from the weighted model appear to

be relatively constant across cijk` compared to those from the unweighted model which

have a strong downward trend in variance for increasing cijk`. This implies that the

weighted model has adjusted for the heteroskedasticity in the data effectively.

Since the main interest of the original study was in comparing ASD to TD subjects,

we present results in terms of the differences on condition differences in amplitudes (i.e.

(ASD expected - unexpected) - (TD expected - unexpected)). In addition to point-

wise confidence intervals formed based on estimates from the mixed effects model, we

also form 90% bootstrap percentile confidence bands based on 200 bootstrap samples

drawn from the original subjects’ ERP trajectories with replacement. Bootstrap CI’s

account for the entire two-step procedure as well as variability in the sampling of the

ASD and TD subjects. The contrast resulting from averaging 30 ERP in sliding trial

windows in the meta-preprocessing step is displayed in Figure 2.5 (c). During the first

60 trials, the ASD group appears to have a larger amplitude difference than the TD

group with a maximum difference between conditions around trial 30 for both groups.

Group differences are found to be reliably significant based on the bootstrap bands

between trials 20 and 50. Although both ASD and TD subjects appear to be able to

differentiate between expected and unexpected conditions, implying implicit learning

is taking place, and they do so at a similar speed, the pattern of discrimination seems

to differ between the two groups. While the expected minus unexpected condition

mean difference is positive for the ASD group, it is negative in TD children (plots not

displayed). The absolute condition difference in the amplitudes remains smaller after

trial 60 until the end of the experiment. One possible interpretation is that children

may be less engaged in the task after this point in the trial. These results are consistent

across different window sizes b =20, 30 and 40 for the proposed meta-preprocessing

step (Figures 2.5 (b) through (d)). Hence, inferences based on longitudinal data pro-

duced by the meta-preprocessing algorithm appear fairly robust to moderate changes

in window size in our application. We also display group differences based on ana-

lyzing single-trial data in Figure 2.5 (a). The bootstrap bands for this approach are

very wide due to the low signal-to-noise ratios of the empirical ERP and the ampli-
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Figure 2.5: Estimated mean group and condition difference ((ASD expected - un-
expected) - (TD expected - unexpected)) trajectories based on the (a) single-trial
approach and MAP-ERP with window sizes (b) b=20, (c) b=30 and (d) b=40. 90%
bootstrap bands from 200 runs are also provided (dashed lines).

tude differences between groups are no longer significant. In contrast MAP-ERP is

able to identify the regions of significant group differences due to the increase in the

signal-to-noise ratio.

We highlight that previously published results on the ERP data from this implicit

learning paradigm completely ignored the longitudinal component of the data due to

averaging over trials [11]. In addition, the single-trial approach is too noisy to depict

any group differences across trials. In contrast, MAP-ERP approach provides novel

insights on a new longitudinal dimension that is typically lost in analysis of ERP data,
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leading to interpretable group differences over trials with respect to patterns of implicit

learning.

2.6 Discussion

We have proposed a meta-preprocessing procedure for ERP studies that enhances the

signal-to-noise ratio while still retaining longitudinal trends across trials. Longitudinal

features may be an important focus in various ERP studies, such as the implicit

learning paradigm analyzed in this manuscript where speed of acquisition contributes

significantly to the characterization of implicit learning in young children with ASD

compared to typically developing controls. A recent work focused on longitudinal

trends in a local field potentials study [46]. While the proposal focuses on repeated

ERP signal recorded in response to multiple applications of a stimuli, the proposed

methodology is applicable more broadly to studies involving repetitions of a systematic

signal observed with noise, such as heart beat, breath cycle or eye blinks. Following

the meta-preprocessing step, we also proposed a weighted linear mixed effects model

that is shown to describe longitudinal trends in ERP features effectively in simulation

studies.

The proposed method is a two-step approach comprising of a meta-preprocessing

step followed by a weighted linear mixed effects model. One reason for using a two-

step approach was to connect to the rich literature on the analysis of ERP data, which

focuses on modeling particular features of ERP curves (e.g., amplitudes, latency) that

are readily interpretable scientifically. Our meta-preprocessing step enables researchers

to focus on these readily interpretable features, while preserving longitudinal trends

over trials in contrast to the common practice in this literature. Another advantage of

the two-step approach is that the initial novel meta-preprocessing step is left modular

to be flexibly coupled with an array of secondary analyses options for the extracted

features. One limitation of the current approach based on moving averages is that

misalignment of the ERP features can potentially lead to slight underestimation of

the true peak amplitudes. This is a challenging issue, since alignment would de facto
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require that features be identified before averaging, which is impractical due to noise

levels in the individual raw ERP. Even though we were able to draw combined inference

for the two steps of MAP-ERP via bootstrap confidence intervals in our application,

we identify the development of formal inference procedures as a direction for further

research.

While the current manuscript focuses on analyzing particular features of ERP such

as peak amplitudes or latencies, which is a common practice in the EEG literature, we

note that recent studies have proposed using functional data analysis for analysis of

the ERP curves in their entirety [16, 47]. The proposed meta-preprocessing algorithm

creates longitudinal functional data, i.e. repeated ERP waveforms over the trials.

Analysis of such data using functional techniques is a very interesting open problem.

Chapter 2 Appendices

Appendix A: Preliminary preprocessing steps of the EEG data from the

implicit learning paradigm

Our working example on visual implicit learning included EEG recorded for 120 trials

per condition (expected and unexpected) for each subject using 128 electrodes and

were preprocessed using NetStation 4.4.5 software (Electrical Geodesics, Inc.). The raw

profiles were first run through a 0.3-50 Hz bandpass filter to smooth out noise below and

above this range of frequencies. The resulting EEG profiles were then segmented by

condition into event-locked trials of 1000ms total duration with a pre-stimulus baseline

period of 100ms used for baseline correction. Using an automated artifact detection

tool, trials with more than 15% of electrodes having amplitude differences larger than

150µV (max-min > 150 microvolts) were classified as bad trials and were omitted from

further analysis. ERP waveforms were then visually inspected to remove any remaining

trials which contained eye artifacts such as blinks, muscle contractions or saccades.

Trials with fewer than 15% bad electrodes underwent bad channel replacement, a

data smoothing procedure using a spherical spline interpolation algorithm [48], while

subjects with more than 15% bad electrodes were discarded. Subjects with fewer than
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10 good trials per condition were excluded from subsequent analyses. Finally, the EEG

data were re-referenced and baseline corrected.

Appendix B: Simulation setup

In our simulations we utilize EEGLAB [10], a software package in Matlab, to simulate

the true underlying ERP signals and background ERP noise, the two primary com-

ponents needed to mimic realistic ERP waveforms at varying signal-to-noise ratios.

Our application to implicit learning focuses on longitudinal trends in the amplitude

of the P3 peak, but the literature suggests that ERP waveforms from the frontal elec-

trodes also contain a prominent N1 dip [11]. We begin by generating peak and dip

amplitudes for the P3 and N1, respectively, for a true underlying ERP signal under

a single group and condition (hence the omission of subscript `) using two separate

linear mixed effects models

Yij(r)k = wikβ + zij(r)kbi + zij(r)kbir + εij(r)k,

bi ∼MVN(0,D1
6×6), bir ∼MVN(0,D2

6×6), εij(r)k ∼ N
(
0, σ2

)
,

for i = 1, . . . , N , j = 1, . . . , 12 and k = 1, . . . , 120. The response Yij(r)k represents

the true amplitude for the P3 peak and N1 dip which is taken to have the functional

form used in the weighted linear mixed modeling procedure used for the analysis of

our motivating data set. To make the simulation as realistic as possible, the param-

eters are chosen to mimic the pattern of effects seen in the ASD group under the

unexpected condition. Since our goal is to assess accuracy in modeling longitudinal

trends, rather than group differences, the simulation uses an intercept term and a

natural cubic B-spline basis with equidistant knot placement for the trial number, in-

cluded as both a fixed and random effect, but no group or condition indicators. The

columns of the 120 × 6 fixed and random design matrices W and Zj(r) correspond

to the intercept and five B-spline basis functions. True fixed effects parameters for

the P3 and N1 amplitudes are β = (8.580,−0.128,−0.013,−0.136,−0.031, 0.481) and

β = (−8.654,−0.048, 0.327, 0.079,−0.173,−0.555), respectively. These values corre-
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spond to a linear transformation (g(x) = x/10+8 for P3, g(x) = x/10−8 for N1) of the

original fitted values in our real-world data to guarantee positive P3 and negative N1

amplitudes on an appropriate scale. To obtain an appropriate signal-to-noise ratio, the

fitted variance components were similarly divided by 100 to generate the simulation

values. The error variances σ2 = 0.094 and 0.072 for the P3 and N1 amplitudes, re-

spectively, are chosen to mimic the fitted variance estimates obtained for the s = 6th

partition of cijk under the unexpected condition in their respective weighted linear

mixed effects models for the ASD data. In an attempt to keep the total number of

variance components low in the model, the random effects covariance matrices, D1
6×6

and D2
6×6, have a simple covariance structure which assumes a unique variance for

each random effect where random effects are assumed to be independent. The vari-

ances of the random effects are chosen to be (0.389, 0.537, 0.498, 0.760, 2.327, 1.672)

and (0.061, 0.139, 0.172, 0.123, 0.387, 0.246) for D1 and D2, respectively, for P3 and

(0.466, 0.595, 0.738, 0.497, 2.542, 1.347) and (0.051, 0.132, 0.127, 0.100, 0.294, 0.193) for

D1 and D2, respectively, for N1, similar to our data. The random effects bi, bir and

the residual error εij(r)k are simulated independently. Note that the simple covariance

structure assumed for the random effects does not imply that a simple covariance struc-

ture is assumed on the response. The proposed structure still accommodates complex

dependency structures over trials in data within subjects and electrode regions via the

design matrices containing spline basis functions.

After the P3 and N1 amplitudes are simulated via the above linear mixed models,

the true ERP signals, denoted Xsignal
ijk (t), are simulated using the peak function in

EEGLAB, creating true ERP trajectories with a positive (P3) and negative (N1) phasic

sinusoidal peak [10, 49]. Frequencies for the peak functions are sampled from a normal

distribution with a mean of 5Hz and standard deviation of 0.1Hz. Latencies of the P3

and N1 peaks are sampled from normal distributions with means of 270ms and 175ms

and a standard deviation of 10ms, respectively. The noise function in EEGLAB is

then used to simulate background EEG, denoted Xnoise
ijk (t), using an inverse Fourier

transformation with randomized phase [10, 49]. The noise term consists of the sum

of a series of phase-randomized sinusoids, each with amplitudes varying by frequency

33



based on the power spectrum of empirical EEG data.

Next, we obtain the empirical ERP waveforms by summing the true ERP signals

and the background noise, Xijk(t) = Xsignal
ijk (t)+c∗Xnoise

ijk (t) [49]. The noise component

is multiplied by the constant c in this sum, to vary the SNR, which is defined to be the

ratio of the standard deviations for the signal over the standard deviation of the noise

component, as in Quiroga and van Luijtelaar (2003) [50]. The standard deviation of the

signal is calculated in the nonzero region of the ERP waveform containing the P3 and

N1 peaks; the standard deviation of the noise component is calculated over the entire

range of t. Finally, we induce realistic missingness in the data, randomly removing a

fraction of the simulated ERP for each subject by sampling with replacement from the

missingness profiles in our implicit learning data set. This ensures that the smoothed

data generated by the meta-processing step in the simulations will have an appropriate

pattern of heteroskedasticity.

The performance characteristics of both MAP-ERP and the single-trial analysis are

evaluated in terms of how accurately they (i) reconstruct the mean longitudinal P3

amplitude trajectories and (ii) predict the subject-specific amplitudes. The amplitude

estimates for the single-trial analysis are obtained by applying the peak detection al-

gorithm on loess smooths of all trials for each subject, condition and electrode without

cross-sectional averaging and by using the standard (unweighted) linear mixed effects

model. Mixed models for both MAP-ERP and the single-trial case are estimated using

restricted maximum likelihood. The number of knots was determined by a prelimi-

nary simulation study. The most commonly selected number of knots, by AIC, across

the MAP-ERP and single-trial preliminary runs were fixed for the real simulation at

6 knots for SNR=0.4, 0.6 and 5 knots for SNR=0.8 at N = 20 and 40; 6 knots for

SNR=0.4 and 5 knots for SNR=0.6 and 0.8 at N = 80 and 160. Selections correspond

to lower number of knots at higher SNR values as expected [44, 45]. Let β̂, b̂i and b̂ir

denote the 6×1 (or 7×1, corresponding to 5 or 6 knots, respectively) estimated fixed ef-

fects parameters, subject level random effects, and region level random effects from the

proposed weighted linear mixed effects model, respectively. Further, let W and Zj(r)

represent the fixed and random effects matrices of dimension 120×6 (or 120×7), where
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the columns represent the intercept and five (or 6) B-spline basis functions defined over

120 trials before the missing data is induced. We denote the (120 × 1) true and esti-

mated mean fixed effects trajectories by E(Y ) = Wβ and Ê(Y ) = Wβ̂, respectively.

The 120× 1 true and estimated subject-specific amplitude trajectories are denoted by

E(Y |bi, bir) = Wβ + Zj(r)bi + Zj(r)bir and ̂E(Y |bi, bir) = Wβ̂ + Zj(r)b̂i + Zj(r)b̂ir

for i = 1, . . . , N . We evaluate MAP-ERP via mean error (ME) and prediction error

(PE), defined as

ME =

120∑
k=1

∣∣∣[E(Y )]k − [̂E(Y )]k

∣∣∣
120∑
k=1

|[E(Y )]k|

and

PE =

N∑
i=1

12∑
j=1

120∑
k=1

∣∣∣[E(Y |bi, bir)]k − [ ̂E(Y |bi, bir)]k
∣∣∣

N∑
i=1

12∑
j=1

120∑
k=1

|[E(Y |bi, bir)]k|
,

where [·]k is used to denote the kth element of the vectors E(Y ), Ê(Y ), E(Y |bi, bir)

and ̂E(Y |bi, bir). Proposed measures are normalized by the sum of the absolute devia-

tion of the true mean trajectory and the true subject-specific amplitudes, respectively.

Appendix C: MAP-ERP simulation without latency jitter

We ran additional simulations without latency variation, i.e. without variation in the

location of the peaks. The medians, 2.5th and 97.5th percentiles of the MEs and PEs

for MAP-ERP are given in Web Table 2.2. In addition, Web Figure 2.6 displays the

estimated fixed effects means and pointwise confidence intervals from the run with the

median ME value for varying sample size and SNR settings. Similar to the results from

simulations with latency jitter, PE of MAP-ERP consistently decreases with increasing

SNR across varying sample sizes. Unlike the previous simulations with latency jitter,
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where noise and latency effects roughly cancel each other at SNR=0.4, the estimated

mean trajectory lies above the true one consistently across all sample sizes at SNR=0.4

without latency jitter, since noise tends to inflate the amplitude estimates. This is due

to the inflation of the amplitude estimates at low SNR, in the meta-preprocessing

step which does not change with sample size. Therefore ME does not decrease with

increasing sample size. This is similar to the SNR=0.6 and 0.8 cases with latency

jitter, where ME does not decrease with sample size due to the dominating effects of

latency jitter dampening the estimated mean response trajectories. However as SNR

increases to 0.6 and 0.8 without latency jitter, the estimated mean trajectory gets

closer to the true one, and ME decreases with increasing sample size. Hence overall

results confirm that ME decreases with increasing SNR and sample size as expected

when latency effects are not present, dampening the mean amplitude estimates.
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Table 2.2: Median and (2.5th, 97.5th) percentiles of MAP-ERP simulation perfor-
mance metrics (ME and PE) without latency jitter for varying SNRs from 200 Monte
Carlo runs with sample sizes N = 20, 40, 80 and 160.

N SNR ME PE

0.4 .080 (.040, .144) .199 (.169, .247)
20 0.6 .035 (.017, .085) .132 (.114, .155)

0.8 .025 (.011, .063) .101 (.087, .118)

0.4 .080 (.047, .116) .198 (.174, .225)
40 0.6 .031 (.016, .061) .132 (.119, .148)

0.8 .019 (.007, .042) .101 (.091, .112)

0.4 .079 (.051, .110) .199 (.182, .221)
80 0.6 .027 (.014, .051) .133 (.123, .145)

0.8 .015 (.006, .035) .102 (.095, .110)

0.4 .079 (.056, .099) .199 (.187, .210)
160 0.6 .028 (.013, .044) .132 (.125, .140)

0.8 .014 (.006, .028) .101 (.096, .106)
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Figure 2.6: Estimated fixed effects mean trajectories along with 95% confidence inter-
vals corresponding to the median of the ME in simulations without latency jitter based
on MAP-ERP. Columns correspond to different signal-to-noise ratios (a) SNR=0.4, (b)
0.6 and (c) 0.8. Rows from top to bottom correspond to sample sizes N=20, 40, 80
and 160, respectively.
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CHAPTER 3

Robust Functional Clustering of ERP Trends

Across an Implicit Learning Paradigm in Autism

This chapter proposes a robust functional clustering (RFC) algorithm to identify sub-

groups within electroencephalography (EEG) data. This is a stand-alone paper taken

from a first author publication in Biostatistics that is currently in revision [14]. The

proposed RFC is an iterative algorithm based on functional principal component anal-

ysis (FPCA), where cluster membership is updated via predictions of the functional

trajectories obtained through a nonparametric random effects model. We consider

functional data resulting from event-related potential (ERP) waveforms represent-

ing EEG time-locked to stimuli over the course of an implicit learning experiment,

after applying the previously proposed meta-preprocessing step. The resulting func-

tional ERP components (peak amplitudes and latencies) following meta-preprocessing

inherently exhibit covariance heterogeneity due to low data quality over some stim-

uli inducing the averaging of different numbers of waveforms in sliding windows of

the meta-preprocessing step. The proposed RFC algorithm incorporates this known

covariance heterogeneity into the clustering algorithm, improving cluster quality, as

illustrated in the data application and extensive simulation studies. ASD is a het-

erogeneous syndrome and identifying subgroups within ASD children is of interest for

understanding the diverse nature of this complex disorder. Applications to the implicit

learning paradigm identify subgroups within ASD and TD children with diverse learn-

ing patterns over the course of the experiment, which may inform clinical stratification

of ASD.
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3.1 Introduction

Electroencephalography (EEG) is a noninvasive method for measuring spontaneous

electrical activity across brain regions over time. As a method to identify neural func-

tion and cognitive states, it has been studied in diverse biomedical settings including

epilepsy, sleep disorders, multiple sclerosis, brain tumors and lesions, major affective

disorder, schizophrenia, alcoholism and bipolar disorder ([1, 2]). Here we consider an

application to a study of visual implicit learning in young children with Autism Spec-

trum Disorders (ASD) [11]. ASD has a highly heterogeneous presentation, making it

difficult to tease apart underlying mechanistic pathways to core deficits. The goal of

this paper is to provide insights into those pathways through a better understanding

of implicit learning, defined as the detection of regular patterns in one’s environment

without a conscious awareness to learn. Age-matched 2 to 5 year old typically de-

veloping (TD) and ASD children were presented with a continuous sequence of six

colored shapes organized into three shape pairs (Figure 3.1(a)). Shapes within pairs

appeared in the same order but the pairs themselves occurred in random order. Tran-

sitions within a shape pair were labeled ‘expected’ since they could be learned and

transitions between shape pairs were ‘unexpected’ since they could not be predicted.

EEG signals, time locked to visual stimuli (e.g. presentation of colored shapes),

result in event-related potential (ERP) waveforms containing the P3 and N1 phasic

components shown in Figure 3.1(b). While the focus is on the P3 and N1 components

in this particular paradigm, other phasic components may be studied in different ap-

plications. The P3 peak of the ERP waveform is thought to be related to cognitive

processes such as signal matching, decision making and memory updating while the N1

dip represents early category recognition [11, 16]. Implicit learning is assessed through

differences in the amplitude (size of the peak) and latency (time when the peak occurs)

of the ERP components between the expected and unexpected conditions.

It is natural to seek inference about potential differences in ERP variation between

TD and ASD groups in the implicit learning paradigm [11]. However, ASD is a het-

erogeneous syndrome characterized by impairments in social communication and the
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Figure 3.1: (a) The sequence of shape pairs in the implicit learning paradigm. (b)
The ERP waveform containing the P3 and N1 phasic components from the implicit
learning study. (c) ERP waveform from a single subject, condition, electrode and trial
in the right frontal region of the scalp after preprocessing. (d) The average of the first
30 consecutive ERP waveforms for the same subject, electrode and condition.
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presence of restricted interests and repetitive behaviors [51]. Hence, in addition to con-

trasting learning patterns of TD and ASD groups, identifying subgroups within ASD

children with distinct learning patterns is also of interest for understanding the diverse

nature of this complex disorder. We therefore propose a robust functional clustering

(RFC) algorithm to more finely grain learning patterns within TD and ASD children.

A specific feature of our proposal is to make maximal use of the existing structural

information in ERPs induced by data quality to improve clustering accuracy even in

small samples.

Typical analysis of ERP data focus on summaries of key components, such as peak

amplitude and latency. Specifically, to increase the low signal-to-noise ratio in raw

ERP data, the waveforms resulting from repeated stimuli (referred to as trials) are

averaged for each subject so that the ERP components are identifiable. Hasenstab

et al. proposed a meta-preprocessing step for the analysis of ERP data, based on a

moving average, which increases the signal-to-noise ratio of the observed ERPs while

preserving changes in ERPs across trials [13]. Meta-preprocessing retains valuable

longitudinal information which is lost by the common practice of averaging ERP tra-

jectories across all trials. Capturing these trends is especially important in settings

such as our motivating example, where patterns of learning correspond by definition to

changes of ERP features across trials. We will build our proposed clustering algorithm

on the functional data produced by this novel meta-preprocessing step, consisting of

ERP components (e.g. P3 peak amplitude) obtained over trials (representing time) of

the experiment for each subject and condition (expected/unexpected).

An important issue with the meta-preprocessed functional ERP components is co-

variance heterogeneity. Trials resulting in low data quality are common in EEG studies,

especially in experiments involving young children. A standard approach is to remove

these trials in the data cleaning steps. The meta-preprocessing recovers information in

these low data quality trials by smoothing over them, leading to different numbers of

waveforms being averaged in the sliding windows, and hence to covariance heterogene-

ity in the functional data. We propose a robust functional clustering algorithm that

accounts for this known source of covariance heterogeneity in the trajectories, setting

42



it apart from previously proposed functional clustering algorithms.

Clustering or classification of functional data typically involves either regularization

or filtering. Regularization involves discretization of the time interval followed by the

application of standard multivariate clustering or classification methods. Because the

resulting data are high-dimensional and highly correlated, a regularization constraint

is typically applied to the covariance structure in model-based methods [52, 53, 54,

55, 56, 57, 58, 59]. Other model-based approaches include proposals by Luan and Li

(2003) [60] and James and Sugar (2003) [61] where special attention is given to sparse

and irregularly spaced functional data. Filtering methods work by projecting each

curve onto a finite-dimensional set of basis functions, such as B-splines or functional

principal components (FPCA), and then applying standard clustering or classification

algorithms to the resulting basis coefficients [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73]. Serban and Jiang extended filtering-based functional approaches to hierarchical

data structures using multilevel FPCA in the context of hard and soft clustering [74].

Multilevel functional data consisting of expression profiles from genes of immune cells

were considered.

Chiou and Li introduced another filtering method, k-centers functional clustering

(FC), based on FPCA to identify homogeneous clusters within the sample sharing

a cluster-specific mean function and a cluster-specific covariance surface [75, 76]. We

build on this approach to incorporate the known covariance heterogeneity in the meta-

preprocessed functional data induced by the data quality issues into the proposed clus-

tering algorithm. Our proposal assumes a common covariance structure within the TD

and ASD groups if data with acceptable quality were collected at all the trials. First

we identify induced covariance subsets within each diagnostic group with similar low

quality data patterns over time (trials of the ERP experiment). Fixing the covariance

subsets, trajectories are clustered according to the estimated mean trends where co-

variance subset and cluster memberships are allowed to differ. Mean trajectory and

covariance surface estimates are updated iteratively in a nonparametric fashion, where

cluster memberships are updated in a reclassification step based on a nonparametric

random effects model. The proposed RFC increases cluster accuracy by incorporating
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the known covariance heterogeneity into the functional clustering algorithm as illus-

trated in our data analysis and simulation studies. We further extend the proposed

RFC for multilevel functional data to be applicable to the meta-preprocessed ERP

components obtained from multiple electrodes on the scalp.

The remainder of the paper is organized as follows. Section 3.2 describes the clean-

ing and meta-preprocessing of ERP data in detail. Section 3.3 provides background

on FPCA and introduces the proposed RFC algorithm for single and multilevel func-

tional data. Section 3.4 applies the proposed RFC to the autism study and compares

the results to those obtained from alternative algorithms including FC of Chiou and

Li (2007) [75]. We study the performance of the proposed algorithm in extensive

simulations summarized in Section 3.5 and conclude with a brief discussion (Section

3.6).

3.2 Description of data cleaning and meta-preprocessing steps

and the resulting multilevel functional data

In the motivating study of implicit learning, EEG data were recorded for 120 trials per

condition (expected/unexpected) for each of the 34 TD and 37 ASD children at 128

electrodes. The EEG signals were sampled at 250Hz, producing 250 within-trial time

points per waveform, spanning 1000ms. Standard preprocessing steps included artifact

detection (of physiological noise that could obscure the signal such as blinks, saccades

or muscle contractions), bad channel replacement (a smoothing procedure performed

when signals from an individual scalp electrode are compromised), referencing (to

standardize measurements to an average of one across all the electrodes) and baseline

corrections (to standardize a subject’s measurements to their own baseline period).

Despite the standard preprocessing steps, the ERP data had a small signal-to-noise

ratio (SNR), making it difficult to identify components, such as peak amplitudes and

latency, on trial specific ERPs. Figure 3.1(c) displays a single ERP waveform for one

subject from a single trial recorded in the right frontal region of the scalp. The P3

peak and N1 dip are unrecognizable due to the low SNR. The meta-preprocessing step
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of Hasenstab et al. utilizes a moving average of ERPs across sliding trial windows to

increase the SNR in order to identify ERP components [13]. Figure 3.1(d) displays

an average of 30 ERP waveforms from adjacent trials, where the P3 peak and N1 dip

are easily recognized due to the increased SNR. Components of interest such as peak

amplitudes are extracted from these averaged ERP waveforms. For a detailed outline

of the meta-preprocessing step, readers are referred to Hasenstab et al. (2015) [13].

In addition to identifying the magnitudes of the key ERP components over trials,

the meta-preprocessing provides information on the variance of the extracted com-

ponents. EEG experiments involving young children tend to have larger amounts of

trials with low quality data due to head movements or lack of cooperation. Hence, the

number of ERPs averaged in the sliding windows of the meta-preprocessing step may

not be the same. This difference introduces a known form of covariance heterogeneity

in the ERP components. Components extracted from ERPs averaged over a smaller

number of trials will have larger variance. For illustration of the methods, we consider

P3 peak amplitude trajectories between the 5th and 60th trials of the experiment,

where implicit learning is thought to be maximal, and analyze data from the four

electrodes in the right frontal region of the scalp. The first four trials are excluded for

stability of the results. The focus will be on the P3 amplitude difference trajectories

between expected and unexpected conditions, resulting in multilevel functional data

(electrodes nested in subjects) on P3 amplitude differences and the number of aver-

aged ERPs. We first cluster the multilevel functional data on the number of averaged

ERPs to determine the induced covariance subsets, which are assumed to be known

in the proposed RFC algorithm outlined below. More details on this initial multilevel

functional clustering to determine the covariance subsets are deferred to Section 3.4.1.

3.3 Robust functional clustering (RFC)

Our work builds on the FC algorithm proposed by Chiou and Li (2007) [75]. The orig-

inal formulation of this clustering procedure assumes identical mean and covariance

cluster membership. In the analysis of ERP data, the assumption of within-cluster
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covariance homogeneity may not be warranted. More precisely, we aim to make use of

the covariance subset information, induced in the meta-preprocessing step due to data

quality issues. We consider nv covariance subsets, but we do not require subset mem-

bership to necessarily overlap with cluster membership in the proposed RFC which

clusters trajectories according to mean trends. Even though the covariance subsets

are assumed known, the covariance surfaces cannot be estimated with unknown clus-

ter membership of the functional trajectories. Hence the proposed algorithm involves

a nonparametric iterative mean and covariance update to estimate cluster structures.

These cluster structures are used for updating cluster membership of each functional

trajectory via predictions based on a nonparametric random effects model of the trun-

cated Karhunen-Loève expansions. We introduce basic principles in Section 3.3.1 and

outline the proposed algorithm in Section 3.3.2. Extensions to multilevel functional

data are given in Section 3.3.3.

3.3.1 Functional model

A common modeling strategy assumes the observed functional trajectory for subject

i, yi(t), to be a realization of a stochastic process Yi(t) where t ∈ T = [0, T ]. The

random function Yi(t) has mean µ(t) = E{Yi(t)} and covariance cov{Yi(s), Yi(t)} =

Σ(s, t) + σ2I(s = t), leading to the Karhunen-Loève (K-L) expansion, Yi(t) = µ(t) +
∞∑
k=1

ξikφk(t)+εi(t), where φk(t) are the eigenfunctions of Σ with corresponding eigenval-

ues λk and εi(t) is measurement error with mean zero and variance σ2. Eigenfunctions

are orthonormal and are assumed in non-increasing order (λ1 ≥ λ2 . . .) such that their

sum is finite
∑∞

k=1 λk <∞. The scores ξik =
∫
{Yi(t)−µ(t)}φk(t)dt are the projections

of the Yi(t)− µ(t) in the direction of the kth eigenfunction φk(t) and are uncorrelated

with E(ξik) = 0 and V ar(ξik) = λk.

To allow for granularity in the foregoing model, we allow subclusters within each

of the overarching clinical groups. Specifically, we assume that Yi(t) is sampled from a

mixture of stochastic processes, with cluster membership indexed by c ∈ {1, 2, . . . , C}.

To account for covariance heterogeneity, we allow for covariance subsetting, indexed

by v ∈ {1, 2, . . . , nv}, which may be different from cluster membership. Conditioning
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on cluster membership c and covariance subset v, means and covariances of the sub-

processes are given as E{Yi} = µ(c)(t), cov{Yi(s), Yi(t)} = Σ(v)(s, t) + σ2(v)I(s = t).

The measurement error ε
(v)
i (t) has mean zero and variance σ2(v) for covariance subset

v. We note that for full generality, measurement error can be allowed to change across

covariance subsets but in practice one will often contain it to be the same across v.

The mean functions of the subprocesses are only associated with the cluster mem-

bership c while the covariance terms are associated with both clusters and covariance

subsets since the mean function of cluster c is used in the estimation of both Σ(v)(s, t)

and σ2(v). The covariance terms are not indexed by c for ease of notation. It is

assumed that each subprocess has a K-L expansion with corresponding mean func-

tion µ(c)(t) and eigenvalues λ
(v)
k and corresponding eigenfunctions φ

(v)
k (t) such that

Σ(v)(s, t) =
∑

k λ
(v)
k φ

(v)
k (s)φ

(v)
k (t), s, t ∈ T and ξ

(c,v)
ik =

∫
{Yi(t)− µ(c)(t)}φ(v)

k (t)dt.

The updating of the cluster membership in the proposed RFC will utilize functional

predictions based on the nonparametric random effects model,

Y
(c,v)
i (t) = µ(c)(t) +

Kv∑
k=1

ξ
(c,v)
ik φ

(v)
k (t) + ε

(v)
i (t). (3.1)

Methods for selecting the number of components Kv in (3.1) include cross-validation

[77], Akaike’s Information Criterion [78], and percentage of variance explained [76,

79, 80]. We found that choosing components to explain 90% of the variation works

well in our applications. For a trajectory Yi(t) from covariance subset v, Y
(c,v)
i (t) in

(3.1) will be the truncated K-L expansion and hence will be a good approximation

of Yi(t) if Yi(t) actually belongs to cluster c, but may match poorly if the current

cluster assignment is incorrect. Hence, the cluster membership updating will compare

an observed curve for subject i, yi(tip) (p = 1, . . . , Ti), from covariance subset v to its

estimated predictions ŷ
(c,v)
i (tip) via (3.1) from each of the c = 1, . . . , C clusters and

assign cluster membership according to the criterion

c∗(yi) = arg min
c∈{1,...,C}

[
Ti∑
p=1

{
yi(tip)− ŷ(c,v)i (tip)

}2
]1/2

. (3.2)
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3.3.2 Single-level RFC

The mean functional trajectory is obtained by local linear smoothing; smooth covari-

ance surfaces are estimated via a two dimensional local least squares algorithm. To

eliminate the effects of measurement error, the diagonal elements of the raw covari-

ance matrix are removed before the two-dimensional smoothing step. A nonparametric

functional principal component analysis step will be employed on the smooth esti-

mate of the covariance surface by a standard discretization procedure to estimate the

eigenfunctions and eigenvalues. In order to guarantee that the covariance matrix is

non-negative definite, any eigenvalues with negative estimates and their corresponding

eigenfunctions are removed from the functional principal component decompositions

of the covariances. For explicit expressions of the estimated mean, eigenfunctions and

eigenvalues, denoted by µ̂(t), φ̂k(t) and λ̂k, respectively, as well as the covariance sur-

faces, readers are referred to Şentürk and Nguyen (2011) [81] and Şentürk et al. (2013)

[82]. Bandwidths for the smooths may be selected using cross-validatio or generalized

cross-validation (GCV) [77]. For a computationally efficient bandwidth choice in the

proposed smoothing procedures, we adopt the generalized cross-validation algorithm

of Liu and Muller (2008) [83].

For dense functional data, subject-specific scores can be estimated using projection,

ξ̂ik =
∫
{yi(t)− µ̂(t)} φ̂k(t)dt; for sparse data applications, the best linear unbiased

prediction (BLUP) of the scores has been proposed by Yao et al. (2005) [78]. Score

estimates obtained through BLUP for both single-level and multilevel functional data

are deferred to the online Supplementary Material. The estimates of the mean, eigen-

functions, eigenvalues and subject-specific scores for trajectories in covariance subset

v and cluster c, denoted by µ̂(c)(t), φ̂
(v)
k (t), λ̂

(v)
k and ξ̂

(c,v)
ik , respectively, are obtained

similarly based on trajectories in the specific subset and cluster in the iterative steps

of the RFC algorithm as outlined below.

An initial clustering is performed using the k-means algorithm applied to the esti-

mated subject-specific scores obtained via a FPCA model fitted to the entire sample.

Given a fixed number of clusters C, the k-means clustering is performed on the lead-

ing K scores where K is selected via percentage of variance explained. We denote
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the cluster assignment for subject i in iteration r of the algorithm by c
(r)
i and note

that covariance subset assignments do not change throughout the algorithm; only the

clusters are updated in each iteration. Given the initial clustering results, we esti-

mate predictions for the ith subject’s trajectory from all clusters. Specifically, in order

to arrive at the predictions, we first obtain estimates of the mean function µ̂
(c)
(−i)(t)

based on all trajectories assigned to cluster c while leaving out the ith subject’s tra-

jectory. Note that only the mean functions of the cluster containing subject i need

to be re-estimated. Next we obtain the mean centered trajectories of all subjects in

covariance subset v, which contains the ith subject trajectory. The eigenfunctions

of covariance subset v are estimated based on mean centered trajectories of the sub-

jects in the subset, leaving out the mean centered trajectory of the ith subject. Note

that eigenfunction estimates, denoted by φ̂
(v)
k(−i)(t), need to be estimated for only one

covariance subset, the subset that contains the ith subject’s trajectory. The last com-

ponent for the predictions are the scores, which can be estimated based on the leave-

one-out mean and eigenfunction estimates for c = 1, . . . , C, based on the estimated

projection ξ̂
(c,v)
ik =

∫
{yi(t) − µ̂

(c)
(−i)(t)}φ̂

(v)
k(−i)(t)dt for dense functional data. Using all

estimated components, we arrive at the predicted trajectory for subject i from cluster

c = 1, . . . , C as

ŷ
(c,v)
i (tip) = µ̂

(c)
(−i)(tip) +

Kv∑
k=1

ξ̂
(c,v)
ik φ̂

(v)
k(−i)(tip).

The ith subject’s trajectory is then reclassified into cluster c
(r+1)
i such that c

(r+1)
i =

arg min{c=1,...,C}[
∑Ti

p=1{yi(tip)− ŷ
(c,v)
i (tip)}2]1/2. Note that the sum above is taken over

all observation time points for subject i and that different weighting schemes can be

implemented if observation times in certain intervals are thought to be more informa-

tive than others in determining cluster membership.

The above steps are performed for all subject trajectories i = 1, . . . , n, resulting in

an updated set of cluster assignments {c(r+1)
i , i = 1, . . . , n} for the (r + 1)st iteration

of the algorithm. The iterative process continues until none of the cluster member-

ships change. The cluster and covariance subset components are re-estimated at each

iteration of the RFC algorithm; for sufficiently large samples sizes, one may ignore
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the leave-one-curve out procedure when calculating predictions ŷ
(c,v)
i (tip) in order to

significantly reduce computational time, assuming negligible bias. As with other clus-

tering algorithms, RFC requires the number of clusters (and covariance subsets) to be

known a priori . In our applications we set both the number of clusters and covariance

subsets to two due to limitations in sample size (there are n = 32 and 34 children in

the TD and ASD groups after removal of outliers). Readers are referred to Li and

Chiou (2011) [84] for an extensive discussion on methods for selecting the number of

clusters in the context of functional data.

Chiou and Li (2007) [75] discuss identifiability conditions for their FC algorithm

and show that the cluster eigenspaces cannot be subsets of each other, there cannot

be two identical cluster mean functions and that if a cluster mean function belongs

to its own cluster’s eigenspace, then another mean function cannot belong to that

same eigenspace. Note that unlike our proposed RFC, the FC algorithm of Chiou

and Li assumes all curves within a cluster have the same covariance and uses both

mean and covariance differences to identify clusters. In contrast, the proposed RFC

clusters functional trajectories only based on differences in mean trends, since cluster

and covariance subset memberships do not necessarily overlap. Hence identifiability

conditions for the proposed RFC include that 1) the cluster mean functions cannot be

the same and that 2) the cluster mean functions cannot lie in any covariance subset

eigenspace. Note that the identifiability of the covariance subsets (via the assumption

that eigenspaces cannot be subsets of each other) is no longer needed for RFC, since

the covariance subsets are assumed to be known a priori . However, while cluster mean

functions lying in their own eigenspaces is not a problem for FC, where FC cluster

and covariance subset memberships overlap, it poses an identifiability issue for RFC,

where memberships do not necessarily overlap. Since the first identifiability condition

is standard, we examine only the second condition through simulation studies (Section

3.5).
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3.3.3 Multilevel RFC

In this section we extend the RFC algorithm to multilevel functional data. Multi-

level functional data refers to functional data collected in a hierarchy of units such as

subject-specific ERP feature trajectories observed at multiple electrodes (subunits) on

the scalp. Let Yij(tijp) denote a functional response observed for subject i, on subunit

j at time point tijp, p = 1, . . . , Tij. Total functional variation in Yij(t), t ∈ T , can be

decomposed via functional analysis of variance (FANOVA) such that

Yij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t) + εij(t),

where µ(t) and ηj(t) are fixed functional effects that represent the overall mean func-

tion and subunit (e.g. electrode-specific) shifts, respectively, Zi(t) and Wij(t) are the

subject- and subunit-specific deviations, respectively, and εij(t) is measurement error

with mean zero and variance σ2 [79, 80]. The deviations Zi(t) and Wij(t) are assumed

to be uncorrelated mean zero stochastic processes. As with the K-L decompositions

for the single-level functional data, decomposition across both levels of variation re-

sults in Yij(t) = µ(t) + ηj(t) +
∑∞

k=1 ξikφ
(1)
k (t) +

∑∞
`=1 ζij`φ

(2)
` (t) + εij(t) where φ

(1)
k (t)

and φ
(2)
` (t) are level 1 and level 2 eigenfunctions, and ξik and ζijl are subject-specific

scores with mean zero and variance λ
(1)
k and λ

(2)
` , respectively [79, 80]. Note that

φ
(1)
k (t) and φ

(2)
` (t) may not be mutually orthogonal. The above formulation models

the dependency between subunit-specific trajectories within a subject, while still al-

lowing covariance surfaces within subunits to be different from covariance surfaces

across subunits. In this application we consider multilevel functional data from four

electrodes in the right frontal region of the scalp. However we note that more complex

FANOVA models can be developed with additional layers in the multilevel structure

(e.g. electrodes nested within multiple brain regions).

Similar to the single-level case, we assume that Yij(t) is sampled from a mixture

of subprocesses with cluster means and induced covariance subsets. Motivated by

similar low data quality patterns, and hence similar functional trajectories of number

of averaged ERPs from sliding windows across electrodes, covariances at both levels of
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the multilevel deviations are grouped in the same covariance subset. In addition, since

mean functions within subjects across electrodes are quite similar in our application,

cluster membership of different electrode trajectories within a subject are assumed to

be the same, where clusters are determined more based on the shapes of the overall

means µ(t). Hence, conditional on cluster c and covariance subset v, the means and

covariances of the subprocesses are given by

E{Yij(t)} = µ(c)(t) + η
(c)
j (t), cov{Yij(s), Yij′(t)} = Σ

(v)
B (s, t), j 6= j′,

(3.3)

cov{Yij(s), Yij(t)} = Σ
(v)
T (s, t) = Σ

(v)
B (s, t) + Σ

(v)
W (s, t) + σ2(v)I(s = t), (3.4)

where Σ
(v)
T (s, t) is the overall covariance function, Σ

(v)
B (s, t) and Σ

(v)
W (s, t) are the be-

tween and within subunit covariance functions, respectively, and σ2(v)I(s = t) repre-

sents the error variance on the diagonal of Σ
(v)
T (s, t). The between and within structures

may be decomposed further using their eigenvalues and eigenfunctions such that

Σ
(v)
B (s, t) =

∑
k

λ
(1,v)
k φ

(1,v)
k (s)φ

(1,v)
k (t)

Σ
(v)
W (s, t) =

∑
`

λ
(2,v)
` φ

(2,v)
` (s)φ

(2,v)
` (t).

The multilevel RFC adopts the same structure as the single-level algorithm. Since

we are interested in clustering individuals largely by subject-level (level 1) differences

and level 2 is mainly used to incorporate dependencies within subjects across elec-

trodes, initial clustering is performed by applying k-means to the estimated level 1

scores (ξik) based on the entire sample. Note that if the initial clusters are far from the

true clustering, this could adversely affect cluster quality and the RFC may converge

to a local optimum. Hence, robustness to initial clustering results should be studied

in applications. Cluster membership updates still utilize functional predictions based

on the estimated nonparametric truncated multilevel random effects model

ŷ
(c,v)
ij (tijp) = µ̂

(c)
(−i)(tijp) + η̂

(c)
j(−i)(tijp) +

Kv∑
k=1

ξ̂
(c,v)
ik φ̂

(1,v)
k(−i)(tijp) +

Lv∑
`=1

ζ̂
(c,v)
ijl φ̂

(2,v)
`(−i)(tijp), (3.5)
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where the (−i) notation denotes that the observed multilevel functional data for sub-

ject i has been left out while obtaining the estimates. In (3.5), Kv and Lv refer to the

number of eigen components selected for the between and within levels, respectively.

First and second level eigenfunctions in (3.5) are estimated based on subunit trajec-

tories within subjects in covariance subset v, centered by subtraction of their overall

mean µ̂
(c)
(−i)(t) and the subunit-specific mean deviation η̂

(c)
j(−i)(t) for subjects in cluster

c. First and second level subject-specific scores are estimated as projections similar to

the single-level case for dense functional data [79] and via BLUP estimates for sparse

cases [80], where explicit forms are provided in the Appendix. Given a set of observed

curves yij(tijp) and predicted curves ŷ
(c,v)
ij (tijp) for subject i, cluster membership is

assigned such that

c
(r+1)
i = arg min

c∈{1,...,C}

 J∑
j

 Tij∑
p=1

{
yij(tijp)− ŷ(c,v)ij (tijp)

}2

1/2
 .

In contrast to the single-level case, the above criterion also sums over J subunits within

a subject.

3.4 Application to the implicit learning study

We utilize the proposed multilevel RFC algorithm to cluster P3 amplitude differ-

ence trajectories within ASD and TD groups. Following the data cleaning and meta-

preprocessing steps, differences in amplitudes are computed for each trial between

expected and unexpected conditions; trials which do not have valid data for both

conditions are considered missing. To determine the covariance subsets, the number

of ERPs (from sliding windows in the moving average) are further averaged across

conditions, where the number of ERPs are observed to be quite similar for the two

conditions. Five subjects are removed as outliers prior to analysis. Two of the removed

subjects (one in each diagnostic group) did not have observed data until trial 20 of the

experiment, and the remaining three subjects had amplitude differences more than 2

standard deviations away from their respective group means for most of the trials.
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3.4.1 Determination of the covariance subsets

We begin by clustering the multilevel functional trajectories of the number of averaged

ERPs to determine the covariance subsetting. Covariance subsets are determined by a

k-means clustering of the level 1 scores in the multilevel FPCA decompositions. Due

to small sample sizes in both the TD and ASD groups (32 and 34 children in TD

and ASD groups, respectively), we explore two clusters and two covariance subsets

via RFC. The number of averaged ERPs from all 4 electrodes are plotted in Figures

3.2(a)-(b) for the two covariance subsets identified within the TD and ASD groups.

Lower numbers of averaged ERPs correspond to higher variance. The numbers of

averaged ERPs increase to their maximum value of 30 around trial 20 in the first

covariance subset. The separation between covariance subsets is larger in the ASD

group with respect to shapes and magnitudes of the trajectories due to lower numbers

of averaged ERPs, suggesting stronger covariance heterogeneity. The second covariance

subset within ASD has consistently low numbers of averaged ERPs across the first 60

trials. In contrast, the trajectories in the second covariance subset within TD are more

similar in shape to those in the first covariance subset but with smaller magnitudes.

These observations are consistent with the estimated covariance subset eigenfunctions

(Figures 3.2(c)-(d)) obtained after the estimation of the cluster means via RFC. The

estimated leading eigenfunction for the second covariance subset within TD shows that

much of the variability in the trajectories is observed at later trials, where the number

of averaged ERPs decrease. Nevertheless, the estimated leading eigenfunctions differ

more in the ASD group than the TD group. The major differences are in the earlier

trials, where the second covariance subset within the ASD subjects has lower numbers

of averaged ERPs.

3.4.2 New scientific insights gained from the RFC results

Estimated cluster means and 90% bootstrap bands obtained from the RFC algorithm

are shown in Figures 3.3(a)-(b) for the TD and ASD groups, respectively. Bandwidths

for the mean and covariance smooths are selected using generalized cross-validation and

visual assessment to maximize cluster quality, where selected bandwidths are 5 and 10

54



10 20 30 40 50 60
0

5

10

15

20

25

30

(a) TD

Trial (t)

#
 o

f 
E

R
P

s

 

 

v = 1
v = 2

10 20 30 40 50 60
0

5

10

15

20

25

30

(b) ASD

Trial (t)

#
 o

f 
E

R
P

s

 

 

v = 1
v = 2

10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

(c) TD

Trial (t)

φ(1
)

k
(t

)

 

 

v = 1, PC1
v = 1, PC2
v = 2, PC1
v = 2, PC2

10 20 30 40 50 60
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(d) ASD

Trial (t)

φ(1
)

k
(t

)

 

 

v = 1, PC1
v = 1, PC2
v = 2, PC1
v = 2, PC2

Figure 3.2: The number of averaged ERP trajectories from the two covariance subsets
for the TD (a) and ASD (b) children. Estimated eigenfunctions for the two covariance
subsets are given in plots (c) and (d) where the gray and black trajectories correspond
to the covariance subset index and the solid and dashed lines represent the first and
second principal components, respectively.
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for mean and covariance smoothing, respectively. The percentile confidence bands are

based on 200 bootstrap samples chosen with replacement from TD and ASD subject-

specific ERP data. The data cleaning and meta-preprocessing steps are applied to the

resampled ERP data followed by covariance subsetting and RFC clustering. Hence,

in addition to assessing the variability in the proposed RFC algorithm, the bootstrap

procedure also includes variability associated with the meta-preprocessing of the data

and sampling variation within the TD and ASD groups. While resulting confidence

intervals are wide, given the small sample sizes of our application, we note that the

shapes of the cluster mean trajectories are fairly preserved in the bootstrap bands.

Bootstrap clusters are mapped to the cluster means of the original sample such that

the distance between them is minimized. The percentage of times a subject is assigned

to their original mean cluster over the 200 bootstrap runs is averaged across all subjects

to be used as a measure of RFC cluster consistency. Despite the small sample size of

the groups, RFC clustering is found to be fairly consistent, its subjects in the bootstrap

sample being assigned their original clusters 76% and 77% of the time for the TD and

ASD groups, respectively. In addition to the plots of the estimated cluster means,

Figures 3.3(c)-(d) display the electrode-specific cluster means which are quite similar

within clusters, implying small within subject between-electrode variation. Hence, we

further display smoothed amplitude difference trajectories across electrodes within the

identified clusters in the top rows of Figures 3.4 and 3.5 for the TD and ASD groups,

respectively.

While interpreting the results, we review previous findings in the analysis of the

data from the implicit learning study and highlight new insights offered by the proposed

RFC. Hasenstab et al. were able to model longitudinal changes in the ERP components

via meta-preprocessing and used a weighted linear mixed effects model (LMM) to

analyze the meta-preprocessed data to study mean trends of P3 amplitude differences

between conditions in the TD and ASD groups [13]. Figure 3.3(e) shows the mean

condition differentiation (expected - unexpected condition) across trials for the TD

and ASD groups displayed with 90% bootstrap confidence bands. Both groups seem to

differentiate between the two conditions at similar speeds (peak differentiation around
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Figure 3.3: The estimated cluster mean functions obtained from RFC for the TD
(a) and ASD (b) groups along with 90% bootstrap confidence bands. The estimated
electrode-specific cluster mean functions are also plotted for the TD (c) and ASD
(d) groups. The estimated mean functions from the linear mixed effects model of
Hasenstab et al. (2015) overlaying 90% bootstrap bands are given in (e).
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Figure 3.4: The smoothed P3 amplitude difference trajectories across electrodes for
each algorithm (row) and cluster (column) within the TD group. The trajectories in
SFC and FC with different clustering assignment than the proposed RFC are given
dashed.
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Figure 3.5: The smoothed P3 amplitude difference trajectories across electrodes for
each algorithm (row) and cluster (column) within the ASD group. The trajectories in
SFC and FC with different clustering assignment than the proposed RFC are given
dashed.
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trial 30), implying implicit learning is taking place. Furthermore, the differentiation is

in opposite directions; while the ASD group has a positive mean condition difference,

the TD group has a negative mean. Even though only the positive mean of the ASD

group was found significant between trials 30 and 40 based on the bootstrap confidence

bands, group differences are found to be reliably significant between trials 20 and 50

(not displayed) implying different patterns of discrimination between the two groups.

While the LMM modeling of the meta-preprocessed data provides novel insights on

a new longitudinal dimension that is typically lost in analysis of ERP data, leading to

interpretable group differences over trials with respect to patterns of implicit learning,

this approach centers around only the mean trends and does not provide insights into

the possible diversity of learning patterns within groups. Figures 3.3(a)-(b) show the

mean condition differentiation of two diverse clusters of children identified within the

TD and ASD groups, overlaid with their respective 90% bootstrap confidence bands.

The TD group contains two clusters with roughly equal numbers of children showing

condition differentiation in opposing positive and negative directions, while the ASD

group comprises of a subgroup of children (n=24) with a flat mean condition differ-

entiation and another subgroup (n=10) with a positive mean differentiation pattern.

While the average pattern over the two subgroups within the TD and ASD groups

are consistent with the findings of Hasenstab et al. (2015) [13], with a negative over-

all mean differentiation pattern for TD and a positive overall mean pattern for ASD,

they identify diverse subgroups within each diagnostic group, implying that not all

TD and ASD children display opposing trends of condition differentiation. In fact,

most children in the ASD group are in the cluster with a flat differentiation pattern

indicating little or no implicit learning, while others differentiate positively between

the conditions, similar to roughly half of the TD children. RFC analysis shows that

the negative differentiation pattern of half of the TD children is not shared by children

with ASD. These findings provide novel insights into the diversity of implicit learning

patterns within each group, while also enable comparisons across groups.
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3.4.3 Comparison of clustering results

The RFC clustering results are further compared to clusters obtained via a simpler

version of the algorithm that assumes a single covariance subset (referred to as the

single subset functional clustering (SFC)) and a multilevel extension of the FC algo-

rithm of Chiou and Li (2007) [75]. Smoothed amplitude difference trajectories across

electrodes from all clustering algorithms are also displayed in Figures 3.4 and 3.5. For

the TD group, SFC yields similar clustering results to RFC with a few differences in

cluster assignments and an equal subject split across clusters. In contrast, the SFC

results are quite different than RFC for the ASD group, allocating several of the sub-

jects from the cluster with the flat mean to the cluster with the positive mean. This

is consistent with the prior observations where trajectories of the number of averaged

ERPs and estimated eigenfunctions confirm that the ASD group displays higher co-

variance heterogeneity than the TD group, which makes the single covariance subset

assumption of SFC harder to justify. The clustering results from FC are different from

those obtained from RFC in both the TD and ASD groups. For the TD group, FC

assigns subjects from the cluster with the negative mean to the cluster with the posi-

tive mean. For the ASD group, FC assigns almost half of the subjects from the cluster

with the flat mean to the cluster with the positive mean. The FC algorithm clusters

subject trajectories according to both the mean and covariance trends. Hence due to

the covariance heterogeneity in the TD and ASD groups, FC is unable to robustly

identify clusters according to differences in the mean trends.

We also compare the three clustering algorithms according to a multilevel extension

of the Davies-Bouldin Index (DBI) [85]. The DBI is an internal cluster evaluation met-

ric that assesses within cluster variation and between cluster separation, where smaller

DBI values correspond to better clustering results and greater cluster separation. De-

fine Sc = (1/NcJ)
∑Nc

i=1

∑J
j=1 [

∑Tij
p=1{y

(c,v)
ij (tijp) − µ(c)(tijp) − η

(c)
j (tijp)}2]1/2 to be a

measure of within cluster variation for mean cluster c where Nc represents the number

of subjects in cluster c. Further define Mc,c′ =
∑J

j=1(
∑Tij

p=1[{µ(c)(tijp) + η
(c)
j (tijp)} −

{µ(c′)(tijp) + η
(c′)
j (tijp)}]2)1/2 to be a measure of separation between two clusters c and

c′. The DBI is then defined to be (1/nc)
∑nc

c=1 max
c6=c′
{(Sc + Sc′)/Mc,c′}, c′ = 1, . . . , C,
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where the definition reduces to (Sc + Sc′)/Mc,c′ when C = 2. The DBI values for

(RFC, SFC, FC) are (2.16, 2.44, 2.53) in the TD group and (2.65, 3.47, 3.90) in the

ASD group, respectively. Hence RFC achieves a better cluster separation over the

other two algorithms and differences in the DBI values are greater in the ASD group.

Performance of the three clustering algorithms are further compared via simulations

(Section 3.5).

3.5 Simulation studies

We study the performance of the proposed RFC compared to FC and SFC, and study

the performance of the algorithm under the second non-identifiability condition out-

lined in Section 3.3.2 that the cluster mean functions lie in the same or different co-

variance subset eigenspaces. We summarize the findings in this section and defer the

simulation details to the online Supplementary Material. We conducted simulations

under five scenarios. The first two cases correspond to the second non-identifiability

condition with cluster mean functions lying in the eigenspace of the same covariance

subset (case 1) and different covariance subsets (case 2). The cluster and covariance

subset memberships are not assumed to be identical. The last three simulation sce-

narios correspond to the assumptions of RFC, SFC and FC, respectively: that the

cluster and covariance subset memberships are not identical (case 3); that there is

a single covariance subset for the entire sample (case 4); and cluster and covariance

subset membership are set to be the same (case 5). All three algorithms perform

poorly in the first two simulation cases of non-identifiability conditions, since the clus-

ter means lying in the eigenspace of the covariance subsets is also a non-identifiable

case for SFC and FC with non-overlapping cluster and covariance subset memberships.

RFC outperforms SFC and FC in the third simulation case, improving cluster quality

by incorporating the known covariance heterogeneity into the clustering of the mean

trends. When the covariance groups are highly similar (simulation case 4), all three

algorithms perform equally well as expected. In case (5), RFC is almost as effective in

finding clusters as FC, where cluster and covariance subset membership overlap. As

in case (3), SFC is unable to recover clusters under the multiple covariance subsets of
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case (5).

3.6 Discussion

We proposed a robust functional clustering algorithm to identify subgroups within

ERP data. The proposed algorithm is tailored to account for known covariance het-

erogeneity in the sample and is applicable to multilevel functional data. The proposed

clustering utilizes the longitudinal patterns over the course of the ERP experiment,

which are typically lost in the standard practice of averaging ERPs over all trials and

leads to novel insights into the diversity of implicit learning patterns within and across

ASD and TD children. Note that the proposed RFC algorithm relies on consistent es-

timation of the cluster and covariance subset components such as the mean functions,

covariance surfaces, eigenfunctions and eigenscores. Even though asymptotic consis-

tency has been established for the proposed estimators (with increasing sample size),

finite sample performance of these estimators may affect the performance of the RFC.

Another issue is the consistency of the cluster and covariance subset components based

on observations from estimated clusters. Almost sure convergence of cluster means for

the classical k-means clustering algorithm was established by Pollard (1981) [86] for

multivariate data. Chiou and Li (2007) [75] point out that owing to the complexity of

convergence and slower convergence rates for estimating cluster means and covariance

subset eigenfunctions in functional data, consistency results for the FC need develop-

ment of further technical results. Similarly, consistency of the RFC requires further

research.

Chapter 3 Appendices

Appendix A: Description of single level and multilevel BLUP score calcu-

lations

In this section we provide explicit formulas for the BLUP eigenscore estimators for

single and multilevel sparse functional data. The single-level FPCA model can be con-
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sidered a linear mixed effects model with fixed effects mean µ(c)(t) and random effects

ξ
(c,v)
ik . Random effects model matrices are the eigenfunctions corresponding to the ran-

dom effects scores. Under this framework, scores may be estimated using their best

linear unbiased predictions based on the conditional expectation of the scores given

the data. Let yip = yi(tip), p = 1, . . . , Ti denote an observation on the ith subject at

time tip and let yi = (yi1, . . . , yiTi)
T denote the Ti×1 observation vector across all time

points. Further let µ̂
(c)
i = {µ̂(c)(ti1), . . . , µ̂

(c)(tiTi)}T , Φ̂
(v)

i denote the Ti × Kv matrix

of estimated eigenfunctions whose kth column is the vector {φ̂(v)
k (ti1), . . . , φ̂

(v)
k (tiTi)}T

and let Λ̂
(v)

denote the Kv×Kv diagonal matrix Λ̂
(v)

= diag(λ̂
(v)
1 , . . . , λ̂

(v)
Kv

). Then the

Kv × 1 estimator vector for the single-level functional principal component scores are

given by

ξ̂
(c,v)

i = Λ̂
(v)

Φ̂
(v)

i

T (
Σ̂

(v)

i + σ̂2
(v)
ITi×Ti

)−1
(yi − µ̂

(c)
i ),

where Σ̂
(v)

i = Φ̂
(v)

i Λ̂
(v)

Φ̂
(v)

i

T

and ITi×Ti denotes the Ti × Ti identity matrix. When

estimating the BLUP eigenscore estimates in the leave-one-out procedure of the RFC

algorithm, µ̂
(c)
i , Φ̂

(v)

i and Λ̂(v) are replaced with µ̂
(c)
(−i), Φ̂

(v)

(−i) and Λ̂
(v)
(−i).

For the multilevel extension, let yijp = yij(tijp), p = 1, . . . , Tij denote an observation

on the ith subject and the jth subunit at time tijp and let yi = {yi11, . . . , yi1Ti1 , . . . , yiJ1,

. . . , yiJTiJ}T denote the be a (
∑

j Tij) × 1 observation vector across all time points.

Further let µ̂
(c)
i = {µ̂(c)(ti11), . . ., µ̂

(c)(ti1Ti1), . . ., µ̂
(c)(tiJ1), . . . , µ̂

(c)(tiJTiJ )}T , η̂
(c)
j =

{η̂(c)1 (ti11), . . . , η̂
(c)
1 (ti1Ti1), . . ., η̂

(c)
J (tiJ1), . . ., η̂

(c)
J (tiJTiJ )}T , Φ̂

(1,v)

ij denote the Tij × Kv

matrix of estimated level 1 eigenfunctions with kth column equal to {φ̂(1,v)
k (tij1), . . . ,

φ̂
(1,v)
k (tijTij)}T . Similarly let Φ̂

(2,v)

ij denote the Tij × Lv matrix of estimated level 2

eigenfunctions with `th column equal to {φ̂(2,v)
` (tij1), . . . , φ̂

(2,v)
` (tijTij)}T . The Kv × 1

level 1 and LvJ × 1 level 2 estimator vectors are then given by

ξ̂
(c,v)

i = D̂
(v)

i,ξ

(
Σ̂

(v)

T,i

)−1
(yi − µ̂

(c)
i − η̂

(c)
i ),

ζ̂
(c,v)

i = D̂
(v)

i,ζ

(
Σ̂

(v)

T,i

)−1
(yi − µ̂

(c)
i − η̂

(c)
i ),
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where

D̂
(v)

i,ξ = {Λ̂
(1,v)

Φ̂
(1,v)

i1

T

, . . . , Λ̂
(1,v)

Φ̂
(1,v)

iJ

T

},

D̂
(v)

i,ζ = {Λ̂
(2,v)

Φ̂
(2,v)

i1

T

, . . . , Λ̂
(2,v)

Φ̂
(2,v)

iJ

T

},

and Σ̂
(v)

T,i denotes the estimated (
∑

j Tij)× (
∑

j Tij) block covariance matrix with the

(j, j′) block equal to Φ̂
(1,v)

ij Λ̂
(1,v)

Φ̂
(1,v)

ij

T

+ Φ̂
(2,v)

ij Λ̂
(2,v)

Φ̂
(2,v)

ij

T

+ σ̂2
(v)
ITij×Tij when j = j′

and Φ̂
(1,v)

ij Λ̂
(1,v)

Φ̂
(1,v)

ij

T

when j 6= j′.

Appendix B: Simulation studies

The goals of the simulations are to study the performance of the proposed RFC com-

pared to FC and SFC, and to study the performance of the algorithm under the second

non-identifiability condition outlined in Section 3.3.2 that the cluster mean functions

lie in the same or different covariance subset eigenspaces. As in the data applications,

we consider two clusters and covariance subsets with a total sample size of 35 subjects

and J = 4 subunits. Response trajectories y
(c,v)
ij (t) for cluster c and covariance group

v are generated using the random effects model

y
(c,v)
ij (t) = µ(c)(t) +

Kv∑
k=1

ξ
(c,v)
ik φ

(1,v)
k (t) +

Lv∑
`=1

ζ
(c,v)
ijl φ

(2,v)
` (t) + ε

(v)
ij (t),

where subunit-specific mean functions η
(c)
j (t) are taken to be zero for simplicity. The

number of eigen components are taken to be two at both levels (Kv = Lv = 2)

where eigenscores ξ
(c,v)
ik and ζ

(c,v)
ijl are independently sampled from N(0, λ

(1,v)
k ) and

N(0, λ
(2,v)
` ), respectively. The measurement error ε

(v)
ij (t) is sampled from N(0, σ2(v))

and observation times t are regular and equally spaced in the interval T = [0, 1] with

Tij = 40. The eigenvalues and error variance are selected as λ(1,1) = (500, 200)/d,

λ
(2,1)
1 = (250, 100)/d, λ(1,2) = (700, 300)/d, λ(2,2) = (500, 250)/d, σ2(1) = 10/d, σ2(2) =

50/d with the divisor d chosen specifically for the particular simulation case considered.

The means and eigenfunctions used are defined as follows: µ(1)(t) = 2 exp{−10(t −

0.3)2}+exp{−1(t−0.75)2}−1.5, µ(2)(t) = −3 exp{−10(t−0.35)2}−exp{(t−0.5)2}+2,
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φ
(1,1)
1 (t) =

√
2 sin(πt), φ

(1,1)
2 (t) =

√
2 cos(πt), φ

(2,1)
1 (t) = 1t, φ

(2,1)
2 (t) =

√
3(2t − 1),

φ
(1,2)
1 (t) =

√
2 sin(2πt), φ

(1,2)
2 (t) =

√
2 cos(2πt), φ

(2,2)
1 (t) =

√
5(6t2 − 6t+ 1), φ

(2,2)
2 (t) =

√
7(20t3 − 30t2 + 12t− 1).

We study the performance of the RFC under five simulation scenarios. The first

two cases correspond to the second non-identifiability condition with cluster mean

functions lying in the eigenspace of the same covariance subset (case 1) and different

covariance subsets (case 2). The cluster and covariance subset memberships are not

assumed to be identical. We set µ(1)(t) = 1.2φ
(1,2)
1 (t) and µ(2)(t) = −µ(1)(t) for case 1

and µ(1)(t) = 1.2φ
(1,1)
1 (t) and µ(2)(t) = 1.2φ

(1,2)
1 (t) for case 2. The last three simulation

scenarios correspond to the assumptions of RFC, SFC and FC, respectively: that the

cluster and covariance subset memberships are not identical (case 3); that there is

a single covariance subset for the entire sample (case 4); and cluster and covariance

subset membership are set to be the same (case 5). In the first three cases, cluster and

covariance subset memberships are sampled independently with equal probability. For

case 4, we utilize the model components from v = 2 for the common covariance subset

and set the covariance scale d to 700 (d is taken to be 2000 for the other four cases

which leads to comparable SNR in the entire sample across simulation scenarios).

Performance of the clustering algorithms is evaluated using two common measures

of cluster quality, the correct classification rate (CR) and the Rand index (RI). The

correct classification rate measures the proportion of subjects correctly classified in

reference to the true external clustering. CR is defined as the maximum proportion

of correctly classified subjects among all cluster label correspondences between the

current cluster output and the true external cluster reference. The second measure,

RI, quantifies the similarity between two clustering results by accounting for pairings

of subjects assigned to the same cluster or different clusters [87]. Specifically, let f and

g represent two different clusterings and let fi and gi represent the cluster memberships

of the ith subject in these two clusterings, respectively. The RI is defined as

RI(f, g) =
∑
i<k

{I(fi = fk, gi = gk) + I(fi 6= fk, gi 6= gk)}/
(
n

2

)
, i, k = 1, . . . , n,

66



where I denotes the indicator function and the index counts the subject pairings

(e.g. for subjects i and k) that are assigned to the same or different clusters in both

clusterings f and g. Larger CR and RI values correspond to higher cluster quality.

The means and percentiles of the CR and RI values from 200 Monte Carlo runs for

the RFC, SFC and FC algorithms under the five simulation cases are given in Table

3.1. We also plot the medians of the cluster mean estimates across the 200 Monte

Carlo runs along with the true cluster means in Figure 3.6 for different algorithms

and simulation cases. The bandwidths of 0.05 and 0.15 for the mean and covariance

smooths are selected using generalized cross-validation in a preliminary simulation

study and are set at the selected values for the 200 Monte Carlo runs. All three algo-

rithms perform poorly in the first two simulation cases of non-identifiability conditions

(Figures 3.6(a)-(b)), since the cluster means lying in the eigenspace of the covariance

subsets is also a non-identifiable case for SFC and FC with non-overlapping cluster

and covariance subset memberships. RFC outperforms SFC and FC in the third sim-

ulation case (Figure 3.6(c)), improving cluster quality by incorporating the known

covariance heterogeneity into the clustering of the mean trends. When the covariance

groups are highly similar (simulation case 4), all three algorithms perform equally well

as expected (Figure 3.6(d)). In case (5), RFC is almost as effective in finding clusters

as FC, where cluster and covariance subset membership overlap. As in case (3), SFC

is unable to recover clusters under the multiple covariance subsets of case (5) (Figure

3.6(e)). Due to the small sample size, all three algorithms perform poorly occasionally,

as reflected in the lower CR and RI values for the 5th percentile.
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Table 3.1: The correct classification rate (CR) and the Rand index (RI) means, medi-
ans and (5th, 95th) percentiles for the RFC, SFC and FC algorithms over 200 Monte
Carlo runs. While the first two simulation cases correspond to the non-identifiability
conditions, the last three correspond to the assumptions of RFC, SFC and FC algo-
rithms, respectively.

RFC SFC FC
Mean Percentile Mean Percentile Mean Percentile

Case 1 CR 0.79 0.80 (0.54, 0.97) 0.84 0.86 (0.59, 1.00) 0.59 0.56 (0.51, 0.84)
RI 0.69 0.67 (0.49, 0.94) 0.75 0.75 (0.50, 1.00) 0.52 0.49 (0.49, 0.73)

Case 2 CR 0.78 0.80 (0.51, 1.00) 0.62 0.60 (0.51, 0.89) 0.58 0.57 (0.51, 0.69)
RI 0.71 0.67 (0.49, 1.00) 0.54 0.51 (0.49, 0.79) 0.51 0.50 (0.49, 0.56)

Case 3 CR 0.90 1.00 (0.54, 1.00) 0.76 0.74 (0.51, 1.00) 0.58 0.57 (0.51, 0.81)
RI 0.87 1.00 (0.49, 1.00) 0.67 0.61 (0.49, 1.00) 0.52 0.50 (0.49, 0.69)

Case 4 CR 0.93 1.00 (0.56, 1.00) 0.96 1.00 (0.57, 1.00) 0.97 1.00 (0.69, 1.00)
RI 0.90 1.00 (0.49, 1.00) 0.95 1.00 (0.50, 1.00) 0.96 1.00 (0.56, 1.00)

Case 5 CR 0.98 1.00 (0.86, 1.00) 0.77 0.77 (0.54, 0.97) 0.99 1.00 (0.97, 1.00)
RI 0.97 1.00 (0.75, 1.00) 0.66 0.64 (0.49, 0.94) 0.99 1.00 (0.94, 1.00)
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Figure 3.6: The estimated cluster mean functions for the RFC, SFC and FC algorithms
over 200 Monte Carlo runs overlaying the true cluster mean functions.
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CHAPTER 4

A Multi-Dimensional Functional Principal

Components Analysis of EEG Data

Thus far, the proposed MAP-ERP and RFC methods have concentrated on the longi-

tudinal and spatial dimensions of the ERP data. However, these methods only focus

on a single measure of the ERP, the P3 magnitude, failing to incorporate information

on the functional behavior of the observed ERP. This chapter proposes multidimen-

sional functional principal components analysis (MD-FPCA), a two-stage approach for

incorporating information from all three dimensions of the ERP. In addition to the

longitudinal dimension of trials and spatial dimension of electrodes, as in Chapters 2

and 3, ERP measures on the entire P3 peak are included in the analysis. The proposed

method is generalized to structures containing any repeatedly observed multilevel func-

tional data. This chapter is a work in progress and will eventually be submitted for

publication.

4.1 Introduction

The ubiquity of personalized mobile devices and advances in biomedical technologies

have recently provided the scientific community with a plethora of unique and chal-

lenging data structures containing densely and continuously recorded data observed

spatially across several hierarchical geographies. These advances have resulted in the

rapid development of functional data analysis methods to temporally and spatially an-

alyze trends hidden within these data. The majority of functional methods in practice

are implemented on longitudinal data structures containing information on individual

outcomes observed across time or other functional measures [88]. Yao et al. (2005)
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[78] proposed PACE, a functional principal components analysis (FPCA) analysis ap-

proach for analyzing functional data in the presence of data sparsity. Although these

methods are useful for examining complex functional trends, they are inappropriate

for data structures containing correlated functional curves. Presently, much of the

functional data collected contains a multilevel structure, where multiple functional

observations are collected on the same individual. Di et al. (2009, 2014) [79, 80] pro-

posed multilevel FPCA, a method designed to analyze between- and within-repetition

variability within multilevel functional data under dense and sparse designs. Other

methods for modeling dependent functional data with a hierarchical structure have

been proposed by Morris et al. (2003), Morris and Carroll (2006) and Crainiceanu et

al. (2009) [89, 90, 91]. Greven et al. (2010) [92] introduced a method for modeling

longitudinally observed functional data, similar to the ERP data structure observed

at each electrode. In addition, Muller and Chen (2012) [93] proposed double FPCA,

a two-stage approach for analyzing entire functional curves observed longitudinally

across another functional metric. We propose to extend the double FPCA method of

Muller and Chen (2012) [93] to multilevel functional data using the multilevel FPCA

decompositions of Di et al. (2009, 2014) [79, 80] in order to summarize and analyze

information across the functional, longitudinal and spatial dimensions of event-related

potentials (ERP) data.

Appropriate data for the proposed MD-FPCA method will contain a multilevel

component by which data is observed at discrete, not necessarily smooth, units. The

spatial electrode distribution of the ERP data is an example of this multilevel com-

ponent. Note that we do not consider changes in electrical potential across the entire

electrode netting to be smooth due to the low spatial resolution of ERP data. Fur-

thermore, data is observed across dual temporal dimensions at each of these spatial

units producing both functional and longitudinal measurements. The distinction be-

tween the terms ‘functional’ and ‘longitudinal’ are made based on study design and

scientific meaning. Functions that are observed repeatedly across another temporal

axis create longitudinal observations of each functional curve (e.g., entire ERP curves

observed across several stimuli). The functional and longitudinal components of the

71



repeated multilevel functional data are assumed to evolve smoothly across their re-

spective axes at each spatial site. Spatial effects are considered discrete repetitions

of each functional, longitudinal set and are included as random effects, as in previous

chapters.

The proposed MD-FPCA method is a two-stage approach that decomposes total

variation into variation between and within functional repetitions across each level of

the multilevel structure. The first stage of the two-stage procedure models the multi-

level functional component of the data at each longitudinal repetition using multilevel

FPCA. The resulting principal components scores are then observed as a function of

longitudinal time and modeled using single-level FPCA. Given a set of ERP curves,

Xij(t|s), from the ith subject observed over functional time t (ERP time) at longitudi-

nal time s (stimulus repetition) and electrode j, decompositions are performed using

a two-stage Karhunen-Loève expansion,

Xij(t|s) = µ(t|s) + ηj(t|s) +
∞∑
k=1

ξik(s)φ
(1)
k (t|s) +

∞∑
p=1

ζijp(s)φ
(2)
p (t|s) (4.1)

= µ(t|s) + ηj(t|s) +
∞∑
k=1

∞∑
k′=1

ξ′ikk′ψ
(1)
kk′(s)φ

(1)
k (t|s) +

∞∑
p=1

∞∑
p′=1

ζ ′ijpp′ψ
(2)
pp′(s)φ

(2)
p (t|s) (4.2)

= µ(t|s) + ηj(t|s) +
∞∑
k=1

∞∑
k′=1

ξ′ikk′ϕ
(1)
kk′(t, s) +

∞∑
p=1

∞∑
p′=1

ζ ′ijpp′ϕ
(2)
pp′(t, s). (4.3)

Model terms µ(t|s) and ηj(t|s) are the overall and subunit-specific mean surfaces,

respectively. Terms φ
(1)
k (t|s) and φ

(2)
p (t|s) are the kth and pth eigenfunctions of the

level 1 and level 2 decompositions, respectively, resulting from the multilevel FPCA

at each longitudinal time s across functional time t with corresponding eigenscores

ξik(s) and ζijp(s). Model terms ψ
(1)
kk′(s) and ψ

(2)
pp′(s) are the eigenfunctions from per-

forming FPCA on the stage one functional eigenscores. The product of the stage

one and stage two eigenfunctions representing the modes of variation between and

within functional repetitions produces eigensurfaces ϕ
(1)
kk′(t, s) = ψ

(1)
kk′(s)φ

(1)
k (t|s) and

ϕ
(2)
pp′(t, s) = ψ

(2)
pp′(s)φ

(2)
p (t|s) of the overall repeated multilevel functional process. Stage

two scores ξ′ikk′ and ζ ′ijpp′ are interpreted as projections of the data onto the com-

plete eigenspace spanning both temporal dimensions across each level of the multilevel

structure. These scores may be utilized for exploratory purposes such as clustering
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and regression. Note that the axes of t and s are defined as temporal metrics, however,

other measures can be used in place of time provided that functions defined along these

axes are intrinsically smooth.

The use of a two-stage approach has major advantages, analogous to the advan-

tages discussed in Muller and Chen (2012) [93]. The proposed MD-FPCA method

provides a low dimensional representation of complex data spanning three dimensions

with computational efficiency. Estimates of the overall eigensurface are produced us-

ing several two-dimensional smooths across both temporal dimensions. In contrast,

estimates of the overall eigensurface may also be obtained by doing a formal multilevel

FPCA decomposition across both temporal dimensions in a single stage using a four-

dimensional smooth. However, this would be computationally expensive, processing

the high dimensional data structure much slower than the two-stage approach. More-

over, the four-dimensional smooth requires large amounts of data for each functional-

longitudinal time pair, thus falling victim to the curse of dimensionality. Sparsity in

the data may create instability in the estimates if this approach is selected. In ad-

dition, the two-stage decomposition of the total variation of the repeated multilevel

functional data into the variation within and between functional repetitions provides

another vehicle for interpretation. This multiplicative decomposition is important

when the functional and longitudinal domains have inherently different meanings and

interpretations as in the ERP from the implicit learning paradigm.

The main goal of this chapter is to propose a method that will take advantage of

the information provided in the functional, longitudinal and spatial dimensions of ERP

data. The MD-FPCA approach is applied to the ERP data of the implicit learning

paradigm and is shown to supply additional information on the behavior of ERP

components throughout the course of the experiment. This chapter is organized into

the following sections. Section 4.2 describes the proposed MD-FPCA method in detail,

including estimation and interpretation of its components. Section 4.3 applies the

proposed MD-FPCA approach to the implicit learning paradigm and gives a thorough

discussion of results. Simulations are conducted to assess the performance of the

proposed MD-FPCA in estimating model components in Section 4.4. This is followed
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by a discussion of future directions in Section 4.5.

4.2 Multidimensional Functional Principal Components

Analysis (MD-FPCA)

The MD-FPCA model is an extension of the double FPCA model of Muller and Chen

(2012) [93] to multilevel functional data using multilevel FPCA approaches proposed

by Di et al. (2009, 2014) [79, 80] described in Chapter 3. The multilevel extension

allows for the incorporation of hierarchical units of functional data, such as the spa-

tial dimension of the ERP from the implicit learning paradigm, into the modeling

of repeated functional data. The MD-FPCA model and the estimation of its model

components are introduced in Sections 4.2.1 and 4.2.2, respectively. In addition, in-

terpretation of the MD-FPCA model components are included in Section 4.2.3.

4.2.1 MD-FPCA Model

Consider a squared integrable random function Xij(t|s) observed across continuous

time t at longitudinal time s, subunit j and subject i, t ∈ T , s ∈ S, j = 1, . . . , J ,

i = 1, . . . , n with covariance function ΣT (t, t′|s). Similar to Chapter 3, functionXij(t|s)

may be decomposed using a multilevel random effects model at each longitudinal time

s,

Xij(t|s) = µ(t|s) + ηj(t|s) + Zi(t|s) +Wij(t|s) + εij(t|s),

where µ(t|s) are fixed functional effects that represent the overall mean function and

subunit-specific shifts, respectively, Zi(t|s) and Wij(t) are the random subject- and

subunit-specific deviations, respectively, and εij(t|s) is measurement error with mean

zero and variance σ2 [79, 80]. Assuming the subunit-specific deviations Zi(t|s) and

Wij(t|s) are uncorrelated mean zero stochastic processes, a multilevel FPCA decompo-

sition using Karhunen-Loève expansions at each level of covariation may be performed
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at each longitudinal time s,

Xij(t|s) = µ(t|s) + ηj(t|s) +
∞∑
k=1

ξik(s)φ
(1)
k (t|s) +

∞∑
p=1

ζijp(s)φ
(2)
p (t|s) + εij(t|s), (4.4)

where ξik(s) and ζijp(s) are the level 1 and level 2 eigenscores, respectively, and

φ
(1)
k (t|s) and φ

(2)
p (t|s) are the level 1 and level 2 eigenfunctions, respectively. The

level 1 and level 2 scores of the first-stage decomposition are considered mean zero

stochastic processes defined across longitudinal time s with var{ξik(s)} = λ
(1)
k (s) and

var{ζijp(s)} = λ
(2)
p (s). Subsequently, a second set of Karhunen-Loève expansions are

performed on the scores such that

ξik(s) =
∞∑
k′=1

ξ′ikk′ψ
(1)
kk′(s) and ζijp(s) =

∞∑
p′=1

ζ ′ijpp′ψ
(2)
pp′(s), (4.5)

where ξ′ikk′ and ζ ′ijpp′ are the eigenscores and ψ
(1)
kk′(s) and ψ

(2)
pp′(s) are the eigenfunctions

from the level 1 and level 2 second-stage FPCA, respectively, with corresponding

eigenvalues λ
(1)
kk′ and λ

(2)
pp′ . Note that a multilevel expansion may be used in place of

the single-level expansion for the second stage electrode level decomposition on ζijp(s)

when assuming dependence across electrodes j within subject (for details, see Section

4.2.2). Combining equations 4.4 and 4.5 produces the proposed MD-FPCA model,

Xij(t|s) = µ(t|s) + ηj(t|s) +
∞∑
k=1

ξik(s)φ
(1)
k (t|s) +

∞∑
p=1

ζijp(s)φ
(2)
p (t|s) + εij(t|s)

= µ(t|s) + ηj(t|s) +
∞∑
k=1

∞∑
k′=1

ξ′ikk′ψ
(1)
kk′(s)φ

(1)
k (t|s) +

∞∑
p=1

∞∑
p′=1

ζ ′ijpp′ψ
(2)
pp′(s)φ

(2)
p (t|s) + εij(t|s),

= µ(t|s) + ηj(t|s) +
∞∑
k=1

∞∑
k′=1

ξ′ikk′ϕ
(1)
kk′(t, s) +

∞∑
p=1

∞∑
p′=1

ζ ′ijpp′ϕ
(2)
pp′(t, s) + εij(t|s),

where ϕ
(1)
kk′(t, s) = ψ

(1)
kk′(s)φ

(1)
k (t|s) and ϕ

(2)
pp′(t, s) = ψ

(2)
pp′(s)φ

(2)
p (t|s) represent the overall

eigensurfaces for the MD-FPCA decomposition. The decomposition may be truncated

to only include the components containing the largest modes of variation,

Xij(t|s) = µ(t|s) + ηj(t|s) +
K∑
k=1

K′
k∑

k′=1

ξ′ikk′ϕ
(1)
kk′(t, s) +

P∑
p=1

P ′
p∑

pP=1

ζ ′ijpp′ϕ
(2)
pp′(t, s) + εij(t|s),
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where K and P are the number of level 1 and level 2 components from the first

decomposition stage, respectively, and K ′k and L′p are the number of level 1 and level

2 components of the second decomposition stage, respectively.

The proposed MD-FPCA model decomposes the total variation of repeated mul-

tilevel functional data into several components of covariation based on the two-stage

procedure and the two-level mixed effects FPCA framework. Total covariation at each

longitudinal time s is decomposed into within subunit and between subunit covariation

based on the mixed effects framework. This is represented by the sum of the between

ΣB(t, t′|s) and within ΣW (t, t′|s) covariance functions

ΣT (t, t′|s) = ΣB(t, t′|s) + ΣW (t, t′|s) + σ2,

ΣB(t, t′|s) =
∑
k

λ
(1)
k (s)φ

(1)
k (t|s)φ(1)

k (t′|s),

ΣW (t, t′|s) =
∑
p

λ(2)p (s)φ(1)
p (t|s)φ(1)

p (t′|s).

Furthermore, MD-FPCA decomposes total variation into a multiplicative relationship

of the variation within and between longitudinally observed functions. Accounting for

functional variation across both the functional and longitudinal domains, total varia-

tion of the process Xij(t|s) can provide a covariance function estimate cov{Xij(t, s),

Xij(t
′, s′)} of the two-dimensional Karuhunen-Loève expansion so that

ΣT (t, s, t′, s′) = ΣB(t, s, t′, s′) + ΣW (t, s, t′, s′) + σ2,

ΣB(t, s, t′, s′) =
∑
k,k′

λ
(1)
kk′ϕ

(1)
kk′(t, s)ϕ

(1)
kk′(t

′, s′),

ΣW (t, s, t′, s′) =
∑
p,p′

λ
(2)
pp′ϕ

(2)
pp′(t, s)ϕ

(2)
pp′(t

′, s′),

where ΣT (t, s, t′, s′), ΣB(t, s, t′, s′) and ΣW (t, s, t′, s′) are estimates of the total, between

and within covariance functions of the two-dimensional expansion, respectively, under

the multiplicative assumption. Components of these decompositions of covariation

provide insight into behavior of functional variation across both functional time t and

longitudinal time s.
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4.2.2 Estimation of Model Components

Estimation of the proposed MD-FPCA model is presented under the assumption that

observations may be sparse in both the functional and longitudinal time domains.The

two-stage estimation procedure involves performing MD-FPCA at each longitudinal

time s on the repeated multilevel functional data and subsequently performing FPCA

on the functional scores resulting from the stage one decomposition. Assume obser-

vations for the ith subject {Xij(tijq`|sijq), 1 ≤ i ≤ n, 1 ≤ j ≤ Ji, 1 ≤ q ≤ Qij, 1 ≤

` ≤ Lijq} are recorded across functional times tijq` and longitudinal times sijq where j

indexes the subunits, q is the index for the longitudinal time sijq of the ith subject at

subunit j and ` is the index for the functional time tijq` of the qth repeated function

of the jth subunit for the ith subject. The global mean surface µ(t|s) is estimated by

smoothing across all observation pairs {tijq`,

Xij(tijq`|sijq)}. This may be done using a one-dimensional smoothing across t for

each s or two-dimensional smoothing across both t and s to ensure smoothness in

both dimensions. Smoothing in our application is performed across both dimensions.

Since the time points are regular in our application, smoothing is performed on the

matrix consisting of averages across subjects and subunits for each time pair (t, s).

Subunit-specific deviations ηj(t|s) are similarly estimated by smoothing across all

mean-centered observation pairs {tijq`, Xij(tijq`|sijq) − µ̂(tijq`|sijq)} for j = 1, . . . , J .

Bandwidths for the smooths may be selected using cross-validation, generalized cross-

validation (GCV) or the geometric mean [77]. In the application to the implicit learn-

ing paradigm, bandwidths are selected based on visual inspection and interpretation.

Covariance functions are estimated using the multilevel FPCA framework of Di

et al. (2014) [80] at each longitudinal time s. For fixed longitudinal time s, the be-

tween covariance function ΣB(t, t′|s) is estimated by performing a bivariate smooth on

{Xij(tijq`|sijq)− µ̂(tijq`|sijq)− η̂j(tijq`|sijq)}{Xij′(tij′q`′|sij′q)− µ̂(tij′q`′|sij′q)−

η̂j′(tij′q`′ |sij′q)} against functional time pairs {tijq`, tij′q`′} for all i, j, j′, s, `, `′ where

j 6= j′ (products are taken between different subunits j and j′). The total covariance

function ΣT (t, t′|s) is estimated by performing a bivariate smooth on {Xij(tijq`|sijq)−

µ̂(tijq`|sijq)− η̂j(tijq`|sijq)} {Xij(tijq`′ |sijq)− µ̂(tijq`′|sijq)− η̂j(tijq`′ |sij′q)} against func-
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tional time pairs {tijq`, tijq`′} for all i, j, s, `, `′ (products are within the same subunits

j). The within covariance function is estimated by Σ̂W (t, t′|s) = Σ̂T (t, t′|s)−Σ̂B(t, t′|s).

Once covariance function estimates are obtained at each longitudinal time s, per-

form PCA on covariance functions Σ̂B(t, t′|s) and Σ̂W (t, t′|s) for each s. This pro-

duces eigenvalue-eigenfunction pairs {λ̂(1)k (s), φ̂
(1)
k (t|s)} and {λ̂(2)p (s), φ̂

(2)
p (t|s)} for the

between and within covariance functions, respectively. Components corresponding

to negative eigenvalues are omitted to maintain positive definite covariance func-

tions. Measurement error variance σ2(s) is estimated by smoothing {Xij(tijq`|sijq) −

µ̂(tijq`|sijq) − η̂j(tijq`|sijq)}2 − Σ̂T (tijq`, tijq`|sijq) against functional times tijq` for all

i, j, q at each longitudinal time s. The number of components may be selected using

percentage of variation explained with criteria

maxs{
K∑
k=1

λ̂
(1)
k (s)}/{

M1∑
k=1

λ̂
(1)
k (s)} > 0.9,

maxs{
P∑
P=1

λ̂(2)p (s)}/{
M2∑
p=1

λ̂
(2)
k (s)} > 0.9,

for levels one and two, respectively, where M1 and M2 are large [93]. This approach

ensures that decompositions at each longitudinal time s contain the same number of

principal components for subsequent modeling of the stage one scores. Other methods

for selecting the number of components that may be extended to the MD-FPCA case

include cross-validation [77] and Akaike’s Information Criterion [78].

Based on the resulting principal components, the issue of crossing eigenvalues must

be addressed. Let φ̂
(1)
k (·|s0) be the level 1 eigenfunction estimate at the left endpoint s0

of the longitudinal time domain. The sign of the next eigenfunction across s, φ̂
(1)
k (·|s1),

is determined such that the L2 distance to the previous eigenfunction φ̂
(1)
k (·|s0) is

minimized. This is recursively performed for the entire domain of s for both the level

1 and level 2 eigenfunctions across k and p, respectively, and ensures smoothness of

the eigenfunctions across s. Stage one scores ξ̂ik(s) and ζ̂ijp(s) are then calculated

from the ordered eigenfunctions using their best linear unbiased predictors (BLUP)

described in Chapter 3.
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After obtaining the stage one eigenscores functionally observed across s, perform

FPCA across longitudinal time s on ξ̂ik(s) for each k. This results in estimates for

ξ̂ikk′ , ψ̂
(1)
kk′(s). In addition, perform FPCA on ζ̂ijp(s) for each p, which results in esti-

mates ζ̂ijpp′ , ψ̂
(2)
pp′(s). Note that the single-level FPCA on ζ̂ijp(s) assumes independence

across electrodes within subject. The first stage in the MFPCA procedure decom-

poses the multilevel process into subject level and electrode level variation, specifically

in the functional time direction. Although the majority of subject level information

across both the functional and longitudinal dimensions is contained within the ξ̂ik(s)

trajectories, residual subject level effects in the longitudinal direction may remain in

the ζ̂ijp(s) trajectories. These effects were shown to be negligible in the data analysis,

where the majority of variability in the ζ̂ijp(s) processes were observed at the electrode

level. However, note that the multilevel FPCA used to estimate components in the

first stage may also be used to further decompose ζ̂ijp(s) into another set of subject

and electrode level components when observing substantial subject-level variability in

the ζ̂ijp(s) trajectories.

Resulting estimates from the two-stage MD-FPCA include model components

µ̂(t|s), η̂j(t|s), ξ̂′ikk′ , ψ̂
(1)
kk′(s), φ̂

(1)
k (t|s), ζ̂ ′ijpp′ , ψ̂

(2)
pp′(s), φ̂

(2)
p (t|s). In the presence of spar-

sity, the MD-FPCA approach may be used to predict trajectories across each dimension

of the data. Predictions for this model may be performed using

X̂ij(t|s) = µ̂(t|s) + η̂j(t|s) +
K∑
k=1

K′
k∑

k′=1

ξ̂′ikk′ψ̂
(1)
kk′(s)φ̂

(1)
k (t|s) +

P∑
p=1

P ′
p∑

p′=1

ζ̂ ′ijpp′ψ̂
(2)
pp′(s)φ̂

(2)
p (t|s).

4.2.3 Interpretation and Analysis of Model Components

Estimated components of the MD-FPCA model provide a wealth of information on

the magnitude and covariation of repeated multilevel functional data across the sev-

eral dimensions. Mean surfaces µ(t|s) and ηj(t|s) provide insight into the evolution

of the response across both functional and longitudinal time. Stage one eigenfunc-

tions φ
(1)
k (t|s), φ(2)

p (t|s) describe modes of variation across functional time t at each
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longitudinal time s. The dimension of each repeated function is reduced into a set

of principal components whose scores ξik(s), ζijp(s) are observable across longitudinal

time s. Level 1 scores characterize the overall functional behavior across subunits of a

given individual, in contrast to the level 2 scores, which characterize behavior between

subunits.

Stage two eigenfunctions ψ
(1)
kk′(s), ψ

(2)
pp′(s) describe the modes of variation of the stage

one eigenscores. The corresponding scores ξ′ikk′ , ζ
′
ijpp′ are useful for characterizing the

behavior of an individual’s data both in the functional and longitudinal dimensions.

The principal surfaces of the two-stage decomposition ϕ
(1)
kk′(t, s), ϕ

(2)
kk′(t, s) provide in-

formation on the modes of variation across both time dimensions. Large principal

surface values indicate high variability at a specific functional time t and longitudinal

time s.

When analyzing multilevel data, an important measure is the proportion of vari-

ability explained by the level one component of the data. This may be calculated

by

ρ =

∑
k,k′ λ

(1)
kk′∑

k,k′ λ
(1)
kk′ +

∑
p,p′ λ

(2)
pp′

and can be considered a longitudinal, functional extension to the intra-cluster correla-

tion of the linear mixed effects model framework. The intraclass correlation extension

may also be interpreted as the average correlation between two surfaces from the same

subject. In addition, adding and subtracting a multiple of the principal surface to

the mean surface {µ(t|s)±
√
λ
(1)
kk′ϕ

(1)
kk′(t, s)} provides a visualization of the behavior of

individual surfaces scoring high or low in specific components. All of these measures

are useful for summarizing the overall trends and dominant modes of variation in the

repeated multilevel functional data.
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4.3 Application to the Implicit Learning Study

4.3.1 Description of Data Structure

Chapters 2 and 3 have throughly examined the longitudinal dimension of the ERP data

represented by the stimulus repetitions while accounting for the spatial distribution of

electrodes. However, these analyses were performed using a single magnitude of the

P3 peak feature on the entire ERP curve. We consider the functional dimension of the

ERP in this application defined by the span of the entire P3 peak. As done previously,

ERP were preprocessed according to the procedures described in Chapter 1.3. ERP

were then meta-preprocessed using a moving average window of 30 to identify the P3

peak for each subject, electrode and condition across the first 60 trials, where maximal

condition differentiation was observed to occur. Functional observations on the ERP

curve within 70ms to the left and right of the P3 peak were extracted for each subject,

electrode and condition. The width of the peak (140ms) was determined based on

inspection of the ERP averaged across several trials. Analysis of implicit learning is

performed on the expected - unexpected condition difference of the entire P3 peak

observed over the course of the experiment. P3 peaks under the unexpected condition

are subtracted from P3 peaks under the expected condition within subject, electrode

and trial to produce P3 peak differentiation measures. Peak differentiation time (ERP

time) is considered functional time t and trial time (ERP repetitions) is considered

longitudinal time s. Note that all curves are aligned so that the location of the P3

peak is at the center of the functional time domain (-70, 70).

4.3.2 MD-FPCA Results

The proposed MD-FPCA algorithm is applied to the repeated multilevel P3 differ-

ence trajectories separately for the TD and ASD groups. Six subjects are removed

as outliers prior to analysis. Two of the removed subjects (one in the TD and one in

the ASD group) did not have observed data until trial 20 of the experiment, and the

remaining four subjects (two in the TD and two in the ASD group) had peak condition

differences more than 2 standard deviations away from their respective group means
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for most of the observations across either the functional or longitudinal time domains.

In addition, a single electrode was omitted from the trajectories of two subjects in the

TD group due to erratic and heterogeneous behavior. Since the emphasis of the study

is on the functional and longitudinal dimensions of the ERP while only accounting

for electrode effects, the analysis of the repeated functional ERP of the TD and ASD

groups focuses on the results from the level one terms of the MD-FPCA models. Band-

widths of the mean and covariance smooths are selected based on visual inspection to

produce optimal interpretation. Bandwidths for the stage one TD model fit were se-

lected to be 30ms for the mean smooth and 15ms for the covariance smooth across a

functional time domain of [-70ms, 70ms] incremented by 4ms. Stage two bandwidths

were selected to be 10 trials and 5 trials for the mean and covariance smooths, re-

spectively, across the longitudinal trial domain of [5 trials, 60 trials]. Note that the

longitudinal time domain starts at trial 5 to avoid noisy endpoint effects produced by

meta-preprocessing as in the previous chapter. Bandwidths for the ASD model fit are

selected to be 30ms and 15ms for the mean and covariance smooths of the stage one

decompositions, respectively, and 15 trials and 5 trials for the mean and covariance

smooths of the stage two decompositions, respectively.

The overall mean surface estimates µ(t|s) of the P3 peak condition difference for

the TD and ASD MD-FPCA fits are shown in the left and right panels of Figure 4.1,

respectively. Note that the overall mean surfaces represent condition differentiation

and not the actual P3 peak, which is only observed in the functional time domain.

The ASD mean surface displays a trend of positive concave condition differentiation

across trials that is uniform across peak time. The mean surface peaks around trial 35

where there is a slight differential increase at the P3 peak location (t = 0). In contrast

to the ASD mean surface, the TD group exhibits a trend of negative differentiation

across trials with much smaller magnitude, including a prominent dip in negative

differentiation around trial 25. Changes in condition differentiation across trials are

not uniform in peak time, particularly at intermediate trials where there is a negative

dip at t = 0 associated with positive values at the endpoints of the peak time domain.

The positive and negative differentiation of the ASD and TD groups, respectively, are
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consistent with the results from Chapter 2. The smaller magnitude of the TD group

mean surface is due to the omission of a largely negative outlier. The subunit-specific

means of the ASD group (Figure 4.3) indicate consistency across all four electrodes.

Although maintaining a consistent shape in condition differentiation, the TD subunit-

specific means vary in magnitude at points of negative differentiation prior to trial 30,

with strongest condition differentiation in the two electrodes shown in Figures 4.2 (a)

and (d), respectively.

The number of principal components of the MD-FPCA fits are selected to explain

90% of the variation in both stages of the MD-FPCA. Table 4.1 breaks down the per-

centage of variance explained for each selected component across the subject and elec-

trode levels of the MD-FPCA models for the TD and ASD groups. Two components

explained at least 90% of the variation in the data in the stage one decompositions for

both levels and groups. A larger number of components were required to exceed the

90% threshold in the stage two decompositions. The majority of variation is explained

by the leading components of the level one decompositions. Differences in the variation

explained across the subject and electrode levels is slightly smaller for the ASD group

due to higher variability across electrodes within subject. In total, the subject level

components explain approximately 72% and 62% of the total variation for the TD and

ASD groups, respectively.

Table 4.1: Number of components selected in the stage one and stage two decom-
positions of the proposed MD-FPCA model using percentage of variation explained
> 90%. Indexes k and p indicate level one and level two components, respectively,
and the prime indicates the stage two decomposition. The majority of variation is
explained by the first component of the first stage decomposition at the subject level.

Level 1

TD ASD

k = 1 k = 2 k = 1 k = 2

k′ = 1 .369 .013 .270 .018
k′ = 2 .186 .009 .184 .010
k′ = 3 .141 .002 .133 .005
k′ = 4 / / / .004

Level 2

TD ASD

p = 1 p = 2 p = 1 p = 2

p′ = 1 .118 .007 .217 .006
p′ = 2 .074 .005 .085 .004
p′ = 3 .055 .003 .062 .002
p′ = 4 .014 .001 / /
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Figure 4.1: Multiple representations of mean surfaces µ(t|s) for the TD (left column)
and ASD (right column) groups. The top panels are the complete mean surfaces, the
middle panels are the mean surfaces across peak time represented in the trial domain
and the bottom panels are the mean surfaces across trial time represented in the peak
time domain. Light gray corresponds to earlier times on the time axis not shown and
dark gray corresponds to later times. For example, light gray in (c) correponds to early
peak times. The blue lines indicate the trajectory across trials at peak time t = 0.
TD and ASD groups have opposing condition differentiation.
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Figure 4.2: TD mean surfaces for each electrode: (a) µ(t|s)+η1(t|s), (b) µ(t|s)+η2(t|s),
(c) µ(t|s) + η3(t|s) and (d) µ(t|s) + η4(t|s). Mean surfaces maintain the same shape as
the overall mean but vary in magnitude.
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Figure 4.3: ASD mean surfaces for each electrode: (a) µ(t|s) + η1(t|s), (b) µ(t|s) +
η2(t|s), (c) µ(t|s)+η3(t|s) and (d) µ(t|s)+η4(t|s). Mean surfaces are fairly homogeneous
and appear similar across all electrodes.
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Stage one level one eigenfunctions φ
(1)
k (t|s) and stage two level one eigenfunctions

ψ
(1)
kk′(s), displaying modes of variation in the functional and longitudinal directions,

respectively, are shown in Figures 4.4 and 4.5, respectively, for the TD and ASD

groups. Uniform variation across ERP time in the ASD leading component φ
(1)
1 (t|s)

indicates little or no variability around the peak location t = 0 with majority of ASD

variation in the trial direction at intermediate and later trials for k = 1, k′ = 1 (27%)

and at the boundary trials for k = 1, k′ = 2 (18.4%). Eigensurface φ
(1)
2 (t|s) captures

modes of variation around the peak t = 0 with additional modes of variation in the

trial direction around trial 35 for k = 2, k′ = 1 (1.8%), the location of the maximum

positive condition differentiation in the overall mean surface for the ASD group. There

is additional variation in the boundary trials surrounding the intermediate trials for

component k = 2, k′ = 2, explaining only 1% of total variability.

In contrast to the flat contour of the ASD leading eigensurface, the leading compo-

nent φ
(1)
1 (t|s) for the TD group captures modes of variation around the peak location

t = 0 with modes of variation in the early and intermediate trials for k = 1, k′ = 1

(36.9%) and later trials for k = 1, k′ = 2 (18.6%). Note that the leading component

k = 1, k′ = 1 contains a slight increase in negative weight at trial 25, the location of

the peak negative condition differentiation in the TD overall mean surface. Eigenfunc-

tions φ
(1)
2 (t|s) capture leftover variation around the peak location and variation in the

boundaries of the ERP time domain, with modes of variation in the trial direction at

boundary trials for k = 2, k′ = 1 (1.3%) and intermediate trials k = 2, k′ = 2 (0.9%).

These results are consistent with overall eigensurfaces ϕ
(1)
kk′(t, s), ϕ

(2)
pp′(t, s) for the TD

and ASD groups shown in Figures 4.11 and 4.12, respectively. Modes of variation in

the stage one and stage two components at the subject level are supported by the

subject-specific trajectories across electrodes shown in Figure 4.8 and the stage one

level one score trajectories ξi1(s) shown in Figure 4.9. Variability in subject trajec-

tories is fairly uniform across ERP time for the ASD group and there appears to be

additional variability around the peak location t = 0 in the TD group. In addition,

score trajectories in Figure 4.9 display the modes of variation at intermediate and

boundary trials observed in the stage two level one eigenfunctions.
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Figure 4.4: Subject-level eigenfunctions {φ(1)
k (t|s)} for components k = 1 (left column)

and k = 2 (right column) from the stage one decomposition across t for each trial s
for the TD (top row) and ASD (bottom) row groups.
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Figure 4.5: Subject-level eigenfunctions ψ
(1)
k,k′(s) for k = 1 (left column) and k = 2

(right column) of the stage two decompositions for the TD group (top row) and ASD
group (bottom row). Solid lines indicate k′ = 1 and dashed lines indicate k′ = 2.
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Figure 4.6: TD subject-level eigensurfaces ϕ
(1)
k,k′(t, s) = ψ

(1)
k,k′(s)φ

(1)
k (t|s) for (a) k =

1, k′ = 1, (b) k = 1, k′ = 2, (c) k = 2, k′ = 1 and (d) k = 2, k′ = 2. The overall

eigensurfaces are dominated by the stage two eigensurface ψ
(1)
k,k′(s) across the trial

domain.
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Figure 4.7: ASD subject-level eigensurfaces ϕ
(1)
k,k′(t, s) = ψ

(1)
k,k′(s)φ

(1)
k (t|s) for (a) k =

1, k′ = 1, (b) k = 1, k′ = 2, (c) k = 2, k′ = 1 and (d) k = 2, k′ = 2. The overall

eigensurfaces are dominated by the stage two eigensurface ψ
(1)
k,k′(s) across the trial

domain.
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Figure 4.8: Smoothed peak difference trajectories across electrodes along the peak
time domain at trial 30 for the (a) TD and (b) ASD groups. Both sets of trajectories
appear quite flat across peak time with relatively constant variability across subjects,
explaining the flat eigensurfaces of the stage one decomposition.

Leading scores for the principal eigensurfaces (ξ′i1k′) are plotted in Figure 4.10 for

the TD and ASD groups. Scores appear randomly scattered around zero with no

visible clusters for the TD group, but there is a small cluster around zero for the ASD

group. The remaining scores for component k = 2 (not shown) behave similarly. In

order to further understand the behavior of subject-specific surfaces in relation to the

magnitudes of the stage two scores, multiples of the principal surfaces are added to

and subtracted from the mean surfaces as described in Section 4.2.3. TD intervals

(Figure 4.11) suggest stage two leading scores with opposing signs produce surfaces

with positive and negative condition differentiation. Intervals for the ASD group

contain a surface with a large positive peak and a relatively flat surface for stage two

scores with opposing signs. However, the flat surface increases for positive ξ′i12 during

later trials. The shapes of these surface intervals suggest the existence of clusters in

condition differentiation, primarily in the trial direction. Further evidence is shown

in the mean surfaces of subjects with ξ′i11 > 0 and ξ′i11 ≤ 0 (Figure 4.13). The two-

dimensional mean surface representation of this score partition on the TD and ASD

groups shows potential clustering in the means of condition differentiation. Additional

methods used to incorporate more information from the MD-FPCA scores to identify

formal subgroups in the ERP should be explored in the future.
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Figure 4.9: Scores ξik(s) for k = 1 (left column) and k = 2 (right column) from the
stage one decompositions for the TD (top row) and ASD (bottom row) groups. Score
trajectories of the leading component appear similar to the trajectories clustered by
RFC.
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Figure 4.10: Subject level scores ξ′i12 vs ξ′i11 of the stage two decomposition for the (a)
TD and (b) ASD groups. Scores appear randomly scattered across both axes with no
visible clustering.

Until now, we have thoroughly discussed the results of the functional and longitudi-

nal dimensions of the model. Although the spatial dimension is included as a nuisance

component in the MD-FPCA to account for spatial covariation between electrodes,

metrics can be derived from MD-FPCA terms to provide insight into the connectivity

of the electrodes. Figure 4.14 shows the smoothed functional analogue of the intraclass

correlations (Di et al., 2009) for the stage one multilevel FPCAs at each longitudinal

time s for the TD and ASD groups. Both plots indicate the majority of total variabil-

ity in the stage one decompositions is explained by subject level differences, especially

for intermediate trials, implying high connectivity between the electrodes in the right

frontal region relative to subject-level variability. Average correlations between peak

differentiation trajectories from the same subject across peak time exceed 0.8 within

the TD group. Maximum correlations for the ASD group occur during early and in-

termediate trials with correlations exceeding 0.7. The TD correlations are consistently

larger than the correlations for the ASD group, but there appears to be larger subject

level variability during early trials for the ASD group. In addition, there are increases

in the intraclass correlation around the locations (along s) of maximum differentia-

tion between the clusters found by the RFC algorithm in both groups. However note

that these increases may also be attributed to some other unknown effect unrelated

to the aforementioned clusters. The functional longitudinal extension to the intraclass
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Figure 4.11: TD interval surfaces µ(t|s)±
√
λ
(1)
kk′ϕ

(1)
kk′(t, s) for k = 1, k′ = 1 (top row) and

k = 1, k′ = 2 (bottom row). The left column corresponds to the added interval and the
right column corresponds to the subtracted interval. According to the intervals, large
positive and negative scores correspond to positive or negative peak differentiation.
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Figure 4.12: ASD interval surfaces µ(t|s)±
√
λ
(1)
kk′ϕ

(1)
kk′(t, s) for k = 1, k′ = 1 (top row)

and k = 1, k′ = 2 (bottom row). The left column corresponds to the added interval
and the right column corresponds to the subtracted interval. For k = 1, k′ = 1, large
positive scores correspond to a positive peak in differentiation across trials and large
negative scores correspond to surfaces with little or no condition differentiation.
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Figure 4.13: Mean surfaces of subjects with leading component scores ξ′i11 > 0 and
ξ′i11 ≤ 0 for each peak time plotted against the trial domain for the (a) TD and (b)
ASD groups. A simple split between the leading scores shows evidence of clustering
information contained within the leading components. Formal clustering procedures
should be developed to further investigate methods for identifying these substructures.

correlation introduced in Section 4.2.3 was calculated for the TD group and the ASD

group, indicating an average correlation between within-subject surfaces of 0.75 and

0.64 for the TD and ASD groups, respectively. A boostrapping procedure on the en-

tire meta-preprocessing and MD-FPCA stages was performed using 200 runs to place

distributions on these two statistics, producing the following 5% and 95% quantiles:

TD (0.67, 0.82) and ASD (0.53, 0.71). Although the result is not significant, the pro-

portion of total variability explained by the subject level across both the functional

and longitudinal domains is larger for the TD group, similar to the multilevel correla-

tions across s. However, the larger magnitude may be due to the larger separation of

cluster substructures in the TD group, creating more variability at the subject level.

Additional analyses within cluster substructures may be performed using MD-FPCA

to verify this claim. Note the above analysis focuses primarily on the subject level

components since our interest is in determining subject level differences in the con-

dition differences of the entire ERP peak. Analysis of the level two components of

the proposed MD-FPCA method is reserved as a future focus of analysis and inter-

pretation when systematic variability in the subunits is of primary interest or is the

dominant influence on the multilevel estimates.
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Figure 4.14: Stage one intraclass correlations ρ(s) across trials for the (a) TD and (b)
ASD groups. Both plots indicate that the majority of total variation is attributed to
the subject-level variation in the ERP.

4.4 Simulation Study

Simulations are conducted to assess the performance of the proposed MD-FPCA in

estimating the overall mean surfaces for each subunit and the overall eigensurfaces at

each level of the multilevel structure across varying sample sizes. Data is generated

using the originally estimated MD-FPCA model components in the data analysis for

the TD group. The overall mean surface and the electrode-specific mean deviations

from the TD application are used as true mean components for surfaces µ(t|s) and

ηj(t|s), j = 1, . . . , 4, respectively. The product of the stage one and stage two eigen-

functions at each level {ψ(1)
kk′(s)φ

(1)
k (t|s), ψ(2)

pp′(s)φ
(2)
p (t|s)} from the TD analysis are used

as the true overall eigensurfaces {ϕ(1)
kk′(t, s), ϕ

(2)
pp′(t, s)} using the first two components

at each level k, k′ = 1, 2 and p, p′ = 1, 2. Corresponding level one scores ξ′ikk′ and

level two scores ζ ′ijpp′ are sampled independently from the normal distribution with

zero mean and variances {100000, 50000, 10000, 5000} for {ξ′i11, ξ′i12, ξ′i21, ξ′i22} and

variances {30000, 15000, 10000, 5000} for {ζ ′ij11, ζ ′ij11, ζ ′ij21, ζ ′ij22}, in order to achieve a

signal-to-noise ratio similar to the observed surfaces of the TD group. Error variance

is allowed to change across longitudinal time s and is selected from the error variance

estimates from the first stage of the MD-FPCA TD application. Data is generated

across the ERP time and trial domains of the working example with J = 4 subunits
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across sample sizes n = 25, 50, 100.

Simulated data are fit using the proposed MD-FPCA across 100 Monte Carlo runs.

Accuracy of the model estimates are evaluated using the relative squared error of a

functional longitudinal surface f(t|s) and its estimate f̂(t|s),

RSE =
||f(t|s)− f̂(t|s)||2

||f(t|s)||2
,

where ||f(t|s)|| =
∫
t

∫
s
f(t|s)2dsdt [93]. RSE is calculated for surface estimates {µ̂(t|s)+

η̂j(t|s), ϕ̂(1)
kk′(t, s), ϕ̂

(2)
pp′(t, s), X̂ij(t|s)}. Reported RSE metrics for the predictions X̂ij(t|s)

are averaged across subunits j, then across subjects i. Metrics for µ̂(t|s) + η̂j(t|s) are

averaged across subunits j. In addition, RSE metrics are calculated for predictions

from the extended MD-FPCA denoted by X̂∗ij(t|s), which utilitizes multilevel FPCA in

the expansion of ζijp(s), in order to examine the effect of the stage two within subject

electrode independence assumption on model predictions.

The RSE metrics shown in Table 4.2 exhibit a decreasing trend with increasing

sample size across the different surfaces as expected. RSE for the mean surfaces is

somewhat large for n = 25 due to the small magnitude of the TD overall mean surface

and the large signal-to-noise ratio of the data, however, estimates maintain the contour

of the mean surface across simulation runs. Relative standard error of the eigensurface

estimates is fairly small across samples but increases with decreases in component

variation (components explaining less variability have larger RSE). Low RSE in the

eigensurface estimates suggests the multiplicative decomposition at the subject and

electrode levels accurately estimate the true overall eigensurfaces. Furthermore, MD-

FPCA predictions for models containing the single-level or multilevel expansions of

the ζijp(s) trajectories are similar across sample sizes, suggesting the validity of the

within subject electrode independence assumption on ζijp(s).

4.5 Discussion

The proposed MD-FPCA approach is an effective method for analyzing and summa-

rizing structurally complex data spanning several dimensions in low dimensional form.
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Table 4.2: Percentiles {50%(10%,90%)} of relative squared error metrics for the sur-

face estimates {µ̂(t|s) + η̂j(t|s), ϕ̂(1)
kk′(t, s), ϕ̂

(2)
pp′(t, s), X̂ij(t|s), X̂∗ij(t|s)}. RSE exhibits a

decreasing trend with increasing sample size across all estimates. Two-stage eigensur-
face estimates accurately estimate overall eigensurfaces at each level. Models Xij(t|s)
and X∗ij(t|s) produce similar predictions.

n = 25 n = 50 n = 100

µ+ ηj 1.842 (0.916, 3.547) 0.958 (0.351, 1.958) 0.461 (0.174, 1.165)

ϕ
(1)
11 0.046 (0.007, 0.300) 0.022 (0.005, 0.122) 0.009 (0.003, 0.053)

ϕ
(1)
12 0.054 (0.018, 0.300) 0.032 (0.008, 0.125) 0.014 (0.007, 0.056)

ϕ
(1)
21 0.244 (0.079, 0.725) 0.146 (0.061, 0.405) 0.108 (0.053, 0.233)

ϕ
(1)
22 0.348 (0.128, 0.758) 0.195 (0.091, 0.465) 0.154 (0.083, 0.280)

ϕ
(2)
11 0.039 (0.011, 1.909) 0.027 (0.006, 1.870) 0.009 (0.004, 1.071)

ϕ
(2)
12 0.074 (0.019, 1.905) 0.045 (0.017, 1.899) 0.027 (0.008, 1.055)

ϕ
(2)
21 0.264 (0.131, 2.267) 0.195 (0.108, 2.270) 0.164 (0.092, 1.743)

ϕ
(2)
22 0.211 (0.091, 2.197) 0.146 (0.066, 2.079) 0.120 (0.058, 2.078)

Xij 0.150 (0.129, 0.185) 0.149 (0.130, 0.178) 0.148 (0.133, 0.160)

X∗ij 0.148 (0.124, 0.188) 0.147 (0.125, 0.180) 0.144 (0.130, 0.157)

Application to the ERP from the implicit learning paradigm identified mean trends

in condition differentiation of the entire P3 peak that is consistent with results from

previous studies. MD-FPCA terms describing the within and between functional vari-

ations at the subject level supported the existence of the substructures of the TD and

ASD groups identified by RFC in Chapter 3. MD-FPCA also provided insight into the

dynamic structure of the functional peak difference over peak time across the longitu-

dinal dimension of trials for both TD and ASD groups. Finally, the modeling of spatial

covariation within and between ERP repetitions helped to describe the connectivity

of electrodes relative to the variation encountered at the subject level.

Future studies should extend the consistency results and asymptotic convergence

rates for the estimated model components of the double FPCA approach to the pro-
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posed MD-FPCA model. In addition, several extensions of the MD-FPCA method

may be explored to improve upon its framework or to focus on different aspects of

the ERP data. The analysis of the ERP in Section 4.3.2 did not include an in-depth

analysis of the spatial dimension of ERP. Analysis of the level two components of

the MD-FPCA model is reserved as a future focus when systematic variability in the

subunits is the dominant influence on the multilevel estimates. Under the smooth-

ness assumption, MD-FPCA may be altered to consider electrodes as an additional

smooth dimension if the focus is on the spatial evolution of ERP signal in response to

a sequence of stimuli. However, this would require that data be collected from a large

electrode netting in order to provide sufficient continuity of the spatial information.

This is feasible under these conditions due to the denseness of EEG observations across

the functional domain. Further research on the clustering of repeated multilevel func-

tional data should also be performed to identify subgroups in these data structures and

to validate the evidence of the clusters visually identified in the level one components

of the MD-FPCA results.
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CHAPTER 5

Discussion and Future Work

This dissertation proposes three statistical methods (MAP-ERP, RFC, MD-FPCA)

for analyzing and interpreting ERP across the functional, longitudinal and spatial

dimensions that are typically collapsed or ignored in standard analyses. The meta-

preprocessing step of the proposed MAP-ERP approach in Chapter 2 increases the

signal-to-noise ratio of observed ERP in order to extract the magnitude and latency

of ERP features observed across trial repetitions and electrodes, effectively preserving

the longitudinal and spatial dimensions of the ERP. The proposed weighted linear

mixed effects model allows for the visualization and analysis of the longitudinal feature

processes across trials while incorporating feature information at the electrode level and

correcting for heteroskedasticity induced by meta-preprocessing. MAP-ERP applied

to the implicit learning paradigm found significant differences in implicit learning

processes between the ASD subjects and TD controls and provided graphical evidence

of their implicit learning trajectories. The RFC algorithm of Chapter 3 successfully

identifies subgroups of feature trajectories while correcting for covariance heterogeneity

induced by meta-preprocessing. RFC results from the implicit learning paradigm

identified differences in substructures between the ASD and TD groups and provided a

deeper understanding of the results observed in the MAP-ERP application. MD-FPCA

incorporates an additional dimension, functional ERP time, into the analysis of ERP

data. The MD-FPCA approach decomposes ERP across all three data dimensions

into interpretable, low-dimensional modes of variation. Application to the implicit

learning paradigm revealed the majority of variation in the trial direction, possibly

due to the clusters present in the longitudinal dimension. However, decompositions

in the functional direction provide valuable insight into the stability of the functional

P3 peak condition difference based on the flat contour of the principal eigensurfaces
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across ERP time.

As evidenced by the wealth of results from the implementation of the proposed al-

gorithms, utilizing ERP data across the three data dimensions can provide an in-depth

understanding of the underlying mechanisms to certain diseases and disorders. Preser-

vation of the functional dimension of ERP can offer additional measures of cognition in

individuals with brain disorders. Classification of these ERP feature morphologies can

provide neurological biomarkers that assist in their diagnoses. The preservation of lon-

gitudinal features of ERP is necessary when changes in electrical potential occur with

dynamic sequences of stimuli over the course of an experiment. This is apparent in

the implicit learning paradigm analyzed in Chapter 2, where speed of acquisition was

found to contribute significantly to the characterization of implicit learning in young

children with ASD compared to typically developing controls. Finally, incorporation

of the spatial dimension can provide insight into within-subject electrode connectivity

relative to between-subject covariation as discussed in Chapter 4. Data exploration of

ERP across these three dimensions provides a complete picture of the cognitive pro-

cesses of individuals with brain disorders; their combined analysis using the methods

proposed provides a means of classification and analysis of these neural patterns by

multiple attributes.

The entire focus of this dissertation has been on analyzing and interpreting infor-

mation from ERP data using the proposed methods. Although meta-preprocessing has

been specifically developed for the analysis of ERP data, the proposed methodology

is applicable to studies involving repetitions of a systematic signal contaminated with

noise, such as heart beat or breath cycle. The proposed weighted mixed effects model

and the RFC algorithm may then be applied to the meta-preprocessed data if there

are specific patterns of missingness producing heteroskedasticity or covariance het-

erogeneity. Standard modeling and clustering methods are feasible alternatives when

these effects are not present. Unlike the MAP-ERP and RFC methods that have been

specifically developed for the analysis of ERP data, the MD-FPCA method can be ap-

plied to any data containing repeated multilevel functional observations across some

longitudinal domain.
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Continuing research will involve several methodological extensions for taking ad-

vantage of the detailed information contained within the complex structure of EEG.

MD-FPCA may be used to extend RFC to repeated multilevel functional data, where

a major challenge is the interpretation of the clustered components. Clustering the

scores of the second step of the MD-FPCA algorithm may also be investigated. RFC

may be extended to model-based functional clustering algorithms using expectation-

maximization, where covariance heterogeneity is accounted for using predefined ran-

dom effects covariance parameterizations. In addition, future research may focus on

the spatial distribution of ERP features rather than considering spatial effects as nui-

sance factors as in the proposed methods. The longitudinal component of the two-step

FPCA algorithms can be replaced with the spatial coordinates of the EEG electrodes,

providing spatial visualizations of the ERP features and summarizations of spatial

modes of variation. Finally, future studies should consider larger sample sizes to allow

for stable inferences to be made on group differences using the proposed MAP-ERP,

RFC and MD-FPCA methods. Results from these studies, along with the results

from these methodological extensions, offer a comprehensive summary of the most

important and informative features of these multidimensional data structures.
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