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Personalized machine learning of depressed mood
using wearables
Rutvik V. Shah 1,2, Gillian Grennan1,2, Mariam Zafar-Khan1,2, Fahad Alim 1,2, Sujit Dey3, Dhakshin Ramanathan1,2,4 and
Jyoti Mishra 1,2

Abstract
Depression is a multifaceted illness with large interindividual variability in clinical response to treatment. In the era of
digital medicine and precision therapeutics, new personalized treatment approaches are warranted for depression.
Here, we use a combination of longitudinal ecological momentary assessments of depression, neurocognitive
sampling synchronized with electroencephalography, and lifestyle data from wearables to generate individualized
predictions of depressed mood over a 1-month time period. This study, thus, develops a systematic pipeline for N-of-1
personalized modeling of depression using multiple modalities of data. In the models, we integrate seven types of
supervised machine learning (ML) approaches for each individual, including ensemble learning and regression-based
methods. All models were verified using fourfold nested cross-validation. The best-fit as benchmarked by the lowest
mean absolute percentage error, was obtained by a different type of ML model for each individual, demonstrating that
there is no one-size-fits-all strategy. The voting regressor, which is a composite strategy across ML models, was best
performing on-average across subjects. However, the individually selected best-fit models still showed significantly less
error than the voting regressor performance across subjects. For each individual’s best-fit personalized model, we
further extracted top-feature predictors using Shapley statistics. Shapley values revealed distinct feature determinants
of depression over time for each person ranging from co-morbid anxiety, to physical exercise, diet, momentary stress
and breathing performance, sleep times, and neurocognition. In future, these personalized features can serve as
targets for a personalized ML-guided, multimodal treatment strategy for depression.

Introduction
Depression accounts for the largest national and global

mental health burden and is a leading cause of disability
worldwide. Overall, depression affects 16 million Amer-
icans and 322 million people worldwide1,2. Across the
lifetime, 10% of all men and 20% of all women experience
depression. For millions of sufferers who seek depression
treatment, it is sadly a recurrent problem. Antidepressant
medications are the first line of treatment, but they have
low efficacy - only one-third of all patients show symptom
remission as evidenced in large clinical trials3,4. As a

result, over the last decade, the economic burden of
depression has grown by over 20%, and is estimated at an
astounding $210 billion per year5. Emerging evidence
suggests that the COVID-19 pandemic is further exacer-
bating the prevalence of depression in the general popu-
lation6,7. It is clear that more effective and scalable
strategies are urgently needed for depression therapeutics.
Studies of behavioral interventions for depression in

multiple lifestyle-oriented domains have shown much
promise8. Randomized controlled studies show that better
sleep hygiene8,9, physical activity interventions10, as well
as mindfulness meditation11,12 can all benefit depressed
patients. Evidence for efficacy also exists for dietary
interventions that focus on reducing processed fats and
sugars and moderating caffeine intake13–17. Unfortu-
nately, not all interventions work for all depressed
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patients. Depression is a multifaceted illness with genetic,
behavioral, lifestyle, and interpersonal risk factors that
may express as overlapping symptoms, which in turn
leads to huge interindividual variability in clinical
response to the same treatments or behavioral recom-
mendations18–20. For these reasons, a personalized
approach for enhancing mental wellbeing in depressed
patients, wherein a treatment plan is tailored to each
individual patient, has been recommended for nearly a
decade21. Ideally, this personalized treatment would be
closed-loop and adaptive in design22,23, i.e., constantly
providing reinforcing positive feedback and adjusting
based on the individual patient’s performance and pro-
gress. Despite this clearly identified need, no research to-
date has designed algorithms that would facilitate N-of-1
personalized closed-loop treatment for depression, taking
into account multiple facets of individual behaviors.
Here, we leverage smartphone-based ecological

momentary assessments (EMA)24 combined with wearable
based lifestyle data on sleep, physical activity, and stress
metrics, as well as neurocognitive assays on a scalable
electroencephalography (EEG) platform25, to long-
itudinally ascertain the predictors of depressed mood in
young adults with moderate depression symptoms. We
apply machine learning models to the multidimensional
data collected over a 1-month period and extract the top
features that can then be used to guide personalized
intervention. Notably, recent research in depression has
used mobile lifestyle monitoring and/or leveraged regres-
sion/machine learning models to predict mood26–29. In
some studies, multidimensional data have been used to
choose between one of two potential treatment options for
patients20,30–33. However, the emphasis of these past stu-
dies has been cross-sectional research. No study, to the
best of our knowledge, has generated N-of-1 models that
can then guide personalized multimodal treatment.
Approaches that adopt prediction models based on

prior population data have some limitations. First, it is not
always possible to access a sufficiently large, standardized
database of already treated patients in a clinical setting.
Second, these approaches are restricted to a decision
between two or more fixed treatment packages, e.g.,
psychotherapy vs. antidepressant medications. Finally,
methodological experts have argued that personalized
predictions can only be made based on prior data from
the individual for whom a prediction is to be made
(idiographic data) and not with aggregated data from
other individuals (nomothetic data)34,35. There is negli-
gible research in the N-of-1 patient domain towards
prediction of illness and treatment design29,36; any
research that exists has not comprehensively taken into
account multiple intervenable facets of the individual’s
functioning that may determine their ill-state. Here, we
hypothesized that idiographic, personalized prediction of

depressed mood, leveraging ML on 1-month of con-
tinuous multidimensional lifestyle and neurocognitive
data, is feasible. We aimed to not only predict depressed
mood scores, but further to identify the variables (or
combination of variables) that most robustly predict
depression in each person, which can then be harnessed
to guide person-specific depression treatment in the
future.

Materials and methods
Participants
Overall, 14 adult human subjects (mean age 21.6 ± 2.8

years, 10 females) took part in this study. All participants
were referred to the study from the University of Cali-
fornia San Diego College Mental Health Program37. For
study inclusion, participants must be experiencing mod-
erate depression symptoms, which we assessed using the
Patient Health Questionnaire, PHQ-9 scale (score > 9;
participant score range 10–17)38. A structured clinical
interview was not conducted for this study. Three parti-
cipants on current psychotropic medications were at a
stable dose 1 month prior to study initiation and agreed to
maintain their stable dose throughout the course of this 1-
month study. Suicidal behaviors were screened using the
Columbia Suicide Severity Rating Scale39, and no parti-
cipants demonstrated suicidal behaviors at study initia-
tion, or as assessed every 2 weeks during the 1-month
study. All participants provided written informed consent
for the study protocol approved by the University of
California San Diego institutional review board, UCSD
IRB# 180140. All data were collected in the year prior to
COVID-19 research restrictions.

Study procedure
Participants took part in a 1-month study. On days 1,

15, and 30, participants took part in neurocognitive
assessments that were synchronized with EEG25,40. On
day 1, participants also downloaded our Unity-based
BrainE application on their iOS/Android smartphone40.
Within the BrainE app, participants accessed daily EMAs
on a module called MindLog on which they provided
mood and lifestyle ratings 4× per day for 30 days. The app
sent regular notifications daily at 8 a.m., 12 p.m., 4 p.m.,
and 8 p.m. to all participants following the methodology
of recent research on longitudinal mood monitoring28. In
addition, on day 1, participants received a Samsung
Galaxy wristwatch that they wore throughout the 30-day
study, except while charging the watch for a few hours
once every 2–3 days.

Neurocognitive assessments
Participants completed six cognitive assessment games

designed to assay inhibitory control, interference proces-
sing, working memory, emotion bias, internal attention,
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and reward processing. These assessments have been
described previously and shown to have high test-retest
reliability (Cronbach’s alpha ~0.8)25,41. Supplementary
Fig. 1 shows a schematic layout of all neurocognitive
assessment tasks and Supplementary Table 1 describes
the variables collected from these assessments for mod-
eling. Assessments were deployed on the Unity-based
BrainE platform with simultaneous EEG, delivered on a
Windows-10 laptop at a comfortable viewing distance.
The Lab Streaming Layer (LSL) protocol was used to
time-stamp all stimuli and response events in all cognitive
assessments42. Each cognitive assessment session (on days
1, 15, and 30) lasted ~45min. Individual assessment
details are provided:

Assessment 1: Inhibitory control
Participants accessed a game-like task, “Go Wait”43,44.

The basic task framework was modeled after the standard
test of variables of attention45. In this two-block task,
visual stimuli of colored rockets appeared in either the
upper or lower central visual field. The task sequence
consisted of a central fixation “+” cue for 500 ms, fol-
lowed by a rocket stimulus of either blue target color or
other iso-luminant nontarget color (brown, mauve, pink,
purple, teal), presented for 100 ms. For blue rocket tar-
gets, participants were instructed to press the spacebar on
the laptop keyboard as quickly as possible (“go” trials). For
nontarget color rockets, participants withheld their
response until the fixation “+” cue flashed briefly on the
screen at 2 s post stimulus for 100 ms duration (“wait”
trials). Thus, participants were required to be cognitively
flexible in their responses based on the stimulus cues.
Trial response feedback was provided for accuracy as a
smiley or sad face emoticon presented 200ms post
response for 200ms duration, followed by a 500 ms inter-
trial interval. Both task blocks lasted 5 min and consisted
of 90 trials per block with 30/60 target/nontarget ratio in
block 1 and 60/30 ratio in block 2; all stimuli were pre-
sented in a shuffled order. Four practice trials preceded
the first task block, and participants received a percent
block accuracy score at the end of each block with a series
of happy face emoticons (up to ten). All other neuro-
cognitive assessments described below also used the same
trial and block feedback specifications as in this task in
order to promote task engagement. Total task time was
10min.

Assessment 2: Interference processing
Participants accessed the game-like task, “Middle Fish”,

which was an adaptation of the Flanker assessment46.
Participants attended to a central fixation “+” cue for
500ms, and then viewed an array of fish presented either
in the upper or lower central visual field for 100 ms. On
each trial, participants had a 1 s response window to

detect the direction of the middle fish (left or right) while
ignoring the flanking distractor fish that were either
congruent or incongruent to the middle fish, i.e., faced the
same or opposite direction to the middle fish. Overall,
50% of task trials had congruent distractors and 50% were
incongruent. The task used the same trial-by-trial and
end-of-block feedback procedures as described for the
first inhibitory control assessment above. A brief practice
of 4-trials preceded the main task of 96 trials presented
over two blocks for a total task time of 8 min.

Assessment 3: Working memory
Participants accessed a game-like task, “Lost Star”,

which was based on the visuo-spatial Sternberg task47.
The task sequence had the participants attend to a central
fixation “+” cue for 500ms, followed by a spatially dis-
tributed test array of objects (i.e., a set of blue stars) for
1 s. Participants were required to maintain the locations of
these stars for a 3 s delay period, utilizing their working
memory. A probe object (a single green star of 1 s dura-
tion) was then presented in either the same spot as one of
the original test stars, or in a different spot than any of the
original test stars. Participants were instructed to respond
whether or not the probe star had the same or different
location as one of the test stars. We implemented this task
at the threshold perceptual span for each individual,
which was defined by the number of test star objects that
the individual could correctly encode without any work-
ing memory delay. For this, a brief perceptual threshold-
ing period preceded the main working memory task,
allowing for equivalent perceptual load to be investigated
across participants48. During thresholding, the set size of
test stars increased progressively from 1 to 8 stars based
on accurate performance where 100% accuracy led to an
increment in set size; <100% performance led to one 4-
trial repeat of the same set size and any further inaccurate
performance aborted the thresholding phase. The final set
size at which 100% accuracy was obtained was designated
as the individual’s perceptual threshold.
Post thresholding, the working memory task consisted

of 48 trials presented over 2 blocks49 and used the same
trial-by-trial and end-of-block feedback procedures as
described for the first inhibitory control assessment
above. The total task duration was 6 min.

Assessment 4: Emotion bias
Participants accessed the game-like task, “Face Off”,

adapted from studies of attentional bias in emotional
contexts50–52. The task integrated a standardized set of
culturally diverse faces from the NimStim database53. We
used an equivalent number of male and female faces, each
face with four sets of emotions, either neutral, positive
(happy), negative (sad) or threatening (angry), presented
on equivalent number of trials. Each task trial initiated
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with a central fixation “+” cue presented for 500ms fol-
lowed by an emotional face with a superimposed arrow of
300ms duration. The arrow occurred in either the upper
or lower central visual field on equal number of trials, and
participants responded to the direction of the arrow (left/
right) within an ensuing 1 s response window. The task
used the same trial-by-trial and end-of-block feedback
procedures as described for the first inhibitory control
assessment above. Participants completed 144 trials pre-
sented over three equipartitioned blocks with shuffled, but
equivalent number of emotion trials in each block; a
practice set of 4-trials preceded the main task. The total
task duration was 10min.

Assessment 5: Internal attention
Participants accessed the game-like task, “Two Tap”

adapted from a prior study of breath monitoring54. In this
task, participants attended internally, specifically, they
simply closed their eyes and tapped the spacebar after
every two breaths. Participants were instructed to breathe
naturally. The assessment duration was 5 min. There was
no feedback provided on a moment-to-moment basis. At
the end of the assessment, feedback was provided on
consistency, i.e., percent of responses that were within one
standard deviation of all responses with a series of happy
face emoticons (up to 10 for 100%).

Assessment 6: reward processing
Participants accessed the game-like task, “Lucky Door”

adapted from prior neurophysiological studies of reward
processing55–58. Participants chose between one of two
doors, either a rare gain door (RareG, probability for gains
p= 0.3, for losses p= 0.7) or a rare loss door (RareL,
probability for losses p= 0.3, for gains p= 0.7). Partici-
pants used the left and right arrow keys on the keyboard
to make their door choice. Door choice was monitored
throughout the task. The overall expected value (EV) of
the choice door was varied in two separare blocks; in the
“baseline” block, EVs of choice doors did not differ, while
in the “experimental” block, EV was greater for the RareG
door than for the RareL door. Manipulation of EV, with
greater EV tied to the RareG door, allowed for investi-
gating individual tendencies to prioritize long-term (i.e.,
cumulative) vs. short-term (i.e., immediate) rewards.
Rewards were coin payoffs at the end of each trial (in
experimental block: RareG door yielded 60 coins at p=
0.3 or −20 coins at p= 0.7 and RareL door yielded −60
coins at p= 0.3 and 20 coins at p= 0.7; in baseline block:
RareG door yielded 70 coins at p= 0.3 or −30 coins at
p= 0.7 and RareL door yielded −70 coins at p= 0.3 and
30 coins at p= 0.7); these specific coin payoffs ensured no
EV differences between doors in the baseline block but a
cumulative EV difference of 80 coins over every 10 trials
in the experimental block (cumulative RareG coins: 40;

RareL coins: −40). Fourty trials were presented per block
and block order was randomized across participants; two
practice trials preceded the main experimental/baseline
blocks. Total task time was 6 min.

Electroencephalography (EEG)
EEG data were collected in conjunction with all cogni-

tive tasks using a 24-channel semi-dry and wireless elec-
trode cap and SMARTINGTM amplifier. Signals were
acquired at 500 Hz sampling frequency at 24-bit resolu-
tion. The LSL protocol was used to time-stamp EEG
markers and integrate cognitive markers42, and files were
stored in xdf format.

Cognitive performance data
For the inhibitory control, interference processing,

working memory, and emotion bias assessments, we cal-
culated assessment consistency and efficiency metrics for
each participant at each of the three time-points (days 1,
15, and 30). Consistency was calculated as 1-CV, where
CV is the coefficient of variation= standard deviation of
response time/mean response time. Efficiency was calcu-
lated as the signal detection sensitivity rate. Here, signal
detection sensitivity, d’= z(Hits)-z(False Alarms)59; all d’
values were divided by max theoretical d’ of 4.65 to obtain
scaled-d’ in the 0–1 range. Efficiency was then obtained as
d’ x speed, where speed= log(1/response time)60,61.
For the working memory task, visuo-spatial working

memory span (1–8) was taken as an additional perfor-
mance metric. For the internal attention task, consistency
was calculated similar to the other tasks; there was no
efficiency metric on this task, and mean breathing time
was taken as an additional performance metric. For the
reward processing task, two performance metrics were
computed, gain vs. loss bias on the baseline block; and
difference in rare gain choices when EV differed between
choices (experimental block) vs. when EV was the same
between choices (baseline block).

Neural data
A uniform processing pipeline was applied to all EEG

data based on the cognitive event markers. The pipeline
included data preprocessing, and cortical source locali-
zation of the EEG data filtered within relevant theta
(3–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) frequency
bands. EEG processing methods are detailed in our pre-
vious publication25.
Briefly, data preprocessing utilized the EEGLAB toolbox

in MATLAB62. EEG data were first resampled at 250 Hz
and filtered in the 1–45 Hz range to exclude ultraslow DC
drifts at <1 Hz and high-frequency noise produced by
muscle movements and external electrical sources at
>45 Hz. EEG data were average electrode referenced and
epoched to cognitive task-relevant stimuli based on the
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LSL time stamps, within the −1.0 to +1.0 s event time
window. The data were then cleaned using the autorej
function of EEGLAB, which automatically removes noisy
trials (>5sd outliers rejected over max eight iterations).
EEG data were further cleaned by excluding signals esti-
mated to be originating from non-brain sources, such as
electrooculographic, electromyographic or unknown
sources, using the Sparse Bayesian learning (SBL) algo-
rithm (https://github.com/aojeda/PEB)63,64. For this, cor-
tical source localization was performed on the EEG data
using the SBL algorithm. SBL is a two-step algorithm in
which the first-step is equivalent to low-resolution elec-
tromagnetic tomography (LORETA)65. LORETA esti-
mates sources subject to smoothness constraints, i.e.,
nearby sources tend to be co-activated, which may pro-
duce source estimates with a high number of false posi-
tives that are not biologically plausible. To guard against
this, SBL applies sparsity constraints in the second step
wherein blocks of irrelevant sources are pruned. Source
space activations are then estimated and the root mean
square signals are partitioned into regions of interest
(ROIs) and artifact sources. ROIs are based on the stan-
dard 68 brain region Desikan-Killiany atlas66 using the
Colin-27 head model67. In this process, activations from
artifact sources contributing to EEG noise from non-brain
sources, such as electrooculographic, electromyographic,
or unknown sources, are removed to clean the EEG data.
Cleaned subject-wise trial-averaged EEG data are then
processed to filter signals into theta (3–7 Hz), alpha
(8–12 Hz), and beta (13–30 Hz) bands, which are sepa-
rately source localized in each task to estimate their
underlying cortical signals. The envelope of source signals
was computed in MATLAB (envelop function) by a spline
interpolation over the local maxima separated by at least
one-time sample; we used this spectral amplitude signal
for all our analyses. For ease of interpretation, here, we
specifically focused on cortical activity from two brain
regions important for cognitive control and implicated in
mood disorders—(1) the left dorsolateral prefrontal cortex
(left DLPFC), and (2) the dorsal anterior cingulate cortex
(dACC)68–74. The left DLPFC is in the left caudal middle
frontal ROI in the Desikan-Killiany atlas, and dACC
activity was obtained as the average of the four caudal and
posterior ACC ROIs in the Desikan-Killiany atlas.
Specifically, for the inhibitory control, interference

processing, working memory, and emotion bias tasks, we
extracted the DLPFC and dACC peak neural signals at
100–300 ms poststimulus onset, baseline corrected for
activity in the −750 to −550ms time window prior to
stimulus presentation25. Activity in the theta band was
used in all analyses for these tasks given its relevance to
cognitive control75.
Given that alpha band activity is most prominent for

any task performed with eyes-closed, we extracted the

DLPFC and dACC signal on the internal attention task in
the alpha band averaged for the 2 s prior to each breath-
related response.
For the reward processing task, we extracted the DLPFC

and dACC signal in the theta band in the 0–500ms post-
choice period corrected for activity in the −50 to −250ms
pre-choice window. Corresponding to the gain vs. loss
bias cognitive task metric, we used the neural signal dif-
ference for RareG vs. RareL choices on the baseline block;
and corresponding to the difference in rare gain choice
performance metric, we used the neural signal difference
for RareG choices on the experimental vs. baseline block.

MindLog EMA
Four times per day for 30 days, participants used the

MindLog iOS/Android app, with notifications sent at
8 a.m., 12 p.m., 4 p.m., and 8 p.m. to complete the fol-
lowing information. At each time point, the EMA could
be completed within 2 min.

Mood ratings
Participants rated depression and anxiety on 7-point

Likert scales. For depression, participants responded to
“How happy vs. sad/ depressed do you feel right now?”
with the “Happy” label anchor next to score of 1 and the
“Sad or Depressed” label anchor next to score of 7. For
anxiety, participants responded to “How relaxed vs.
anxious do you feel right now?” with the “Relaxed” label
anchor next to score of 1 and the “Anxious” label anchor
next to score of 7.

Stress assessment
Similar to the internal attention cognitive assessment, at

each EMA participants completed a rapid 30-s assessment
in which they were requested to tap the mobile screen
after each full breath (inhale plus exhale). Recent research
shows that such monitoring can serve as a basic assay of
breath-focused mindfulness that is inversely related to the
internally distracted/ruminative state of the individual,
which is exacerbated in depression54,76,77. Mean breathing
time and consistency data were extracted on this rapid
assessment at each EMA. Across all participants’ data, we
confirmed that consistency on this task was positively
correlated to heart rate variability (HRV, Spearman’s r=
0.11, p= 0.002) that is a known marker for stress78,79;
specifically, inconsistency of performance on the stress
assessment was related to lower HRV, indicative of
greater stress.

Diet reporting
At each EMA participants reported on their consump-

tion of sugars, fats, and caffeine in the last 4 h. While diet
monitoring itself can be quite sophisticated and burden-
some with both subjective reports and objective tracking
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methodologies80,81, we opted for a rapid non-burdensome
assessment to ensure completion over 30 days. Specifi-
cally, within the context of depression, excessive con-
sumption of processed fats and sugars has been related to
the severity of symptoms, and intervention to change such
diet patterns has shown success13–16. Hence, based on a
standard assessment of dietary fats and sugars82, we asked
the following questions 4× per day, completed on a 0–6
item scale:

Fats How many of these items have you had in the last
4 h? Red meat burger/sandwich; sausage/salami/bacon;
whole egg; white bread; pizza; cheese; french fries; chips;
butter popcorn; whole milk/milkshake; and fast food take-
out.

Sugars How many of these items have you had in the last
4 h? Cake/cookies; ice-cream; chocolate; candy; pancakes/
french toast; jam/honey; soda; juice or other sweetened
beverage; and cereal with added sugar.

Caffeine How many servings of caffeine (coffee/tea/
energy drink) have you had in the last 4 h?

Smartwatch data
From the Samsung Galaxy wristwatch, we extracted

features corresponding to (1) heart rate; (2) step count
and exercise including speed, calories burned, distance,
and duration; and (3) sleep duration83. For all features,
start and end times were extracted. In addition, HRV
metrics were obtained from the Tizen photo-
plethysmography (PPG) on the watch84.

Machine learning (ML) models training and evaluation
strategy
This included (1) data ingestion and feature extraction;

(2) data preprocessing for ML modeling; and finally, (3)
the ML model training and evaluation.

Data ingestion and feature extraction
The data from all the sources were carefully aggregated

and stored in local storage. Raw data had different sam-
pling frequencies—seconds to minutes for smartwatch
data, hours for EMA data, and days for neurocognitive
data. To reconcile these differences, all independent data
variables were either aggregated or extrapolated based on
their sampling frequencies to match the sampling fre-
quency of the dependent variable, i.e., depressed mood
ratings as the reference standard. The following features
were, thereby, extracted:
(1) Time of the day when a particular depression rating

was taken: (6:00, 10:00), (10:00, 14:00), (14:00,
18:00), (18:00, 23:59);

(2) Anxiety ratings, and mean breathing time and
consistency of the 30-s stress assessment in each
EMA were directly taken from the MindLog app
data as these were completed at each time point
when a depression rating was obtained;

(3) All cognitive and neural data variables were
mapped onto the nearest depression rating based
on their respective time stamps.

(4) Total amount of fats, sugars, and caffeine were
taken in the last 24 h of each depression rating;

(5) Smartwatch heart rate was taken as the mean value
from a window of ±30 min around the time of each
depression rating;

(6) Cumulative step features were taken as the mean
values from the past 12 h of each depression rating
for each step feature separately;

(7) Cumulative exercise features were taken as the
mean values from the past 24 h of each depression
rating calculated for each feature separately;

(8) Number of hours slept the previous night were
taken relative to each depression rating;

(9) HRV from the Tizen PPG was taken as the standard
deviation from a window of ±15 min around the
time of each depression rating.

These features were calculated and stored separately for
each subject for a total of 43 features per subject. Data
were also inspected using a semi-automated method, i.e.,
automated and manual inspection for garbage, unusable
and missing values. Manual inspection of raw data was
required as data formats, variable names, and file names
were different for different versions of wearables and for
different mobile ecosystems used, i.e., Android and iOS.

Data preprocessing for ML models
This step took the data matrices from the prior step for

purposes of imputation, standardization, and regulariza-
tion. The preprocessing took care to not alter the data’s
overall distribution at the level of each participant. For
personalized models, removing missing data can create
unaccountable bias and lead to low accuracy on test data.
Moreover, filling missing values with fixed values, mean,
mode, or median can also cause problems; when filled in
place of missing data, these values can alter the original
multivariate distribution, which may hinder the model
from generalizing actual patterns in the training dataset.
Thus, for missing data, we used a regression-based mul-
tivariate imputation scheme known as iterative imputa-
tion85,86. This scheme models each feature with missing
values as a function of other features and uses that esti-
mate for imputation. It does so in an iterative round-robin
fashion: at each step, a feature column is designated as
output y, and the other feature columns are treated as
inputs X. A regressor is fit on (X, y) for known y. Then,
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the regressor is used to predict the missing values of y,
executed for each feature in an iterative fashion.
In addition, to achieve effective preprocessing over

computationally heavy ML processes, a preprocessing
“pipeline object” was used. Using such an object has
various advantages, including but not limited to encap-
sulating the preprocessing steps together, and avoiding
leaking statistics from the test data into the trained model
in cross-validation (CV), by ensuring that the same sam-
ples are used to train the transformers and predictors, and
improving run time during parallel processing. For this
study, the following preprocessing pipeline strategy was
devised: (1) continuous and discrete variables were pro-
cessed independently, (2) discrete variables were imputed
using a “most frequent class imputer”, which is basically
filling missing values with the class with highest fre-
quency, (3) the continuous variables were further divided
into two sub-parts, namely, the smartwatch plus EMA
variables and neurocognition variables, (4) the smart-
watch plus EMA variables were imputed using an iterative
imputer (aka Multivariate Imputations via Chained
Equations) discussed above, (5) the neurocognition vari-
ables were imputed using a constant imputer (imputing
with a constant value) due to the coarse granularity of its
data, (6) all discrete variables were regularized using an
ordinal encoder which results in a single column of
integers (0 to n-categories - 1) per feature, and finally (7)
all continuous variables were regularized using a max-
imum absolute scaler, which scales and translates each
feature individually with the maximum absolute value in
the training set such that it does not shift or centre the
data, and thereby not destroying any sparsity. The data
was then ready to be deployed in the ML analysis pipeline.

ML pipeline
A primary step to achieving robust ML models is

ensuring independence between training and test and
providing transparency on the models that are evaluated.
The personalized ML pipeline included hyperparameter
tuning, model training, evaluation, and model selection.
On the one hand, ensuring independence between data,
which is used for hyperparameter tuning, training and
testing makes the model less prone to overfitting, and
prevents the introduction of bias into the model. How-
ever, ensuring independence between training and test
datasets is a particular challenge for this N-of-1 modeling
project. On average, 93 ± 30 of 120 total MindLog EMAs
were completed per participant, thus only this many data
points were available for ML training and testing. A tra-
ditional k-fold CV scheme cannot be used in this case as
the model performance will then be highly dependent on
the small number of examples set aside for testing. Thus,
to tackle this technical challenge of dealing with a small
dataset and achieving a model practically free from bias

and immune to overfitting, a nested CV scheme was used,
with the only downside being increased computation cost
and time87,88. Here, we specifically used a repeated four-
fold CV scheme with ten repeats as the inner CV strategy
and a simple fourfold CV scheme as the outer CV strategy
for the overall nested CV scheme. More details on the
nested CV algorithm are provided in Supplementary
Methods.
We modeled individual depressed mood ratings using

the various modalities of data i.e., neurocognitive data,
MindLog EMA data and smartwatch lifestyle data
employing supervised ML regression models hyperpara-
meter tuned and trained over the nested CV scheme.
Figure 1 shows the main steps of the pipeline; the pipeline
compared multiple ML strategies for each subject
including random forest, gradient boost, adaptive (Ada)
boost, elastic net, support vector, and poisson regressor.
The voting regressor was also used that employs the best
model from all the other strategies. Details on each ML
strategy are provided in Supplementary Methods. After
hyperparameter tuning and training over all these ML
models, results were evaluated for each model, and each
subject over the regression metrics of mean absolute
percentage error (MAPE) and mean absolute error
(MAE). We used MAPE as the performance metric to
choose the best model (with lowest error) for each ML
strategy89. MAPE is calculated using the formula:

MAPE ¼ 1
n

Xn

k¼1

Pk � Ak

Ak

����

���� ´ 100

where Pk is the predicted value of kth data point, Ak is the
actual value of kth data point and n is the total number of
data points.
The best model for each strategy was then fed in the

voting regressor and the best model from this strategy was
also calculated in the same manner as the other strategies.
At this point, we obtained the best models for all the
seven ML strategies, namely, elastic net, random forest,
gradient boosted trees, Ada boosted trees, poisson
regressor, support vector regressor, and voting regressor
for each person. We then compared the outcome of the
best performing models from each strategy and calculated
the overall best model with the least overall MAPE; we
chose this particular model to represent each participant
(Table 1). Thus, each study participant had their own
personalized model predicting their depressed mood.

Personalized ML feature importance
We used the SHapley Additive exPlanations (SHAP),

which is a game theory-based algorithm that can be used
to explain feature importance for any fitted ML model90.
SHAP is based on the principle that a prediction can be
explained by assuming that each feature value of the
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instance is a “player” in a game where the prediction is the
“payout”. It uses coalitional game theory principles to
calculate how to distribute the payout among the features
equitably. The Shapley value assigns payouts to players
depending on their contribution to the total payout.
Players cooperate in a coalition and receive a certain profit
from this cooperation. The “game” is the prediction task
for a single instance of the dataset. The “gain” is the actual
prediction for this instance, minus the average prediction
for all instances. The “players” are the feature values of the
instance that collaborate to receive the gain (=predict a
certain value, in this case, for each instance of
depressed mood).
We calculated the Shapley value for each feature in the

best-fit personalized ML model for each participant; this
value is the (weighted) average marginal contribution of a

feature across all possible coalitions. We replaced the
feature values of features that are not in a coalition with
random feature values from the dataset to get a prediction
from the ML model. The computation time increases
exponentially with the number of features; hence to keep
the computation time manageable we used a method
known as permutation Shapley explainer which approx-
imates the Shapley values by iterating through permuta-
tions of the inputs. This is a model agnostic explainer that
guarantees local accuracy (additivity) by iterating com-
pletely through an entire permutation of the features in
both forward and reverse directions. One such iteration
calculates exact SHAP values for the model with up to
second-order interaction effects. Now, multiple iterations
over many random permutations gives better SHAP value
estimates for the model with higher-order interactions.

Fig. 1 Summary of the three main steps involved in the personalized depression modeling pipeline, namely, data ingestion and feature
extraction, data preprocessing, and machine learning-based analysis. These steps were carried out separately for each subject and personalized
performance reports, prediction reports, and feature importance reports were obtained.
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Table 1 Summary of the performance of each personalized ML strategy conducted individually in subjects.

Subject ID Model Mean absolute

% error

Mean

absolute error

Subject ID Model Mean absolute

% error

Mean

absolute error

Mean Std Mean Std Mean Std Mean Std

P-1 ab 10.07% 4.40% 0.449 0.258 P-20 ab 37.10% 12.80% 1.142 0.527

en 11.89% 5.47% 0.528 0.243 en 31.67% 8.31% 1.086 0.494

gb 10.35% 4.87% 0.477 0.264 gb 35.57% 11.42% 1.123 0.415

pr 11.90% 4.80% 0.529 0.234 pr 31.55% 6.22% 1.055 0.485

rf 9.61% 5.24% 0.440 0.276 rf 39.88% 10.57% 1.263 0.416

sv 7.55% 5.55% 0.358 0.291 sv 31.86% 5.14% 1.099 0.481

vr 9.86% 4.66% 0.447 0.239 vr 31.76% 8.25% 1.036 0.483

P-10 ab 25.45% 10.13% 0.900 0.248 P-21 ab 33.70% 12.98% 0.689 0.211

en 30.70% 12.36% 1.184 0.345 en 35.45% 4.52% 0.740 0.110

gb 32.93% 10.09% 1.235 0.285 gb 33.28% 11.59% 0.824 0.372

pr 30.89% 11.65% 1.192 0.356 pr 43.88% 6.55% 0.841 0.164

rf 26.37% 10.90% 0.973 0.390 rf 33.36% 11.39% 0.681 0.191

sv 32.45% 14.07% 1.226 0.243 sv 39.32% 6.29% 0.815 0.089

vr 28.16% 11.25% 1.022 0.363 vr 33.91% 7.12% 0.714 0.170

P-12 ab 35.13% 18.09% 0.870 0.314 P-23 ab 36.31% 11.84% 0.890 0.140

en 28.05% 15.08% 0.720 0.362 en 35.12% 15.30% 0.812 0.167

gb 33.80% 15.22% 0.810 0.183 gb 36.72% 13.33% 0.890 0.132

pr 26.27% 14.44% 0.650 0.330 pr 37.07% 13.44% 0.812 0.136

rf 30.77% 18.73% 0.720 0.381 rf 39.51% 12.21% 0.910 0.094

sv 27.07% 14.39% 0.670 0.274 sv 39.26% 15.27% 0.851 0.166

vr 26.40% 14.45% 0.650 0.302 vr 35.04% 13.93% 0.793 0.137

P-14 ab 46.75% 15.46% 1.063 0.235 P-24 ab 16.40% 12.34% 0.308 0.239

en 55.68% 26.28% 1.264 0.411 en 13.35% 7.08% 0.258 0.235

gb 53.03% 25.49% 1.122 0.485 gb 33.07% 14.74% 0.475 0.134

pr 71.25% 42.99% 1.458 0.546 pr 12.10% 6.45% 0.250 0.238

rf 40.88% 11.87% 1.007 0.335 rf 20.57% 20.28% 0.350 0.238

sv 62.51% 18.54% 1.326 0.315 sv 6.40% 6.91% 0.208 0.267

vr 42.73% 11.13% 0.979 0.352 vr 12.24% 2.79% 0.267 0.226

P-15 ab 11.42% 5.94% 0.413 0.160 P-26 ab 41.42% 12.73% 1.188 0.250

en 12.73% 2.67% 0.456 0.077 en 38.21% 9.77% 1.134 0.168

gb 12.33% 1.99% 0.445 0.011 gb 40.33% 12.33% 1.214 0.220

pr 12.35% 2.91% 0.435 0.099 pr 39.36% 10.18% 1.161 0.161

rf 12.04% 4.59% 0.434 0.118 rf 38.91% 6.60% 1.152 0.122

sv 10.24% 2.53% 0.378 0.088 sv 36.41% 9.63% 1.152 0.217

vr 11.71% 3.04% 0.422 0.105 vr 36.52% 9.75% 1.080 0.201

P-18 ab 30.50% 4.52% 1.153 0.158 P-28 ab 21.23% 7.56% 0.657 0.131

en 24.05% 11.80% 0.882 0.356 en 28.80% 12.35% 0.906 0.426
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We, thereby, estimated the Shapley values for all features
to obtain a complete distribution of the prediction (minus
the average) among the feature values. Features with large
absolute Shapley values are essential, hence, we averaged
the absolute Shapley values per feature across the data,
rank-sorted these and then plotted the top-five rank
Shapley values for each participant (Fig. 4); the goal of
future studies would be to intervene on these top ML-
based features individualized to each depressed patient.

Results
The ML pipeline was executed separately in each of the

14 subjects to predict individual depression as per Fig. 1.
There were up to 43 features for each subject (Supple-
mentary Table 1) modeled across the domains of neuro-
cogition, anxiety ratings concomitant with the depression
ratings, instantaneous stress and breathing assessments,
as well as lifestyle data including diet, sleep, and physical
activity collated for the 24-h prior to each depression
rating, acquired from EMAs and smartwatches.
Table 1 shows the MAPE and MAE of the best models

from each ML strategy and the overall best-fit model
chosen for each subject based on the lowest absolute
MAPE amongst models. The predicted data were gener-
ated over a fourfold nested CV scheme wherein threefolds
were used to fit the chosen hyperparameter tuned model,
and onefold was used for predictions as a test set; this was
repeated for all the different combinations of 3:1 train to
test splits, and the results were then collated. We observed

that the overall best-fit ML model varied across subjects.
Ensemble learning models had best outcomes for five
subjects (i.e., including Adaboost, Random Forest Or
Gradient Boost), while linear models outperformed
ensemble ML algorithms for the nine other subjects (i.e.,
including elastic net, poisson regressor, and support
vector machine). We did not observe there to be any one-
size-fits-all ML strategy. On average across all subjects
and all models, we observed a MAPE of 27.9 ± 10.3% that
corresponded to a MAE of 0.77 ± 0.27 points on the 7-
point Likert scale. Of note, MAPE values appear high
while MAE values are low because depressed mood was
discretely modeled on a 1–7 scale, so a 1-point difference
between actual and predicted outcomes would corre-
spond to a 100% difference in MAPE.
If one were to compare by type of model, then the average

MAPE across subjects was lowest for the voting regressor,
29.7 ± 9.9% with a MAE of 0.78 ± 0.25. The voting regressor
is a composite strategy that chooses the best model from all
other strategies. Hence, it is logical that on-average the
voting regressor produced the best results, though not
necessarily at the individual level, which we confirmed by a
significant difference between outcomes for the individual
best-fit model with lowest MAPE vs. voting regressor
(MAPE difference: −1.80 ± 0.68%, t(13)=−2.64, p= 0.02).
Also, given that the voting regressor chooses the best
strategy amongst all other strategies, its run-time complexity
assumes that other models are already computed, and is not
a time-saver over executing the full ML pipeline.

Table 1 continued

Subject ID Model Mean absolute

% error

Mean

absolute error

Subject ID Model Mean absolute

% error

Mean

absolute error

Mean Std Mean Std Mean Std Mean Std

gb 25.80% 6.21% 0.948 0.197 gb 22.76% 11.01% 0.715 0.297

pr 24.75% 11.62% 0.910 0.337 pr 28.23% 9.39% 0.886 0.326

rf 26.60% 11.71% 1.000 0.340 rf 21.60% 6.84% 0.666 0.168

sv 28.53% 6.46% 1.069 0.276 sv 29.04% 14.43% 0.896 0.511

vr 24.05% 11.80% 0.882 0.356 vr 22.36% 4.72% 0.666 0.087

P-19 ab 32.60% 4.62% 0.728 0.234 P-29 ab 77.64% 38.75% 1.319 0.282

en 30.48% 9.46% 0.711 0.217 en 75.14% 29.31% 1.392 0.095

gb 47.38% 5.89% 1.002 0.325 gb 64.27% 20.17% 1.245 0.182

pr 34.35% 9.95% 0.754 0.143 pr 71.10% 27.32% 1.410 0.040

rf 30.47% 3.24% 0.745 0.294 rf 63.14% 26.13% 1.274 0.322

sv 29.11% 6.24% 0.651 0.202 sv 79.64% 39.65% 1.375 0.244

vr 29.26% 5.04% 0.686 0.270 vr 71.83% 30.21% 1.289 0.207

The best performing models for each subject are highlighted. Performance metrics of mean absolute percentage error and mean absolute error are shown. Seven
different ML models were used in each subject: Adaboost regressor (ab), elastic net (en), gradient boosting tree regressor (gb), poisson regressor (pr), random forest
regressor (rf), support vector machine regressor (sv), and voting regressor (vr).
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Figure 2 augments the performance results summarized
in Table 1 in that it compares the actual values of the
depression ratings with the predicted values from the
best-fit ML model for each subject. Figure 2 shows two
kinds of comparisons; actual vs. predicted depressed state
comparisons with time where each depression rating (at
each MindLog EMA occuring 4× daily) was one time-step,
as well as the comparison between the actual and pre-
dicted value distributions in each subject. These plots
show high similarity between the actual and predicted
value time series and distributions. Indeed significant
correlations were obtained between actual and predicted
depressed ratings in most subjects, as seen in Fig. 3 (exact
correlation values and associated confidence intervals and
p-values are provided in Supplementary Table 2). The
overall actual vs. predicted correlation across all subjects,
obtained by concatenating these data values across par-
ticipants, is shown as the last data point in Fig. 3
(Spearman’s rho (df, 1297)= 0.67, 95% CI [0.63 0.69], p <
0.0001).
From Fig. 3, it can be observed that two subjects did not

show significant actual vs. predicted correlation, specifi-
cally P-18 and P-24. The inadequacy of the personalized
model in these two cases was because of insufficient data
for P-18 (only ~30 EMA points at which depressed state
was captured as seen in Fig. 2), and insufficient variability
in the data in P-24 (this participant chose scale option 1 in
the large majority of cases as seen in Fig. 2). Overall, we
did not find that the models significantly under or over-
estimated the predictions (% under-estimation= 28.38 ±
2.42%; % over-estimation= 25.05 ± 2.83%; signed-rank
test, p= 0.17).
We then computed Shapley statistics for each feature in

the best-fit personalized ML model for each participant to
better interpret the ML model results; Shapley values are a
benchmark method for model interpretability91. Figure 4
shows the SHAP summary plot for each subject for the
top-five ranking most important features. Both feature
rank importance and feature effects are shown; each
colored point on the feature effect plot is a Shapley value
for the corresponding feature and an instance of the
depressed state rating. These plots show how the feature
predictors are personalized to each subject with unique
modalities for future intervention. For instance, let us
consider the predictions for P-12; caffeine intake in the
last 24 h is the most prominent indicator of depression
according to the summary plot. We can also see the sign
of prediction, that is, the higher the feature value, the
lower is the SHAP value, and hence higher overall caffeine
intake is associated with better mood for this particular
subject. A caution to note is that these plots show asso-
ciation, but not causation, between features and depressed
mood. Notably, for lifestyle features of diet, exercise and
sleep, we took temporality into account in the models for

better interpretability i.e., these features were calculated
for the 24 h prior to each depression ratings so that
directionality could be understood as lifestyle prior to
current mood but not vice versa.
Overall, as expected, we found co-morbid anxiety to be

highly predictive of depressed mood. Beyond this,
depressed states in different individuals indeed had dif-
ferent predictors, making a case for personalized inter-
vention combining multiple modalities of treatment.
Figure 5 plots the frequency of different feature predictor
domains for depression across participants: anxiety rat-
ings were the top predictor in 86% of cases; physical
activity over the past day including both steps and exer-
cise based smartwatch features were top predictors in 57%
cases; depression ratings were sensitive to diet including
sugars, fats, and caffeine in 71% cases; the breathing and
stress assessment revealed depression sensitivity in 43%
participants; sleep duration was a top predictor of
depression in 21% cases, and neurocognitive features
particularly related to rewards processing were significant
in 29% participants.

Discussion
Depression has an incredibly large global healthcare

burden1,2. Yet, current first-line treatments, such as
antidepressants and even neuromodulation i.e., FDA-
approved transcranial magnetic stimulation show low to
moderate efficacy in large clinical trials3,4,92. In the 21st
century, personalized medicine has been recommended
for depression treatment8,30,93, but the challenge remains
how to design such a strategy. Here, we present a machine
learning-based personalized approach that comprehen-
sively takes into account several factors related to the
individual’s subjective symptoms, lifestyle factors, such as
exercise and sleep, dietary factors, stress, and breathing
based assessments, as well as cognitive function data with
associated neural activations, to generate N-of-1 perso-
nalized models for individuals with depression. We fur-
ther parse the personalized ML pipeline for its top-feature
predictors in each individual, revealing distinct feature
determinants of depression over time. Notably all features
incorporated in these N-of-1 models can serve as targets
for intervention. Hence, the outcomes of the personalized
models can be used to design individualized interventions
with a uni- or multi-feature based, i.e., personalized
multimodal treatment strategy.
Here, we collected EMA app and smartwatch-based

data from all participants over a 1-month time period.
Further, individuals participated in EEG synchronized
neurocognitive assessments at beginning, mid, and end of
the study. All of these data were preprocessed and col-
lated for the ML models within a robust pipeline. Time
series feature engineering was applied to reconcile dif-
ferent sampling rates. Each individual’s pipeline used
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Fig. 2 Comparisons of actual depression states as self-reported by participants vs. their predicted depression states obtained from the
personalized ML pipeline with fourfold CV. Actual and predicted value comparisons are shown over time with each EMA serving as one time-
step, and also compared as per their histogram distributions. The bottom row plots show the heatmap and histogram comparisons for actual vs.
predicted values across all subjects.
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multiple ML strategies including ensemble learning
methods of random forest, gradient boost, Adaboost as
well as linear methods of elastic net regression, support
vector machine, and poisson regression. A voting
regressor was also employed, which is a composite strat-
egy that selects the best model from the other strategies.
To prevent overfitting, all models underwent hyperpara-
meter tuning and nested CV. The best of seven models
was selected for each individual using the MAPE criterion.
Shapley feature values were then extracted for the top-five
ranking features. We hereby abbreviate this approach as
the personalized mental health modeling (PMHM)
method, which can then be used to inform specific
interventions for each individual patient. Hence, our
future research will focus on applying individual inter-
ventions as directed by the PMHM features.
Notably, in previous personalized ML research from our

team, blood pressure measurements were modeled using
smartwatch data over 1–3 months in pre-hypertensive
patients, and specific health recommendations were
provided for intervention to the patients based on top-
ranking model features89. The researchers showed sig-
nificant change in blood pressure as a result of the top-
feature recommendations. Thus, in future, such perso-
nalized treatment guidance can be extended for depressed
individuals. PMHM can direct multimodal intervention,
which encompasses evidence-based lifestyle-oriented
approaches including modification of physical activity10,
diet13–17, sleep hygiene8,9 and mindfulness medita-
tion11,12. Notably, the mindful meditation intervention
may also target the highly frequent anxiety feature in our
models94. Finally, neurocognitive features can also be
targeted using neuromodulation and cognitive training for
depression95–99. Ultimately, the PMHM approach has the
potential to guide N-of-1 intervention in depression,
integrating aspects of lifestyle with neurocognitive sti-
mulation. Such an integrated personalized strategy that
moves away from the standard one-size-fits-all approach,
has been recommended by clinicians for more than a

decade, but never designed21. Digital medicine and the
closed-loop adaptive design framework22,23 has an
important role to play in this personalized intervention
implementation, given that adherence to multiple features
may need to be monitored through the course of treat-
ment. Delivery of such a personalized intervention will
form the focus of future work.
Our research differs from prior approaches in that we

follow a purely idiographic approach, based on the indi-
vidual subject’s data alone. All prior approaches have
made use of nomothetic models that are based on
aggregate data from several participants26–29. Modeling
on multimodal cross-sectional data has previously been
used to choose one of two potential treatment options for
patients20,30–33 or to design a behavioral therapy task
sequence36. Yet, methodological experts recommend that
personalized predictions can only be made based on prior
data from that individual, i.e., idiographic data34,35. To the
best of our knowledge, this is the first study to implement
such an N-of-1 model for depression, which further
informs treatment. In future, as the sample data size
expands across all modalities acquired in this study, it
would be useful to test combinations of nomothetic and
idiographic approaches.
Our study is limited in that we do not yet know the

interventional utility of our N-of-1 modeling results, i.e.,
whether the top-feature predictors of individual depres-
sion will also serve as the best markers to engage in
treatment. The models are also limited by the quality and
quantity of data. We observed poor model fits for two
participants, one that had minimal data and the other that
had low variability in the data. Continual motivation and
engagement is a core component of digital studies that we
aim to iteratively improve upon. The type of sensors used
also limit the results, in this case smartwatch and wireless
EEG were used, and other studies may use different sen-
sor combinations with different data variables and sam-
pling granularity. The sampling resolution of the response
variable, in this case, depression ratings collected 4× daily,

Fig. 3 Spearman rank correlation coefficients with 95% confidence interval bounds are plotted for the relationship between the predicted
and observed depressed state values over time in each individual. The overall correlation obtained by concatenating the actual vs. predicted
values across all subjects, is also shown as the last data point. All correlations were significant except in P-18 and P-24. Actual correlation values are
shown in Supplementary Table 2.
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Fig. 4 (See legend on next page.)
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is also important; while greater sampling granularity may
generate different results, we did not opt for >4× per day
sampling because of the longitudinal burden of the pro-
tocol. Studies designed for depressed individuals need to
be cognizant of potential behavioral activation problems,
and high-burden studies over long time periods may
result in drop-out100,101; in our case no drop-out was
observed. Finally, the goal of this study was to generate a
personalized ML pipeline to predict depressed mood and
show its feasibility; as such the study is limited by small
participant sample size; restricted age range of study
participants; depression assessed on self-report symptom

scales but not using structure clinical diagnostic inter-
views; and non-exclusion of participants on stable psy-
chotropic medications—all of these characteristics
currently limit the generalizability of the results.
Depression is a multifaceted illness with several risk

factors ranging from genetics, behavioral, and lifestyle
factors; these risk factors may express as overlapping
symptoms that ultimately result in significant inter-
individual variability in clinical remission and response to
the same treatments18–20. While this individual variability
is not beneficial to standard treatment studies, it can be
tapped by personalized treatment protocols. Here we
present a digital data-driven approach to sample several
modalities of individual function that can be used to
develop idiographic personalized models of depression.
This PMHM approach can be leveraged in future for the
implementation of novel personalized treatment, and in
principle, can also be extended to enhance the prediction
of other mental/physical health variables.
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Fig. 4 SHapley additive exPlanations (SHAP) summary plots for each subject showing rank feature importance and the feature effects. The
feature importance is depicted by the size of the gray bars that represent mean absolute Shapley values for the top-five features; bar colors simply
represent different feature identity. The feature effects are depicted by each colored point on the summary plot which is a Shapley value for a feature
and an instance. The position on the y-axis is determined by the feature and on the x-axis by the Shapley value. The color represents the value of the
feature from low (blue) to high (pink). Overlapping points are jittered on the y-axis direction, so we get a sense of the distribution of the Shapley
values per feature. The features are ordered according to their importance. In most cases, EMA ratings of co-morbid anxiety (“anxious”) best predicted
the depressed state. These plots reveal how each individual had different modalities of data as their top-rank predictors, which can then be leveraged
for personalized intervention in future studies. Top variables observed were cumm_step_distance/speed/calories/count that depicted the cumulative
step features in the past 12 h; Mean Breathing Time and Consistency that were obtained from the 30-s active stress assessment at each EMA,
prev_night_sleep or hours of previous night’s sleep; past day sugars/fats/caffeine; exercise_duration/calories over the past 24 h; heart rate within the
30 min window of the EMA; ppg_std that depicted the HRV in the 15 min window of the EMA and time of day. In some cases, neurocognitive metrics
also emerged as top-ranking features, including LD_GL_bias and LD_RareG_diff that respectively represented the bias towards frequent gain vs. loss in
the reward task and the preference for rare gain choices when they have greater vs. equal expected value in the reward task; GLbias_dACC/left DLPFC
that was the neural activity in the dACC/left DLPFC brain region corresponding to bias for frequent gains vs. losses on the reward task;
diff_rareLG_leftDLPFC that was the neural activity in the left DLPFC brain region evoked to choices made on the reward task with a contrast of
expected values; gw_leftDLPFC that was the neural activity in the left DLPFC brain region evoked to the Go Wait inhibitory control task; mf_leftDLPFC
that was the neural activity in the left DLPFC brain region evoked to the Middle fish interference processing task; and ls_leftDLPFC that was the neural
activity in the left DLPFC brain region evoked to the Lost Star working memory task.

Fig. 5 Personalized ML informed top-five ranking features across
individuals. Frequency of top-five ranking Shapley feature domains
across participants cumulated based on the personalized ML models
in individual subjects are shown.
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