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ABSTRACT OF THE DISSERTATION
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Doctor of Philosophy in Mathematics
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Professor Andrea L. Bertozzi, Chair

In this work, we present a variety of energy-based methods that are solutions to prob-

lems in the fields of microscopy, hyperspectral and medical imaging, and data mining. These

solutions are formulated from the perspective of extremization an energy function capturing

deviation of the solution from observations and desirable properties. First we present new

methods for improving imaging acquisition rates of atomic force microscopes. We propose

and experimentally demonstrate image inpainting as a way to liberate scanner position lim-

itations thereby enabling faster scans. Traditionally the scanner takes measurements in a

raster pattern; in this work, we demonstrate that high-quality surface reproduction is at-

tainable by sampling with non-raster patterns using variational image inpainting. With non-

raster scan patterns existing thermomechanical drift error removal approaches no longer can

be used. We propose a solution to this task with a highly effective corrective technique that

utilize points of self-intersection. Our model only requires a few points of self-intersection

that have minimal impact on scan time. Our correction model is potentially numerically un-

stable in some special, though easy to produce, cases. We propose a fitness based on analysis

of the model energy that quantifies how well our method will perform for a given scan path.

With minor experimental design modifications, often resulting simply from uncertainties in

the scanner positioning, this fitness can be drastically increased and issues thereby alleviated.

Due to its desirable properties, we focus specifically on improving the Archimedean spiral
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scan. By considering basic limitations of the scanner’s tip speed and resonant frequency,

we derive the parametrization that exactly obeys limitations while minimizing total scan

time. With small and reasonable approximations the form of this scan becomes analytically

simple to state and easy to implement in practice. We defend this optimal parameterization

against other choices from the perspectives of scan time, scanner limitations, and sampling

distribution uniformity.

In the area of medical imaging we address the issue of signal cleaning for simultane-

ous electroencephalographic and functional magnetic resonance imaging. During acquisition

dominant signals are produced through the ballistocardiographic effects that have challenge

variability over time. Noting some properties of the signals, we propose applying an exist-

ing model known as low-rank + sparse matrix decomposition. We performed experiments

with twenty individuals in simultaneous capture to observe decreases in alpha-band neural

activity following Gabor flashes and find that the proposed method improves signal cleaning

results considerably when compared to an existing method known as independent compo-

nent analysis. In the domain of hyperspectral unmixing we address the problem of unmixing

with spectral variability. We propose and study using social sparsity to enforce sparsity as-

sumptions in the context of existing models that extract per-material endmember bundles.

In a trio of experiments, two quantitative and one qualitative, we demonstrate that social

sparsity - in particular group lasso - improves the solution.

In the final chapter of this work we investigate the recently popular machine learning

problem of topic modeling. We present two models for solving this problem - latent Dirich-

let allocation and non-negative matrix factorization - in their original forms, review the

literature, and present what is known about the analytic relationship they share. In prac-

tice, because the problems are non-convex, the inference or optimization technique plays

a role in solution quality. We therefore also summarize three popular algorithms for these

models and frame the algorithms themselves in a common variational setting specific to the

topic modeling problem. In addition to contributing this perspective for the models and algo-

rithms together, we experimentally demonstrate differences in performance for the methods
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as well as practical topic model results. The final contribution of this work is two metrics for

studying the distributional properties of topics extracted from documents with additional

information e.g. time or location. We study these metrics with a geotagged Twitter data

set taken from Madrid throughout 2011 and find that these simple metrics provide a useful

summary for topics and can significantly simplify the initial process of studying topic model

results when the number of topics is large.
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CHAPTER 1

Introduction

In this work, we present a variety of energy-based methods that are solutions to problems

in the fields of microscopy, hyperspectral and medical imaging, and data mining. Energy

methods, or variational methods, are based around the construction of an energy functional

that can be applied to any potential solution to measure how well the solution models

observed data. The solution that best minimizes this functional is sought as it represents,

depending on the setting, a cleaned version of or optimal representation for the data. In

this work such techniques are employed at every step. With problems ranging from filling

in missing information in images to finding trends in a book collection this manuscript

demonstrates a variety of successful and original ways to design, build on, or employ energy-

based models for general signal processing and data mining tasks.

This manuscript is divided into three parts. First, in chapter 2 we present results for

fast imaging with an atomic force microscope (AFM) [BQG86]. AFMs typically capture

images on the order of minutes which makes it time consuming [HSF06] and difficult to

observe dynamic processes [KYI10]. The AFM captures images serially by measuring one

point on a sample surface at a time through physical contact with a nano-scale tip known

as the cantilever. This sequence of point measurements must then be used to complete a

grid-based image of the sample. In chapter 2 we demonstrate that speed can be improved by

departing from standard raster, or grid, acquisition with tight controller feedback; instead, we

propose using sensor information with weaker control of the cantilever and image inpainting

techniques [BVS03, AK06, BSC00, CMS98, GO09, CWT11] to generate a topograph from

sensor data. This allows for new scan patterns to be used with more desirable characteristics
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for the scanner such as finite tip acceleration, thereby allowing the scanner to perform well

at higher capture rates.

Due to thermal changes in the AFM during acquisition the measurement taken by the

AFM drifts with time [CSD01]. This drift, due to thermomechanical changes, is typically

corrected using approaches specific to raster data. With the non-raster paths a more general

approach is needed to correct this drift. To extract the contribution of this signal we propose

using a small number of points of self-intersection in a non-raster scan path to measure the

drift component. Without drift, measuring the same location twice produces the same

measurement. Any difference, therefore, can be used in the variational problem we propose

to solve for the smooth drift. In some situations the proposed model fails. This results from

path self-intersection points that are invariant to smooth perturbations of the AFM signal.

To quantify the susceptibility to this problem and guarantee that our model can correct drift

present in a scan acquired with a particular path, we also present a fitness quantity that,

when large, guarantees smooth drift components will be corrected by our approach.

In the remainder of this first chapter we investigate a scan pattern, the Archimedean

spiral, due to its desirable surface coverage and frequency profile. Using this scan pattern

there remains a decision to be made about the parameterization of the curve. In essence, the

spiral pattern determines the path along which the AFM will take measurements but the

speed at each point is yet to be determined. Two particular solutions - one using constant

angular velocity and another constant linear velocity - are options each obeying one physical

limitation of the AFM yet violating another. We investigate advantages and disadvantages

then propose an alternative scan that is optimal in the sense that it completes the scan in as

little time as possible while obeying all relevant AFM limitations. All techniques described

in this chapter are presented with various experimental results capturing the efficacy of

non-raster scanning with inpanting and the proposed drift correction, as well as intricate

experiments demonstrating the impacts of different spiral scan parameterizations.

Next, in chapter 3 we propose solutions to problems in both the fields of medical and

hyperspectral imaging based on entirely different data but utilizing very similar underlying

2



matrix factorization models. In the first half of this chapter we apply an existing technique

known as low rank + sparse decomposition (LR+SD) [LCM10] to separate undesirable sig-

nals from an electroencephalogram (EEG) [DBM13] captured during a functional magnetic

resonance imaging. The specific signal contribution we consider that is challenging to sep-

arate is due to the ballistocardiogram (BCG) [DSS07]. This signal results from the motion

of EEG electrodes in the strong MRI fields as a result of blood flow in the patient. We

demonstrate experimentally that the LR+SD model effectively captures the BCG compo-

nent in the low-rank component and the brainwave activity in the sparse component when

compared to another technique known as independent component analysis.

In the second half of chapter 3 we consider the challenge of hyperspectral unmixing

[KM02] with material variability [ZH14, HDT14]. Hyperspectral images are images captured

with many tens to hundreds of color, or spectral, bands. The unmixing problem seeks to

determine what materials are present in the image and in what quantity, or abundance, each

material is present in each pixel. Variability is an additional complication that exists when

the same material may present with different spectral signatures in the same image. In this

final half of chapter 3 we take an existing pipeline for solving this problem and study the

impact of social sparsity terms [KSD13] as an enforcement mechanism for desirable sparsity

properties in the solution. Using two synthetic data sets with known abundance solutions

and one qualitative data set we investigate the impact three types of social, or group, norms

have on the final result.

In the final chapter of this manuscript, chapter 4, we thoroughly study a popular data

mining task known as topic modeling [Ble12]. Topic models are tools for extracting latent,

or hidden, trends in large text document collections. We investigate two popular techniques,

latent Dirichlet allocation [BNJ03] and non-negative matrix factorization [LS99], that reside

in different fields with seemingly disparate formulations. First we review existing literature

around these models including their relationship when formulated in the energy framework.

Next, we consider three popular models for finding solutions to these models and present a

general setting within which the algorithms may be compared. The topic modeling problem
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is generally non-convex and therefore algorithm decisions can be as important as model

decisions. We demonstrate this fact with numerical results that exemplify implications of

our analysis and demonstrate performance differences for various models and algorithms.

For large document collections a large number of topics may be extracted, potentially

numbering in the hundreds. In such situations a challenge that arises is further characterizing

the information captured by each topic. We propose two metrics that apply to text document

collections for which each document has additional information such as time or location in

space. These metrics can be used to quantify automatically the distributional properties

of each topic in this additional information space. We demonstrate these metrics using a

collection of Tweets that have both known location in space and creation time. This implies

for each topic four values - one for each proposed metric in time and in space. Chapter 4

concludes with a discussion of topic model and metric results extracted from all geo-located

tweets in the Madrid area during 2011, a year of significant protests and elections.

In this work, matricies are denoted with bold capital letters such as X, the matrix

transpose with a dagger such as X†, and the Frobenius inner product by

〈X,Y〉 =
∑
i,j

Xi,jYi,j.

Finally, where relevant differentiation with respect to time is denoted by at dot such as ẋ(t).
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CHAPTER 2

Non-Raster Atomic Force Microscopy

2.1 Preliminaries

2.1.1 Experimental Apparatus

An atomic force microscope (AFM) [BQG86] is a device used to measure the surface topology

and properties at the nano-scale, or even smaller scales [GMM09]. The device consists of a

surface onto which is placed a sample – for example nano-structures or strands of DNA. This

sample rests typically on a device that both insulates the sample from vibrations originating

in the surrounding environment and that, through piezoelectric actuators, is capable of being

translated in the plane perpendicular to gravity. Whereas a standard photon microscope

observes the sample using light, the atomic force microscope analyses the sample using

physical contact between the sample and a small probe known as the “cantilever”. This

cantilever, nearly invisible to the naked eye, is composed of a horizontal “beam” at one end

attached to the larger apparatus and on the other a suspended “tip” that forms a needle-like

point below to contact the sample. During the collection process, this cantilever is lowered

until the downward-pointing needle tip comes in contact with the sample. The result of

the interaction is a bending of the cantilever beam. This bending is observed by changing

in direction of laser light reflected off the top of the cantilever beam. At the end of this

process the height at the point of contact is known and a single point of data has been

collected. By retracting the cantilever upwards and repeating this process at other points

on the sample surface a complete picture of the surface topology is revealed. Another mode

of operation – the mode with which we are concerned – involves vibrating the cantilever
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at a high frequency. This resonance is of the form causing the largest motion of the tip

to and from the sample surface with the beam end opposite the tip most stationary. Each

cycle of the oscillation the tip contacts the sample surface, resulting in a measurement,

after which the tip quickly retracts from the sample to complete the cycle. This “tapping”

mode is advantageous because it results in fast measurements while preventing damage that

occurs when simply dragging the tip along the sample. As this process generates many

thousands of samples per second (relating to the resonant frequency of the cantilever beam)

the piezoelectric actuators drive movement of the sample in the place perpendicular to the

cantilever tip. Henceforth we refer to this perpendicular direction as the z-axis while the

sample plane is the xy-plane.

The experiment is described mathematically as such. Let the scanning region be given

by Ω ⊂ R2 with a path taken by the scanner along a curve

γ(t) : R→ Ω (2.1)

over a time t ∈ [0, T ] where T is the total time taken collecting data. The height information

is provided through the reflected laser information and is described by a signal h(t) : R →
R. Although this signal is being captured discretely at times corresponding to taps of the

cantilever, the frequency at which information is collected is very high relative to other time

scales therefore the signal can be modelled mathematically as a continuous signal.

While the cantilever travels the sample surface along a path specified by 2.1, this does

not correspond to the signal sent by the AFM to the actuators. Denote by

γs(t) : R→ Ω (2.2)

the ideal path the AFM would like the cantilever to follow as sent to the AFM from the

software. The difference between γ and γs results from non-linear behaviour of piezoelectric

actuators and their physical limitations. Simply speaking, asking the xy-plane piezo actu-

ators to instantly reverse the sample’s velocity is simply not possible and the influence of

these types of limitations result in γ(t) 6= γs(t). Advancements in AFM have attempted to
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mechanically improve the control of this cantilever positioning when scanning at high speeds

where the most distortion arises.

High-speed scanning with AFM is desirable in many situations. In cases where a single

high-resolution image is desired waiting on the order of hours to produce the final result can

be very inconvenient and can prevent other users from utilizing the AFM. In other cases

a user may be using the AFM as an exploratory tool which means waiting minutes to see

the topography and have the necessary information for adjustments before starting the next

scan. In general, the time required to collect an AFM image is a serious drawback compared

to other imaging techniques [HSF06]. Specific application in the semiconductor industry seek

faster scanning to detect defects [KLH11]. With sufficiently fast scanning speeds the AFM

could prove a valuable exploratory tool in the study of nano-scale biological and chemical

dynamics [KYI10]. As a result, significant effort has been placed on reducing scan times.

2.1.2 Sources of Error

The primary sources of error when scanning with the AFM are due to positioning, thermal

drift, and parachuting [BQG86, CSD01]. The most significant contribution to errors when

approaching fast-scanning AFM is the inability to control precisely the position of the can-

tilever. In particular, excitations of natural resonant frequencies within the AFM result in

potentially extremely violent and chaotic behaviour of the cantilever position. A natural

characterization of this limitation is with a limiting frequency ωL above which positioning

signals can produce such a resonance.

In addition to the positioning issue resulting from the xy-plane actuators, three additional

notable sources of error arise. The measured height of the sample during the scan h(t), as

observed using the reflected laser beam, is actually a combination of three components

h(t) = s(t) + d(t) + z(t). (2.3)

The most trivial contribution s(t) is known as sample tilt or simply tilt. This occurs when
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the sample is mounted at an angle resulting in an offset of the sample by a function

s(t) = c+ γ(t) · n (2.4)

where n is the direction of tilt and c is some offset. The sample tilt is easy to describe

mathematically and can often be corrected for by an initial calibration step to learn the

unknowns.

The second significant component in h is known as thermal drift or simply drift as

captured by d(t). While the scan is run thermal changes in the AFM cause materials to

expand and contract. Though the changes in material volume are microscopic, on the scales

the AFM is concerned with the changes can be significant. The changes are very gradual

in time, however, so the assumption that d is smooth is useful for developing techniques to

remove this corruption.

The final source of error is parachuting. This arises due to the z-position limitations

of the cantilever. When the cantilever travels over a high feature, for example, it must

be moved away from the sample to maintain approximately a constant distance to avoid

damage. Likewise, when the cantilever travels off of a high feature it must be moved closer

to the sample until it again contacts the surface. Since this adjustment requires finite time,

the apparent topography of a large cliff when the cantilever travels off the edge will appear as

a gradual descent (as the cantilever is “parachuting” downward), rather than the sharp edge

observed when the cantilever travels in the opposite direction. While the error introduced by

this is typically small and appears only at prominent edges, it can cause measurements of the

same feature taken in opposing directions to produce conflicting information. Furthermore,

as the speed of the cantilever increases the effect is more evident. To resolve features below a

specific height there is thus limit to the cantilever speed based on the capabilities of the AFM.

Let vL denote this limiting speed above which features begin to appear heavily distorted.

This, in addition to ωL, are characteristic properties of the AFM that place a lower bound

on scan time.
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2.1.3 Raster Scanning

In traditional AFM an image of the sample surface topography is collected by following a

zig-zag pattern. An example is shown in the first column of figure 2.1 along with example

signals. This pattern originates in the history of AFM and the natural format images are

stored. Though there are considerable limitations to this scan pattern its dominance has

resulted in considerable work to correct the afore-discussed errors. To correct positioning

discrepancies, for example, mechanical improvements and high-order piezo actuator models

are employed to force the cantilever to visit the locations given by γs [BS10, KFC04, STH08,

HMH05, PBU07, THR12, ZSC10]. This is a difficult mechanical task because the raster

scan position signal has significant contributions at high frequencies, including ωL, due to

turn-around points that require theoretically infinite acceleration. The terrible properties

of the position signal are the first major drawback of the raster scan and are the primary

motivation for this work investigating non-raster methods.

To correct the other sources of error, thermal drift and sample tilt, a common technique

involves subtracting from each grid line a least-squares linear fit. Since s(t) is linear and

d(t) is smooth (and therefore approximately linear within each grid line) both are easily

enough subtracted by this process. In some cases this technique results in heavily distorted

results, however, thus some supervision is often required. Indeed, in a variety of situations

s(t) = d(t) = 0 will still result in the signal z(t) = h(t) being “corrected” by this approach,

resulting in errors.

The second serious limitation of the raster scan is due to parachuting and positioning

errors. Information can, in theory, be collected and used from when the cantilever travels

in both directions of the zig-zag pattern. While this seems very natural, the positioning

issues, and parachuting effects, mean that frequently the lines are not registered correctly

and features disagree depending on the direction the cantilever travelled. Some positioning

discrepancies may be corrected by registering odd lines with even lines to offset lag in the

system, however even slight disagreement produces seriously distorted final topographs due
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to parachuting. The result, unfortunately, is often that every other line is used to form the

final image, the other half of the data being discarded, thereby reducing the collection rate

by a factor of two.

2.1.4 Non-Raster Scanning

There is no inherent hardware restriction within many AFMs requiring the cantilever to travel

in the raster pattern. In cases where the cantilever deviates such that γ 6= γs the actual

path γ, sensors can be used to observe γ directly during acquisition. The paradigm shift

herein proposed is a movement away from the strict positioning demands of γs toward non-

raster patterns using the information γ with inpainting algorithms applied to the observed

path γ. This new methodology, coined “sensor inpainting” [ZMF13], opens up a variety of

possibilities for improving the field of high-speed and real-time AFM. This seemingly trivial

difference avoids the need for challenging xy-position control to combat the distortions,

resonances, and discrepancies arising from the raster pattern. Additionally the complex

modelling of non-linear piezoelectric actuator behaviour that becomes more difficult as the

scan speed is increased is unnecessary; γ is collected as part of the collection process and

sensor inpainting is used to generate a final topograph. Provided the sample surface is

sufficiently sampled an accurate topograph can be generated.

figure 2.1 shows three possible scan patterns as well as plausible signals captured during

a scan. Note that shown are all components of 2.3 even though the AFM only observes z(t)

from which all components must be isolated. The first pattern is the traditional raster scan

that covers the sample surface uniformly with the zig-zag motion, but the cantilever must

make sharp turns at the sides of the scan area. The Archimedean spiral is another pattern

that covers the sample rather uniformly without having any sudden cantilever acceleration,

however near the center high frequencies may be excited by the tight near-circular motions.

The third example path is the spirograph, generated by making two simultaneous circular

motions. The spirograph has a very specific frequency profile that is useful for preventing

the excitations of resonant frequencies in the scanner, however this comes at the cost of poor
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sampling distribution over the sample surface. Other scan patterns such as the “cycloid”

and Lissajous curves are possible alternatives to the patterns in figure 2.1 herein studied,

however the consideration of these and other scan patterns is beyond the scope of this work.

The Archimedean spiral is of particular interest and is the focus of this work due to

uniformity of sampling and the smoothness of the path. It is described in polar coordinates

for some parametrization function f(t) : R→ [0, 1], by

θ(t) = 2πNf(t)

r(t) = Rf(t).
(2.5)

Natural properties of an ideal scan pattern avoid the pitfalls mentioned previously, in

particular those arising from the raster pattern. A good scan path, or specifically for our

consideration parameterization function f , should sample the surface as uniformly as possi-

ble, respect the speed limitation vL of the cantilever, avoid exciting high-frequency resonances

in the AFM beyond a characteristic resonance limit ωL, and complete the scan in minimal

time. Finally, it is desirable for the cantilever to travel in the same direction at each point,

if possible, to avoid data disagreement when parachuting effects may exist.

2.1.5 Sensor Inpainting

The raster paradigm is advantageous because it makes completing a grid-based topography

image trivial – simply collect a sample at each point of the grid, row-by-row, until each pixel

has been visited. Unfortunately the raster scan pattern is not well-suited to the limitations

of the scanning process. In order to scan with general curves γ to scan faster there must

foremost be a way to view the output from the AFM in the traditional manner on a grid

as a scientist would typically view it. The field of image inpainting has precisely the tools

necessary to solve such a problem. Along γ the height values are known while off the curve

the values must be filled-in, or inpainted, in order to form a complete picture.

While the inpainting literature is vast [BVS03, AK06, BSC00, CMS98, GO09, CWT11],

one particularly effective, simple, and fast technique herein used is H1-regularized inpainting.
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Archimedean Spiral Spirograph

Figure 2.1: Example scan patterns. The scan path over the sample surface (first row) is

travelled by the AFM cantilever. The collected signal over the scan time x (last row) is a

sum of the sample surface h (second row), sample tilt s (third row), and thermal drift d

(fourth row).
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Figure 2.2: Scan patterns with self-intersections. These are three examples of non-raster

self-intersecting scan patterns that can be used to discover and remove thermal drift errors.

Shown are the scan patterns with red dots denoting points of self-intersection (top row) and

T-maps for each scan showing times of self-intersection (bottom row). Reproduced with

permission [MZB14] .
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Let D = {γ(t), t ∈ [0, T ]} and λ(x) : Ω→ R. The solution to the variational problem

min
u∈H1(Ω)

E(u) =

∫
Ω

|∇u|2 +

∫ T

0

λ(x) [u(γ(t))− z(t)]2 dt (2.6)

produces a topography function u : Ω → R that agrees with the observations along the

curve γ while filling in missing information using a smooth H1-minimal completion. Simi-

lar mathematics to this originate in thermodynamics when considering the steady-state of

temperatures in a system with set boundary values. Extrema of E(u) with u ∈ H1(Ω) satisfy

0 = ∆u on Ω\D
λ(u− z) = ∆u on D.

(2.7)

This inpainting algorithm is attractive because it can be solved efficiently. Furthermore,

the simplicity of the model means that missing information will not be completed with

features that are not observed resulting in misleading information. More recent and advanced

inpainting algorithms, in contrast, may potentially fill in a missing region by extrapolating

patterns, not simply value. This is unreasonable for scientific observations that require

accuracy above visually satisfying results. Any inpainting model used for our purpose should

not add unobserved features for the sake of visual satisfaction.

To solve the problem discretely on a grid the observations in z are distributed into grid

cells using bilinear weighting with inter-cell averaging. The total weight of samples for each

cell are accumulated and used to produce the fidelity function in space λ. The resulting

linear equation (2.7) is easily solved using stencil discretization of the Laplacian and matrix

inversion, or using fast multi-scale techniques. Inpainting techniques such as this free the

AFM from the strict control requirements associated with positioning the cantilever at the

correct grid location at the correct times.

2.1.6 Chapter Overview

This chapter is a summary of contributions to the field of AFM pertaining to techniques

for non-raster pattern AFM made available using sensor inpainting. The following section
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2.2 develops a solution for correcting thermal drift in the non-raster domain using self-

intersecting scan patterns. After that, section 2.3 takes the Archimedean spiral under special

consideration and thoroughly investigates parametrization of the curve to optimally obey

physical limitations of the AFM.

2.2 Drift Correction

2.2.1 Description

Using an AFM with non-raster scan patterns is desirable to avoid the frequency charac-

teristics of the raster scan pattern that severely limit scan speed. The previous section

demonstrated that modern inpainting techniques can take the observed cantilever path γ of

arbitrary geometry over the sample surface and use this information in combination with the

height signal z(t) to complete a topograph of the sample surface. Recall, however, that the

AFM captures a signal h(t) = s(t)+d(t)+z(t) that is composed of corrupting signals s and d,

respectively the result of sample tilt and thermal drift. While sample tilt can be compensated

often using an initial calibration step, the drift component is more difficult to handle. The

drift d is assumed to be smooth and only gradually changing throughout the scan making its

removal not entirely impossible. Recall that correcting this in the raster paradigm involves

subtracting a least-squares fit from each grid line with optional user supervision/intervention

to prevent topograph corruption.

Extending this subtraction approach to general non-raster scan patterns is not trivial

and näıve adaptations, such as subtracting least-squared fits of segments, are plagued by

the same issues of data corruption and user supervision. We have found that non-raster

AFM presents an interesting opportunity, described here, for using redundant observations

to discover and remove drift component. Suppose that the scan path γ self-intersects at

M points with intersection times tn,1, tn,2 given by γ(tn,1) = γ(tn,2). While the raster scan

pattern does not self-intersect, more general patterns may and in some cases self-intersections

are very common. The self-intersections represent on one hand wasted time since the same
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location of the sample is being measured twice. A small number of self-intersections can be

very useful for the discovery and removal of thermal drift errors, however, and when facing

the challenge of removing drift from a scan taking a tiny fraction of the overall scan time to

collect self-intersections is a small price to pay.

At the locations of self-intersection 2.3 implies that

h(tn,2)− h(tn,1) = z(tn,2)− z(tn,1) + d(tn,2)− d(tn,1) (2.8)

since sample tilt is a function only of location. The component z, because it contains the ef-

fects of parachuting, may not vanish from this equation at places and times when parachuting

is taking place. For appropriate scan speeds below vL, the z contribution will be assumed

vanishing in 2.8 because parachuting results from excessive in-plane tip motion. When

parachuting does occur it coincides with high features and edges that often are sparse in the

scanning area, so the effect is unlikely to coincide with a large percent of self-intersection

points. If scanning quickly enough for parachuting to take place over a large percent of the

scanning area the proposed model is unlikely to succeed due to overall poor measurement

fidelity. Let δn = d(tn,2) − d(tn,1) be then the observed differences in the thermal drift

component.

Assuming the drift component is smooth, the following non-dimensionalized in time vari-

ational problem is proposed [MZB14] to discover the full drift contribution:

E(d) =
M∑
n=1

(d(tn,2)− d(tn,1)− δn)2 + λ

∫ 1

0

|d′′(t)|2dt. (2.9)

This energy is composed of contributions from two terms. The first enforces agreement

with the observed differences in value between the two points in time. The second term

smooths the solution and enforces the natural physical assumption that the thermal drift is

gradual over time. To simplify solving 2.9 d can be restricted to linear combinations of basis

functions, a natural choice for which is a basis of splines that have desirable smoothness

properties. The next section outlines the least-squares solution to the energy minimization

problem restricted to representation on such a basis set.
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2.2.2 Solution

The goal is to solve (2.9) with representation restricted to basis of functions {Φi(t)} for

i = 1, 2, ..., N , where Φi(t) is the ith basis function evaluated at time t. Expanding the drift

solution d using this basis with coefficients ci, notice that the observed differences are given

by a combination of differences on the basis functions

d(tn,2)− d(tn,1) =
N∑
i=1

ci [φi(tn,2)− φi(tn,1)]

and proceed much the same way as the classical least-squares approximation. Recall that δj

is the error in height observed at the jth intersection.

Let ~d and ~δ denote length-M column vectors with, respectively, components d(tj,2)−d(tj,1)

and δj for j = 1, 2, ...,M . Let ~c be the length-N column vector formed by the coefficients

ci where i = 1, 2, ..., N . Denote by A the M -by-N matrix containing the basis differences

at the crossing points such that Aij = φj(ti,2) − φj(ti,1). The error on the differences is

||~δ − ~d||2 = ||~δ −A~c||2. Define the following N -by-N matrix M:

Mij =

∫ 1

0

φ′′i (t)φ
′′
j (t) dt

By algebraic manipulation it may be shown that:∫ 1

0

|d′′(t)|2dt = ~c†M~c

Using these results, the functional in (2.9) may be now restated in terms of a minimization

over ~c:

min
~c
‖~δ −A~c‖2 + λ~c†M~c

Differentiation with respect to ~c leads to the optimality condition

Lλ~c =
(
A†A + λM

)
~c = A†~d = ~h

The matrix Lλ is invertible and positive definite if λ > 0, in which case the solution is

additionally guaranteed to be unique. Therefore, to remove the drift component of general

non-raster scan patters that have a small number of self-intersections, a least-squares fit to

the difference observations produces a model for the drift component.
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2.2.3 Path Fitness

The scan path chosen plays a significant role in the capacity for 2.9 to discover the drift

function accurately. Indeed, the extreme case where no self-intersections exist results in the

problem that all drift functions will be undiscovered. A simple argument leads to the con-

sideration of the following quantity that enables analysis of scan path fitness for discovering

d(t).

Let ~v be the eigenvector of A†A + λM corresponding to the smallest eigenvalue, the

value denoted by ζλ. v represents the direction in which the energy, starting from the

optimal solution, increases the least as the solution is manipulated. When ζλ is small, ~v is

smooth and is minimally dependent on the differences δi indicating a drift profile unlikely

to be discovered. Likewise, when ζλ is large deviation from any given solution to the fitting

problem will significantly decrease smoothness and change the difference values. Therefore

ζλ provides a quantitative technique for determining if a scan path’s self-intersections are

able to discover a smooth drift function. In general there is always a theoretical drift function

under which δi, and our model, will be invariant. This fitness indicates approximately how

variable such a function must be given the self-intersection times and therefore, for very

large values, the function d(t) will be extracted accurately. This fitness depends only on the

times of self-intersection only, and therefore is a fitness applied to the scan path itself.

Different self-intersecting scan paths therefore will have a quantifiable difference in fitness.

In order to correct for drift a scan pattern must have self-intersections. For this purpose,

three scan patterns are proposed for non-raster scanning: the double Archimedean spiral

(DAS), modulated DAS (MDAS), and the spirograph. Each of these patterns are shown in

figure 2.2 with self-intersections and T-map, a scatter plot of the points (ti,1, ti,2).

The DAS is created simply by following an Archimedean spiral inwards and back out-

wards again. Unfortunately, this scan pattern performs poorly when correcting drift for

reasons that are not apparent initially, through are quickly discovered in practice after brief

experimentation. Indeed, the difficulties encountered using the simple DAS resulted in the
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creation of the ζλ quantity. Taking λ = 10−3 for the remainder of this work, the three scan

patterns specifically shown in figure 2.2 result in the values of ζλ = 0.02 for the DAS, ζλ = 1.2

for the MDAS, and ζλ = 35 for the spirograph.

The reason for the very small fitness for the DAS is due to symmetry of the self-

intersection times. Simple inspection of the T-map results in the conclusion that any thermal

drift profile that is symmetric in time about the center of the scan results in δi ≈ 0, hence

such a drift profile is an invariant of the problem and paths of higher fitness are desired.

Taking one coordinate of the DAS and adding a slight perturbation produces the MDAS

and, as a result, more informative self-intersections and a higher fitness value. The final

scan pattern - the spirograph - generates a very large number of self-intersection points and

therefore a considerably higher fitness than the other two scan patterns.

2.2.4 Experimental Validation

Figure 2.3 presents three scans performed using three different scan patterns, all corrected

using the proposed drift correction technique. All three scans were performed on an MFP-

3D AFM by Asylum Research that was modified to permit arbitrary cantilever paths. The

first scan, shown in the first column, is of an annealed gold sample using a 500nm diameter

DAS consisting of 1700 loops and generating a fitness ζ of 0.8. The second column is a

1.4µm MDAS scan also over an annealed gold sample with 471 loops producing a fitness

ζ = 126. Finally, in the third column is a spirograph with a 30µm diameter, 414 loops, and

an extremely high fitness of ζ = 447 taken over a calibration sample with 8nm deep hexagons

arranged in a grid. In all cases thermal drift component removal is performed prior to tilt

correction through the subtraction of a least-squared error planar data fit.

Using H1 sensor inpainting the highly restrictive raster pattern is not required to produce

a quality image of the sample surface with these various scan patterns. In all three cases

the result is a quality scan requiring no supervision to be corrected. Only in the case of the

DAS, due to low self-intersection fitness, does a small amount of the thermal drift component
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Figure 2.3: Drift-corrected and sensor inpainted AFM scans [MZB14]. The left column is the

result of a DAS scan on annealed gold with significant drift. The center column is a MDAS

scan also on an annealed gold sample, and the last column corresponds to a spirograph scan

taken over a calibration sample. The significant thermal drift present in the raw data (top

row) is removed using the proposed method in all cases (bottom row). Reproduced with

permission [MZB14]

remain in the form of faint visible rings. Both the MDAS and the spirograph results, due

to high ζ fitness, are easily corrected. Unlike variations on the fit subtraction technique

traditionally used for thermal drift correction with raster patterns, the tilt present in the

spirograph scan has no impact on the efficacy of the drift correction because tilt has no

influence on the differences δj.

2.3 Archimedean Spiral Parametrization

The Archimedean spiral is an attractive base scan pattern due to the path γ that covers

the sample area uniformly. Additionally, unlike the spirograph the cantilever travels in the
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same direction at each location on the sample surface thereby minimizing the impact of

parachuting errors. Unfortunately it is not clear how to parametrize this scan pattern given

by 2.5 through the choice of f(t). In this section the choice of f(t) is studied with respect to

the physical challenges posed by the AFM. The conclusion is that by considering carefully

the relevant limitations a parametrization exists that is optimal in the sense of completing

the scan in the shortest possible time.

In addition to obeying physical limitations of the AFM, another property of scan patterns

is the distribution of samples in the area of interest. While the Archimedean spiral path

covers the sample area well, different choices of f(t) change the distribution of samples along

the scan path. This is because the sampling rate is constant in time and therefore depends on

how quickly the cantilever is moving on the scan path. To characterize this mathematically

two distances are of interest: the distance between each loop of the Archimedean spiral and

the distance between samples along the scan path. The first of these is the radial distance

(RD)

RD(r, θ) =
2πṙ

θ̇
(2.10)

while the second is the tangential distance (TD)

TD(r, θ) =
rθ̇

fs
(2.11)

with fs the frequency at which the AFM measures the sample. The quantities (2.10) and

(2.11) can then be combined to find the density of samples at each point in the sampling

area, a function of the radius

δ(r) =
1

TD · RD
=

fs
2πrṙ

. (2.12)

In addition to the amount of information at each radius r it is important to know how

the samples are distributed. For example, having extremely high density along the scan path

isn’t helpful if the scan has only five loops and therefore large gaps of no information. The

second quantity proposed in addition to δ(r) is the homogeneity of samples

η(r, θ) =
RD

TD
=

2πfsṙ

rθ̇2
. (2.13)
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η has an ideal value of one if the radial and tangential spacing of samples is equal. Therefore

while θL and vL describe physical limitations on the choice of f(t), the values of δ and η

provide a quantitative approach to studying how uniformly a parametrization f(t) samples.

2.3.1 The CAV and CLV

2.3.1.1 Derivation

The primary restrictions of the AFM arise from resonant frequencies and speed limitations.

The frequency limitation is characterized by a frequency ωL above which excitation from

position actuators can produce serious signal distortions and excitation of resonance. The

second limitation is described by vL, a limiting cantilever speed above which the signal

is distorted by position errors and parachuting errors resulting in poorly-resolved surface

topography. To state these limitations mathematically, differentiate (2.5) to get the angular

and radial velocity components

θ̇(t) = 2πNḟ(t)

ṙ(t) = Rḟ(t).
(2.14)

These velocities can then be used to describe the restrictions on f

Rḟ(t)
√

(2πNf(t))2 + 1 ≤ vL (2.15)

θ̇(t) = 2πNḟ(t) ≤ θL (2.16)

with (2.15) the cantilever speed restriction and (2.16) the frequency restriction. Taking

first into consideration (2.15), the 1 in the square root plays an insignificant role anywhere

Nr � R which is most of the scan. Ignoring the 1 for now and letting fCLV(t) represent

a parametrization that completes the scan as quickly as possible subject to this constraint.

The fastest scan parametrization will naturally be the scan for which the speed is equal to
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this limit, therefore it will obey

RḟCLV(t) =
vL

2πNRfCLV(t)
(2.17)

⇒ fCLV(t) =

√
vLt

πNR
(2.18)

known as the constant linear velocity (CLV) [MM10] spiral since it attempts to maintain a

constant cantilever speed. The second constraint (2.16) also implies a parametrization that

completes the scan as fast as possible subject to the angular frequency constraint

2πNḟCAV(t) = θL (2.19)

⇒ fCAV(t) =
θLt

2πN
. (2.20)

This parametrization is the constant angular velocity (CAV) spiral [Wie01, MM09, Hun10,

RPP14] and it is designed to avoid the excitation of resonant frequencies. Using the fact

that f(t) = 1 is when the scan is completed the total scan times TCLV and TCAV can also be

derived

TCLV =
πNR

vL
(2.21)

TCAV =
2πN

θL
. (2.22)

2.3.1.2 Characteristics

The CAV and CLV spirals are designed to push the limits of the AFM. The CAV finishes

the scan as quickly as possible subject to frequency limitations while the CLV does the same

subject to speed limits. Here the two parametrization options are studied with respect to

both ωL and vL conditions as well as δ and η sample distribution properties.

The use of fCLV results in a cantilever speed that is approximately equal to vL. This is

only approximate, in particular near t = 0, due to the simplification made from (2.15) but

in practice discretization of the scan path means that the constraint is essentially obeyed.
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The parametrization (2.18) implies an angular velocity for the CLV of

θ̇(t) =

√
2πNvL
Rt

that as t → 0 tends to infinity. Thus the CLV is not theoretically capable of satisfying the

frequency requirement since in the center of the spiral loops are completed at arbitrarily

high frequencies due to the constant top speed and shrinking path radius. Specifically, when

t satisfies

t <
2πNvL
Rθ2

L

the frequency constraint is violated by the CLV. The other criteria for evaluating the CLV

is using η and δ. These quantities are independent of time for the CLV resulting in

δCLV(r) =
Nfs
RvL

(2.23)

ηCLV(r) =
n

πN2
. (2.24)

Because these quantities do no change in time, the number of loops N and the radius R can

be adjusted until samples are distributed ideally within the sample area. In the left half of

figure 2.4 the properties of the CLV solution are visualized including the cantilever speed,

angular frequency, and distribution of samples. While the theoretical sample distribution

is perfect, the high angular frequency near the center results in poor positioning of the

cantilever and chaotic behaviour.

The alternate parametrization for the Archimedean spiral proposed is fCAV. By design

this obeys the frequency limitations of the AFM, however the cantilever speed constraint

must be considered as well. Using this parametrization in (2.15) produces

t ≤ TCAV

θL

√(vL
R

)2

− 1

T 2
CAV

(2.25)

hence there is a violation of the speed constraint near the end of the scan if

vL < RθL. (2.26)
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Using (2.26) with (2.21) leads to the conclusion that the CAV parametrization violates the

speed constraint if the CAV spiral takes less than twice the time as the CLV spiral. That

is, unless the CAV is significantly slower it will have too high of a cantilever speed on the

periphery. Things look worse for the CAV spiral when considering the sampling densities

δCAV(r) =
fsN

θLRr
(2.27)

ηCAV(r) =
fsR

NθLr
(2.28)

Unlike the CLV spiral that had uniformly distributed samples the CAV sampling density

depends on the radius, thus no choice of scan parameters R and N will be able to achieve a

satisfactory sampling distribution. In the next section the advantages from both the CLV and

CAV spirals are combined into an optimal scan parametrization, where optimality is in the

sense of completing an Archimedean spiral scan as quickly as possible without violating the

constraints. In the right half of figure 2.4 the properties of the CAV solution are visualized

where unlike the CLV solution the path is followed correctly. Unfortunately samples are not

acquired uniformly and the cantilever speed exceeds the limiting value.

2.3.1.3 Results and Discussion

The results of using both the CLV and the CAV parametrizations are displayed in figure 2.4

with experimental acquisition on . On the left the CLV solution with a limiting cantilever

speed (a) generates an ideal sampling distribution (c). Unfortunately, the high frequencies

near the center of the scan (b) generates chaotic positioning due to resonance excitation and,

therefore, disagreement between γ and γs (d). The final sensor inpainting result (e) therefore

produces quality results near the periphery (C) and mid-scan (B), but poor results in the

center (A). Alternatively, the CAV solution obeys the frequency limitation strictly (g) but

violates the cantilever speed constraint by a factor of two (f). The distribution of samples

is heavily center-biased (h) and the cantilever speed is extremely high on the periphery (i).

As a result while the center (A) and mid-scan (B) are clear in the inpainted result (j), the

periphery (C) is overly smooth due to z-piezo limitations.
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Evidently the two parametrizations perform well in different regions of the scan where

they obey the AFM limitations. In 2.3.2 the best of each scan is used to develop an optimal

solution that completes the scan in the fastest time subject to the constraints of the AFM.

This optimal parametrization is then demonstrated to consist exactly of a CAV solution near

the center that transitions into a CLV solution near the perimeter.

2.3.2 Optimal Scan Parametrization (OPT)

2.3.2.1 Derivation

Both the CLV and CAV spirals risk violating the limitations of the AFM unless limited to

slow scan speeds. The CLV necessarily violates the frequency limitation near the center of the

scan while the CAV potentially violates the speed condition near the periphery. Furthermore,

while the sampling distribution of the CLV does not depend on radius and can be therefore

adjusted to the ideal values through manipulation of R and N , the CAV has a sampling

density dependent on the radius with very high density near the center and low density at

the periphery. An optimal scan parametrization [ZMA16] would combine the benefits of

these two options and, by construction, not violate AFM limitations.

To formulate such a parametrization, first let T denote the total scan time and t∗ = t/T

denote dimensionless scan time. The optimal parametrization of the spiral sought is some

function f(t∗) that completes the scan as quickly as possible while respecting both AFM

constraints on speed and frequency.

Theorem 1. The optimal parametrization of the Archimedean spiral, fOPT(t), is the CAV

solution near t = 0. If vL < RθL there is a single transition at some time to a CLV solution

for the remainder of the spiral.

Proof. The scanning path for the Archimedean spiral is determined in polar coordinates by

the angle θ(t) = 2πNg(t) and the radius r(t) = Rg(t) for some parametrization g. The

optimal parametrization is a function g that completes the scan in the least time subject to
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Figure 2.4: AFM scans and properties using CLV (left side) and CAV (right side)

parametrizations [ZMA16]. Shown in the top row is the cantilever speed (a/f) and angular

frequency (b/g) as functions of time. In the middle row is the sampling density expected

using γs (c/h) and path observed γ travelled with color representing instantaneous cantilever

speed (d/i). Finally, the sensor inpainted AFM scan of an annealed gold sample is in the

bottom row (e/j). The AFM used was a Cypher ES by Oxford Instruments. Figure is ©2016

IEEE.
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the physical constraints of the device. The constraints are of the form |g′| < l(g)

|g′| ≤ min

(
vL

R
√

1 + (2πNg)2
,
ωL

2πN

)
≡ l(g). (2.29)

Then the optimal g minimize the scan time. The scan is finished when g = 1 when scanning

counter clockwise or g = −1 when scanning clockwise. Taking the counter clockwise scenario,

define the scan completion time by

T [g] = min
t≥0,g(t)=1

t.

The problem is to find a function g which, subject to the constraints, minimizes this

quantity

g = arg min
ĝ∈F

T [ĝ]

where F is the set of all continuously differentiable functions satisfying the constraint l,

F =
{
h ∈ C1([0,∞]) : h(0) = 0, h′ ≤ l(h)

}
.

Define fOPT to be the solution to the differential equation f ′OPT = l(fOPT) with initial

condition fOPT(0) = 0. Because l is autonomous, uniformly Lipschitz, and bounded, the

solution exists, is unique, and resides in F .

The parametrization given by fOPT is fastest in the sense of T [·]. To see this, suppose

h ∈ F is a another parametrization. Let I = (a, b] be an interval such that h(a) = g(a)

and h > g on I. If such an a and b do not exist it must be that h ≤ fOPT for all time,

so T [h] ≥ T [fOPT] and h is not faster. Assume therefore a and b can be chosen. Within

I there must be a point s at which h′(s) > f ′OPT(s) ⇒ l(fOPT(s)) < l(h(s)), but this is

impossible since h(s) > fOPT(s) and l decreases monotonically. No such interval I can

exist, and therefore T [h] ≥ T [fOPT]. Because h was arbitrary there exists no strictly faster

parametrization than fOPT.

The analytic form for fOPT is given by simple linear growth until the frequency constraint

becomes less restrictive than the speed constraint when

vL

R
√

1 + (2πNfOPT)2
=

ωL
2πN

.
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Because of monotonic growth there is a single time tL at which this occurs, from which point

onward the solution belongs to a family of solutions to the CLV problem. These solutions

take the form of a class of functions implicitly solving

ν +
vLt

R
=
g(t)

2

√
1 + (2πNg(t))2 +

sinh−1(2πNg(t))

4πN

for ν a constant determined by boundary conditions at fOPT(tL). Provided that the approx-

imations

N � 1

and

NfOPT(tL)� 1

hold, the 1 in the square root and the hyperbolic sine terms can be ignored thereby producing

a solution of the form

fOPT(t) ≈ 1

πN

√
ν +

vLt

R
.

Therefore the optimal scan parametrization, fOPT, is a CAV solution until a transition time

when a CLV solution is used.

Although this verifies the existence and form of the optimal parametrization fOPT it does

not clearly define a functional form for explicit use. To construct this, let f again be some

parametrization of the Archimedean spiral and T the total scan time. The CLV is produced

approximately when f(t∗) =
√
t∗ and the CAV is produced when f(t∗) = t∗. Define a ≡ 2πN

TωL
.

To push the angular frequency limit initially the composite spiral’s f must be of the form

f(t∗) = t∗
a

as this results in dθ
dt

= ωL. Using the CAV up to some time t∗L then transitioning

to a CLV spiral with parameters C1 and C2 means the OPT solution is of the form

fOPT(t∗) ≈

 t∗
a

if t∗ < t∗L
√
C1t∗ + C2 if t∗ ≥ t∗L

(2.30)

To find the parameters, t∗L, C1, and C2, three natural properties should be enforced. The

scan should be finished at time t∗ = 1 hence f(1) = 1 and fOPT and f ′OPT should be

continuous at t∗L.
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The three conditions imply, in order, the equations

1 =
√
C1 + C2 (2.31)

t∗L
a

=
√
C1t∗L + C2 (2.32)

1

a
=
C1

2
(C1t∗L + C2)−

1
2 . (2.33)

The first equation implies C2 = 1 − C1, which after substitution into the remaining

equations produces

t∗L
a

=
√
C1(t∗L − 1) + 1 (2.34)

1

a
=
C1

2
(C1(t∗L − 1) + 1)−

1
2 . (2.35)

Squaring both sides of (2.34) and solving for C1 implies that

C1 =

t∗2L
a2 − 1

t∗L − 1
(2.36)

which after substituting into (2.35) produces an equation only in t∗L

1

a
=

t∗2L
a2 − 1

2t∗L
a

(t∗L − 1)
(2.37)

⇒ 1

a
=

t∗2L
a2 − 1

2t∗L
a

(t∗L − 1)
(2.38)

⇒ 1 =
2t∗L
a2
− t∗2L

a2
(2.39)

⇒ 0 = t∗
2
L − 2t∗L + a2 (2.40)

⇒ t∗L = 1±
√

1− a2. (2.41)

The discriminant is positive provided a < 1, which is violated only when the scan cannot be

completed in the given time subject to the given angular frequency limit. As the transition

must take place in the scan time t∗L ∈ [0, 1] the negative sign is the natural solution hence

t∗L = 1−
√

1− a2 (2.42)
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is the transition time t∗L. Substituting again (2.34) into (2.35) provides simple statements

of the quantities C1 and C2 in terms of t∗L:

C1 =
2t∗L
a2

(2.43)

C2 = 1− C1. (2.44)

The instantaneous speed of the tip for this f is

v(t∗) =

√
ṙ2 +

(
rθ̇
)2

(2.45)

and in the case t∗ = t∗L this is

v(t∗L) =

√(
R

aT

)2

+

(
(Rt∗L)

2πN

Ta2

)2

(2.46)

v(t∗L) =
R

aT

√
1 +

(
2πN

a

)2

t∗2L ≈
πNR

T

2t∗L
a2

. (2.47)

One may now arrive at the explicit solution through specification of ωL and T , thereby

implying a, t∗L using 2.41, and the maximum achieved cantilever velocity using 2.47.

2.3.2.2 Characteristics and Comparison

Shown in figure 2.5 are the various properties of the OPT scan, as well as the result of

scanning and inpanting in a real scan setting. Both the cantilever speed (a) and the frequency

(b) remain under the limitations of the AFM. Furthermore, while the samples have a bias

towards the center of the scan the majority of the scan area is sampled uniformly (c). As the

frequency limit ωL decreases, however, this area of higher sampling density will increase until

the limiting case of the CAV scan. Specifically, when vL = ωLR the optimal scan transitions

to a CLV spiral at approximately half radius. Furthermore, because the angular frequency

constraint is obeyed for the OPT scan the travelled scan path (d) agrees well with γs. The

inpainted scan result (e) has well-resolved features in all three regions (A-C).

Comparing this scan parametrization to the CLV and CAV solution presented in figure

2.4 it is clear that the OPT solution is superior. The insets from all three inpainted results
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Figure 2.5: AFM scan and properties using the OPT parametrization [ZMA16]. Shown is the

cantilever speed (a) and angular frequency (b) versus time, as well as sampling distribution

(c) and observed scan path with color indicating cantilever speed (d). On the right is the

inpainted result of the scan over an annealed gold sample collected using a Cypher ES AFM

by Oxford Instruments. Figure is ©2016 IEEE.

are shown in figure 2.6 for easy comparison. When comparing quality, the outliers are the

CLV’s failure in the center (A) and the CAV’s performance on the periphery (C). The OPT

scan manages to resolve features well across all three regions through the simple transition

that is provably the fastest solution.
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Figure 2.6: Insets from inpainted results for different parametrizations [ZMA16]. The three

rows represent the use of CLV, CAV, and OPT to capture the same sample area with the

same AFM in the same time. The three columns are the three regions highlighted in figure

2.4 and figure 2.5. Figure is ©2016 IEEE.

33



CHAPTER 3

Matrix Factor Models

3.1 EEG + fMRI Error Correction

3.1.1 Problem Overview

Electroencephalography (EEG) [DBM13] is an experimental technique that is capable of

acquiring information about neural activity with very high temporal resolution but with a

very low spatial resolution. The EEG consists of a network with on the order of one hundred

potentiometers contacting a patient’s scalp at known locations. The electrical signals received

originate in the environment, muscles, or most desirably in the brain from neurological

activity. Although the signal typically contains considerable noise and convolution due to

the skull and environment, the information being captured is instantly available and can be

recorded hundreds of times per second to monitor brain waves.

An entirely different technique for monitoring a subject’s brain activity is functional

magnetic resonance imaging (fMRI). The fMRI captures volumetric images of brain activity

in three dimensions by measuring local changes in blood flow. While fMRI can provide a

view into the structure of the brain, the captured activity is of a significantly lower temporal

resolution requiring seconds to capture a frame. The advantage of the fMRI over EEG is the

ability to see precisely where activity is taking place. Because of the relative strengths and

weaknesses of the two techniques, a natural goal is to simultaneously capture both sources of

information and combine the results into a temporally and spatially high resolution composite

[DLF09, VSS09, TVR11].

Simultaneously capturing EEG and fMRI leads to distortions of the EEG signal resulting
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from fMRI electromagnetic interaction. The most significant contribution of distortion arises

from the switching magnetic field that produces a signal with orders of magnitude higher

strength than the desired neural waveforms. This magnetic field gradient artifact, however, is

well-understood and corrective techniques exist to subtract the primary distortion [GSE02].

A variety of non-nerual signals contribute to the EEG. Slight facial muscle movements,

for example, clearly register in the data. A very challenging contribution to distinguish

is the ballistocardiogram (BCG) [DSS07]. This is generated by the cardiac cycle in the

subject producing blood flow and motion of the electrodes on the scalp. The effect is quasi-

periodic yet difficult to remove due to variability in blood motion profile and frequency.

Current methods exist to remove this artifact including cardiac r-wave timing [APK98],

filtering [MAF07], independent component analysis (ICA) [JMH00], optimal basis sets (OBS)

[NBI05], clustering [ZHJ12], and combined methods [DSS07]. These techniques can often be

made automatic but frequently require user feedback during the filtering process, and in some

cases require the acquisition of extra EEG information for a period of time to characterize

the signal to be removed. This is undesirable because of the time requirements for both

subject and the operator as well as the need to determine periods that can be used for

artifact characterization.

Although there is not a single signature over time representing the BCG contribution to

the EEG signal, we make the assumption that the BCG contribution is a linear combinations

of a few characteristic profiles over the sensors. Common correction techniques currently in

use involve signal decomposition into components followed by the selection and removal of

those corresponding to the BCG. In the next section the proposed assumption that the BCG

contributes only a few components to the signal is used to automatically discover and extract

the BCG artifact using a low rank + sparse decomposition (LR+SD) [LCM10]. This is an

approach for decomposing a matrix into the sum of two components, one being of low rank

and the other having a small entry-wise 1-norm. In the subsequent section the application of

such a decomposition to EEG data is presented followed by empirical results demonstrating

automatic correction of the BCG artifact from a simultaneous EEG + fMRI experiment.
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3.1.2 Low-Rank + Sparse Decomposition

Let n be the number of EEG channels and m the number of samples taken in time. Denote

the captured EEG signals with f̃i(k) for i = 1, ..., n the channel index and k = 1, ...,m

the sample index. Assume all that remains to be separated is the BCG contribution from

otherwise desirable neural activity. The signal is thus a sum f̃i(k) = gi(k) + fi(k) where gi

is the contribution due to the BCG artifact and fi is the clean, uncorrupted EEG signal.

Assuming that gi(k) is generated by p factors that contribute to f̃i(k) with p signatures, there

exist coefficients aij indicating the contribution of factor j of the BCG artifact to sensor i.

Then the total contribution for gi(k) is given by

gi(k) =

p∑
j=1

aijf
A
j (k) (3.1)

with fAi (k) the contribution of factor j for sample k. These relationships can be stated

concisely as follows. Let F̃ and F be n-by-m matrices with F̃ik = f̃i(k) and Fik = fi(k).

Let an n-by-p matrix Aij = aij and a p-by-m matrix FA
jk = fAj (k). Then the relationship

between the observed signals, the BCG components, the BCG coefficients, and the clean

signal is

F̃ = AFA + F. (3.2)

This motivates the use of a low-rank + sparse matrix decomposition. The LR+SD model

takes some matrix X and decomposes it into a sum X = Y +Z with Y a matrix of low-rank

and Z has small 1-norm

||Z||1 =
∑
ij

|Zij|.

The decomposition is found via the solution to the problem

arg minY,Z||Y||∗ + λ||Z||1 such that X = Y + Z (3.3)
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where the nuclear norm ||Y||∗ is a convex relaxation of the matrix rank defined as the

sum of singular values of Y. The model 3.3 therefore decomposes the EEG signals into Y

that has a sparse vector of singular values and Z that has sparse coefficients. The parameter

λ can be selected to determine the trade-off between the two variables. This problem can

be solved using a variety of techniques including singular value thresholding, augmented

Lagrangian methods, or accelerated proximal gradient. In this work the inexact augmented

Lagrangian method (inexact ALM) is used as it very fast and is simple to implement.

To solve 3.3 using an augmented Lagrangian approach the energy is augmented with

terms to enforce the constraint with dual parameter matrix Λ

L(X,Y,Z) = ||Y||∗ + λ||Z||1 + 〈Λ,X−Y − Z〉+
µ

2
||X−Y − Z||2F .

The algorithm to solve 3.3 using the technique of the augmented Lagrangian method

involves iteratively minimizing L with respect to (Y,Z) then performing a dual ascent of Λ.

The sub-problem solving for (Y,Z), however, does not need to be solved exactly. In practice

the inexact iteration that simply improves Y and Z slightly at each iteration is used because

it is much faster:

1: Λ← sgn(X)/max(||sgn(X)||F , λ−1||sgn(X)||∞).

2: Z← 0.

3: while not converged do

4: (U,S,V)← svd(X− Z + 1
µ
Λ).

5: Y ← USµ−1 [S]V†.

6: Z← Sλµ−1 [X−Y + 1
µ
Λ].

7: Y ← Y + µ(X−Y − Z).

8: µ← ρµ.

9: end while.

The inexact ALM method is the standard augmented Lagrangian technique with only a

single iteration of the sub-problem executed per dual ascent step.
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3.1.3 Experimental Validation

Twenty individuals between the ages of 23 and 30 participated in this study, with written

consent and UCLA IRB approval, in which concurrent EEG and fMRI was recorded through

multiple stimuli at the Staglin IMHRO Center for Cognitive Neuroscience at UCLA. In

the experiment subjects viewed 140 Gabor flashes with periods of 13.85 ± −2.8 seconds

presented using an MR projector screen. This experiment is known to cause occipital event-

related spectral perturbations (ERSPs) in the alpha spectral band (8-12 Hz). EEG was

collected using a 256-channel GES 300 Geodesic Sensor Net by Electrical Geodesics, Inc. at

a rate of 500 Hz. MRI clock signals were synchronized with the EEG data collection for

magnetic gradient artifact removal. fMRI was concurrently collected using a 3-T Siemens

Trio MRI Scanner with echo planar imaging gradient-echo sequence and an echo time of 25

ms, repetition time of 1s, 6mm slices, 2mm gap, flip angle of 90◦, 3mm in-place resolution,

and ascending acquisition. The magnetic gradient artifact was removed from the EEG signals

through subtraction of an exponentially weighted moving average template.

One existing technique in practice for BCG artifact removal is the InfoMax ICA cleaning

method included with Brain Analyzer v2.0.2 from Brain Products. This approach requires

manual selection of cardiac signals that are used to identify independent components ex-

tracted using ICA that correlate with the cardiac signal. In addition to the concurrent EEG

with fMRI acquisition the same experiment was performed outside of the MRI for control

EEG data without BCG corruption. In figure 3.1 shows the alpha band activity over the pa-

tient’s scalp averaged over events in the experiment for each technique: EEG+fMRI cleaned

with ICA, EEG+fMRI cleaned with the proposed method, and finally the control. An ideal

method, as in the control data, should result in a clear absence of alpha band activity for

τ2 which is immediately post-flash. This can also be observed in the averaged alpha band

activity over all flashes on the right that demonstrates, ideally, a decrease in value after

the flash time 0. Clearly the desired drop in activity is observed for both the control and

proposed signals while there is little to no observable phenomenon for the ICA cleaned data.
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Further evidence is found on examination in the full spectrum of the output for each

method. In figure 3.2 the magnitude of the continuous wavelet transform (CWT) is averaged

for a window of time surrounding each flash event. The result clearly demonstrates the

removal of noise by the proposed method. In both uncleaned and ICA results there is

significant activity across the spectrum for all time, but filtering using the proposed technique

produces clear evience of alpha band activity with a decrease immediately following the time

of the flash.

3.2 Hyperspectral Unmixing

3.2.1 Problem Overview

In the same way that standard photography images have red, green, and blue channels,

hyperspectral images are captured with far more color channels numbering in the hundreds.

Each channel represents the intensity of light at a specific frequency scattered off an object.

Thus, while a human eye is restricted to threelight intensities, hyperspectral imaging devices

are able to measure light intensity in very fine detail ranging from well below through infrared

to well above ultraviolet. Each frequency of light observed is one spectral band captured by

the imaging apparatus.

The human eye differentiates objects and materials using colors available, and analogously

a hyperspectral image can be used to distinguish objects with high efficacy. For example, to

the human eye grass is green and asphalt is black hence the problem of determining where

in an image one or the other is present is easily solved. Hyperspectral unmixing [KM02]

is a natural problem that arises from the analysis of hyperspectral images concerned with

automatically discovering what materials are present in each pixel in general and for many

spectral bands. Because hyperspectral images contain fine spectral information, materials

that may appear the same to a human eye can frequently be distinguished with the additional

spectral bands. For example, many types of vegetation appear to the human eye simply as

green but hyperspectrally plants often have different disgnatures [BL06b]. In this work
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Figure 3.1: Alpha-band activity at three times pre-, mid-, and post-anomaly averaged over

all epochs, for three experimental designs [GMD14]. The three designs are EEG + fMRI with

the BCG artifact removed using ICA (top row), EEG + fMRI cleaned using the proposed

technique (middle row), and the control EEG collected with no fMRI (bottom row). The

time of activity displayed is 500msec pre-flash (τ1), 50msec post-flash (τ2), and 500msec

post-flash (τ3) for the activity maps on left, and a window of average alpha-band activity

for ocular electrode 118 is on the right. SNR is the ratio of the signal extent from 0ms to

500ms to the standard deviation of alpha power from 0ms to 1000ms.
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Figure 3.2: CWT frequency intensity/activity averaged over all events for one ocular elec-

trode (118) during an experiment (top row) and alpha band specifically at 10Hz with stan-

dard deviations (bottom row) [GMD14]. Each column represents an experimental design,

from left: no BCG artifact removal, BCG artifact removal with ICA, and finally BCG artifact

removal with the proposed technique.

it is assumed that the number of materials, m, is known prior to unmixing however the

endmembers, or “colors”, for each material are yet to be extracted.

Complicating this unmixing task is the inevitable presence of multiple materials within

each pixel. This results in a per-pixel mixture of spectral signatures. Because hyperspectral

images are frequently captured by aircraft and satellites, each pixel often captures light

emitted from within an area larger than one square meter. Multiple materials present in

this area contribute to the resultant “color”, or hyperspectral signature, of that pixel in the

image. The unmixing problem therefore is a mathematical inverse problem with the goal of

extracting from a hyperspectral image information about what materials are present, and in

what abundance, within each pixel.

The information contained in a single hyperspectral image may be described by an s-by-n

matrix H where s is a number of spectral bands as determined by the camera and n is the

number of pixels in the hyperspectral image. The number of spectral bands measured may
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range from tens to hundreds while n may be very large at 106 or more pixels. As a result,

H is a very large matrix. The result of the unmixing problem is typically quantified by a

collection of spectral signature vectors wi ∈ Rs for i = 1, 2, ...,m where m is the number

of materials. In addition, the unmixing method seeks abundance vectors aj ∈ Rn for each

material j indicating the quantity of that material in each pixel of the original image. Let

M be the matrix formed by placing wi in columns and A be the matrix formed by placing

ai within rows. One possible formulation for the hyperspectral unmixing problem therefore

can be stated

H = MA + N (3.4)

where N is noise resulting from the imaging apparatus. Within this framework there is some

matrix A of abundances and another matrix M of spectral signatures that determine the

final image data through a matrix product. This formulation is utilized by the method of

linear spectral mixture analysis [ASJ86] through two stages. First, the material signatures,

known as endmembers, are extracted from the data H to produce M. With M now known,

the matrix A is discovered in a second step through a fitting procedure. Two restrictions are

typically placed on A for physical reasons. The abundance non-negativity constraint (ANC)

permits only non-negative entries in this matrix while the abundance sum constraint (ASC)

requires the columns to have unit sum. The union of these two conditions on A result in

the fully-constrained least squares unmixing (FCLSU) problem for finding A [Cha03].

A multitude of prior techniques exist for endmember extraction approximately belong-

ing two categories. The first category assumes that for each material there exists a pure

pixel in the image containing only that material. This pure pixel assumption results in a

variety of techniques [ND05b, Win99] that attempt to select from columns of H as spectral

endmembers, though for images with low spatial resolution this assumption may not hold.

An alternative category of techniques [LB08, Cra94, CCH09] do not depend on this pure

pixel assumption. With such methods material endmembers form the extrema of a convex

minimum-volume simplex containing the columns of H.

min
A

1

2
||H−MA||2F . (3.5)
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Figure 3.3: Material variability. The pixels in the hyperspectral image are a point cloud

contained in a convex hull formed by material endmembers w1-w3. Under the assumption

of material variability, the material representatives are not points but rather belong to some

subspace that must be extrated as well.

Difficulties may arise in all cases, however, due to an issue known as spectral variability

[ZH14, HDT14]. Spectral variability is the phenomenon in which the same material can

have more than one spectral signature. A simple scenario in which this arises is due to

illumination [ND05a] – a hill generally is more illuminated on one side than another as

result of the position of the sun. The more illuminated side emits a spectral signature that

is linearly scaled compared to that of the darker side. This, in addition to other variability

sources such as grain size with gravels and material moisture, complicates the above process

for hyperspectral unmixing. Endmember extraction techniques are originally only designed

to find a single endmember for each material, a clear inadequacy if materials can present

with multiple signatures. To adapt to this variability it is necessary to re-consider the model

(3.4) and correctly characterize mathematically the desired result.

In the remainder of this section the work of [SZP12] is reviewed, an existing response
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to the challenge of spectral variability. After that, the proposed contribution is presented

as an augmentation of their work with the enforcement of social sparsity [KSD13]. Social

sparsity a mathematical tool used to enforce sparsity among variables in which groupings

of the variables are known to exist. Finally, the section is concluded with a presentation of

computational results that demonstrate the efficacy of the proposed augmented hyperspectral

unmixing model.

3.2.2 Existing Method

In [SZP12] the authors propose using any existing endmember extraction technique to extract

endmembers from H, repeating the process on random subsets of columns. This produces,

for each run, some collection of endmembers extracted from a subset of image pixels. After

accumulating the resulting endmembers from all runs into columns of a new matrix M, the

resultant matrix will contain more endmembers than there are materials. While some may be

redundant, the selection of random pixel subsets is meant to produce representatives for each

state of each material. At this point endmembers are clustered so that each cluster contains

representatives, ideally, of different spectral signatures for a single material. Abundance

maps are then estimated using this over-determined set of endmembers via the FCLSU fitting

procedure and the final abundance maps for each material can be found by accumulating

the abundances of each endmember within a cluster.

The VCA algorithm [ND05b] is used in this work to extract endmembers due simply to

popularity, though in general VCA can be substituted with any other endmember extraction

technique. VCA operates through projections of the pixel vectors onto the plane where, not-

ing the pure pixel assumption, desirable endmembers necessarily occupy the role of extrema

defining a triangle in the plane containing all other pixels. Viewing the data with various

projections therefore identifies endmembers that form a simplex around columns of H.

The entire method of [SZP12] is as follows. Let k be some number of times VCA is

applied, a parameter to the method. Each application of VCA to random subsets of the
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columns of H produces m endmembers so the final matrix M has km columns. Next, a

clustering technique, for example spectral clustering [NJW02] with spectral angle similarity

use in this work, is applied to group the extracted endmembers of M into m clusters. The use

of the spectral angle as a measure of similarity in this work originates from the assumption

that material variability arises due to illumination differences [ND05a]. Different assumptions

pertaining to the anticipated material variability will imply using different clustering methods

and similarities. This clustering produces a partition G1, G2, ..., Gm of endmembers such that

{M:,j ∀ j ∈ Gi} is the set of spectral endmembers for the the ith material. The final step of

the technique determines the abundance matrix with FCLSU, quantitatively stated as the

problem

min
A
||H−MA||2F (3.6)

subject to the FCLSU conditions enforcing A non-negative with unit-sum columns. Here

|| · ||F is the matrix Frobenius norm,

||Y||F =

√∑
ij

Yij,

that naturally arises from the assumption of Gaussian data noise.

The over-determined endmember matrix M in connection with the nature of the Frobe-

nius norm means that in general the mixture for each pixel will be dense. That is, each pixel

is predicted to contain a small amount of many endmembers and, as a result, materials. A

natural assumption to enforce is the selection of only a few endmembers [ZWF14, LSK12].

This is physically reasonable – each pixel may have a few materials but in general will not

contain all materials, thus the matrix A should be sparse in some sense. Existing models

[QJZ11] for k = 1 are extended to the k > 1 case in what follows via social norm penalties.

3.2.3 Proposed Method

The material clustering information can be incorporated into 3.6 by using social norms

described in [KSD13]. Because G is known prior to solving 3.6, the assumption of each pixel

being a mixture of a few materials can be enforced through penalty. This is demonstrated
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Figure 3.4: Workflow of the proposed technique. The additional step proposed involves using

the clustering information within the unmixing stage via social sparsity, as denoted with the

dotted line. Figure is ©2016 IEEE.

in figure 3.4 where the addition of a dotted arrow demonstrates the new information being

used during unmixing. Let x ∈ Rs be some vector and partition the set {1, 2, ..., km} into

m groups Gi for i = 1, 2, ...,m, as was done in the previous section using spectral clustering

with the spectral angle measure. The vector `p norm of x is given by

||x||p =

(
s∑
i=1

|xi|p
) 1

p

with the cases of p = 1 and p = 2 very common, and limiting behaviours of p → 0 and

p → ∞ approaching the number of non-zero entries of x and the maximum absolute value

of all entries, respectively. The group pq-norm given the partition G is given by

||x||G,p,q =

(
m∑
i=1

||xGi ||qp

) 1
q

. (3.7)

This can be generalized to matrices by summing the application of (3.7) to each column

which, for a penalty parameter λ, results in the proposed model

min
A

1

2
||H−MA||2F + λ

n∑
i=1

||A:,i||G,p,q. (3.8)

The cases considered are the group lasso (p, q) = (2, 1), elitist lasso (p, q) = (1, 2), and a

fractional case (p, q) = (1, 9
10

). Group lasso tends to select a few groups, in this case materials,

and within groups it prefers a dense mixture of members. The elitist lasso selects a dense

mixture over the groups and within each group selects a few representative “elites”. The
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final fractional lasso selects a few groups, similar to the group lasso, but it does so without

preferring a dense mixture over groups. Because (3.8) is subject to unit-sum columns, the

addition of these penalties can appear contradictory. For example, if each material has a

single endmember the group lasso has no influence. This constraint also makes the traditional

sparsity-enforcing lasso penalty nonsensical; a fraction of 9/10 can enforce sparsity even with

constrained abundance at the expense of non-convexity.

One can solve (3.8) using the alternating direction method of multipliers, or ADMM

[BPC11], that allows the constraints and complex penalty term to be split into distinct and

easily calculable stages. To solve (3.8), first write the problem in a slightly different way.

Consider the optimization problem

min
X,Y,Z

1

2
||H−MX||2F + λ||Y||G,p,q (3.9)

subject to the constraints that X = Z, X = Y, X has unit-sum columns and Z is

non-negative. This equivalent problem is a ready form for ADMM with multiplier variable

matrices α and β that produce the augmented Lagrangian formulation

min
X,Y,Z

1

2
||H−MX||2F+λ||Y||G,p,q

+〈α,X− Z〉+
ρ

2
||X− Z||2F

+〈β,X−Y〉+
ρ

2
||X−Y||2F

(3.10)

subject to the constraints of X with unit-sum columns and Z non-negative. Minimization

with respect to Z is trivial as the problem is separable for each coordinate of the matrix,

hence Z is updated by

Z←
(

X +
α

ρ

)
+

with (·)+ indicating the coordinate-wise positive part.

The update for X is slightly more difficult due to the unit-sum constraint, however this
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only requires adding n multipliers µi

min
X,Y,Z

1

2
||H−MX||2F+λ||Y||G,p,q

+〈α,X− Z〉+
ρ

2
||X− Z||2F

+〈β,X−Y〉+
ρ

2
||X−Y||2F

+
∑
j

µj

((∑
i

Xi,j

)
− 1

) (3.11)

which results in a linear system of equations given by

(M†M + 2ρI)

X

µ

 =

−M†H + α + β − ρ(Z + Y)

1

 (3.12)

where µ indicates the row vector of entries µi and 1 indicates a matrix of ones with the

same shape as µ. This system is easily invertible and, conveniently, the system matrix is

state-independent.

The last subproblem for Y requires the use of a group shrinkage operation SG,p,q, de-

scribed in [KSD13] with approximate fractional p-shrinkage as used in [Cha09], denoted

by

Y = SG,p,q
(

X +
1

ρ
β,
λ

ρ

)
. (3.13)

The full iterative scheme, along with dual updates, is therefore

1: Initialize α← 0, β ← 0.

2: Randomly initialize X.

3: Y ← X.

4: Z← X.

5: while not converged do

6: Z←
(
X + α

ρ

)
+

.

7: X← the solution of (3.12).

8: Y ← SG,p,q
(
X + 1

ρ
β, λ

ρ

)
.

9: α← α + ρ(X− Z).
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10: β ← β + ρ(X−Y).

11: end while.

For numerical demonstrations ρ = 10, requiring approximately a thousand iterations to

converge sufficiently. The abundance estimation with social sparsity requires on the order of

minutes to unmix data of size 100-by-100-by-56. The major challenge is the sum constraint

that conflicts with the sparsifying penalties resulting at times in slow convergence.

3.2.4 Experimental Validation

The complete hyperspectral unmixing scheme proposed was applied to three datasets to

evaluate performance. The first data set known as “cuprite” was generated using the AVIRIS

cuprite data set via the method proposed in [HBG15] with added artificial spectral variability

[DHV15]. That is, the abundance maps from real observations are used to generate through a

stochastic process an artificial data set with variability present. The second dataset ”islands”

is entirely artificial also with endmember variability introduced. Finally, the ”stadium”

data set is a hyperspectral image taken of a football stadium from above with a variety

of materials and illumination variability present. This data set has no ground truth and

is used as a qualitative study. All three data sets are presented in figure 3.5with example

abundance maps taken from the cuprite and islands data sets as well as an approximately

RGB representation of the stadium data.

The mean pixel error

EModel =
1

# Pixels

∑
Pixels i

√
1

# Materials
||ai − ãi||22

with ai and ãi the actual and approximate abundance maps for each pixel i can be used

to quantify the agreement of predicted abundance maps using the proposed technique with

known values. The error ratio EModel/EFCLSU is used specifically to measure the relative

change in performance for each type of sparsity enforcement where EFCLSU is the error of the

unpenalized λ = 0 model. For these data sets k = 5 and VCA is applied to random subsets

of 80% of the data using 100 iterations.
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Optimizing over selection of λ for both synthetic data sets produces the mean pixel

errors in table 3.7 as a percent of the λ = 0 model. Also shown is the ”batchless” unmixing

result when k = 1 and λ = 1, essentially not modelling material variability at all. Across

the board some improvement is found with the group lasso generally performing the best.

The fractional lasso also demonstrates a slight improvement. Unfortunately, the elitist lasso

performs the worst on the cuprise data set. Furthermore, no improvement was demonstrated

on the islands data set for positive values of λ. This is likely because the elitist lasso does not

in fact enforce the desired type of sparsity between, rather than with, the material groups.

Oddly enough, the most improvement for the islands data set was achieved with a negative

value of λ and the elitist lasso. While this is interesting and indeed analytically there is

reason to believe a negative elitist lasso may result in the desired sparsity properties the

algorithm and model provide no guarantees in this case and therefore it is presented simply

as a curious development.

The result of processing the stadium data set is presented in figure 3.6 for qualitative

analysis of the behaviour of each norm. The group lasso enforces sparsity across the groups,

thereby clearing up ambiguities that arise. For example, the parking area in the lower-left

corner is made of asphalt however the FCLSU result generates a dense mixture with very

small contributions from all materials. The group lasso forces fewer materials to contribute to

each pixel which improves these areas. Similar results are observed with the fractional lasso

though the effect is slightly different with significantly more low-abundance contributions

from material groups being eliminated. The elitist lasso does not seem to improve the

results.
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Figure 3.5: Data sets considered. The the islands synthetic data (top row) is a

100-by-100-by-56 hyperspectral cube and the cuprite synthetic data (bottom row) has a

100-by-100-by-47 data cube, therefore in both cases H has 10, 000 columns. Shown are the

known exact abundance maps for four materials out of a respective total of 15 and 14 sim-

ulated materials. The third data set is a 105-by-128-by-144 hyperspectral cube of the since

demolished Robertson stadium at the University of Houston. Shown is an approximate RGB

representation. Figure is ©2016 IEEE.

Figure 3.6: Stadium data set extracted abundance maps. Material abundance maps corre-

sponding to (top row) asphalt, (middle row) a painted structure, and (bottom row) metal

roofing. Shown is the result for each of unpenalized FCLSU, group lasso, elitist lasso, and

fractional lasso. Figure is ©2016 IEEE.
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Set Group Elitist Fractional (0.9) Batchless

Cuprite 88.2% 96.4% 93.2% 203.5%

Islands 94.9% *94.4% 97.8% 565.0%

Figure 3.7: Mean pixel errors for each of three types of sparsity enforcement algorithms and

FCLSU without bundles applied to two synthetic data sets. Shown is the error as a percent

of the unpenalized bundle model. (*) performance achieved with a negative value of λ.
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CHAPTER 4

Topic Models

4.1 Introduction

Topic models [Ble12] are used to find trends in a collection, or corpus, of documents. For

the purposes of these models, a document is simply a set of word tokens taken from a

dictionary and the collection of documents is therefore a collection of these sets. While such

models were originally produced with the intention of understanding text documents, the

mathematics is generally applicable to any data that can be described as a collection of sets

with each set a collection of tokens from a dictionary. Denote by w1, ..., wm the words of the

dictionary a topic model will use, m being the total number of unique words appearing in

all documents. Each document is, to the topic model, a collection of these words. This is

known as the “bag-of-words” assumption as it discards the order of words in the document

thereby reducing the document to simply a “bag” of tokens.

A topic model finds trends in a corpus by finding words that tend to co-occur in the

same documents. An example of how topic modeling results may be presented is shown in

table 4.1. Each column represents a topic, and for each four top words are displayed. The

title for each topic is the interpretation given by the authors in [BNJ03]. The topic model

extracted from the corpus, in this case new articles, the fact that “film” and “music” tend

to appear in the same documents. Similarly, “school” and “education” also were found to

be related in that documents containing one of these words tended to contain the other. In

practice topic models can be applied to document collections numbering in the millions and

can extract hundreds of topics each with dozens of meaningful top words.
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Arts Budgets Children Education

news million children school

film tax women students

show program people schools

music budget child education

Table 4.1: Top words learned by a topic model for four topics [BNJ03] extracted from a

collection of news articles. The column labels are descriptions chosen by the authors.

The first topic model to come to widespread popularity is latent Dirichlet allocation

(LDA) [BNJ03]. LDA is a Bayesian generative model for words appearing in documents.

That is, LDA supposes that a set of yet-unknown probability distributions along with a pre-

scribed sampling process is responsible for producing each word in each document. Through

various techniques a user can find these distributions and from them generate information

such as the to words in table 4.1. Another technique arising from an entirely different col-

lection of research is non-negative matrix factorization (NMF) [Paa97, LS99]. NMF is used

to write a non-negative matrix as the product of two non-negative matrices of much smaller

size. In finding these two matrices that best reproduce the original matrix, NMF is also

able to recover information such as the top words shown in table 4.1. While both techniques

seem to solve the topic modeling problem with varying degrees of efficacy, they appear to be

completely unrelated in the literature. NMF is presented as an energy model for matrix de-

composition while LDA is a Bayesian statistical model for the generation of words. It is the

purpose of this work to understand these techniques as well as their inference methods from

a common perspective and with a common language of optimization and energy models.

Topic models begin by transforming the data into a large non-negative word count ma-

trix. Let w1, ..., wm denote the dictionary of words appearing in the corpus where m is the

number of unique dictionary words. With something known as the bag-of-words assumption,

each document is viewed as a bag of these tokens and therefore the entire corpus can be

transcribed into a large matrix, the word count matrix, with entry (i, j) equal to the number
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of appearances of word i from the dictionary in the jth document. As a result, this matrix is

non-negative and is m-by-n where n is the number of documents in the corpus. Both LDA

and NMF have a parameter t that must be set beforehand to specify the number of topics to

learn from the corpus. While the result and mechanism of LDA and NMF are certainly not

identical, both ultimately produce t functions that map the dictionary {wi} to non-negative

values. The top words are simply the words for each topic that are mapped to the largest

values as these are most relevant to that topic. Thus to be more explicit, shown in table 4.1

are the four words that map to the largest value for each of four topics learned using LDA.

In the next section we present the general connections between probability formulations

such as LDA and energy formulations such as NMF through the negative log-likelihood

transform. We then summarize in detail the two model formulations separately and in their

own languages. After this, we summarize the model-level connections between LDA and

NMF as understood in the literature. Unfortunately, topic models are non-convex problems

and therefore different inference techniques applied to the same problem can produce different

results. We therefore investigate three inference techniques - two for LDA and one for NMF -

from the perspective of energy minimization to understand their similarities and differences

without the barriers of language and notation. Finally, we conclude this chapter with a

variety of numerical experiments that highlight findings from the analytic study, reveal the

general effectiveness of topic modeling techniques, and demonstrate the utility of topic models

when trying to understand a complex data set comprised of tweets taken from Madrid city

over a year. To assist with this study of Madrid through tweets, we present various metrics

that capture important properties of the learned topics with respect to both the location

and time of tweets.

4.2 Probability and Energy Frameworks

Two dominant frameworks for handling general data problems, and in our case topic models,

are Bayesian statistical models and energy models. Bayesian models, such as LDA, are
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based on the analytic construction of a posterior probability followed by the application of

numerical techniques to study the probable values, and uncertainty, of model parameters.

This approach is stated most simply using Bayes’ law [BC16],

P (θ|X) =
P (X|θ)P (θ)

P (X)
(4.1)

where θ represents model parameters to be found and X is the data observed. Because

the data X is observed and fixed, P (X) is simply a constant and can be ignored. The

crucial elements of a Bayesian model are analytically describing a likelihood P (X|θ) and

prior probability P (θ) that are sensible and tractable. Numerical algorithms are then applied

to P (θ|X) to understand which models fit the data. For example, one way to numerically

study the posterior distribution (4.1) is by finding the most probable model known as the

maximum a posteriori (MAP) estimate

θMAP = arg max
θ
P (θ|X) (4.2)

Skilled Bayesian statisticians are able to construct intricate models that can be easily

studied numerically and fit observations well. The prime example of a Bayesian topic model

is LDA itself which is discussed in further detail in section 4.4. For LDA, the likelihood

P (X|θ) captures similarity of the word count matrix X to a generative probabilistic model

with parameters given by θ. The underlying model θ consists of t discrete distributions

over the dictionary words as well as t discrete distributions over documents. The prior

probability P (θ) is used to place assumptions on these distributions. In the case of LDA,

for example, the prior captures the probability that these distributions were sampled from a

Dirichlet distribution which is explained in detail further on. The MAP estimate (4.2) can

be used with LDA [VP14, AWS09] though because such methods do not retain uncertainty

information MAP estimation is not as common as other techniques discussed later.

The second framework for data problems uses no statistical notation or probability models

and is responsible for NMF which is discussed in section 4.3. Energy models are techniques

for cleaning, decomposing, and studying data through the design of an energy functional
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consisting of a sum over terms. These terms are used to enforce similarity of the data to the

model as well as seek desirable geometric properties of parameters. Again taking θ to be

some collection of parameters to be learned, an energy model is simply a function E(θ). The

problem is solved by finding the values θ that minimize this energy function. In contrast

with the Bayesian framework, mathematicians studying energy models are concerned only

with guaranteeing a minimum exists and is unique, as well as with finding the minimum

quickly through optimization techniques. That is, uncertainty and probabilistic questions

are rarely considered. In the context of topic modeling with NMF, θ is a parameter space

consisting of two matrices [XLG03]. The energy E for NMF has one term that measures

deviation of X from the product of these matrices, and therefore the solution is the matrix

product that most closely approximates X.

These two frameworks exist in almost entirely different literature with almost entirely

different researchers speaking in entirely different languages. However, as is summarized in

section 4.5, the underlying structure of probabilistic and energy models can be very similar

in cases such as LDA and NMF. Specifically, in some cases P (θ|X) and E(θ) can be seen as

interchangeable representations of the same problem where the MAP estimate is precisely

the energy minimization problem. The remainder of this section outlines the general analytic

connection between operations on a model probability and operations on an energy function.

Foremost an energy can in some cases be transcribed into a probability distribution.

Suppose that ∫
e−E(θ)dθ (4.3)

exists and equals c. Then the energy E is the negative log-likelihood of a probability distri-

bution P

E(θ) = − log (cP (θ)). (4.4)

When c = 1 the energy will be called probabilistic. If E depends on more arguments ζ, but∫
e−E(θ,ζ)dθ = 1 (4.5)

for all ζ then E will be called probabilistic in θ.
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If E(θ, ζ) is probabilistic then the marginalization of E with respect to θ is

Eθ̂(ζ) = − log

(∫
e−E(θ,ζ)dθ

)
. (4.6)

When marginalization can be achieved analytically it provides a useful way to view mini-

mization of E on a smaller parameter space, though minimization of the marginalized energy

is not in general equivalent to minimization of the full energy. Another expression for this

process is marginalizing out θ.

Conditioning of a probability distribution on a specific subset of variables can be stated

in the energy framework using marginalization. To make an energy E(θ, ζ) probabilistic in

a subset of parameters ζ one need only shift by the marginal energy

Eθ̄(θ, ζ) = E(θ, ζ)− Eζ̂(θ). (4.7)

That is, for every fixed value of θ it is trivial to show that this energy is probabilistically

normalized with respect to ζ.

The final operation that connects the general energy framework to the probabilistic frame-

work we will use is that of sampling from a distribution. Given a probability distribution

P (θ) a trivial operation to perform is sampling θ from this distribution. If E(θ) is proba-

bilistic then the notation

θ ∼ E (4.8)

will denote sampling θ from the probability distribution e−E(θ). When E depends on other

arguments than θ, the notation

θ ∼θ E(θ, ζ) (4.9)

will be used to represent sampling θ in place of the more verbose

θ ∼θ Eζ̄(θ, ζ). (4.10)

The ability to carry out this operation on pieces of the energy is frequently important for

probability inference algorithms to construct an algorithm which migrates to the minimum of

E, or equivalently to locations where the equivalent probability distribution is large. After
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the next two sections summarizing NMF and LDA, section 4.5 outlines the relationship

between LDA and NMF using the negative log-likelihood and marginalization.

4.3 Non-Negative Matrix Factorization
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Figure 4.1: Non-negative matrix factorization diagram. Each document’s histogram is mod-

eled as a linear combination of the topic vectors which form the columns of W. In NMF

all entries of these matrices are non-negative, each document’s histogram is modeled by a

strictly additive combination of these columns.

The concept of NMF was introduced in [Paa97] as positive matrix factorization then

later became widespread with the publication of [LS99] that includes an easily implemented

algorithm based on alternating multiplicative updates [LS01]. In essence, NMF is a technique

similar to principal component analysis or singular value decomposition, but with an entry-

wise non-negativity condition on the computed matrices. This results in something known as

a parts-based decomposition with data factors that have large positive values for collections

of features that tend to co-occur in the data.

We describe the NMF model, with optional penalty terms, as follows. Denote by n the

number of documents in the corpus and m the size of the dictionary containing all words that

appear in all documents. The document collection is parsed into an m-by-n data matrix X
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such that Xi,j is the number of times the ith word appears in the jth document. The columns

of X are thus document word-histograms that discard word order. NMF approximates this

histogram matrix using a product of two non-negative matrices X ≈ WH with an inner

product dimension t� min(m,n) where t is the number of topics. The number of topics is

simply a parameter to the model in the same way that an unsupervised clustering algorithm

may require the number of clusters as a parameter.

The extracted information produced by NMF is the matrices W and H. These are found

using an optimization framework by solving the problem

arg min
W,H�0

D(X,WH) + rW(W) + rH(H) (4.11)

with D a measure of divergence, or disagreement, between the data and the model. The

optimization problem takes places over all possible matrices W and H with non-negative

entries. Two common choices for D are the squared Frobenius matrix norm

DF (X,Y) = ||X−Y||2F =
∑
i,j

(Xi,j −Yi,j)
2 (4.12)

or generalized Kullback-Leibler divergence

DKL(X,Y) =
∑
i,j

Xi,j log

(
Xi,j

Yi,j

)
−Xi,j + Yi,j. (4.13)

The selection of norm depends on assumptions about the data matrix X. In the literature

for NMF (4.13) is sometimes used due to the simple multiplicative algorithm it enables

as presented by [LS99], though later literature for NMF with fast optimization techniques

typically use divergence (4.12) due to the simple analytic form of the gradient. The regularity

terms, or penalties, rW and rH in (4.11) can capture additional assumptions placed on the

problem such as sparsity of the matrices or columns norm constraints.

Given the definition of X chosen with documents occupying columns, the optimal matrix

W has columns that are each a distribution of weight over words in the dictionary. The

largest values within each column are the most significant words contributing to each topic.

The top words for each topic, for example as shown in table 4.1 , are simply the words
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with the largest value for each column of W. Each column of H contains t weights used

to combine the topic columns of W to approximate one document’s histogram vector. For

example, a column of H pertaining to a document about agriculture will likely have large a

large coefficient associated with an agriculture column of W. A topic will only be captured

by the model if it is frequent enough throughout the corpus relative to the magnitude of t.

Selecting smaller values for t will tend to find a few general trends in the data while larger

t produces more detailed topics. Too large of a value for t will begin to over-fit the data

and no longer produce meaningful topics. Unfortunately, the choice of this parameter for a

general data set depends on a number of factors. In general, a heuristic such as one topic

per 1000 documents may perform well, but the complexity of the data, the length of the

documents, and the finer details of constructing X all play a role in the quality of results.

Model variations on NMF have been designed for a variety of more general data analysis

techniques. In addition to simple penalties such as sparsity or norm constraints manifesting

through rW and rH, researchers have investigated regularizing the columns of these matrices

using graph regularity terms [CHH11]. Generalizations of NMF include replacing the data

matrix X with a higher-dimensional non-negative tensor [SH05] resulting in a model built

from the sum of t rank-1 tensors rather than a matrix product. NMF can be used in

interesting ways to form new data science techniques, for example by applying NMF to a

graph similarity matrix to cluster data [KDP12]. The work of [WZ13] may be consulted for

a general survey.

A variety of algorithms have been proposed for solving this problem in addition to

the popular multiplicative method of [LS99]. One such method involves alternating un-

constrained minimizing of equation (4.11) while projecting back to the non-negative or-

thant. Unfortunately, this only approximately minimizes (4.11). Alternating non-negative

least squares is a superior approach [KP07] that achieves a local minimizer and can be

made computationally fast [KP11]. Other techniques utilize projected gradient descent

[Lin07] or higher-order approximate Newton steps [KSD07], projected Newton methods

[GZ12], splitting with the alternating direction method of multipliers [SF14], primal-dual
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optimization [YB14], or block-coordinate optimization with Taylor approximations to the

divergence [LLP12]. The separability assumption [DS03, AGK12] is applicable in many

settings. This assumes that the rows of X contain the desired rows of the solution ma-

trix H. When this assumption holds, a multitude of very effective techniques can be used

[GV14, KSK12, EMO12, RRT12]. Separability is a reasonable assumption in the case of

topic modeling [GV14] where the problem becomes a search for “token words” that are as-

sociated uniquely with a topic. NMF is closely related to many other models that share a

familiar latent matrix factorization structure [SG08] for example SVD, PCA, and spectral

clustering [DHS05].

This work is focused on the application of NMF specifically to text documents for topic

modeling. Using NMF for text document classification was first done in [XLG03] where it

was shown to outperform many methods at the time. To accomplish this, [XLG03] argues

that the input matrix to the problem should be pre-processed using a method known as term-

frequency-inverse-document-frequency (TF-IDF) that scales down rows of X corresponding

to common words while increasing the scale, and hence importance, of rows with unique

words [SB88]. To this day, the re-normalization of the data matrix using TF-IDF is a

common practice in particular when using the Frobenius divergence due to the tendency of

(4.12) to place importance on extreme values. In results shown in section 4.9, NMF results are

presented using the Frobenius divergence (4.12) both with and without TF-IDF re-weighting

where it becomes clear that at times it is a necessary preprocessing step. The mathematics of

TF-IDF are quite simple. First, let ci be the number of documents that contain the word i.

This quantity is used to indicate the importance of a word with infrequent words considered

topically important and common words unimportant. While there are a variety of ways to

state TF-IDF using different re-weighting schemes, a simple and effective scheme is

X̃i,j = Xi,j log

(
n

ci

)
(4.14)

where X is the re-weighted data.
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4.4 Latent Dirichlet Allocation

LDA [BNJ03] is a Bayesian model that builds off a prior model known as probabilistic

latent semantic indexing (pLSI) [Hof99]. pLSI posited that the co-occurrences of words in

documents can be modeled as a sum over contributions from some fixed number of latent

distributions. That is,

P (w, d) =
t∑

z=1

P (z|d)P (w|z) (4.15)

is the probability of observing a word w in a document d given t latent topics. The index z

is a sum over contributions from each topic. P (z|d) is the probability of sampling from topic

z for document d, and P (w|z) is the probability that the word of type w is generated by

topic z. The probability (4.15) is therefore the probability of finding a word of type w in the

document d given a process whereby first a topic is sampled for the document, then a word

is sampled for that topic. This relationship between data and latent distributions is used

to infer the distributions P (z|d) and P (w|z) given the data consisting of observed instances

of words in documents. pLSI unfortunately tends to over-fit data and arrive at sub-optimal

solutions [BNJ03]. This is suggested by observing that the probability degenerates when

zeros are introduced into the learned distributions. LDA adds priors, or penalties, to the

distributions P (z|d) and P (w|z) that ensure zeros do not appear in the distributions. This

slight change results in significantly better performance of the model in practice for many

different algorithms.

LDA is a generative model for words appearing in documents. The model attempts to

assign to each word appearance in each document the topic that generated that word. Let

k be the number total number of words in all documents, henceforth known as instances.

Each instance has corresponding values wi ∈ {1, 2, ...,m} denoting which word in the length-

m dictionary the instance i is of, as well as di ∈ {1, 2, ..., n} that denotes which of the n

documents instance i occurred in. The values of wi and di are given by the data set initially.

LDA seeks to find values for new parameters xi ∈ {1, 2, ..., t} that indicate which extracted

topic instance i was generated by. For example, the word “plant” appearing in a document
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about gardening may have a value xi equal to the index of a learned gardening topic, but

“plant” appearing in a document about power plant designs may have a value xi selecting a

topic about power plants.

In addition to these xi, the LDA model also seeks to find two matrices W and H which

are non-negative, have columns with a unit-sum constraint, and which are respectively of

dimensions m-by-t and t-by-n. The columns of these matrices represent probability distri-

butions over, respectively, the dictionary for each topic and the topics for each document.

Using the notation ∝ to represent proportionality up to a constant not dependent on the

quantities to be found, the posterior model probability for LDA can be stated

PLDA(W,H, x1, x2, ...) ∝ PD(W, α)PD(H, β)
k∏
i=1

Wwi,xiHxi,di (4.16)

where the product takes place over all instances. The product expression on the right-hand

side of (4.16) captures the probability, given the model, of observing the instances in the

data. Specifically, W captures P (w|z) in pLSI while H captures P (z|d). The terms applying

PD to the two matrices are the aforementioned penalties that prevent zeros from appearing

in the solution. The expression for these terms, with α, β > 0 taken to be fixed quantities

known as hyperparameters, is the probability that columns of the matrices are sampled from

a Dirichlet distribution,

PD(M, µ) = C(µ)
∏
i,j

Mµ−1
i,j (4.17)

with C(µ) a normalization constant depending only on µ. One can see from (4.17) that if

any entry of the argument matrix M is zero and if µ > 1, any entry being equal to zero

results in PD(M, µ) = 0. Therefore the only solutions corresponding to non-zero probability

in this case must be fully dense. This penalty term serves as a means to prevent either the

distributions in the columns of W or H having entries that are too small. The Dirichlet

distribution directly addresses the degeneracy issue faced by pLSI. The statement of LDA

(4.16) suggestively describes the model distributions inferred by LDA as columns of two

matrices W and H with non-negative unit-sum columns. This notation is intentionally

chosen as these matrices capture information identifiable with the information captured by
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the two like-named matrices learned by NMF in section 4.3. In the literature for LDA,

algorithms to find solutions typically explore the posterior distribution (4.16) to understand

probable values for W, H, and the instance-topic assignments xi. This is in contrast with

NMF where only a single solution for the decomposition matrices is found. Additionally,

NMF does not deal with anything analogous to the xi found by LDA.

LDA, similar to NMF, forms the foundation of a number of methods in the statistics

literature. For example, to address the topic number selection issue [GT04] develop the

hierarchical Dirichlet process to select the number of topics using a topic tree structure.

Improving basic assumptions, manifesting through the priors like PD, can result in more

meaningful topic information. The fundamental Dirichlet prior PD(H) in equation (4.16)

was shown by [WMM09] to be too restrictive, and that relaxing it with an asymmetric

Dirichlet prior can improve topic model performance. Similarly, the correlated topic model

of [BL07] replaces the Dirichlet prior with something entirely different, the logit-normal

distribution, that addresses a tendency for documents to have a single contributing topic.

The “focused topic model” of [WWH09] is a variation on the hierarchical LDA model with a

modified penalty on H that enforces sparsity and hence more of a focus on fewer topics. More

recently, [ZHD12] generalized priors in ways which connect pLSI, LDA, and the focused topic

model into a versatile and general count-data factor model. In the case of documents which

have additional information such as a date or author along with the text, joint models built

on the LDA framework include supervised LDA [MB08] which models this “metadata” as a

generative result of the learned topics and the subsequent work of [MM12] in which Dirichlet-

multinomial regression is used, differing by a conditioning on the metadata for the generative

topic process. Both of these methods are related to other models which incorporate additional

information such as the topics-over-time model [BL06a] and the author-topic model [RGS04].

Literature for LDA and related models largely utilize algorithms such as variational Bayes

(VB) [BNJ03], expectation-maximization (EM) [DLR77, VP14, ZLC16], and Markov chain

Monte Carlo (MCMC) methods such as Metropolis-Hastings [MRR53] or a specific case

which we consider known as Gibbs sampling (GS) [CG92]. Variational Bayes [JGJ99], the
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approach proposed in the original LDA work of [BNJ03], assumes a functional form for (4.16)

and minimizes the difference of this approximation to the true distribution. Expectation-

maximization [DLR77] is a way to find a MAP estimate for the model after marginalizing

out xi from (4.16), a process explained further in sections 4.5 and 4.6.1. The Gibbs sampler

[CG92] explores (4.16) by forming a sequence of parameters which, after a sufficiently long

time, approximately are sampled from (4.16) and therefore capture both good solutions as

well as uncertainly in the solution. This algorithm is studied in section 4.6.2 in detail.

More recent and efficient algorithms for LDA are stochastic variational inference [HBW13]

which uses stochastic optimization to find approximations to (4.16) for large data sets, and

work such as that of [YGH15] seeking to make the MCMC approach to LDA fast using

parallel computation. In the next sections we outline the model-level connections between

the probability for LDA (4.16) and the energy for NMF (4.11) as it is known in the literature.

4.5 Analytic Comparisons

The LDA and NMF models are known to be similar latent factor models. The pLSI model

that forms the basis for LDA has, up to column normalization, a negative log-likelihood

equivalent to NMF using the KL-divergence (4.13) [DLP08]. LDA builds on pLSI by adding

Dirichlet priors [BNJ03] to the matrices, hence it stands to reason that NMF with KL-

divergence is closely related to LDA. In this section the relationship is summarized using the

energy framework.

Both models start with a corpus of m dictionary elements, n documents, and attempt

to find some number t of latent topics. We denote by X the data histogram matrix with

entry (i, j) equal to the number of times word i appears in document j. As was the case for

LDA, let wi, di, and xi denote the integer word, document, and topics for each instance of a

word in a document with i ranging 1, ..., k for k the total number of instances. While X, wi,

and di are computed directly using the data the values of xi are to be found by the model.
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Recall the LDA probability (4.16)

PLDA(W,H, x1, x2, ...) = PD(W, α)PD(H, β)
∏
i

Wwi,xiHxi,di . (4.18)

Taking the negative logarithm of (4.18) produces up to additive constant LDA with non-

probabilistic penalty terms [VP14]

ELDA(W,H, x1, x2, ...) ∝ −
∑
i

log(Wwi,xiHxi,di) + (1− α) log(W) + (1− β) log(H) (4.19)

with the logarithm of a matrix log(W) in (4.19) denoting the sum of the logarithm of all

entries

log(W) =
∑
i,j

log Wi,j.

Marginalizing (4.19) over instance-topic assignments xi produces an energy identifiable with

NMF using KL divergence

ELDA,x̂i(W,H) = DKL(X,WH) + (1− α) log(W) + (1− β) log(H). (4.20)

The marginalization operation transforms a dependence on individual word labels to a de-

pendence only on the word count matrix X. Though NMF can be formulated with the

single-word assignment parameters xi as well [FC09] it is almost exclusively stated in the

post-marginalization form. The only remaining distinction between the above marginalized

LDA and NMF energies, other than particular choice of divergence and penalty terms, is the

column-normalization of the matrices W and H. Incorporating this constraint into NMF

concludes the model-level similarities. The underlying mechanisms of LDA as a matrix fac-

torization technique have not gone unnoticed. LDA can also be understood as a Bayesian

model for Poisson matrix factorization due to the KL-divergence corresponding to a Poisson

noise assumption [ZHD12]. Discovering relationships such as these naturally lead to the

extension of progress with NMF to the LDA domain, for example by extending non-negative

tensor factorization to Bayesian Poisson tensor factorization [SPB15]. NMF with Frobenius

divergence can also be referred to as Gaussian matrix factorization as the norm follows from

the negative logarithm of a Gaussian noise assumption.
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Many algorithms for LDA such as the popular collapsed Gibbs sampler depend on the per-

word assignment parameters xi. Indeed, the collapsed Gibbs sampler uses this representation

exclusively with the parameters W and H being marginalized over. For these reasons,

relating the models as summarized above is not sufficient – the algorithms applied remain

largely disjoint, and the non-convex and indeed NP-hard nature of the problem [AGM12]

means different algorithms may impact the quality of solutions. In the interest of further

understanding xi and how various algorithms compare, the remainder of this section presents

a broad perspective from which different inference techniques for both NMF and LDA can

be characterized.

In the general setting of a topic model there are k observations yi ∈ Y , each to which

the model assigns a label xi ∈ X. Here Y and X represent, respectively, the type of data

which may be observed and the labels which are to be assigned to the observations. With

the topic model Y is the set of integer pairs

Y = {(w, d) : w ∈ [1, ...,m], d ∈ [1, ..., n]} (4.21)

indicating word type and document index for instances, while X is the set of integer topic

assignments {1, ..., t}. Additionally, a collection of model selection parameters θ ∈ Θ are

sought that describe the data-label relationship. For topic models these parameters are the

matrices, or distributions, W and H. A model is a relationship between the data and the

parameters to be learned. This is described through some posterior probability distribution

P (θ, x1, ..., xN) (4.22)

that describes the likelihood of model and assignment parameters. In this work the aim

is limited to finding the MAP estimate in the probabilistic framework, or equivalently the

energy minimum in the energy framework. This form (4.22) is too general for topic modeling,

however, as it may depend on the ordering of observations xi. Assuming the observations are

exchangeable e.g. the bag-of-words assumption, the probability (4.22) can be written only as

depending on the number of observations of each type Y . This is captured by the empirical

data histogram. The empirical histogram is simply a function p(x, y) → R for x ∈ X and

68



y ∈ Y where p(x, y) is proportional to the number of times an observation of type y is given

assignment x. For topic models, this corresponds to the number of times a certain word in

a certain document is assigned to a topic. Define the empirical data histogram

p(x, y) =
1

N

∑
i

1x=xi1y=yi . (4.23)

This distribution can be factored into a product

p(x, y) = f(x, y)p(y)

where the probability of each observation is

p(y) =
∑
X

p(x, y)

and therefore for y that have been observed at least once

f(x, y) = p(x, y)/p(y). (4.24)

f(x, y) is, for observed y, a distribution over class assignments x. For unobserved y the value

of f(x, y) has no impact on the model. Let F denote all functions g(x, y) such that for each

y ∈ Y the function g(·, y) is a probability distribution on X. Hence f(x, y) is, for any choice

of assignments xi, a member of F . Denote by F̂ ⊂ F the subset of such functions which

correspond to f(x, y) in (4.24) for some choice of assignments xi. That is, F̂ is the empirical

set of choices for f that can result from the data through the empirical histogram (4.23).

For example, if there is only a single observation of type y the distribution f(x, y) must be

an indicator on a lone assignment x and cannot be a general distribution. In conclusion an

exchangeable model probability, and therefore model energy, can be written in terms of the

choice of assignment function f ∈ F̂ and model parameters θ ∈ Θ alone

E(θ, f) = − log(P (θ, f)).

This statement of the general topic model enables the study of inference techniques for both

NMF and LDA in the energy framework subsequently in section 4.6.
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4.6 Inference Techniques

4.6.1 Expectation-Maximization

Expectation-maximization (EM) [DLR77] is a technique for finding a MAP estimate for a

marginal probability. The parameter space is separated into one group that is marginalized

over and another that the probability is maximized with respect to. In the case of E(θ, f)

for θ ∈ Θ and f ∈ F̂ both the iteration

θ ← arg min
φ

∫
F
E(φ, f)e−Eθ̄(θ,f)df (EM-θ) (4.25)

and

f ← arg min
g

∫
Θ

E(θ, g)e−Ef̄ (θ,f)dθ (EM-f) (4.26)

correspond to EM methods. The first maximizes the probability, hence minimizes the energy,

with respect to θ while marginalizing over f . The second iteration does exactly the reverse.

Taking the EM-θ iteration (4.26) and re-arranging terms clarifies this behaviour slightly

θ ← arg min
φ

∫
(Ef̂ (φ) + Eθ̄(φ, f))e−Ef̄ (θ,f)df (4.27)

⇒ θ ← arg min
φ
Ef̂ (φ) +

∫ (
Ef̄ (φ, f)− Eθ̄(θ, f)

)
e−Eθ̄(θ,f)df (4.28)

⇒ θ ← arg min
φ
Ef̂ (φ) + IKL(θ, φ). (4.29)

This is known as the a Kullback-proximal point iteration [CH00] that converges to a local

minimum of the marginal energy Ef̂ [XJ96, Wu83, HF95]. In particular, the quantity IKL

becomes insignificant with more iterations. The EM-f algorithm similarly converges to a

local minimum of Eθ̂. To further simplify these iterations, assume in either (4.25) or (4.26)

that the exponential in the integral is perfectly concentrated about a single point. This

occurs when the energy has a clear, single minimal point in the integrated direction. In both

cases the iteration reduces to

f ← arg min
g
E(θ, g)

θ ← arg min
φ
E(φ, f)

which corresponds to alternating coordinate descent of the energy [Ama95].
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4.6.2 Collapsed Gibbs Sampling

The Gibbs sampler (GS) [CG92] iteratively cycles through parameters on an individual basis.

Similar to coordinate descent, the algorithm iterates over all individual assignments sampling

repeatedly

xi ∼xi E(x1, ..., xN) (4.30)

for i = 1, 2, ..., N until stability around the minimum of E is reached.

The Gibbs sampler differs from EM in that it does not converge to a single minimizing

value of E corresponding to a MAP estimate, but rather in the limit of many iterations

becomes a random walk near minima of E. This for example enables analysis of uncertainly

in the solution and the study of potentially multiple modes. The stochastic nature can also

be advantageous when E is challenging and the perturbations due to sampling are able to

navigate out of local optima. In the context of f this manifests as a probabilistic update

to f where the contribution of a single variable xi is modified probabilistically based on

the probability distribution P with negative log-likelihood E. To make this concrete, the

update for f in a single iteration first selects a new assignment for an observation i with the

probability of xi becoming a new value xi ∈ X given by

P (xi = x′) ∝ P

(
f(x, y) +

(1x=x′ − 1x=xi)1y=yi

Np(yi)

)
. (4.31)

With the new assignment selected, f is updated as such

f(x, y)← f(x, y) +
(1x=x′ − 1x=xi)1y=yi

Np(yi)
. (4.32)

These steps are iterated for all observations i until the algorithm stabilizes around high

probability states for f . In order to understand the geometric relationship of the Gibbs

sampler to other algorithms used by topic models, the remainder of this section will inves-

tigate the continuum limits of the Gibbs sampler with single-datum assignment extended

to re-sampling of multiple observations simultaneously known as the block Gibbs sampler.

Consider re-sampling ki observations of type zi ∈ Y for i = 1, ...,M , for some M , at once.
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Let εi = ki/(Np(zi)) be the fraction of data re-assigned for each type of observation under

consideration zi. In this case the steps become as follows

q ∼ Fki,zi subject to f ≥ εiq (4.33)

P (g ∈ Fki,zi) ∝ P (f + εi(g − q)) (4.34)

f ← f + εi(g − q) (4.35)

where

Fki,zi = {h(x, y) s.t. h(·, zi) ∈ Dki ∀i = 1, ...,M} ,

Dn =

{
1

n

n∑
j=1

1vj s.t. v1, ..., vn ∈ X
}
.

The set Fki,zi is a set of functions similar to those of F̂ but restricted to represent the possible

contribution of the selected observations. Dn is the set of distributions on X that represent

empirical histograms of n quanta. What has changed is the parameters that are sampled in

one step. In (4.33) a subset of observations for the desired types Y are selected at random

by finding a function q that is similar to f but which represents the contributions to f of

only the subset of observations being sampled. A new contribution for these observations

to f is found with probability given by (4.34) using the topic model probability, and finally

this is used to update f .

Consider now the continuum limit εi → ε/p(zi) > 0 and N → ∞ with p(y) is held

constant. Dn(X) becomes general distributions on X while Fki,zi becomes F . In this limit

as well, because the fraction of each observation type is uniform and constant, a fraction of

f is updated at each step. Hence the block Gibbs sampler under this limit becomes first a

matter of selecting an appropriate re-assignment for the ε fraction of the data

P (g ∈ F) ∝ P ((1− ε)f + εg) (4.36)

then updating the assignments via f ← (1−ε)f+εg. These two steps represent a continuum

limit of the block Gibbs sampler when re-assigning a fraction ε of the data uniformly and

simultaneously. The state f stochastically migrates through the solution space at a rate
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given by the re-assignment fraction ε. To finally connect this with the other algorithms

under consideration that seek only MAP estimates, suppose the sampler takes only the most

probable path in (4.36) thus making the process a deterministic update

f ← f + ε(Mε(f)− f) (4.37)

where

Mε(f) = arg max
g∈F

P ((1− ε)f + εg).

In the limit of small ε (4.37) is approximately local gradient ascent of P , each iteration being

a step to the optimal solution in a neighbourhood. In the case ε = 1 solving the problem is

moved completely into the re-assignment selection step

f ← arg max
g∈F

P (g).

Thus far the analysis for the Gibbs sampler has ignored θ that captures W and H in

the topic modeling problem. For LDA these parameters ave simply been marginalized over

to bring the model probability completely to a dependence on xi and, thus, f . The final

algorithm for a maximum likelihood interpretation of the continuum collapsed Gibbs sampler

is given by

f ← (1− ε)f + ε

(
arg min

g∈F
Eθ̂((1− ε)f + εg)

)
⇒ f ← arg min

g∈F
{Eθ̂(g) + Iε(g, f)} (4.38)

with a suggestive use of the distance

Iε(g, f) =

 0 if 1
ε
(g − (1− ε)f) ∈ F

∞ otherwise.

Coordinate stepping becomes gradient descent due to the nature of the topic modeling

problem, the exchangeability assumption, and because large N makes individual observation

assignments result in infinitesimal changes to f . Recall for the EM-f algorithm in (4.26) the

iteration

f ← arg min
g∈F
{Eθ̂(g) + IKL(g, f)}
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for IKL a proximal penalty described in [CH00]. The form (4.38) of the Gibbs sampler can be

interpreted as a proximal mapping analogous to the proximal iteration of the EM algorithm.

We have therefore shown that when applying the collapsed Gibbs sampler to data adhering

to the above limits the result is a proximal descent similar to the proximal descent of EM-

f, and in a continuum data limit this is approximately a gradient descent of the marginal

energy. In this sense the EM-f algorithm can be seen as a non-stochastic variation of random

sampling with a much larger proximal step but, as a consequence, a much higher cost in per-

step calculation. We expect therefore that in a continuum data limit the Gibbs sampler is

more likely to become stuck in a local minimum that EM iteration may avoid. Additionally,

we speculate that away from this limit the stochastic properties of Gibbs sampler will allow

a more effective exploration of the solution space than EM.

Taking the energy (4.19) and after performing standard but lengthy calculations, the

marginal energy can be explicitly written

Eθ̂(xi) ∝
∑
k

lg(Zk +mα)−
∑
k,j

lg(Nk,j + β)−
∑
i,k

lg(Mi,k + α) (4.39)

with Zk the number of words assigned to the kth topic, Nk,j the number of words in document

j assigned to topic k, and Mi,k the number of words of dictionary type i assigned to topic

k. The function lg is the natural logarithm of the gamma function. N and M are discrete

matrices which can be thought of similarly to H and W respectively, though they are stored

implicitly through word assignments xi. The first term of (4.39) favors classes of equal size,

while the second and third terms seek count matrices N and M having larger values where

large values already exist. Although the original factorization matrices W and H are not

explicitly represented, this marginal energy still desires selecting xi that are as consistent

as possible with representation as two factor matrices. We also note that the non-zero

parameters α and β ensure that (4.39) remains finite. The continuum limit is therefore

a limit in which the integer-valued matrices M and N behave effectively as real-values

matrices, and in this limit the stochastic nature of the Gibbs sampler approaches gradient

descent. These count matrices can be averaged for a number of iterations to approximate
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the distributions captured by W and H for comparison with other techniques.

4.6.3 Alternating Minimization

Algorithms in the NMF literature typically seek simply to minimize Ef̂ and therefore op-

erate in the space θ = (W,H). Alternating minimization (AM) is one such algorithm that

accomplishes this through alternating optimization with respect to W and H. This consists

of performing the two steps in repetition

W← arg min
W≥0

Ef̂ (W,H)

H← arg min
H≥0

Ef̂ (W,H)

until convergence. This is particularly useful in the case of Frobenius divergence as this

reduces to alternating non-negative least squares for which there exist fast algorithms [KP11].

Similarly to EM, AM minimizes a marginal form of the energy. In contrast, however, it

explicitly operates on W and H separately while EM seeks a new state (W,H) that is in

KL-proximity to the previous state.

4.7 Tensor Comparison

In this section we review the three algorithms studied as energy minimization problems in a

tensor space. There are m words in the dictionary, n documents, and the topic models seek

to reduce the observations to t latent topics. The space Y can be identified with the set of all

pairs of integers (i, j) for i = 1, 2, ...,m and j = 1, 2, ..., n, each pair indicating the presence

of a particular word i in a particular document j. The topic labels xi ∈ X = {1, 2, ..., t} are

given by integer assignments to be discovered assigning each instance to a topic. Let T be

the set of all m-by-n-by-t tensors Zi,j,k with respective dimensions indexed by i, j, and k.

Define

F =

{
Z ∈ T : Zi,j,k ≥ 0,

∑
k

Zi,j,k = 1 ∀ i, j

}
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and

Θ =
{

(W,H) : W ∈ Rm×t
+ , H ∈ Rt×n

+

}
as the realizations for topic modeling of previously discussed sets. F represents assignments

of the observed data to topics and is the representation space for the collapsed Gibbs sampler

of section 4.6.2. There is a natural map from Θ to T given by

F ((W,H) ∈ Θ)i,j,k = Wi,kHk,j ∈ T

that produces F (Θ) ∈ T , the natural representation space for algorithms such as the alter-

nating minimization of NMF of section 4.3. These two sets capture the geometry of latent

factorization problem as well as provide insights into the computational challenges. F (Θ)

is perfectly modelled low-rank data, while F represents assignments of observations to un-

derlying mixture components. Choice of divergence provides an analytic measurement for

distance between elements in each set. For A ∈ F and B ∈ F (Θ) the two divergences (4.12)

and (4.13) considered in section 4.3 are given by

DF (A,B) =
∑
i,j

(∑
k

Xi,jAi,j,k −Bi,j,k

)2

(4.40)

DKL(A,B) = −
∑
i,j,k

Xi,jAi,j,k log(Bi,j,k). (4.41)

This latent factorization problem can thus be viewed as a problem in the tensor space:

given a measure of distance such as (4.40) and (4.41), an ideal solution is a pair of points in

each of F and F (Θ) that are close in the divergence sense.

The EM algorithm alternates projection between these two sets with the variants EM-θ

and EM-f holding explicit representations in F (Θ) or F , respectively, while performing a

proximal descent of the marginalized energy approaching the opposite set. This is schema-

tized in figure 4.2 where the dashed EM path is shown along with two marginalized variants

in grey. The difference between the two marginalized EM algorithms is which set is explicitly

represented versus implicitly represented through the weighted averaging of equations (4.26)

and (4.25). It is important to note that F (Θ) is non-convex and significantly smaller with
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Figure 4.2: Visualization for the EM algorithm variants and the collapsed Gibbs sampler

(in the small ε limit). The grey cones represent approximately those which points are con-

tributing the the minimization of distance in the next iteration for the EM-f and EM-θ

algorithms.

dimension mt+ nt than the convex counterpart F of dimension mnt, hence representations

constrained to this space will be naturally more restricted than representations in F . Indeed,

the difficult nature of the topic modeling problem arises from the shape of F (Θ).

Alternating minimization for NMF is constrained to F (Θ) and navigates toward F by

exploiting convexity of F ((W,H)) when either W or H is held constant. The Gibbs sampler

is an infinitesimal form of EM-f with small proximal descent steps, shown in figure 4.2 as

the path through F . The state of the Gibbs sampler is represented by assignments of single

words to topics and amounts to a tensor in F restricted to having integer values. The

marginal energy (4.39) that the Gibbs sampler minimizes causes the solution to navigate

toward F (Θ) using the stochastic process (4.30) studied in section 4.6.2. With sparse data

the stochastic nature of the sampler can be advantageous, while more dense data results in

a limiting behavior of (4.37) producing a technique almost identical to gradient descent.
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4.8 Topic Characterization

In some circumstances, text documents against which the topic model is applied may have

additional information. For example, each document may have a corresponding location

in space or time of authorship. Using such information in the context of topic models is

interesting for two reasons. First, correlations between topics and additional information

not included in the topic model provides a new and interesting way to understand the topics

and data themselves. Secondly, high correlation also indicates performance of the topic

model and validates assumptions when a practitioner is interpreting topic meaning.

Suppose there exists some value zj ∈ [0, 1]r for the jth. The first metric proposed is

the mean squared distance (MSD). Let A be the set of indices corresponding to documents

belonging to a specific topic where topic assignments are found by taking the maximum

entry in each column of H. The MSD for the topics is given by precisely what the name

implies,

MSD =
1

|A|2
∑
i∈A

∑
j∈A
||zi − zj||22, (4.42)

and is the expectation of the squared distance between two documents in the topic. Small

values of the MSD imply that all documents in a topic are appearing approximately near a

single point, while large values imply there is no such point.

The second metric proposed is the Lp norm (LP). The Lp norm of function on a domain

Ω is defined by

||f ||p =

(∫
Ω

|f(x)|pdx
) 1

p

.

This is commonly utilized with p = 2 resulting in the Euclidean norm. Different values of

p capture different information about the function f . For example, in the limit p → ∞ it

can be shown that, under some additional assumptions, this norm approaches the maximum

value of f on Ω. In contrast, as p → 0 this norm approximates the area on which f is

non-zero [Rud91]. The proposed metric is computed by fixing p beforehand and applying

the Lp norm to the histogram of zj. This quantifies approximately how concentrated each

topic is into a few areas of space versus spread out over a large area. In contrast to the MSD

78



metric, the LP metric will be small if zj are concentrated at a few points but these points are

far apart. Therefore these two metrics capture similar but certainly not identical properties

of the topic’s zj distribution.

4.9 Numerical Comparisons

4.9.1 Synthetic Examples

Exact LDA-EM LDA-GS LDA-VB NMF-AM NMF-AM + TF

Figure 4.3: Topic distribution matrix W, learned and exact, for “sparse” synthetic data

with entries rounded to integers in [0, 5] and 85% sparsity. The top row is the original data

(darker means higher value with white equal to zero) and the bottom row demonstrates

the row-wise maximal element indicating the accuracy of word assignments to topics. The

word-topic assignment purity for the methods, from left, are 75%, 68%, 74%, 64%, and 79%.

The first demonstrations are based on synthetically generated matrices. In figures 4.3

and 4.4 we apply all algorithms to a small synthetic matrix formed using entirely disjoint

topics, shown as the matrix on left, and a matrix H. Two cases are considered. For the
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Exact LDA-EM LDA-GS LDA-VB NMF-AM NMF-AM + TF

Figure 4.4: Topic distribution matrix W, learned and exact, for “dense” synthetic data

with entries rounded to [0, 24] and 50% sparsity. The top row is the original data (darker

means higher value with white equal to zero) and the bottom row demonstrates the row-wise

maximal element indicating the accuracy of word assignments to topics. The word-topic

assignment purity for the methods, from left, are 58%, 82%, 76%, 74%, and 75%.
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Figure 4.5: Percent of documents correctly classified using purity score for a subset of 10

classes taken from the 20 Newsgroups data set. The dark bars indicate the performance of

the Gibbs sampler over 300 runs. The lighter histogram represents the performance of the

Gibbs sampler after the data matrix is scaled by a factor of 5.

“dense” simulated data the matrix H is fully dense and the product WH is rounded to

[0, 24] with 50% sparsity randomly introduced to give the final data matrix. The “sparse”

simulated data follows a similar process with H now 50% sparse, and the product scaled to

[0, 5] with 85% sparsity. All LDA-based algorithms are run with hyper-parameters α = 0.2

and β = 0.5 with respective offsets as mentioned previously.

The first synthetic data results, or the “dense” example, are shown in figure 4.3. Here

the Gibbs sampler is behind other methods as for this type of data the sampling process,

described in section 4.6.2, becomes approximately gradient descent. The stochasticity of the

sampling does not prove advantageous.

For the “sparse” data matrix, shown in figure 4.4, the Gibbs sampler outperforms other

81



LDA-GS LDA-EM LDA-VB NMF-AM NMF-AM, TF-IDF

62% (57%) 66% (57%) 50% (45%) 13% (12%) 52% (43%)

Table 4.2: Classification accuracy via purity score for each algorithm when applied to the

20 Newsgroups corpus. Shown is the best score over ten runs, with the average score in

parenthesis.

techniques. The discrete count nature of the observations produces a setting in which contin-

uum methods such as EM, VB, and AM can become stuck in sub-optimal minima while the

sampler, being discrete in nature and stochastic, naturally handles the problem and easily

finds good solutions.

This behavioural change of the Gibbs sampler arises with real data as well. We applied

both LDA-GS and LDA-EM to a reduced version of the 20 Newsgroups corpus, using only

ten of the classes to reduce the computational time, and calculated the classification accuracy

for each of 300 runs. In the upper-left portion of figure 4.5, we see that the Gibbs sampler

generally attains a higher document classification accuracy than EM frequently achieving

nearly 60% accuracy compared to roughly 50% for EM. We then performed the same exper-

iment three more times, each duplicating the data either once, twice, or thrice. The result

is a decrease in performance of the Gibbs sampler, while the EM, VB, and NMF-based

algorithms are unaffected by such a modification up to hyper-parameter adjustment.

4.9.2 20 Newsgroups

Here we apply all methods to the 20 Newsgroups data set extracting 20 topics with α = 0.1

and β = 0.5. After the removal of stop words and words appearing less than twice the 11,314

documents are represented by histograms over a dictionary of 32,095 terms. The ideal topic

model should be able to separate the newsgroups with clustering evidence in the matrix H.

We show this matrix in figure 4.6 for all methods, where each column indicates a distribution

of one document over topics. The 20 Newsgroups clusters appear in sequence so that the
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Exact LDA-EM

LDA-GS LDA-VB

NMF-AM NMF-AM, TF-IDF

Figure 4.6: Learned matrices H for each algorithm when applied to the 20 Newsgroups

corpus. Darker color indicated a higher value, with white equal to zero.
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LDA-GS LDA-EM LDA-VB NMF-AM NMF-AM, TF-IDF

space space space will nasa

nasa nasa nasa people space

gov gov gov subject gov

will organization will time henry

access subject earth god jpl

earth lines launch lines launch

launch writes center organization orbit

center article data writes alaska

moon will orbit article moon

digex access 1993 good toronto

Table 4.3: Top words taken from topics with highest weight on the word “space” when each

method is applied to the 20 Newsgroups corpus.

grouping of similar columns indicates clustering performance. The classification accuracy in

terms of purity is in table 4.2. Both LDA-EM and LDA-GS perform comparably. LDA-VB

manages to isolate a handful of topics but remains behind the other LDA algorithms overall.

Finally, FRO-AM struggles to isolate the documents efficiently into clusters but the re-

weighting of TF-IDF improves the data by penalizing more common words and emphasizing

infrequent terms. This improvement, however, is not enough to separate the clusters as well

as the LDA methods. The LDA model is capable of detecting the newsgroup clusters with

performance that is comparable to prior art on unsupervised clustering of this data [BHL14],

though notably there is considerable variation between the three LDA methods.

In table 4.3 we show an example topic for each method pertaining to space and NASA,

where topics are selected by choosing the one with the highest probability of producing the

word “space”. All methods other than FRO-AM are able to discover well-defined topics.

Because the data is not normalized, the FRO-AM model is dominated by common terms

and longer documents resulting in very poor topics. The TF-IDF re-weighting corrects for

this, but the LDA model is still able to model the data without TF-IDF very well.
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4.9.3 Tweets of Madrid Evaluation

In this final study we qualitatively study the results of a topic model applied to a Twitter

corpus and present the utility of simple metrics for quantifying spatial and temporal proper-

ties of topics. We extracted 300 topics using LDA-EM from a corpus consisting of tweets in

the city of Madrid throughout the year 2011 that were created with geo-locations provided.

As a result, the 1.4 million tweets we process have both a time and a place with which they

are associated. This allows us to compute, for each topic, the spatial quantities MSDs and

LPs for which the location in the city is used as well as the temporal quantities MSDt and

LPt computed using the time within the year. For LPs a 100-by-100 grid over the city is

used to compute the histogram and p = 0.8. For LPt a 100-bin discrete histogram over the

year is used and p = 0.1.

In table 4.4 the most probable words for six example topics are displayed with names

designated by the authors. These represent the variety of topics discovered in the data using

the topic model. For example, the first column “FITUR” is the result of an international

turism event that was held in the city. The “15-M” column corresponds to an anti-austerity

protest that arose within Madrid, first gathering on the 15th of March. “Airport” corresponds

to tweets generated around the airport pertaining to travel. Finally, the last three displayed

top words are the result of topics resulting from language differences in the city. Becuase the

topic model discovers topics based on the co-occurrence of words in documents, here tweets,

different languages tend to have disjoint topics. In this case, these three languages are rare

among the predominantly Spanish corpus and therefore become confined to their own topics.

The topics therefore capture a wide variety of activity taking place in the city.

In figure 4.7 we show for all topics the distributions of the various metrics herein proposed

for understanding the distributions in space and time of the topics. Foremost, the two metrics

though correlated do not capture identical information. This results from cases where topic

activity is concentrated at a handful of locations with these locations spread apart. Such

a situation produces a small LP metric value with a large MSD value. This can be see

85



by comparing the examples of temporal and spatial distributions in figures 4.8 and 4.9

respectively. The spatial distributions are shown here using Google’s maps API.

The examples reveal the variety of distributions that arise on examination of the topics

as well as exemplars for which the metric quantities are most clearly demonstrated. Uniform

activity in time corresponds to topics such as “Airport” with activity that is associated with

no particular time. In space an analogous property is found in the “Foursquare” topic that

corresponds to user activity in the Foursquare social application across all locations of the

city. Both temporally and spatially there are highly concentrated topics – in time there are

events such as New Year’s celebrations and in space there is the airport topic. Finally, there

are a handful of cases where the metrics are not in agreement. This arises in cases such as

the “Ticket Sales” topic in time and the “Three Wise Men” topic in space. For the former

example activity is concentrated at a few points in the year with large periods of no activity.

For the latter example activity is concentrated in space but at two locations. Hence these

topics serve as examples where the study of both metrics is useful to understand the tweet

distributions.

Quite evidently these metrics are capturing useful properties of the distributions. A quick

examination of the scatter plots in figure 4.7 reveal interesting topics for further examination.

In addition, the fact that the distributions of tweets within topics produce a variety of metric

values serves as an additional validation for the performance of the topic model since the

topic model has no knowledge of the additional tweet information.

4.10 Discussion

Topic modeling is a widely applicable approach to dimension reduction for non-negative high-

dimensional and sparse data. Both non-negative matrix factorization and latent Dirichlet

allocation approaches to the problem are impressive models with very disparate origin sto-

ries. As we have demonstrated, the underlying mechanism for why these models function the

way they do is very similar. The common factor – non-negative matrix product representa-
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Figure 4.7: Metrics for all topics. Shown are the values of the spatial (left) and temporal

(right) metrics proposed to study the topics learned from the corpus.
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Figure 4.8: Types of temporal histograms. Different topics are characterized by different

metric values that indicate the type of temporal activity. Shown are a few examples of

background topics (top row), singular events in the year (second row), event topics with

many activity spikes in the year (third row), and outliers arising from automated tweeting

(bottom row). The metric values help to understand these distributions.

88



Table 4.4: Top words. Each topic is described by a probability distribution over words in the

vocabulary. Shown here are the most probable words as learned by latent Dirichlet allocation

when applied to geotagged tweets from the city of Madrid in 2011. The title for each topic

is the author’s interpretation.

FITUR (249) 15-M (74) Airport (248) English (26) French (30) Portuguese (91)

prensa del 4 in l amor

internacional sol barajas and él sueño

evento sgae mad for des é

orgullo campeonato aeropuerto day et eu

turismo apertura terminal thanks une em

rueda miau t4 more davidperez não

francia suchil t1 us à um

aniversario ancha iberia have pas pra

revista selva t2 nice est pro

fitur carnes airport life je mais

marcatv samurai gate last ganitas nose

Airport Three Wise Men Foursquare

Figure 4.9: Example histograms in space via Google’s mapping API. These three histograms

demonstrate the characteristics captured by the metrics of figure 4.7: airport activity (small

LPs, small MSDs), the Three Wise Men festival (small LPs, large MSDs), and check-ins to

the Foursquare service (large LPs, large MSDs).
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tions of data – results in a low-dimensional representation with each dimension remaining

meaningful for interpretation, similar to a soft data clustering problem. The two methods,

though appearing very different in statement, are analytically similar. We summarize this

similarity by concluding that NMF with the Kullback-Liebler divergence is LDA with a

Dirichlet penalty, up to normalization. This is unhelpful, unfortunately, when attempting

to understand the inference techniques used for each model.

We therefore both summarize the popular inference techniques used in practice and

contribute a consistent interpretation of these techniques in the same variational nota-

tion. Specifically, we demonstrate that in a variational setting the stochastic Gibbs sam-

pler is, in the limit of many observations, simply a gradient method for the topic model-

ing problem. This re-framing of the Gibbs sampler also allows us to draw analogies with

the expectation-maximization which is known to be a proximal-point technique and the

alternating-minimization method which operates in an entirely different way but in the same

high-dimensional tensor setting.

We demonstrate the behavioural expectations of the Gibbs sampler via numerical exper-

imentation as well as the benefits of stochasticity in practical experiments. The benefits of

matrix normalization in the case of NMF with the Frobenius divergence is also demonstrated

numerically within a larger experiment demonstrating the clustering efficacy of the various

topic modeling approaches outlined. Finally, in a practical application we demonstrate that

topic models can be used with social media to produce a summary view of a city automat-

ically. Additionally, because many hundreds of topics may result from a topic model on a

large corpus, we proposed and studied a variety of metrics that quantify directly the spatial

and temporal properties of topics. Using such tools, a practitioner is able to quickly sort

through the topics and evaluate their distributional properties when additional information

is available for each document in the corpus.
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