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Abstract

Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the under-
lying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A
less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can
spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission,
resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two trans-
mission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth
of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shak-
ing conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used
to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio
of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven
only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest
if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection mul-
tiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point
mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of
various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell trans-
mission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection
multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplic-
ity and cell-to-cell transmission for HIV evolution.
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1. Introduction

Human immunodeficiency virus-1 (HIV-1) infection eventually
results in the development of AIDS, typically after several years.
Viral evolution is thought to be a major contributor to disease
progression, and poses important challenges to antiviral treat-
ments and to the development of protective vaccines
(Bonhoeffer et al. 1997; Hirsch 1999; Kimata et al. 1999). HIV-1 is
characterized by a relatively high mutation rate (3� 10�5 per
base pair per generation) (Mansky and Temin 1995), which to-
gether with the fast turnover of the virus population (Wei et al.
1995; Ho et al. 1995; Perelson et al. 1996) contributes to the large
evolutionary potential of the virus. Besides mutations, however,
HIV-1 can also undergo recombination because the virions are
diploid (Moutouh, Corbeil, and Richman 1996; Levy et al. 2004).
If a cell is infected with two different virus strains and two dif-
ferent genomes are packaged into the offspring virus, recombi-
nation can occur between these two strains when the virus
infects a new cell and undergoes reverse transcription.
Recombination can accelerate the generation of two-hit mutant
viruses (virus strains with point mutations at two relevant loca-
tions) from two different one-hit mutants (virus strains with a
single relevant point mutation), which is likely faster than the
generation of two-hit mutants by point mutations alone. These
processes can be especially important for the evolution of viral
variants that simultaneously escape multiple immune cell
clones or drugs.

While recombination has been shown to significantly con-
tribute to viral evolution in vivo (Moutouh, Corbeil, and Richman
1996), mathematical models have demonstrated that the dy-
namics of recombination can be extremely complex (Bretscher
et al. 2004; Althaus and Bonhoeffer 2005; Fraser 2005; Carvajal-
Rodrı́guez et al. 2006; Kouyos, Fouchet, and Bonhoeffer 2009;
Kreger, Komarova, and Wodarz 2020). Recombination can not
only help the generation of multi-hit mutants but also break
existing mutant combinations apart. The net effect of recombi-
nation is difficult to predict and depends on underlying
assumptions about fitness landscapes, the nature and magni-
tude of epistatic interactions, and the relative balance of free vi-
rus and direct cell-to-cell transmission. Efforts have been made
to quantify some of those processes, such as the fitness land-
scapes and the nature of epistasis in the evolution of drug resis-
tance (Bonhoeffer et al. 2004).

Here, we seek to quantify in detail how the different virus
transmission pathways impact the evolution of recombinants.
The nature of virus transmission during viral spread through
the cell population is likely crucial for the rate of recombinant
evolution, through variations in infection multiplicity (Hubner
et al. 2009; Del Portillo et al. 2011; Law et al. 2016). Free virus
transmission typically results in the infection of cells containing
one virus, while direct cell-to-cell transmission through virolog-
ical synapses typically results in the multiple infection of cells,
and additionally is likely to result in the co-transmission of dif-
ferent virus strains from one cell to the next (Del Portillo et al.
2011; Law et al. 2016). Therefore, cell-to-cell (or synaptic) trans-
mission is likely to be beneficial for the rate at which viral
recombinants emerge.

Here, we combine mathematical models with in vitro experi-
ments that utilize fluorescent reporter viruses (Levy et al. 2004)
to test this hypothesis, to quantify the dynamical processes
that lead to recombinant generation, and to estimate underly-
ing parameters. Viruses can carry genes for cyan fluorescent
protein (eCFP) and yellow fluorescent protein (eYFP).
Recombination between these two variants results in viruses

characterized by green fluorescence in target cells (Levy et al.
2004). Additionally, recombination of the green fluorescent vi-
rus with a non-glowing virus can break the recombinant apart,
resulting in yellow and cyan fluorescent viruses. The viral trans-
mission pathway can be modulated by placing the culture on a
gentle rocking platform (Sourisseau et al. 2007; Komarova et al.
2013), which disrupts synaptic transmission. The frequency of
infected cells displaying cyan, yellow and/or green is measured
by flow cytometry over several days after infection.
Mathematical models are applied to these experimental data to
quantitatively characterize the dynamics.

2. Materials and methods
2.1 Experimental setup

2� 106 CEM-SS cells were infected with 25 ml NLENY1-IRES (YFP)
or NLENC1-IRES (CFP), representing nineteen virions/cell, by spi-
noculation at 1,200 g for 2 hours at 37�C as described previously
(Trinite et al. 2014). Cells were cultured in Gibco Advanced
RPMI-1640 with 5 per cent FBS plus penicillin and streptomycin
and 50 lM b-mercaptoethanol. The next day these cells were
washed and YFP- and CFP-infected cells were mixed with unin-
fected CEM-SS cells.

Three independent experiments were performed at the fol-
lowing cell numbers in 3 ml of culture medium in T-75 flasks:

These cultures were established in duplicate, one for the sta-
tionary condition and one for the rocking condition. The sta-
tionary set of cultures was placed on a shelf of a TC incubator at
a 10� angle to concentrate the cells at one end. The rocking set
was placed on a rocking platform in the incubator set at twelve
tilts per minute. On each subsequent day 1/8–1/4 of the culture
was collected for flow cytometry for YFP, CFP and GFP as de-
scribed previously (Levy et al. 2004). New culture medium was
added to maintain a consistent volume in each culture. Details
about the fluorescent reporter viruses used in this study can be
found in Levy et al. (2004).

2.2 Mathematical models

We consider an ordinary differential equation (ODE) model of virus
dynamics that tracks the populations of uninfected cells, as well as
different types of infected cell populations. It incorporates both
free virus and direct cell-to-cell transmission and includes recom-
bination processes. A basic schematic of the model is shown in
Fig. 1. Due to the complexity of the equations, they are displayed in
the Supplementary Materials, Section S1. Basic model assumptions
and their relation to the experimental data are summarized in
Section 3. The different models are fit to the experimental data
with standard methods, and the model that is most powerful at
explaining the data is selected with the F-test for nested models.
Details of the data fitting procedures are provided in the
Supplementary Materials, Section S2.

Expt Subset YFPþCFP
�106

Uninfected
�106

1, 2, 3 A 0.75 2
1, 2, 3 B 0.3 2
1, 2 C 0.075 2
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3. Results
3.1 Basic dynamics of in vitro virus growth

The experimental system and the mathematical models are de-
scribed in Section 2, with additional details given in the
Supplementary Materials. Based on previous work by others
and us (Sourisseau et al. 2007; Komarova et al. 2013), in vitro vi-
rus growth experiments were performed under two conditions:
1, under static conditions in which both free virus and synaptic
transmission operate and 2, under shaking conditions where
cultures were placed on a gentle rocking platform, which pre-
vents most synaptic transmission events from taking place. For
each experimental condition, eight experiments were per-
formed that differed in viral inoculum size. Time-series were
obtained for each condition, where we tracked cells infected
with two types of single-hit mutant: those labeled with cyan
fluorescent protein, denoted as C, and those labeled with yellow
fluorescent protein, denoted as Y. In addition, we followed the
population of cells infected with double-hit mutants labeled
with green fluorescent protein, denoted as G, as well as popula-
tions of cells that contained combinations of virus types, such
as YC, YG, CG and YCG. Examples of this can be seen in Figs. 2
(shaking condition) and 3 (static condition).

As expected, exponential growth was observed for the total
population of infected cells. This growth was faster under static
compared to shaking conditions, resulting in higher virus levels
for static conditions during the time frame of the experiment
(Fig. 3).

3.2 The mathematical model and data fitting

We used an extension of basic virus dynamics models (Nowak
and May 2000; Perelson and Ribeiro 2013) that includes the mul-
tiple infection of cells as well as the occurrence of both free vi-
rus and synaptic transmission, based on our previous work
(Komarova, Levy, and Wodarz 2012; Komarova et al. 2013). Due
to the need to track reporter viruses that glow in multiple col-
ors, the equations for the model are rather complicated and are
described in detail in the Supplementary Materials Section S1.
Here, basic assumptions are summarized and also shown sche-
matically in Fig. 1. Uninfected target cells are assumed to prolif-
erate with a rate r and die with a rate d. Infected cells are
generated through free virus transmission with a rate b, and
through synaptic transmission with a rate c. Free virus trans-
mission results in the infection of the target cells with one virus.

Synaptic transmission is assumed to lead to the simultaneous
infection of the target cell with S copies of the virus, where the
value of S is estimated from parameter fitting procedures.
Infected cells are assumed to die with a rate a. Cells can be
infected with 1, single-mutant viruses that carry cyan fluores-
cent protein, C, or yellow fluorescent protein, Y; 2, the recombi-
nant virus strain that shows green fluorescence (G); and 3, the
non-glowing virus strain that does not show any fluorescence,
W. Hence, the model tracks cell populations that are infected
with any combination of these virus strains, at defined multi-
plicities (i.e. cells can contain i copies of C, j copies of Y, k copies
of G, and l copies of W viruses). The fitness of all virus types is
assumed to be identical. During the infection process, the model
assumes that recombination can occur with a certain probabil-
ity if the infecting virus carries two genetically different
genomes. All possible recombination events are described in
the Supplementary Materials. The model is given by a set of
ODEs and is hence non-spatial.

Besides these basic processes, an accurate model fit to all
the data required the incorporation of two more processes into
the model.

(i) It has been demonstrated that infection can result in the
generation of a latently infected cell, but that super-infection/
multiple infection can result in the activation of the latent virus.
The reason is that superinfection results in TAT complementa-
tion and thus activation of the latent genome in the cell
(Bregnard et al. 2012). For example, if a cell becomes infected
with Y virus, it can become latent and the infected cell will not
glow. Subsequent superinfection with C virus, however, will re-
sult in an infected cell that glows in both colors. As a conse-
quence, the observed (glowing) population of singly infected
cells is smaller than the actual population. This applies mostly
to free virus transmission because it occurs mostly in singly
infected cells. Because we assume synaptic transmission to re-
sult in the infection of cells with S viruses (S> 1), this effect can
be ignored in this context. Hence, we assumed that upon infec-
tion of a cell with free virus, there is a probability e that the in-
fection becomes latent and that the virus consequently does
not glow. Upon superinfection, however, we assume that the la-
tent virus becomes activated and glows. Without this addition,
the model under-predicts the double color YC cell numbers, and
the model with latency can predict the YC population more ac-
curately, as determined statistically by the F-test for nested
models (Supplementary Fig. S1).

(ii) We found that for the shaking experiments, the model
constructed so far consistently underpredicted multiply
infected cells that contained the recombinant virus, that is the
triple color GYC cells and double color cells GY and GC, although
the number of cells infected with only GFP viruses (G) cells could
be predicted more accurately (Supplementary Fig. S2). We hy-
pothesized that although shaking results in the mixing of cells,
the perfect mixing dynamics assumed by our ODE model might
be responsible for this discrepancy. In particular, we propose
that when, for example, a YC-infected cell releases virus par-
ticles, they are likely to re-enter the same cell and generate a G
virus upon recombination, thus explaining the higher than
expected number of GYC cells. The reason is that as viruses are
released from a cell, this cell is unlikely to immediately move
away from its present location, but rather remains in the cur-
rent vicinity for a while, which makes re-infection a likely
event. Similarly, if a cell is infected with GW (where ‘W’ stands
for non-glowing virus) and only glows green, recombination be-
tween G and W can give rise to a C or a Y virus. Re-infection of
the same cell with these viruses can then yield GCW and GYW

Figure 1. Basic model schematic. Cell free and synaptic cell-to-cell transmission

are shown. In the ODE model, both processes are non-spatial. An example of a

recombination event is also shown.
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cells (which glow in two colors). We first tested this idea with an
agent-based model that tracked the spatial location of cells; pre-
liminary explorations indicated that such a model could ac-
count for the data more accurately, but due to the complexity of
the model and the corresponding data fitting procedures, we
decided not to proceed with the agent-based model. Instead, we
modified the ODE model to capture the assumption of a higher
frequency of self-infection phenomenologically (see
Supplementary Materials Section S2). This model, while still
compatible with a straightforward fitting procedure, could more
accurately describe the GYC, GY, and GC data than the simpler
model without this assumption (Supplementary Fig. S2) and

was determined to be a more powerful model (despite contain-
ing an extra ‘self-infection’ parameter) by the F-test for nested
models.

These results indicate that the straightforward perfect mix-
ing ODE models that are typically used to describe virus dynam-
ics are not accurate descriptions of these in vitro dynamics at
the level of detail presented here (this is discussed further
below).

For data fitting, we simultaneously fit the model to the cor-
responding shaking and static experiments and to all infected
subpopulations that were experimentally quantified. The de-
tailed methodology is available in Section S2 of the

Figure 2. Example of a shaking experiment (experiment A6). The experimental data (red circles) are presented with best fit curves from the model (blue lines). The

mathematical model is described in the Materials and Methods section with details in the Supplementary Materials, and the fitting procedure is described in the

Supplementary Materials. Best fit parameters are included in Supplementary Table S2 in the Supplementary Materials. The horizontal axis for all panels represents

time (days). (a) The overall percentage of infected cells. (b) The percentage of cells infected with at least one copy of G, Y, and C. (c) The average multiplicity of infection

(MOI) over all infected cells. (d) The percentage of cells infected with at least one active copy of C. (d) The percentage of cells infected with at least one active copy of Y.

(f) The percentage of cells infected with at least one active copy of G. (g) The percentage of cells infected with at least one copy of Y and C. (h) The percentage of cells

infected with at least one copy of G and C. (i) The percentage of cells infected with at least one copy of G and Y. The dashed black lines represent pointwise 95% predic-

tion confidence bands.
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Supplementary Materials. Some parameters were fixed accord-
ing to the information in literature, and these values are shown
in Supplementary Table S1 in the Supplementary Materials. The
rest of the parameter values were estimated by model fitting,
and the best fit parameters are given in Supplementary Table S2
in the Supplementary Materials. The model fits are shown for
select experiments in Figs. 2 and 3, and for all experiments in
the Supplementary Figs. S13–S28. We note that the data are typ-
ically noisier for the shaking compared to the static experiment,
due to stochastic effects, especially if the experiments start
with a low initial percentage of infected cells.

In what follows, we describe different parameter estimates
and their implications for infection dynamics.

3.3 Quantifying the relative contribution of free virus
and synaptic transmission to virus spread

On the most basic level, we estimated the growth rate of the vi-
rus in the shaking and static conditions, and hence estimated
the rate of free virus transmission and the rate of synaptic
transmission. Previous work showed that shaking can increase
the rate of free virus spread compared to static cultures due to
mixing the virus more efficiently among the cells, by a factor of
approximately f¼ 1.33 (Komarova et al. 2013). Therefore, we cor-
rected for this when calculating the rate of free virus spread
from the shaking experiments (full details of the methodology
are given in the Supplementary Materials). According to our cal-
culations, the rate of free virus spread was on average

Figure 3. Example of a static, non-shaking experiment (experiment B2). The experimental data (red circles) are presented with best fit curves from the model (blue

lines). Best fit parameters are included in Supplementary Table S2 in the Supplementary Materials. The horizontal axis for all panels represents time (days). (a) The

overall percentage of infected cells. (b) The percentage of cells infected with at least one copy of G, Y, and C. (c) The average multiplicity of infection (MOI) over all

infected cells. (d) The percentage of cells infected with at least one active copy of C. (d) The percentage of cells infected with at least one active copy of Y. (f) The per-

centage of cells infected with at least one active copy of G. (g) The percentage of cells infected with at least one copy of Y and C. (h) The percentage of cells infected

with at least one copy of G and C. (i) The percentage of cells infected with at least one copy of G and Y. The dashed black lines represent pointwise 95% prediction confi-

dence bands.
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1.80 6 0.31 fold higher than the rate of synaptic transmission
(see Section S3 of the Supplementary Materials). In our previous
study, these rates were more equal, with the rate of free virus
transmission being on average 1.1 6 0.1-fold higher than the
rate of synaptic transmission (Komarova et al. 2013). This is fur-
ther elaborated on in the Section 4.

3.4 Further parameter estimates

The model fitting to the experimental data allowed us to also
estimate a variety of other parameters that characterize this
system. 1, The probability for the virus to become latent upon
single infection was rather consistent across the different
experiments, with an average of e¼ 0.41 6 0.084. In other words,
about 40 per cent of all infection events of uninfected cells (via
free virus transmission) are estimated to result in viral latency
in this system. 2, We estimated the recombination probability
to be q¼ 0.30 6 0.14. This is relatively close to the maximally
possible recombination probability of q¼ 0.5 in this model (see
Supplementary Materials). 3, An important question concerns
the number of viruses that are transferred from one cell to an-
other through virological synapses during cell-to-cell transmis-
sion. Experimental data indicate that virus transfer through
virological synapses is a very efficient process, with tens to hun-
dreds of viruses transferred (Chen et al. 2007; Hubner et al.
2009). Not all of these viruses, however, are likely to successfully
integrate into the genome of the target cell. In our experiments,
we estimated that on average S¼ 3.0 6 0.35 viruses successfully
infect a target cell per synaptic transmission event. 4, The pa-
rameterized model further allowed us to estimate the average
infection multiplicities in the experiments. As expected, the es-
timated multiplicities increased as the virus population grew.
For the shaking experiments, multiplicities ranged between 1
and 2.2 during the time frame of the experiments (Fig. 2c). For
the static experiments, the average infection multiplicity
ranged from 1 to 4 during the phase of virus growth (Fig. 3c).

3.5 Comparing the effect of viral transmission pathways
on recombinant generation: beyond the experimental
setup

The experimental setup discussed above represents an artificial
system to parameterize an evolutionary model of viral recombi-
nation. Here, we use the parameterized model to simulate the
dynamics in more general terms and to go beyond the experi-
mental setup in the following ways.

i. Shaking conditions resulted in largely free virus transmis-
sion, while static conditions allowed both free virus and
synaptic transmission to proceed. Using the estimated
parameters in computer simulations, we further predict the
dynamics for a scenario where only synaptic transmission
takes place, which was not feasible experimentally.

ii. The inherent differences in viral growth rates in the shak-
ing and static experiments make a direct comparison of re-
combinant evolution under the different transmission
pathways difficult to interpret. Hence, we adjusted the in-
fection rates such that they are the same for free virus
transmission only, synaptic transmission only, and a com-
bination of the two.

iii. The experimental setup is an artificially constructed system
that was used to measure key parameters connected to re-
combinant evolution. We can use the parameterized equa-
tions to move beyond this particular system and describe a

more complete evolutionary picture. That is, we can start
with a ‘wild-type’ virus (which was not part of the experi-
mental setup) and model the generation of single-hit
mutants by point mutation (which would technically corre-
spond to the Y and C viruses, even though these reporter vi-
ruses are not generated by single mutation events in the
experiments), and the subsequent evolution of double
mutants through recombination (which would correspond
to G viruses).

In the first set of simulations, we started with an equal num-
ber of single-mutant viruses, as done in the experiments, and
ignored point mutations. We started the simulations with 109

uninfected cells, and in contrast to the experiments, we did not
allow for exponential expansion of the uninfected cell popula-
tion, because lack of extensive cell expansion corresponds bet-
ter to the conditions in which virus grows during acute HIV
infection in vivo. We let the total number of infected cells grow
until a population size of 4� 108 cells was reached. This was
done assuming that only synaptic transmission (not possible in
experiments), only free virus transmission, or both types of
transmission occur. As a first step, we used unadjusted trans-
mission parameters that were identical to the ones estimated
from the experimental data. The number of cells that contain
the recombinant virus was quantified as a function of time
(Fig. 4a). In these simulations, recombinants rise the fastest if
both transmission pathways operate, compared to only a single
active transmission pathway. This is largely due to both trans-
mission types resulting in the fastest overall rate of viral
transmission.

To compare the effect of the transmission pathways them-
selves on recombinant generation (independent of the differen-
ces in viral transmission rates), we corrected for the differences
in viral transmission rates associated with the different path-
ways, such that the basic reproductive ratio of the virus

R0 ¼ b 1�eð Þþc
a

� �
was identical for free virus only, synaptic only,

and for a combination of both transmission pathways (Fig. 4b).
When starting from the experimentally implemented initial
conditions (infected cells that contain either one or the other vi-
rus type), we observe that the transmission pathways do not
make a significant difference for the rate at which recombinants
evolve. The reason is that we start with an infected cell popula-
tion that contains either one or the other virus. Recombination
requires the two virus types to come together in the same cell,
which is likely to happen only at larger virus loads both for free
virus and for synaptic transmission, explaining the lack of a dif-
ference in these simulations. Further, we note that at high virus
loads, the number of recombinants in simulations with only
free virus transmission slightly overtakes those in simulations
with synaptic transmission; at this stage in the dynamics, the
superinfection of latently infected cells becomes a common
event in free virus transmission, which elevates the rate of
productive free virus infection due to TAT complementation,
and results in a higher effective reproductive number for the
free-virus pathway compared to the synaptic pathway.

A different picture is observed if we start with a low number
of coinfected cells that contain both types of single-mutant vi-
rus (Fig. 4c). Now, recombinant evolution is significantly faster
for simulations with only synaptic transmission than for simu-
lations that include free virus transmission. The reason is that
synaptic transmission allows the repeated co-transmission of
genetically different virus strains, which facilitates recombina-
tion processes in the growing virus population, highlighting the
importance of this mechanism. Free virus transmission, in
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contrast, contributes to the separation of the two single-mutant
virus strains into separate cells, which slows downs recombi-
nant generation.

Next, we consider a more complete evolutionary scenario.
We start with a wild-type virus only and introduce point muta-
tions into the model. The wild-type virus can thus give rise to
two different kind of single-mutant viruses, and double-mutant
viruses can be generated either by recombination between the
single mutants, or by additional point mutations in those single
mutants (Fig. 5). We start with basic simulations (unadjusted
parameters) and consider the number of cells that contain two
different single-mutant viruses over time, since these cells form
the basis for recombination. Despite the fact that the estimated
rate of synaptic transmission is slower than the estimated rate
of free virus transmission, in our experimental system, the
number of cells containing both single mutants rises sharply at
low viral load in simulations that take into account only synap-
tic transmission, compared to simulations that only take into
account free virus transmission (Fig. 5a). The reason is that 1,
more reverse transcription events occur with synaptic trans-
mission, thus generating more single-mutant viruses (Fig. 5a,
inset), and 2, once the two different single-mutant viruses have
come together in the same cell, synaptic transmission enables
their repeated co-transfer to target cells, explaining the sharp
rise. As viral load grows to higher levels in the simulations, the
number of cells coinfected with both single mutants under free
virus transmission overtakes those under synaptic transmis-
sion (Fig. 5a) because at high viral loads, the rate of coinfection
becomes relatively high even for free virus transmission, and
the estimated rate of free virus transmission is faster than the
rate of synaptic transmission.

Looking at the number of double mutants (Fig. 5b), we ob-
serve similar patterns. Figure 5c and d repeat these plots with
adjusted parameters, such that the basic reproductive ratio of
the virus is the same, independent of the transmission path-
ways that are assumed to occur. We see that the synaptic
pathway contributes most to double-mutant evolution, due to
the repeated co-transmission of the two single-mutant

strains. This is most pronounced when considering the num-
ber of cells that are coinfected with both single mutants
(Fig. 5c). The effect of synaptic transmission on the evolution
of double mutants is qualitatively the same, but less pro-
nounced because apart from recombination (Fig. 5d), mutation
processes also occur in these simulations. Therefore, although
synaptic transmission significantly enhances the chances for
recombination to occur (due to the co-transmission of the dif-
ferent single mutants), the mutation processes in the much
more abundant singly infected cell population mask this effect
to an extent.

4. Discussion and conclusion

In this study, we used mathematical models in combination
with experimental data to determine the contribution of free vi-
rus transmission and direct cell-to-cell transmission to the evo-
lution of recombinant viruses. This was possible through the
use of experimental techniques to separate the two viral trans-
mission pathways, and the use of fluorescent reporter viruses
that allowed us to track recombinant evolution. Fitting of math-
ematical models to the experimental data allowed the estima-
tion of important parameters that characterize the
recombination process, and the models were further used to
run evolutionary simulations to go beyond the experimental
system and to quantify how the two transmission pathways in-
fluence the number of recombinants generated under a more
complete set of evolutionary processes.

We found that direct cell-to-cell transmission through viro-
logical synapses promotes the evolution of recombinants, due
to the following mechanisms: 1, synaptic transmission
increases the infection multiplicity of cells, which is the basis
for recombinant generation; 2, synaptic transmission pro-
motes the repeated co-transmission of two different virus
strains from cell to cell, which increases the chances to even-
tually generate a recombinant virus; 3, synaptic transmission
increases point mutation generation because the simulta-
neous transfer of multiple viruses to the target cell increases

Figure 4. Total number of cells infected with at least one active copy of double-mutant virus plotted against time. The multiplicity of infection (MOI) is included in the

inset. We assume we have 109 initial cells, and run the simulation until the number of infected cells reaches 40 per cent of this initial amount, while also assuming

that uninfected cells do not divide. Parameters are the best fit parameters from static experiment B2, which are listed in Supplementary Table S2 in the Supplementary

Materials. The combination of both transmission pathways is represented by the black lines. For the only free virus transmission case (red lines), synaptic transmission

is turned off. For the only synaptic transmission case (blue lines), free virus transmission and reinfection are turned off. (a) Parameters are exactly as in the experiment.

(b) The overall growth rate is the same across the three cases. (c) The overall growth rate is the same across the three cases and the simulation starts with only a single

infected cell, which is coinfected with both single-mutant strains.
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the number of reverse transcription events, during which
point mutations are mostly likely to occur. We estimated cell-
to-cell transmission to result in the successful integration of
about three viruses per synapse in the target cell. Experiments
have shown that tens to hundreds of virus particles can be si-
multaneously transmitted per synapse (Chen et al. 2007;
Hubner et al. 2009), but it is likely that only a subset of these
result in successful integration.

We note that while for a fixed infection rate, purely synaptic
transmission results in fastest recombinant evolution, free virus
transmission can yield other advantages for the virus that
might be equally important for its success, such as more effi-
cient mixing of viruses among cells, which can promote virus
spread and dissemination. The rate of recombinant evolution
studied here is only one component that determines the

success of the virus, and the presence of the two viral transmis-
sion pathways has to be interpreted in this light.

Our analysis also repeated some of our previous work
(Komarova et al. 2013) where we estimated the relative contri-
bution of free virus and synaptic transmission to virus growth.
In this study, it was estimated that the two transmission path-
ways contributed more or less equally to virus spread, where
the rate of free virus transmission was approximately 1.1-fold
faster than the rate of synaptic transmission. A subsequent
study repeated our work and came to the same conclusion
(Iwami et al. 2015). In the present study, we estimated the rate
of free virus transmission to be approximately 1.8-fold faster
than the rate of synaptic transmission, which is a larger differ-
ence. The reason for this discrepancy is that in the present
study, we took into account the generation of latently infected

Figure 5. Same as in Fig. 4, but the simulations start with a small equal amount of cells singly infected with the wild-type, and mutations are included. (a) Total number

of cells infected with at least one copy of both single-mutant strains. The number of cells infected with at least one copy of one of the single mutants is included in the

inset. Parameters are exactly as in the experiment. (b) Total number of cells infected with at least one active copy of double-mutant virus plotted against time.

Parameters are exactly as in the experiment. (c) Same as panel (a), but the overall growth rate is the same across the three cases. (d) Same as panel (b), but the overall

growth rate is the same across the three cases. The ratio of the number of cells infected with the double mutant for only synaptic transmission versus only free virus

transmission is included in the inset.
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cells upon free virus transmission, while the previous work did
not. During synaptic transmission, latency is not established in
our model because this is very unlikely due to the phenomenon
of TAT complementation in multiply infected cells (Bregnard
et al. 2012). If we ignore free virus infection events that result in
latency and re-calculate the rate of free virus transmission (see
Section S3 of the Supplementary Materials), it is only about
1.06-fold faster than the rate of synaptic transmission, that is
the two transmission pathways contribute about equally to vi-
rus spread, as in previous studies (Komarova et al. 2013; Iwami
et al. 2015). Note that while the rate of productive free virus in-
fection is the measure that is of immediate importance for the
expansion of the virus population, the latently infected cells
that are being generated can become relevant with a time delay
if the virus spontaneously activates or becomes activated
through TAT complementation upon superinfection. Hence, it
is useful to consider both the total rate of free virus infection
and the rate of productive infection.

Other work indicates that the relative importance of the two
transmission pathways can depend on the microenvironment.
For instance, in (Imle et al. 2019), HIV-1 spread in suspension
was driven completely by free virus transmission, whereas virus
spread in 3D collagen was driven by synaptic transmission, with
approximately a 22 per cent (36 per cent) contribution of free vi-
rus transmission in loose (dense) collagen. This also brings up
the effect of spatially restricted virus spread for the evolutionary
dynamics explored here. The dynamics of virus growth under
spatially restricted direct cell-to-cell transmission has been ex-
plored in the context of Hepatitis C virus infection (Graw et al.
2015) and more generally (Kumberger et al. 2018). In the context
of HIV infection, evidence for spatially clustered virus growth
has been provided from experiments with HIV-infected human-
ized mice (Law et al. 2016), and the consequences of spatially re-
stricted synaptic transmission for the evolution through
recombination has been studied recently with mathematical
models (Kreger, Komarova, and Wodarz 2020). It is unlikely that
extensive spatial restrictions apply to the experimental virus
growth cultures investigated here, in which the virus population
grew exponentially rather than according to growth laws that
are more typical for infected cell clusters. An extension of the
currently described evolutionary dynamics to a spatial setting,
however, will be important for future work.

An interesting finding in our study was that at the resolution
of the data presented here, standard ODEs of virus dynamics
failed to adequately describe several multiply infected cell sub-
populations. We found that incorporating the assumption of
limited mixing and the consequent re-infection of cells by their
own offspring virus resulted in better model fits to the data.
While this can be relevant to our in vitro system with trans-
formed cell lines as infection targets, the relevance for virus
replication in vivo might be less due to different infected cell
life-spans and reverse transcription kinetics in vivo compared to
the in vitro setting. Spatially restricted virus spread to new target
cells (rather than self-infection), however, could have a similar
effect since several viruses from the source cell likely get passed
on to the same target cell due to the limited number of cells in
the spatial neighborhood.

Our models and data analysis provide an important link be-
tween direct cell-to-cell transmission, heightened infection
multiplicity, and an increased rate of recombinant evolution.
While this was established within the framework of in vitro ex-
perimentation, these notions are likely also relevant in vivo.
Synaptic transmission has been documented in vivo and infec-
tion multiplicities of cells in the tissue from HIV-infected

patients have been shown to be between three and four or even
higher on average (Jung et al. 2002). Other studies reported the
average infection multiplicities in the blood and tissue of HIV-
infected patients to be closer to one (Josefsson et al. 2011;
Josefsson et al. 2013), although the restriction of the analysis to
cells that express the CD4 receptor could have artificially low-
ered the estimate of infection multiplicities. The CD4 receptor
becomes eventually down-regulated following the infection of
the cell with the first virus. Ignoring such cells in the analysis
could miss those cells with the highest infection multiplicities.
The spatial modeling approaches discussed above might pro-
vide additional insights for these evolutionary dynamics in vivo.
Future studies should further examine how these processes af-
fect viral evolution under the assumption that mutants differ in
fitness, and that the coinfection of cells with virus strains of dif-
ferent fitness can result in complementary and inhibitory inter-
actions. The modeling framework and parameter estimates
provided here form a basis for future investigation.

Supplementary data

Supplementary data and experimental data are available at
Virus Evolution online.
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