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ORIGINAL RESEARCH

Machine Learning–Based Critical 
Congenital Heart Disease Screening Using 
Dual-Site Pulse Oximetry Measurements
Heather Siefkes , MD, MSCI; Luca Cerny Oliveira , MS; Robert Koppel , MD; Whitnee Hogan, MD; 
Meena Garg, MD; Erlinda Manalo , MD; Nicole Cresalia , MD; Zhengfeng Lai , PhD; 
Daniel Tancredi , PhD; Satyan Lakshminrusimha , MD; Chen-Nee Chuah , PhD

BACKGROUND: Oxygen saturation (Spo2) screening has not led to earlier detection of critical congenital heart disease (CCHD). 
Adding pulse oximetry features (ie, perfusion data and radiofemoral pulse delay) may improve CCHD detection, especially 
coarctation of the aorta (CoA). We developed and tested a machine learning (ML) pulse oximetry algorithm to enhance CCHD 
detection.

METHODS AND RESULTS: Six sites prospectively enrolled newborns with and without CCHD and recorded simultaneous pre- 
and postductal pulse oximetry. We focused on models at 1 versus 2 time points and with/without pulse delay for our ML 
algorithms. The sensitivity, specificity, and area under the receiver operating characteristic curve were compared between 
the Spo2-alone and ML algorithms. A total of 523 newborns were enrolled (no CHD, 317; CHD, 74; CCHD, 132, of whom 21 
had isolated CoA). When applying the Spo2-alone algorithm to all patients, 26.2% of CCHD would be missed. We narrowed 
the sample to patients with both 2 time point measurements and pulse-delay data (no CHD, 65; CCHD, 14) to compare ML 
performance. Among these patients, sensitivity for CCHD detection increased with both the addition of pulse delay and a 
second time point. All ML models had 100% specificity. With a 2-time-points+pulse-delay model, CCHD sensitivity increased 
to 92.86% (P=0.25) compared with Spo2 alone (71.43%), and CoA increased to 66.67% (P=0.5) from 0. The area under the 
receiver operating characteristic curve for CCHD and CoA detection significantly improved (0.96 versus 0.83 for CCHD, 0.83 
versus 0.48 for CoA; both P=0.03) using the 2-time-points+pulse-delay model compared with Spo2 alone.

CONCLUSIONS: ML pulse oximetry that combines oxygenation, perfusion data, and pulse delay at 2 time points may improve 
detection of CCHD and CoA within 48 hours after birth.

REGISTRATION: URL: https://​www.​clini​caltr​ials.​gov/​study/​​NCT04​056104?​term=​NCT04​05610​4&​rank=​1; Unique identifier: NCT04056104.

Key Words: critical congenital heart disease ■ machine learning ■ pulse oximetry

Oxygen saturation (Spo2)-based critical congenital 
heart disease (CCHD) screening is more sensitive 
than physical examination alone among asymp-

tomatic infants.1 Spo2-based CCHD screening is now 
widely mandated in the United States.1 While ≈900 
newborns with CCHD are detected by Spo2-based 

screening in the United States annually, it is also es-
timated to miss nearly as many infants with CCHD.2 
The vast majority of the infants not detected by Spo2-
based CCHD screening have systemic obstruction 
lesions such as coarctation of the aorta (CoA). It is es-
timated that 560 CoA cases annually are missed due 
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to false-negative Spo2 screens.2 These estimates are 
based on the population expected to be screened, 
which are presumably healthy newborns without pre-
natal concerns for CCHD. In fact, prenatal detection of 
CoA is also challenging. Thus, improvement in post-
natal detection is necessary due to the high rates of 
morbidity and death associated with late detection.3

Measurements other than Spo2 from photoplethys-
mography have been suggested as possible screen-
ing tools to improve CCHD detection and specifically 
CoA. The most commonly studied measurement is the 
perfusion index, a measurement of pulsatile blood flow. 

The perfusion index has been shown to be abnormal 
in infants with CoA and may improve CCHD detection 
but has unacceptable false-positive rates.4–7 When 2 
probes are simultaneously in place, 1 on the right hand 
and 1 on any foot, the time difference in pulse arriving 
at the 2 extremities, or radiofemoral pulse delay, can 
also be measured and has also been previously found 
to be longer in infants with CoA.8 Diastolic and systolic 
components of the photoplethysmography waveform 
such as slopes have been studied and also noted to 
have differences in newborns with CoA.9 These pho-
toplethysmography features have mostly been studied 
individually and generally at ages that are after normal 
newborn discharge (ie, >48 hours). We hypothesized 
that a combination of photoplethysmography features, 
in addition to Spo2, would improve detection of CCHD 
compared with Spo2-alone screening. We attempted to 
determine the optimal timing and type of measurements 
that enhance CCHD screening. Thus, we conducted a 
prospective cohort study of newborns with and without 
congenital heart disease (CHD) using machine learn-
ing (ML) techniques to identify the best combination of 
photoplethysmography features for CCHD detection.

METHODS
Deidentified data from participants who consented to 
data sharing will be made available upon request only. 
The ML code, however, will be publicly available at the 
link provided later in the methods. The University of 
California, Davis Institutional Review Board approved 
this study for all participating sites. The study was reg-
istered with Clini​caltr​ials.​gov (NCT04056104). Written 
informed consent was obtained for all enrolled new-
borns. Due to the rapidly changing physiology of new-
borns with CCHD, pulse oximetry recordings were 
permitted in any newborn suspected of CCHD with 
pre- and postductal pulse oximetry probes in place 
before obtaining consent. Data were analyzed only if 
written consent was obtained within 2 weeks.

This study was a 6-site multicenter prospective co-
hort of newborns with and without CHD. Participating 
centers included University of California, Davis, 
University of California Los Angeles, University of 
California San Francisco, Cohen’s Children Medical 
Center (New York), Sutter Medical Center (Sacramento, 
CA), and University of Utah/Primary Children’s 
Hospital. Enrollment occurred from October 2019 to 
January 2022. The cohort of newborns without CHD 
included asymptomatic newborns, predominantly 
from the well-newborn nursery, who were to undergo 
routine Spo2-based CCHD screening. The exclusion 
criteria for this portion of the cohort were having an 
echocardiogram already completed (and thus no lon-
ger qualifying for CCHD screening) and concerns for 

CLINICAL PERSPECTIVE

What Is New?
•	 Coarctation of the aorta (CoA) remains the 

most common critical congenital heart defect 
detected late (>48 hours), and nearly half of 
postnatally diagnosed CoAs were detected late.

•	 Machine learning oximetry combining oxygen 
and perfusion data, including radiofemoral 
pulse delay, with measurements at 2 time points 
within 48 hours after birth has the potential to 
improve critical congenital heart defect and 
CoA detection.

•	 Among newborns with prenatally suspected 
CoA, machine learning oximetry correctly clas-
sified the newborns who were ultimately deter-
mined to be healthy.

What Are the Clinical Implications?
•	 Use of readily available pulse oximetry 

data, including perfusion and pulse-delay 
measurements, could further enhance the rate 
of early critical congenital heart defect and CoA 
detection.

•	 Machine learning pulse oximetry may help rule 
out critical CoA sooner and thus lower neonatal 
intensive care unit length of stay and normalize 
care such as feeding for newborns with prena-
tally suspected CoA.

Nonstandard Abbreviations and Acronyms

AWAD	 automated waveform artifact detection
CCHD	 critical congenital heart disease
CoA	 coarctation of the aorta
ML	 machine learning
PAI	 pulse amplitude index
RFE	 recursive feature elimination
SpO2	 oxygen saturation

http://clinicaltrials.gov


J Am Heart Assoc. 2024;13:e033786. DOI: 10.1161/JAHA.123.033786� 3

Siefkes et al� Machine Learning Neonatal Heart Disease Screening

loss to follow-up and inability to confirm absence of 
CCHD (eg, anticipated foster placement). To capture 
the cohort of newborns with CHD, we enrolled new-
borns with prenatally or postnatally suspected CHD 
regardless of completion of a confirmatory postnatal 
echocardiogram before enrollment to ensure that col-
lection of our measurements was not delayed while 
awaiting postnatal echocardiogram results. The exclu-
sion criteria for newborns with CHD were (1) isolated 
patent ductus arteriosus or patent foramen ovale/atrial 
septal defect, (2) corrective surgical or catheter proce-
dure completed before enrollment, and (3) active va-
soactive infusions or other cardiac medications other 
than prostaglandin E1.

Preductal (right hand) and postductal (any foot) 
pulse oximetry measurements were simultaneously re-
corded in all infants for 5 minutes up to 3 times (0–24, 
24–48, and >48 hours after birth). Our pulse oximetry 
recording process and system has been previously 
described.10 Briefly, we used 2 Nonin WristOx2 3150 
oximeters (Nonin Medical Inc, Plymouth, MN) that then 
connected via Bluetooth to a Pi-top, a laptop computer 
that uses Raspberry Pi microcomputers (Linux based) 
to record pulse oximetry data labeled with study iden-
tification numbers. The Pi-top displayed both pulse ox-
imetry waveforms along with Spo2 and pulse amplitude 
index (PAI), which is analogous to the perfusion index, 
values in real time.

Spo2-Alone CCHD Screening 
Classification
To classify the pass/fail status based on the Spo2 data 
alone, research personnel documented single pre- 
and postductal Spo2 values once the waveforms were 
artifact free for at least 10 seconds during each data 
recording, which is similar to current practice for the 
recommended Spo2-alone screening algorithm. We 
applied the most recent Spo2 recommended algo-
rithm11 to these values to assign a pass/fail. The Spo2 
measurement was considered failing if (1) either the 
pre- or postductal Spo2 were <90% or (2) either the 
pre- or postductal Spo2 were <95% or >3% absolute 
difference between the pre- and postductal Spo2 on 2 
measurements. While some of our patients had Spo2 
measurements collected before 24 hours of age, the 
recommended algorithm recommends performing the 
Spo2 measurement after 24 hours of age or sooner 
only if being discharged.11 Thus, we applied this rec-
ommended Spo2 algorithm to patients using the first 
pre- and postductal Spo2 values after 24 hours as the 
start of the algorithm. When using this algorithm, if the 
last available research Spo2 values resulted with a “re-
test” recommendation (single Spo2 measurement with 
either the pre or postductal Spo2 were <95% or >3% 
absolute difference between the pre- and postductal 

Spo2), we conservatively assigned a fail to bias toward 
the null hypothesis for CCHD detection.

To classify patients as either having CHD or not, 
we defined CCHD as a defect requiring corrective or 
palliative surgical or catheter-based intervention within 
30 days of age or requiring prostaglandin therapy until 
corrective or palliative intervention was completed if 
intervention was after 30 days of age. Patients under-
going pulmonary artery banding alone to limit excess 
pulmonary blood flow were not considered as CCHD 
and were instead labeled noncritical CHD. For the pur-
poses of evaluating sensitivity for critical CoA, only pa-
tients with isolated CoA or with less significant defects 
(ie, ventricular septal defect) were classified as CoA. 
Thus, patients with hypoplastic left heart syndrome, 
single ventricle or double-outlet right ventricle with 
arch obstruction, or another CCHD defect with arch 
obstruction were not classified as isolated CoA, but 
instead were classified as their other CCHD defect. 
We confirmed that patients remained without CHD by 
electronic medical record review to at least 6 weeks of 
age. If follow-up information was not available within 
the electronic medical record, then direct query of par-
ents/guardians via phone/email/text was completed. A 
patient was considered lost to follow-up if 5 contacts 
were attempted without success.

ML Methods
There are 2 components to the ML pipeline: an au-
tomated waveform artifact detection (AWAD) compo-
nent followed by a CCHD detection stage (Figure 1). 
Both the AWAD and CCHD ML models use features 
extracted from pulse segments extracted from the 
photoplethysmography signal collected. We defined 
a pulse segment as the slice between 2 onsets, as 
shown in Figure 2. Our motion artifact ML model has 
been previously described in more detail.12 Briefly, this 
model used multiple photoplethysmography record-
ings from 1 hand and 1 foot of 21 newborns (a sub-
set from the cohort presented here) that were labeled 
for artifacts by 3 trained observers. A total of 6 hours 
and 42 minutes of recordings, which included 57 658 
beats, were used to train and test the artifact detec-
tion model. This model used agreed artifact labels 
as ground truth, meaning a photoplethysmography 
pulse would only be considered normal if no annota-
tors signaled it as an artifact. The model was trained 
with 44.04% of the annotated waveforms (2 hours 
and 57 minutes from 11 patients) and tested on the 
remaining 55.96% of annotated waveforms (3 hours 
and 45 minutes from 10 patients). A total of 12 features 
were taken from a 3-pulse segment consisting of each 
pulse being classified and its neighboring pulses (see 
Figure 2). These features include but are not limited 
to systolic phase duration, diastolic phase duration, 
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and dynamic time-warped Euclidean distance that 
describe the pulse shape and how they relate to 
neighboring pulses.12 Random forest was chosen as 
the classifier. The best features were chosen through 
recursive feature elimination in 5-fold cross-validation. 
The AWAD model achieved 81.71% accuracy with 
68.40% specificity and 89.75% sensitivity (compared 
with the annotators’ labeling of artifact). This AWAD 
model was then applied to all pulse oximetry data, 
and only pulses considered nonartifact by AWAD 
were used to train the CCHD detection model, while 
artifact pulses detected by AWAD were discarded (as 
seen in Figure 1).

The features used in CCHD detection were either 
gathered directly from the pulse oximeters or calcu-
lated from the artifact-free photoplethysmography seg-
ments. The Spo2, PAI, and heart rate measurements 
were supplied as numerical values from the oximeters. 
We calculated the following features from artifact-free 
photoplethysmography segments: radiofemoral pulse 
delay, slope, average rate of rise, and average rate of fall 
(examples shown in Figure 3). Features from all pulses 
in each patient’s photoplethysmography recording were 
leveraged to generate mean, maximum, minimum, and 
variance values for each feature. From each recording, 
we extracted a total of 70 features from foot and hand 

Figure 2.  A schematic representation of raw photoplethysmography waveform preprocessing 
step before feature extraction.
The photoplethysmography waveform is first divided into pulses through onset detection (red dots 
on the waveform). We then grouped the pulse wave with its neighbors, forming a 3-pulse segment. 
The extracted features are taken from this 3-pulse segment. The prediction is assigned to the center 
pulse. PPG indicates photoplethysmography. Copyright Heather Siefkes.

Figure 1.  A schematic representation of the entire end-to-end pipeline developed during this study.
The first step is preprocessing and feature extraction of the waveform for the AWAD model. Once all artifact-positive 
pulses are removed, the next step is to perform feature extraction on the clean segments for CCHD prediction. All the 
steps above were completed for this study but not in an automated end-to-end pipeline (as this process was developed 
during this study). This end-to-end pipeline is now fully automated from start to finish and can be tested in situ in future 
studies. AWAD indicates automated waveform artifact detection; CCHD, critical congenital heart disease; and ML, 
machine learning. Copyright Heather Siefkes.
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combined. We used a feature selection step to prevent 
performance drop caused by including too many fea-
tures, that is, the curse of dimensionality.13 We used a 
3-stage feature selection mechanism followed by recur-
sive feature elimination (RFE), similar to existing works in 
the literature.14 First, redundant features were observed 
through a Pearson correlation test (correlation coefficient 
>0.8, which denotes strong correlation).15 We then used 
χ2 univariate analysis and removed the correlated fea-
tures with the worst score. We then calculated the fea-
ture importance through the Gini index (random forest 
wrapped) to find the most relevant features. To select the 

most relevant features and save computational time, we 
took the union of the 35% best-ranked features from χ2 
and Gini index analysis.
After removing unimportant and redundant features, we 
tuned our model through k-fold cross-validation (k=5). 
We applied stratified data splitting for our 5 folds to en-
sure a similar ratio of CCHD to no CHD in the validation 
and training sets of each fold. In this validation step, 
we tuned the selected features and selected the best-
performing ML model. As seen in Table 1, we evaluated 
logistic regression, random forest, gradient boosting, 
decision trees, and XGBoost models. We used RFE for 

Figure 3.  An example of the measurements extracted from artifact-free segments and their visual 
representations.
The measurement depicted in (A) is radiofemoral pulse-delay, which is calculated from overlapping artifact-free 
segments from the foot and hand. Average rate of rise and fall as shown in (B) is measured from artifact-free 
photoplethysmography segments. PAI indicates pulse amplitude index; and Spo2, oxygen saturation. Partially 
reproduced from Doshi et al10 under the terms and conditions of the Creative Commons Attribution-Non Commercial 
No Derivatives license (http:// creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/).

Table 1.  Different Machine Learning Model Performance for k-Fold Cross-Validation (k=5) on CCHD Detection for 0–24 and 
24–48 Hours With Pulse Delay With and Without Feature Selection Steps

Model used

No feature selection Feature selection

Specificity for 
no-​CHD*±SD

Sensitivity to 
CCHD*±SD

Specificity for 
no-CHD*±SD

Sensitivity to 
CCHD*±SD

Logistic regression 100±0.00 73.33±24.95 100±0.00 93.33±13.33

Random forest 100±0.00 86.67±16.33 100±0.00 79.99±16.33

Gradient boosting 98.46±3.08 60.00±38.87 98.46±3.08 80.00±26.67

Decision trees 98.46±3.08 73.33±32.66 98.46±3.08 80.00±26.67

XGBoost 98.46±3.08 66.67±42.16 98.46±3.08 66.67±42.16

CHD indicates congenital heart disease; and CCHD, critical congenital heart disease.
*The average specificity or sensitivity across the 5 folds for each model is shown with the SDs.

http://creativecommons.org/licenses/by-nc-nd/4.0
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feature selection. RFE is a feature selection commonly 
used in ML; it identifies the features that maximize a 
selected performance metric on a prediction task. We 
chose sensitivity as the performance metric for RFE 
evaluation.16 RFE uses the ML model’s feature impor-
tance ranking to identify the least important features. 
The least important feature was then eliminated, and 
sensitivity was evaluated. The process of removing the 
least important feature was repeated until sensitivity 
was no longer improved. The proposed feature se-
lection methodology improves the performance of the 
majority of the classification algorithms. Furthermore, 
we observe that our best performing setting is logistic 
regression with feature selection steps. We found many 
features commonly selected through RFE; see Table 2 
for a full list of features selected for each model.

We extracted features from newborns in 0 to 
24 hours of age, 24 to 48 hours of age, and >48 hours 
of age. We trained ML models to evaluate newborns 
using 0 to 24 hours features and models to evaluate 
an ensemble of 0 to 24 hours and 24 to 48 hours fea-
tures. The set of features selected by each model was 

different, as they underwent RFE separately. Table 2 
summarizes the selected and included features for the 
trained models (0–24 hours, and 0–24+24–48 hours). 
Once feature selection was completed, we tuned the 
ML models’ prediction confidence threshold to max-
imize specificity for no CHD over the 5 folds tested. 
Our ML code is publicly available at the following link: 
https://​github.​com/​ucdru​binet/​​CCHD-​ML-​public.

ML Performance Evaluation
Due to the cohort size limitations, our study was not 
able to build a separate holdout test set. We then re-
ported the performance of our model on the 5 valida-
tion folds. The 5-fold cross-validation algorithm selects 
80% of the set for training and the other 20% for valida-
tion, with no overlapping data between the training and 
validation sets in each fold. Every data point was in the 
validation set in 1-fold.

Using the same cohort, we also randomly selected 
55 subjects for training and 24 subjects for testing 
(70/30 split) in 100 different configurations. We applied 

Table 2.  CCHD Detection Features Selected and Included by Recursive Feature Elimination

Measurement Region Extracted features 0- to 24-h model*
0- to 24-+24- to 48-h 
model*

Spo2 Hand Mean ✓ ✓

Median ✓ ✓

Maximum ✓ ✓

Minimum ✓

Variance ✓ ✓

Foot Mean ✓ ✓

Median ✓ ✓

Maximum ✓ ✓

Variance

Perfusion amplitude index Hand Mean ✓ ✓

Median ✓ ✓

Minimum ✓ ✓

Variance ✓

Foot Mean ✓

Median ✓

Maximum ✓

Heart rate Hand Mean ✓

Median ✓

Maximum ✓

Foot Median ✓

Maximum ✓

Minimum ✓ ✓

Variance ✓

Radiofemoral delay Hand and foot Minimum ✓ ✓

Variance ✓ ✓

CCHD indicates critical congenital heart disease; and Spo2, oxygen saturation.
*The model(s) for which the within-the-row feature was selected by recursive feature elimination is listed. The “0- to 24-h” is in reference to 1 time point within 

0 to 24 h of age. The “0- to 24-+24- to 48-h” is in reference to 2 time points, one collected within 0 to 24 h and the other within 24 to 48 h of age.

https://github.com/ucdrubinet/CCHD-ML-public
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stratified splitting, to ensure a similar ratio of CCHD to 
no CHD in training and testing sets. We applied the 
same features and prediction confidence threshold es-
tablished in cross-validation and did not perform any 
tuning. We reported the average performance over the 
100 different random configurations.

Comparing ML With Spo2 Alone
We then compared the pass/fail results of the Spo2-
alone algorithms to the ML results using McNemar 
tests to compare sensitivity and specificity. We com-
pared sensitivity for CCHD and for CoA. We calcu-
lated area under the receiver operating characteristic 
curve (AUROC) for binary outcomes and compared 
with Spo2 using the roccomp command in STATA 
(StataCorp, College Station, TX). When comparing 
sensitivity, specificity, and AUROC for CCHD, we used 
all patients with CCHD and those without CHD.

Sample Size

Our targeted sample size was based on CoA detection 
with a minimum of 200 healthy newborns and 20 with 
critical CoA. We confirmed that this sample size would 
ensure sufficient power (81%) when the ML model pro-
vides clinically significant improvement in detection for 
CoA. Spo2-alone screening has a near-perfect specificity 

but sensitivity of ≈36% for critical CoA,2 a value that corre-
sponds to AUROC of 68% (AUROC=0.5×[Sensitivity+Sp
ecificity]).17 We considered a clinically significant improve-
ment in discriminative capacity to obtain an AUROC of 
85%, which corresponds to improving sensitivity to 70% 
for a cutoff that achieves 99.9% specificity.

RESULTS
A total of 553 patients were enrolled, of whom 20 were 
withdrawn (ineligible, 2; consenting error, 1; unable 
to obtain measurements after consent, 1; consenting 
ability of parents changed after initial consent and una-
ble to determine follow-up contact, 3; unable to obtain 
written consent after the first measurement for CHD 
patients, 12; parent request, 1) and 10 (1.8%) were lost 
to follow-up, resulting in 523 included in the analysis 
(no CHD, 317; CHD, 74; CCHD, 132). There were 21 
infants with critical CoA included in the analysis. Site 
enrollment varied, with site A enrolling the most pa-
tients (N=327), followed by sites B (N=78), C (N=56), D 
(N=26), E (N=26), and F (N=10). Demographic data for 
enrolled patients are shown in Table 3.

For those with CHD, 95.1% (196/206) were diag-
nosed between birth (including prenatal) and 48 hours 
of age (Figure  4). Two-thirds of patients with CCHD 
(88/132) were suspected prenatally. Most infants 

Table 3.  Demographic Details for Enrolled Patients With and Without CHD

No CHD, n=317 All CHD, n=206 CCHD, n=132 Critical CoA, n=21

Site, n (%)

A 247 (77.9) 80 (38.8) 40 (30.3) 6 (28.6)

B 33 (10.4) 45 (21.8) 25 (18.9) 6 (28.6)

C 20 (6.3) 36 (17.5) 26 (19.7) 0

D 0 26 (12.6) 24 (18.2) 8 (38.1)

E 15 (4.7) 11 (5.3) 9 (6.8) 0

F 2 (0.6) 8 (3.9) 8 (6.1) 1 (4.8)

Female, n (%) 144 (45.6) 94 (45.6) 58 (43.9) 10 (47.6)

Race, n (%)

White 148 (46.8) 96 (46.6) 63 (47.7) 15 (71.4)

Asian 42 (13.3) 20 (9.7) 12 (9.1) 3 (14.3)

Black 41 (13) 21 (10.2) 13 (9.8) 0

Native Hawaiian/Other Pacific Islander 6 (1.9) 2 (1) 2 (1.5) 0

American Indian/Alaska Native 1 (0.3) 1 (0.5) 0 0

>1 9 (2.8) 20 (9.7) 11 (8.3) 1 (4.8)

Unknown 69 (21.8) 46 (22.3) 31 (23.5) 2 (9.5)

Ethnicity, n (%)

Hispanic 79 (25) 67 (32.5) 46 (34.8) 5 (23.8)

Gestational age, wk, mean±SD 39±1.5 38±1.9 38.2±1.8 38.5±1.2

Birth weight, g, mean±SD 3335±695 3034±647 3100±790 3131±566

Cesarean section delivery, n (%) 134 (42.4) 91 (44.9) 53 (41.1) 9 (42.9)

Family history of CHD, n (%) 16 (5.0) 18 (8.8) 16 (12.1) 1 (4.8)

Frequencies shown are within column frequencies. CCHD indicates critical congenital heart disease; CHD, congenital heart disease; and CoA, coarctation of the aorta.
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(54.5%) with postnatally diagnosed CCHD were diag-
nosed before 24 hours of age due to clinical symptoms. 
Six percent of all CCHDs were diagnosed due to a failed 
Spo2 screen, which accounted for 18% of newborns di-
agnosed postnatally. One patient was diagnosed due 
to abnormal Spo2 values during the first research mea-
surement collection, which was done before 24 hours of 
age and thus before the routine Spo2 screening. Of the 

21 newborns with critical CoA, 4 (19%) were detected 
after 48 hours of age (3 diagnosed after discharge), 
which made up half of the 8 newborns with CCHD who 
were diagnosed after 48 hours (and half of the 6 CCHDs 
diagnosed after discharge). Among the newborns with 
CoA diagnosed postnatally, 44% were detected after 
48 hours. For all CCHDs, when excluding those pre-
natally suspected or who developed symptoms within 
24 hours, less than half (42.8%, 9/21) would have been 
detected by the routine Spo2 alone.

Spo2 Screening Results
Table  4 shows the Spo2 screen results for our cohort 
when starting with the first available Spo2 after 24 hours 
of age. It also shows the results for the “conservative” 
assignment, which assigned a fail to any “repeats” that 
did not have a repeated Spo2 value available. When using 
the recommended Spo2 screening approach, 26.23% 
infants with CCHD would not have been detected. 
Fifty-three percent of the patients with CoA would not 
have been identified by the Spo2 screening event when 
conservatively assigning a fail to any screen with a final 
repeat. When excluding the final repeats, all infants 
without CHD passed the recommended Spo2 screen.

A total of 949 pulse oximetry recordings were col-
lected among the included 523 patients. Due to a soft-
ware change midstudy, only 335 patients (64%) had 

Figure 4.  Flowchart of neonates with congenital heart disease and timing of diagnosis.
CCHD indicates critical congenital heart disease; CHD, congenital heart disease; CoA, coarctation of the aorta; 
and Spo2, oxygen saturation. Copyright Heather Siefkes.

Table 4.  Results for Spo2 Screen Algorithm

No CHD, 
n=257 (%)

All CHD, 
n=191* (%)

CCHD, 
n=122* (%)

Critical 
CoA, 
n=17* (%)

Spo2 screen results starting with first Spo2 after 24 h of age

Pass 244 (94.94) 79 (41.36) 32 (26.23) 9 (52.94)

Fail 0 75 (39.27) 65 (53.28) 3 (17.65)

Repeat 13 (5.06) 37 (19.37) 25 (20.49) 5 (29.41)

Conservative Spo2 screen results starting with first Spo2 after 24 h of age 
(assigning last “repeats” as fails)

Fail 13 (5.06) 112 (58.64) 90 (73.77) 8 (47.06)

Description of the Spo2 algorithm assignments: We used single pre- and 
postductal Spo2 values documented as point-of-care values during the 
collected data points to assign pass/fail Spo2-based screening results. We 
used the first value after 24 h of age as the start of the algorithm. If the last 
value available was a “repeat,” we conservatively assigned the infant a “fail.” 
CCHD indicates critical congenital heart disease; CHD, congenital heart 
disease; CoA, coarctation of the aorta; and Spo2, oxygen saturation.

*The total number for groups do not equal all patients enrolled, as not all 
patients had research Spo2 values collected after 24 h of age.
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recordings with millisecond time stamps that allowed for 
calculation of radiofemoral pulse delay. Not all patients 
had pulse oximetry recordings collected for all time pe-
riods (0–24 hours, 24–48 hours, and >48 hours). The pe-
riod for the measurements varied between patients with 
and without CHD (Table 5). More patients without CHD 
had measurements collected between 0 and 24 hours of 
age (71.3% of no-CHD patients) and 24 to 48 hours of 
age (76.7%). More patients with CHD (82.5%), including 
CCHD (81.8%) and critical CoA (71.4%) had measure-
ments collected after 48 hours of age.

ML CCHD Detection Results (5-Fold Analysis)

Due to lack of pulse-delay data on some of our 
cohort and the need for simultaneous artifact-free 
photoplethysmography hand and foot waveforms 
to calculate the radiofemoral pulse delay, we sought 
to evaluate the potential benefit from including it as 
a feature. We focused on earlier detection within 
48 hours of age, using 1 time point versus 2 time points, 
thus ultimately testing 4 models (Table 6). The analysis 
was restricted to include only those patients (N=79) 
who had data allowing them to be in all 4 models. 
The 2-time-point model performed better than the 
1-time-point model both with and without pulse delay 
included. Additionally, including pulse delay improved 
sensitivity for CCHD for both the 1- and 2-time-point 
models. All 4 models had 100% specificity. The best-
performing model included 2 time points and pulse 
delay and improved CCHD detection to 92.86% 
from the reference Spo2-alone 71.43%, although this 
difference was not statistically significant. Detection 
of CoA also improved from 0% to 66.67% but was 
not statistically significant on this small sample (CoA, 
3). The AUROCs for both CCHD and CoA detection 
versus infants without CHD significantly improved 
compared with Spo2-alone using the 2-time-point with 
pulse-delay model (Table 3).

There were 10 patients with prenatally suspected 
CoA who were ultimately determined to be normal. All 
4 of our ML models correctly classified 100% (8 in-
cluded in the ML cohort) as infants without CHD.

70/30 Split Performance

As seen in Table 7, the performance of the ML models 
on the 70/30 test splits followed a similar trend as the 
5-folds results. We again observed an increase in sen-
sitivity and AUROC when adding pulse delay and an 
increase in sensitivity and AUROC when we added a 
second time point (24–48 hours). In every test iteration, 
the 2-time-point model with pulse delay maintained 
100% specificity. Additionally, the 2-time-point model 
with pulse delay had 100% accuracy in 48 of the 100 
iterations.

DISCUSSION
CoA remains the most common defect detected after 
48 hours of age and nearly half of the patients post-
natally diagnosed with CoA were missed during the 
first 48 hours after birth. With ML techniques, our au-
tomated algorithm filtered out artifact, combined pre- 
and postductal pulse oximetry measurements, and 
used all photoplethysmography features for CCHD 
screening and improved CCHD and CoA AUROCs 
significantly compared with Spo2 alone. Our best-
performing algorithm combined measurements from 2 
time points (0–24 hours and 24–48 hours) and included 
radiofemoral pulse delay as a feature.

Early diagnosis of CCHD is crucial to improve out-
comes, as late detection is associated with higher mor-
tality rates, with up to 27% with late diagnosis dying.20 
A common definition of timely versus late detection is 
whether or not the infant is diagnosed before leaving 
the hospital after birth. Before universal Spo2 screen-
ing, up to 25% of infants with CCHD left the hospital 
undiagnosed, and another 5% were diagnosed only 
at autopsy.21 Spo2 screening has been shown to have 
higher sensitivity than physical examination alone for 
CCHD detection1 and thus has been widely adopted 
throughout the United States and is becoming more 
commonly used worldwide.11 However, the impact 
of Spo2 screening on death and early detection ap-
pears to be lower than prior predictions or estimates. 
Abouk et al previously estimated that mandated Spo2 

Table 5.  Time Period of Pulse Oximetry Measurements for Patients With and Without CHD

No CHD, n=317 (%) All CHD, n=206 (%) CCHD, n=132 (%) Critical CoA, n=21 (%)

Pulse oximetry measurement time period collected*

0–24 h of age 225 (71.3) 102 (49.5) 60 (45.5) 8 (36.1)

24–48 h of age 244 (76.7) 115 (55.8) 71 (53.8) 6 (28.6)

>48 h of age 93 (29.3) 170 (82.5) 108 (81.8) 15 (71.4)

2 time periods collected (0–24 
and 24–48 h of age)

160 (50.5) 81 (39.3) 46 (34.8) 4 (19)

All 3 time periods collected 33 (10.4) 64 (31.1) 37 (28) 3 (14.3)

CCHD indicates critical congenital heart disease; CHD, congenital heart disease; and CoA, coarctation of the aorta.
*Column frequencies for pulse oximetry measurements obtained during the 3 time periods totals >100% because infants could have measurements during >1.
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screening was associated with a 33.4% reduction in 
infant deaths from CCHD.22 Presumably, this reduc-
tion was secondary to early detection; however, due 
to use of administrative registry data, Abouk et  al 
were not able to determine timing of CCHD detection. 
Subsequent studies using clinical registries, including 
timing and mechanisms leading to CCHD detection, 
have shown that Spo2 screening has not led to ear-
lier detection for infants who are postnatally diagnosed 
with CCHD or been associated with a reduction in 
death.23,24 Instead, it has been noted that there have 
been increases in prenatal detection during this time 
and thus brought the question of the utility of Spo2 

screening in areas with high prenatal detection.23 While 
we did not assess CCHD detection rates over time, we 
observed that among postnatally suspected cases, 8 
of 44 (18%) of CCHD, including 4 of 9 (44%) CoA, were 
detected >48 hours of age.

Similar to published reports, we have shown CoA 
to be the most common defect diagnosed late, often 
after discharge, despite Spo2 screening.23–25 Ailes et al 
previously estimated that the majority of infants with 
a late detection of CCHD would be those with CoA: 
an estimated 560 missed annually in the United States 
despite universal Spo2 screening.2 This is in part due 
to the low sensitivity of Spo2-based screening for CoA, 

Table 6.  Spo2 Results Compared With Machine Learning Results for CCHD Detection

Spo2 alone* No-
CHD=65, CCHD=14 
(including CoA=3)

Pulse oximetry machine learning algorithms† No-CHD=65, CCHD=14 (including CoA=3)

No pulse delay With pulse delay

1-time 0- to 24-h
2-time 0- to 24-+24- 
to 48-h 1-time 0- to 24-h

2-time 0- to 24-+24- 
to 48-h

Sensitivity for CCHD 
(including CoA), %

71.43 reference 71.43; P>0.9 (95% CI, 
−0.3 to 0.3)

85.71; P=0.5 (95% CI, 
−0.15 to 0.43)

78.57; P>0.99 (95% 
CI, −0.19 to 0.34)

92.86; P=0.25 (95% 
CI, −0.11 to 0.51)

Specificity for no-
CHD, %

95.38 reference 100; P=0.25 (95% CI, 
−0.02 to 0.13)

100; P=0.25 (95% CI, 
−0.02 to 0.13)

100; P=0.25 (95% CI, 
−0.02 to 0.13)

100; P=0.25 (95% CI, 
−0.02 to 0.13)

AUROC (CCHD vs 
no-CHD)

0.83 (95% CI, 0.71 to 
0.96) reference

0.86 (0.73 to 0.98); 
P=0.67

0.93 (0.83 to 1); 
P=0.06

0.89 (0.78 to 1); 
P=0.36

0.96 (0.89 to 1); 
P=0.03

Sensitivity for CoA (vs 
no-CHD), %

0 reference 0 33.3; P>0.99 (95% CI, 
−0.63 to 0.91)

33.3; P>0.99 (95% CI, 
−0.63 to 0.91)

66.67; P=0.5 (95% CI, 
−0.54 to 0.99)

AUROC (CoA vs 
no-CHD)

0.48 (95% CI, 0.45 to 
0.5); reference

0.5 (0.47 to 0.53)‡; 
P=0.08

0.67 (0.34 to 1); 
P=0.26

0.67 (0.34 to 1); 
P=0.26

0.83 (0.51 to 1); 
P=0.03

P values in each cell concern within-row between-column comparisons for the row parameter, comparing the parameter estimate in the given cell with the 
parameter value in the leftmost column for that row (the reference cell). For these paired comparisons, we used McNemar’s test for sensitivity and specificity, and 
the STATA roccomp command for AUROCs (which implements the nonparametric method proposed by De Long et al).18 An exception is noted below. The CIs 
reported for paired comparisons of sensitivity/specificity parameters were obtained using the McNemarExactDP command from the exact2x2 package in RStudio 
(R Foundation for Statistical Computing, Vienna, Austria), which implements the method proposed by Fay and Lumbard.19 AUROC indicates area under the receiver 
operating characteristic curve; CCHD, critical congenital heart disease; CoA, coarctation of the aorta; and Spo2, oxygen saturation.

*Conservatively assigns a fail to any patients whose last measurement available would have prompted a “repeat.” Uses the first measurement after 24 h of 
age as the first measurement to follow the algorithm.

†Four machine learning algorithms are displayed. The differences are presence/absence of radiofemoral pulse delay, and 1 time point (between 0 and 24 h 
of age) vs 2 time points (between 0–24 h and 24–48 h age).

‡For this cell, we could not compute the AUROC or compare it with the reference AUROC using the STATA roccomp command because the machine 
learning algorithm within this column did not vary (it labeled all patients as “healthy”). Therefore, to report an AUROC and a paired AUROC comparison, we 
took advantage of the equation for a binary test result where its AUROC=0.5×(Sensitivity+Specificity)17 and created a derived variable whose mean would thus 
be equal to the AUROC. For each of the 4 possible combinations of test results and disease status, the values of the derived variable were as follows: If test+ 
and disease+, the value was 0.5/proportion disease+. If test– and disease–, the value was 0.5/proportion disease–. For the 2 other combinations, the value 
was 0. We were able to compute the mean and the 95% CI for this derived variable to report the AUROC for the test. In addition, we were able to create the 
corresponding derived variable for the reference test and then compute the mean and 95% CI for the within-individual differences for these 2 derived variables 
to get valid estimates for the change in the AUROC.

Table 7.  Machine Learning Model Performance on 100 Different 70/30 Test Splits

Pulse oximetry machine learning algorithms

No pulse delay With pulse delay

1 time, 0- to 24-h 2 times, 0- to 24-+24- to 48-h 1 time, 0- to 24-h
2 times, 0- to 24-
+24- to 48-h

Sensitivity for CCHD, % 74.5±19.5 79.3±19.2 75.8±19.6 82.0±19.8

Specificity for no-CHD, % 99.6±1.3 99.5±1.7 99.85±0.9 100±0

AUROC (CCHD vs no-CHD) 0.87±0.01 0.89±0.09 0.88±0.01 0.91±0.09

AUROC indicates area under the receiver operating characteristic curve; and CCHD, critical congenital heart disease.
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≈36%.26 Unfortunately, CoA is also difficult to detect 
by prenatal ultrasound.27,28 Thus, even when Liberman 
et al found prenatal detection of CCHD overall to be 
increasing, CoA remained the most common CCHD 
with delayed detection. Up to 31% of CoA cases are 
detected late, accounting for 64% of the infants with a 
delayed diagnosis.23 Thus, our study and prior studies 
demonstrate a continued need to improve postnatal 
CoA detection. We anticipate an increase in the need 
for echocardiograms for CCHD screen failure with the 
ML-based dual pulse oximetry screen compared with 
traditional Spo2-based CCHD screen.

Our ML pulse oximetry algorithm that uses Spo2 and 
other photoplethysmography data such as PAI and pulse 
delay during the first 48 hours after birth demonstrated 
the potential for increased CoA detection. We did not 
achieve statistical significance in improved sensitivity for 
CoA, as our analysis sample yielded only 3 CoA cases. 
The sensitivity for these 3 cases improved from 0 of 3 
(0%) to 2 of 3 (67%). Although we enrolled more than 
our intended 20 patients with CoA, the need to develop 
and test the ML algorithm on consistent features, includ-
ing timing of the measurement, significantly lowered our 
available sample size. For example, there was variation 
in time points collected between our healthy controls 
and patients with CCHD. Due to earlier discharge of 
our healthy controls, the majority of their measurements 
were within the first 48 hours of age. Patients with CCHD 
enrolled in our study were more likely to have measure-
ments after 48 hours of age, commonly due to timing 
when the research team would know of these patients 
or due to patients transferring from other hospitals. A 
similar pattern has been seen in prior studies that have 
attempted to evaluate nonoxygenation pulse oximetry 
features as screening tools for CoA, with most measure-
ments collected after 48 hours of age.7,8

The use of ML pulse oximetry for CCHD screening is 
appealing as it uses the nonoxygenation data that are 
readily available and currently unused during the routine 
Spo2-alone screen. Instead of a spot sequential check 
of preductal followed by postductal oximetry, our ML 
algorithm eliminates artifact, analyses Spo2 and other 
photoplethysmography data over a period of time, and 
improves detection of CCHD, especially CoA. Our best-
performing ML algorithm, however, would require 2 time 
points, which is different than the current recommended 
screen. The current recommended screen includes the 
potential for a second measurement but only depen-
dent on the results of the first.11 In fact, most patients do 
not require the potential second screen, as the majority 
either pass or fail the test with a single measurement.29 
In the ML-based algorithm, the second measurement 
would occur before 24 hours of age, theoretically en-
hancing the potential for early diagnosis.

The addition of a required measurement before 
24 hours of age in our algorithm could result in earlier 

detection, and interestingly, 1 patient in our study who 
was enrolled as a control was diagnosed with CCHD 
before 24 hours because the Spo2 values were noted 
to be low during our study measurement. The timing of 
Spo2 screening has been shown to be more sensitive if 
done within 24 hours after birth but with a higher false-
positive rate.30 While the false-positive rate is higher, 
it is important to note that most of those patients are 
found to have a condition other than CCHD, such as 
noncritical CHD, pneumonia, or sepsis, that required 
treatment.11,31,32 All of our algorithms, including the sin-
gle time point within 24 hours of age, had 100% spec-
ificity suggesting that an early ML-based screen may 
not be associated with a high false-positive rate. We 
will need to validate this ML-based algorithm in larger 
studies.

Another potential benefit of our algorithm warrant-
ing further evaluation is the ability to correctly classify 
patients with prenatally suspected CoA that are post-
natally determined to be without CCHD. Prenatal ultra-
sound has a high false-positive rate for isolated CoA, 
as high as 94%.33 Patients with prenatally suspected 
critical CoA are often admitted to the neonatal inten-
sive care unit for monitoring while the ductus arteriosus 
closes, leading to delayed maternal bonding, delayed 
feeding, and longer length of stay (25% staying ≥9 days) 
compared with healthy controls and a growing interest 
to adjust protocols for monitoring of newborns with 
prenatally suspected CoA.33,34 Of the 8 infants with a 
prenatally suspected CoA who were then determined 
to be healthy and with data to be included in our ML 
analysis algorithm, our ML algorithms correctly identi-
fied all as healthy infants using measurements before 
48 hours of age. However, before these algorithms are 
used to help rule out CoA following prenatal suspicion, 
the sensitivity for CoA needs to be further validated in 
larger studies.

Finally, the features included in ML pulse oximetry 
need to be further evaluated. Our models included 
Spo2, the current standard for CCHD screening. 
However, our model included both maximum, mini-
mum, mean, median, and variance of Spo2, which may 
provide a better clinical representation of the physiol-
ogy than just the maximum. Heart rate was also se-
lected, including heart rate variability, which has been 
found to be abnormal in infants with CCHD.35 PAI of 
both hand and foot were selected. PAI is synonymous 
with perfusion index, which has been previously noted 
to be abnormal in infants with CoA and possibly other 
CCHD.4–7 We noted improved detection with the addi-
tion of pulse delay, which has been previously found 
to be abnormal in patients with CoA.8 Our model did 
not select photoplethysmography slopes, which have 
been previously shown to be abnormal in CoA.9 We 
suspect this is due to elimination of correlated features 
and the correlation between slope and PAI.
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Limitations
There are several limitations to our study. While we 
were able to enroll 132 patients with CCHD and 21 
with isolated CoA, ultimately the sample included in 
the ML development and testing was small and un-
derpowered. However, we did note improved AUROC 
in both CCHD and CoA detection. In ML development, 
this small sample size may have overfit our model and 
may overestimate CCHD sensitivity. Additionally, we 
were not able to test our algorithm on a true holdout 
test. Instead, we performed 70/30 splits on 100 itera-
tions to test the generalizability of our algorithm, which 
performed well with 100% accuracy in nearly half of 
the iterations in our 2-time-point with pulse-delay al-
gorithm. The model, however, will need to be tested 
in a true holdout sample, which we are currently con-
ducting. We did not collect data on skin pigmentation, 
and our model was developed on a population that 
was predominantly White or unknown race. This is an 
important limitation to note due to concerns regarding 
pulse oximetry Spo2 inaccuracies in darker-pigmented 
patients.36–38 It is important that the effect of skin pig-
mentation is evaluated further and that any algorithm 
or device created is developed using data from a di-
verse cohort. Finally, the majority of our patients with 
CCHD were receiving prostaglandin therapy to main-
tain ductus arteriosus patency. While it is crucial that 
CCHD be detected when the ductus remains patent, it 
is important to note that a lower perfusion index or PAI 
may be a marker of PDA and increases after PDA treat-
ment.39 However, the perfusion index values noted in 
the PDA group by Sangsari et al39 were still higher than 
most suggested thresholds for CCHD detection.4–7,40 
Nonetheless, this will need to be evaluated further as 
well as how the other features included in our ML algo-
rithm correlate with PDA.

CONCLUSIONS
In conclusion, our ML algorithm combining 2 time 
points within 48 hours of age, using features of oxy-
genation, radiofemoral pulse delay, and perfusion in-
creased AUROCs for CCHD and CoA. The model 
needs to be tested in larger cohorts and a true holdout 
cohort to further validate our results. Feasibility and 
implementation of our approach will be evaluated in 
future studies as well.
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