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Impact of rare non-coding variants on
human diseases through alternative
polyadenylation outliers

Xudong Zou 1,8, Zhaozhao Zhao2,8, Yu Chen2,8, Kewei Xiong1, Zeyang Wang 1,
Shuxin Chen1, Hui Chen1, Gong-Hong Wei 3, Shuhua Xu2,4, Wei Li 5 ,
Ting Ni 2,6,7 & Lei Li 1

Although rare non-coding variants (RVs) play crucial roles in complex traits
and diseases, understanding their mechanisms and identifying disease-
associated RVs continue to be major challenges. Here we constructed a com-
prehensive atlas of alternative polyadenylation (APA) outliers (aOutliers),
including 1334 3′ UTR and 200 intronic aOutliers, from 15,201 samples across
49 human tissues. These aOutliers exhibit unique characteristics from tran-
scription or splicing outliers, with a pronounced RV enrichment. Mechan-
istically, aOutlier-RVs alter poly(A) signals and splicing sites, and perturbation
indeed triggers APA events. Furthermore, we developed a Bayesian-based APA
RV prediction model, which successfully pinpointed a specific set of 1799 RVs
impacting 278 genes with significantly large disease effect sizes. Notably, we
observed a convergence effect between rare and common cancer variants,
exemplified by regulation in the DDX18 gene. Together, this study introduced
an APA-enhanced framework for genome annotation, underscoring APA’s role
in uncovering functional RVs linked to complex traits and diseases.

The human genome harbors numerous rare genetic variants1, each
with aminor allele frequency (MAF) of less than 1%.Many of these rare
variants strongly contribute to human diseases2–5. While exome
sequencing of large population cohorts has identified numerous rare
protein-coding variants associated with both common and rare
diseases6, the vast majority of rare variants (RVs) are located in non-
coding regions. These non-coding RVs do not function through alter-
ing the protein sequences, thereby posing a significant challenge in
interpreting their functions. To address this challenge, analysis of

population-scale transcriptomic data has been used to uncover func-
tional rare non-coding variants affecting gene expression or splicing
outliers7–10. Despite these efforts, a significant portion of disease-
associated RVs remain uncharacterized.

Alternative polyadenylation (APA) of mRNA is a widespread post-
transcriptional regulatory mechanism observed across various spe-
cies. By employing different polyadenylation sites within 3′untrans-
lated regions (3′ UTRs), genes can produce various mRNA isoforms
with either shortened or extended 3′ UTRs. These 3′ UTRs contain
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many regulatory elements that modulate the abundance or localiza-
tion of the mRNA and protein11–15. Moreover, APA can also occur in
intronic regions, leading to truncated mRNA or proteins16,17. Accord-
ingly, disruptions in APA events have been increasingly implicated in
many human diseases17–19. For example, altered APA leading to 3′ UTR
shortening of competing-endogenous RNAs for tumor suppressor
genes can result in the release of microRNAs, inhibiting tumor sup-
pressor genes and potentially leading to tumorigenesis20. Moreover,
recent studies have reported the ubiquitous genetic regulation of APA,
highlighting its importance in the functional interpretation of disease-
associated non-coding variants21–23. A notable example is a single-
nucleotide polymorphism (SNP; rs10954213) within the 3′ UTR of
interferon regulatory factor 5 (IRF5), which can alter the length and
stability of its 3′ UTR, thereby contributing to systemic lupus erythe-
matosus susceptibility24. In our previous study, we built an atlas of
human 3′ UTR APA quantitative trait loci (3′aQTLs) across human tis-
sues, identifying approximately 0.4 million common SNPs associated
with interindividual APA changes, which colocalizedwith 16.1% of trait-
associated genetic variants25. Yet, these studies mainly focused on
assessing the APA regulation of common variants. Recent studies also
highlighted that many functional RVs within 3′ UTR region can impact
the stability and abundance of themRNAs26–28. For example, RVs in the
3′ UTR region of IL18RAP reduce mRNA stability and the binding of
double-stranded RNA-binding proteins, thereby reducing the risk of
developing amyotrophic lateral sclerosis (ALS)27. Although non-coding
RVs have been recently shown to be enriched in individuals with
aberrant gene expression and splicing (expression and splicing out-
liers), to our knowledge, the effect of RVs on aberrant APA in indivi-
duals (APA outliers) has not been explored.

Here, to better understand the impact of RVs on APA, we sys-
tematically analyzed aberrant APA events across 49 human tissues
from the Genotype-Tissue Expression Project (GTEx). We identified
1534 multi-tissue APA outliers (aOutliers) from European individuals.
Intriguingly, 74.2% of these aOutliers are associated with genes not
previously identified in outlier analysis of other molecular phenotypes
(e.g., expression or splicing). These aOutliers exhibit distinct char-
acteristics, such as unique 3′ UTR length and GC-contents, setting
them apart from other types of molecular outliers. Moreover, dele-
terious RVs were significantly enriched in regions adjacent to these
aOutliers. To prioritize functional RVs impacting APA, we developed a
Bayesian hierarchical model and identified a distinct set of RVs with
large effect sizes on human complex traits and disease phenotypes.
Intriguingly, we observed and demonstrated strong convergence
effects between prioritized RVs and common variants in regulating 3′
UTR APA, exemplified by the combinatorial regulation of APA in
DDX18. Lastly, to facilitate broadaccess to aOutliers-associatedRVs,we
have constructed a user-friendly portal at https://bioinfo.szbl.ac.cn/
rareAPA/index.php. Collectively, our findings indicate that APA high-
lights a specific set of RVs with significant impacts on human traits and
diseases, providing a distinct avenue for interpreting rare human non-
coding genetic variants.

Results
The landscape of APA outliers across 49 human tissues
We first conducted a comprehensive identification of 3′ UTR and
intronic APA events in 15,201 GTEx RNA-seq samples from 49 human
tissues of 838 individuals (Fig. 1a)usingourDapars225,29 and IPAFinder18

algorithms, respectively (see Methods) (Supplementary Fig. 1). Con-
sidering thepotential influenceofmanyknownandunknown technical
confounders on APA usage among samples, we regressed out these
confounders, such as age, sex, sequencing platform, and other hidden
confounders inferred by using probabilistic estimation of expression
residuals (PEER) factors (Supplementary Fig. 2). We then calculated
Z-scores for the PEER-adjusted 3′ UTR and intronic APA usage in each
tissue to identify individuals with aberrant APA usage for a specific

gene, which we refer to as APA outliers (aOutliers) with an absolute
Z-score > 3. The individuals and genes were designated as “aOutlier
individuals” and “aOutlier genes”, respectively. Importantly, a single
gene could be associated with multiple outlier individuals, and con-
versely, one individual could be an aOutlier individual for multiple
genes. Our analysis of these aOutliers revealed that, on average, 68.5%
of all transcripts per tissue were present in at least one outlier indivi-
dual (Supplementary Fig. 3a). The number of aOutlier genes strongly
correlated (Spearman’s correlation rho=0.91, P < 2.2 × 10−16) with sam-
ple size across tissues (Supplementary Fig. 3b), suggesting that addi-
tional aOutlier genes might be discovered as more RNA-seq samples
become available. This strong sample size correlation was further
confirmed by down-sampling analyses in representative tissues (Sup-
plementary Fig. 3c). Moreover, we noticed that the incidence of an
aOutlier identified in one tissue being replicated in another was as low
as 14.3% (Supplementary Fig. 4), indicating a significant degree of
tissue-specificity among these single-tissue aOutliers.

We further defined multi-tissue aOutliers based on aberrant APA
usage across five ormore tissues (seeMethods). From this analysis, we
identified a total of 2,147 multi-tissue aOutliers, comprising 1,930 3′
UTR aOutliers and 217 intronic aOutliers based on the genomic loca-
tion of the APA event. Focusing specifically on the 715 European indi-
viduals, in whom we detected 1,534 multi-tissue aOutliers, including
1,334 3′ UTR and 200 intronic aOutliers (Fig. 1b and Supplementary
Figs. 5 and 6). To ensure the accuracy and robustness of multi-tissue
aOutliers, we adopted a cross-validation approach similar to the one
used for eOutliers8 (see Methods) and observed that the replication
rate of multi-tissue aOutliers was consistently high and increased with
the number of tissues included in the discovery set (Supplementary
Fig. 6a).We further validated thesemulti-tissue aOutlier genes using an
independent set of RNA-seq data from lymphoblastoid cell lines
(LCLs)30 (Supplementary Fig. 6b). Therefore, we will mainly focus on
multi-tissue aOutliers in further analyses. In our further investigation
into the distribution of multi-tissue aOutliers across different tissues,
we found that intronic aOutliers exhibited a broader replication pat-
tern than 3′ UTR aOutliers (one-sided Wilcoxon rank–sum test
P = 3.35 × 10−14; Fig. 1c, d). Notably, among these aOutliers, several
significant genes were identified (Fig. 1e–g and Supplementary
Fig. 7a–f), including SUGP1, known for its crucial role inmRNA splicing
regulation in cancer31,32. Seven aOutlier individuals were identified for
this gene (Fig. 1f). In certain outlier individual(s), EIF2A, FLYWCH,
TP53RK, and SUGP1 exhibited increased usage of distal poly(A) sites,
whereas genes such as UNC5A, RAB31, and LSS preferentially use
proximal poly(A) sites. Additionally, genes like COL4A2 with
one aOutlier individual (Fig. 1f, g), ADCY4 with 11 aOutlier individuals,
and HMGCL with one aOutlier individuals (Supplementary Fig. 7g, h)
were found to utilize intronic poly(A) sites in outlier individuals.
Altogether, the single and multi-tissue aOutliers we identified repre-
sent a comprehensive atlas of aberrant APA events across 49 human
tissues.

aOutliers represent a unique gene set with characteristics dis-
tinct from other molecular outliers
To determine the extent of sharing between aOutliers genes and those
identified as expression outlier or splicing outlier genes (i.e., eOutliers
and sOutliers, respectively), we conducted a comparative analysis
using the same datasets. Remarkably, we found that 74.2% of multi-
tissue aOutlier genes were not detected by analysis of multi-tissue
eOutliersor sOutliers (Fig. 2a andSupplementary Fig. 8a). For example,
TRIT1, a human tRNA isopentenyl transferase 1 gene, is anaOutlier-only
gene that preferentially utilizes a distal poly(A) site in outlier indivi-
duals across multiple tissues (median Z-score > 11) (Fig. 2b). This
finding suggests that multi-tissue aOutliers represent a unique set of
aberrant genes not detectable by traditional eOutlier and sOutlier
analyses.
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Further comparisons between the genomic lengths ofmulti-tissue
aOutliers and eOutliers disclosed that aOutlier genes have significantly
longer 3′ UTRs than eOutlier genes (one-sided Wilcoxon rank–sum
test, P = 1.4 × 10−16) (Fig. 2c and Supplementary Fig. 8b). In contrast,
aOutlier genes have only slightly longer 5′ UTRs than eOutliers (one-
sidedWilcoxon rank–sum test, P =0.004; Supplementary Fig. 8c), and
no significant differencewasobserved in coding sequence length (two-
sided Wilcoxon rank–sum test, P =0.19). Furthermore, aOutlier genes
have a lower GC-content (Fig. 2d) in their 3′ UTR regions (one-sided
Wilcoxon rank–sum test, P = 6.8 × 10−6) than eOutlier genes. Gene

ontology enrichment analysis33 on multi-tissue aOutliers further high-
lighted specific biological processes and signaling pathways unique to
these genes (Supplementary Fig. 9). Collectively, these data indicate
that aOutliers comprise a distinct gene set with unique molecular and
functional characteristics, thereby significantly distinguishing them
from other types of molecular outliers.

RVs are significantly enriched among APA outliers
To assess the impact of RVs (MAF < 0.01) on aberrant APA usage, we
computed odds ratios (ORs) for RVs located within varying proximity
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Fig. 1 | Atlas of human alternative polyadenylation (APA) outliers (aOutliers).
a Schematic illustrating the overall design of this study. b Distribution of 3′
untranslated region (3′ UTR; blue) and intronic (red) aOutliers across the human
genome. Genes with the highest (for positive median Z-scores) or lowest (for
negative median Z-scores) Z-score at each chromosome region were labeled.
c Distribution of the number of tissues in which 3′ UTR aOutliers (deep blue) and
intronic aOutliers (red)were detected. dComparison of average tissue counts of 3′
UTR aOutliers (deep blue; n = 603 genes) and intronic aOutliers (red; n = 100
genes). Box plots show the median and first and third quartiles, and whiskers

extend up to 1.5 times the interquartile range. e RNA sequencing (RNA-seq) read
coverage of the SUGP1 gene 3′ UTR in outlier individuals (n = 7) (red) and non-
outlier individuals (gray) in the Lung and Brain hippocampus. f Median Z-score
distribution of the SUGP1 and COL4A2 genes across individuals. Outliers are
highlighted with red dots. g RNA-seq read coverage of the COL4A2 gene at the
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individuals (gray). For the data shown in this figure, significance was calculated
using the single-tailed Wilcoxon rank–sum test.
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of the gene body (window size: 1 kb, 2 kb, or 10 kb) to multi-tissue
aOutlier genes in outlier individuals compared to those in nonoutlier
individuals. Our analysis revealed strong enrichment of nearby RVs in
multi-tissue aOutliers (Supplementary Fig. 10a). Interestingly, we
observed higher ORs for the enrichment of insertion and deletions
(indels) than for single-nucleotide variants (SNVs) (Supplementary
Fig. 10a, b). Furthermore, the degree of enrichment became more

pronounced when we considered RVs located in closer proximity to
the aOutlier genes or employed increased Z-score thresholds (Sup-
plementary Fig. 10b, c).

To gain further functional insights into aOutliers-associated RVs,
we first determined the proportions of these RVs with functional
category using Variant Effect Predictor (VEP)34. A higher proportion of
aOutliers-associated RVs had function annotation than nonoutliers,
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increasing with higher Z-score thresholds (Fig. 2e). The functional
categories of aOutliers-associated RVs were largely distinct from those
associated with eOutliers and sOutliers. For example, aOutliers-
associated RVs are strongly enriched in the 3′ UTR region and
poly(A) site (PAS50bp) (OR= 4.6 and 10.1, respectively; Fig. 2f and
Supplementary Fig. 10d).

To examine whether aOutliers-associated RVs are more likely to
be deleterious and potentially pathogenic, we further employed
Combined Annotation-Dependent Depletion (CADD) scores35 to stra-
tify RVs into three groups: (1) lowly deleterious, CADD score 0–15; (2)
moderately deleterious, CADD score ≥ 15 but <25; and (3) highly
deleterious, CADD score ≥ 25. Highly deleterious RVs showed sig-
nificantly higher enrichment (20-fold increase for singletons and 11-
fold increase for RVs with MAF < 1%; Fig. 2g) in aOutliers compared to
moderately deleterious RVs (10-fold increase for singletons and 6-fold
increase for RVs with MAF < 1%) and lowly deleterious RVs (2-fold
increase for singletons and RVs with MAF < 1%). In total, we identified
179 rareSNVswithCADD scores ≥ 15 near 155 aOutlier genes (two-sided
Fisher’s exact test, P = 5.2 × 10−107; Supplementary Data 1). In two
examples, the rare SNV rs557639120 in SUGP1 (CADD score = 18.4,MAF
in GTEx = 0.0056, and gnomAD = 0.0033) leads to an increase in distal
poly(A) site usage in its 3′ UTR. Similarly, the rare SNV rs759305120 in
COL4A2 (CADD score = 34, MAF in GTEx = 0.0007 and gnomAD =
0.000031) leads to preferential use of its intronic poly(A) site (Sup-
plementary Data 1). We also identified 211 indels near 186 aOutlier
genes (two-sided Fisher’s exact test, P = 1.9 × 10−16; Supplementary
Data 2), including 49 located in 3′ UTR. For example, an indel variant
(C >CAAAT, rs112906978) at the 3′ UTR of ACSF3 introduces a cano-
nical “AAUAAA” motif near a poly(A) site, leading to three aOutliers
(Supplementary Fig. 10e, f). Enrichment of RVs was also observed in
single-tissue aOutliers across nearly all individual tissues (including
SNVs and Indels) (Fig. 2h and Supplementary Fig. 11). Considered col-
lectively, our analyses reveal that a distinct class of RVs is significantly
associated with aOutlier genes.

Rare APA variants frequently alter the 3′UTR PAS, 5′ splice sites,
and RNA binding proteins (RBPs) binding sites
We next investigated the potential regulatory mechanisms of
aOutliers-associated RVs on aberrant APA usage. We first focused on
3′ UTR aOutliers-associated RVs and performed motif enrichment
analysis to determine the prevalence of RVs altering 3′ end proces-
sing. Our results shown that 3′ UTR aOutliers-associated RVs fre-
quently alter polyadenylation signals (PAS) and AU-rich motifs, such
as “AWUAAA” and “AAUAAA” (Fig. 3a). Additionally, by using
saturation mutagenesis data36, we found that RVs associated with
aOutliers have a more significant impact on poly(A) site usage than
RVs associated with nonoutliers (one-sided Wilcoxon rank–sum test
P = 1.32 × 10−23; Supplementary Fig. 12a). Notably, we observed a
significant proportion of large-effect RVs (fold change, LFC > 1)
associated with aOutliers compared to nonoutliers (50.3% vs. 6.6%;
one-sided Wilcoxon rank–sum test P = 6.1 × 10−44; Supplementary

Fig. 12b), indicating their pronounced effects on 3′ UTR APA. To
further experimentally validate these findings, we selected four top-
ranked 3′ UTR aOutlier genes by median Z-score and utilized a
minigene reporter system containing reference allele and alternative
allele of four rare variants in selected genes, includingMKKS (Fig. 3b),
SUGP1, TP53RK, and ATP5F1E. In all four cases, we could detect sig-
nificant changes in the poly(A) site usage, which agreed well with the
predicted effects of these RVs (Fig. 3c, d and Supplementary
Fig. 13a, b).

Further investigation into multi-tissue intronic aOutliers
revealed a higher incidence of RVs at 5′ splice donor sites than at
acceptor sites (Fig. 3e). Compared to nonoutlier RVs, aOutlier RVs
are 19 to 441 times more prevalent at donor sites, and up to 47 times
more prevalent at acceptor sites. Specifically, aOutlier RVs are 441
timesmore prevalent in the “D+ 1” site and “D+ 4” site and 302 times
more prevalent in the “D+ 2” site relative to the nonoutlier RVs. For
example, RVs that alter the first nucleotide of the “GT” sequence in
the intron of COL4A2 (Fig. 1h) and the intron of TXNRD2 lead to
significant intronic APA events in these genes (Fig. 3f and Supple-
mentary Fig. 13c). We also found that RVs altering the last base of
exon 11 in ADCY4 and exon 4 in HMGCL result in intronic APA events
(Fig. 3g and Supplementary Fig. 7e, f). Based on these findings, we
hypothesized that RVs affecting canonical donor sites drive intronic
aOutliers. This hypothesis is also supported by our recent finding
that mutations near the donor sites can promote IPA usage, poten-
tially by blocking U1 small-nuclear RNP binding37. Predicting the
strength of donor sites withMAXENT38 showed a reduced strength of
mutant donor sites compared to wild type (Fig. 3h, i). We then per-
formed intronic APA minigene reporter assays for TXNRD2 and
COL4A2 with RVs at the conserved donor sites, as well as HMGCL and
ADCY4 with RVs at the last base of the exons. For these assays, we
cloned fragments containing full-length intronic sequences, includ-
ing the donor sites, and upstream and downstream exons into the
pcDNA3.1 vector. Results from 3′ Rapid Amplification of cDNA Ends
(3′ RACE) assays indicate that all four RVs significantly increase alter
IPA regulation relative to the wild-type sequence (Fig. 3j, k and
Supplementary Fig. 13d, e).

Lastly, we investigated whether aOutlier-associated RVs impact
other transcriptional and posttranscriptional regulation of target
genes. DeepBind39 analysis of 927 binding motifs revealed 11 sig-
nificantly enriched motifs in aOutlier-associated RVs (Supplementary
Fig. 14a) using randomly shuffled RVs as control, including knownAPA
regulator PABPN140. Furthermore, we analyzed 166 publicly accessible
RBPs cross-linking immunoprecipitation sequencing (CLIP-seq) data-
sets from the Encyclopedia of DNA Elements (ENCODE) project41. We
found seven RBPs’s CLIP-seq data are strongly enriched with multi-
tissue aOutlier RVs compared to nonoutlier RVs (Fig. 3l and Supple-
mentary Fig. 14b), including LARP4, an APA regulator identified in our
previous study25, and a known APA regulator CSTF2T. Knockdown of
the two RBPs resulted in widespread APA dysregulation (Supplemen-
tary Fig. 14c, d), affecting two aOutlier genes, SREBF2 (Supplementary

Fig. 2 | aOutliers are distinct from other molecular outliers. a Number of
aOutlier genes are also expression outliers (eOutliers) and splicing outliers (sOut-
lier) in the same dataset. b Example of an aOutlier-only gene, not detected by
eOutlier and sOutlier analysis. c Analysis of 5′ UTR length, coding sequence (CDS)
length, and 3′ UTR length in aOutlier genes (n = 562) compared to eOutlier genes
(n = 1833). d Analysis of GC-content in 3′ UTR regions of aOutlier (n = 562) and
eOutlier genes (n = 1,833). In panels (c, d), P-values were calculated using the one-
sided Wilcoxon rank–sum test. Box plots show the median and first and third
quartiles, and whiskers extend up to 1.5 times the interquartile range. e The pro-
portion of aOutliers with nearby RVs of different categories. aOutliers were strati-
fiedby absolutemedianZ-score thresholds: Z < 1 (nonoutlier), Z > 3, Z > 4, Z > 5, and
Z > 10. RV categories were assigned by VEP (v.104), and some were manually
merged. Terms are defined as follows: “Splice” includes RVs at the splice donor site,

splice acceptor site, and splice region; “Stop” includes RVs resulting in stop gained,
stop lost, and start lost; “Coding” includes missense variant, stop retained variant;
“otherCoding” includes CDS and synonymous variant; and “other noncoding”
includes downstream gene variant, upstream gene variant, and non-coding tran-
script exon variant. f Enrichment of RVs of different categories in aOutliers (red),
eOutliers (green), and sOutliers (blue). “PAS50bp” represents the 50 base pairs
upstream of the annotated poly(A) site. “Conserved” RVs are defined by mamma-
lian phaseCons score >0.9. g Enrichment of deleterious single-nucleotide variants
(SNVs) in aOutliers (n = 1,334); variants within 1 kb of aOutlier genes were counted.
Data are presented as ORs and 95% CIs. h Enrichment of RVs in single-tissue
aOutliers. n = 49 tissues were examined. In panels (g, h), Central dots present log2
odds ratios (OR) and lines define the 95% confidence intervals (CI).
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Fig. 14e) and TOLLIP (Fig. 3m), in which the associated RVs were inside
binding peaks of LARP4 (Supplementary Fig. 14f) and CSTF2T (Fig. 3n),
respectively. Beyond these known APA regulators, other RBPs such as
TIA1, UPF1, and SAFB2 were also identified as potential new APA reg-
ulators (Supplementary Fig. 14g–i). Collectively, these results sug-
gested that aOutlier-associated RVs trigger aberrant APA usage
through altering PAS, splice sites, or RBP binding sites.

Inclusion of APA significantly improves functional RV effect
prediction
To prioritize potentially impactful RVs for the interpretation of
individual genomes, we repurposed the traditional Watershed7

method into an APA-included version (aWatershed). This revised
aWatershed model is an unsupervised probabilistic Bayesian hier-
archical graphical model incorporating three RNA outlier signals,
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including aOutliers, eOutliers, and sOutliers, and annotations of a
matched individual genome (Supplementary Data 3). The aWa-
tershedmodel can allowus to quantify the posterior probability of an
RV leading to a functional effect on APA usage (Supplementary
Figs. 15a, b; Methods). To evaluate the aWatershed performance on
theGTEx v8data, we used held-out individual pairs with the sameRVs
as the evaluation dataset. By applying aWatershed prediction on the
first individual of each pair and evaluating this prediction using the
outlier status of the second individual as a label, we observed that our
model significantly outperforms both the RIVER (RNA-informed
variant effect on regulation) model8, a simplification of the Water-
shed model which integrates genomic features with aOutlier signals
alone, and the GAM (genomic annotation model), a generalized
logistic regression model based on genomic features alone (Fig. 4a
and Supplementary Fig. 15c). 93% of aWatershed prioritized RVs have
low posterior probabilities in the GAM (Fig. 4b), highlighting the
importance of transcriptomic aOutlier signals in functional RVs
prioritization. Moreover, aWatershed successfully captures the reg-
ulatory mechanisms underlying the effect of RVs on aOutlier signal
(Fig. 4c). Strikingly, the integrated aWatershed model can prioritize
RVs associatedwith 73.8% of aOutliers, in contrast to only 12.4%when
relying on the genomic features alone (Fig. 4d).

Next, we used the saturation mutagenesis data36 to further eval-
uate the efficacy of aWatershed in prioritizing RVs with significant
effects on APA regulation. In this analysis, we stratified RVs into two
groups based on aWatershed APA posterior probabilities and com-
pared poly(A) usage between them. We found that RVs in the group
with high posterior probability had significantly larger effects on APA
than those in the low posterior probabilities group (Fig. 4e, f), sug-
gesting our aWatershed model is effective in identifying RVs with
substantial APA effects. Furthermore, our analysis revealed that aWa-
tershed successfully identifiedmany functional RVs overlooked by the
previous variant prediction model42, as exemplified by two RVs in
RPL13A and PAAF1, respectively (Supplementary Fig. 15d). Overall,
aWatershed prioritized 1799 RVs predicted to impact 278 APA genes
(Supplementary Data 4). Interestingly, there was minimal overlap
between RVs impacting APA and those affecting gene expression or
splicing, as only 60 of these 1799 RVs were common to those cate-
gories. For example, the RV rs191575428 within the 3′ UTR ofMTHFD2,
which exhibited a high aWatershed APA posterior probability of 0.997
based on aOutliers, showed considerably lower posterior probabilities
for expression and splicing (0.055 and 0.008, respectively). This var-
iant is associatedwith 3′UTR lengthening inoutlier individuals without
changing gene expression levels (Supplementary Fig. 15e, f). Further
extending the aWatershed model to prioritize tissue-specific func-
tional RVs by integrating genomic features with single-tissue aOutliers
signals, we observed that the tissue-aWatershed model outperforms
both the tissue-RIVER model and tissue-GAM model (Supplementary
Figs. 16, 17). In summary, by leveraging these aOutliers, we have
implemented a robust Bayesian hierarchical variant effect prediction

model aWatershed that effectively prioritizes rare functional variants
with significant effects on APA regulation.

Analysis of aOutliers prioritizes RVs impacting complex traits
and diseases
To test the hypothesis that aWatershed RVs could be used to interpret
the complex traits and diseases, we first examined the 278 genes
prioritized by aWatershed and cross-referenced with genes annotated
in the Online Mendelian Inheritance in Man (OMIM) database43. We
identified 21.2%of the prioritizedgeneswerewell-knowndisease genes
(Supplementary Fig. 18a). For example, we identified a prioritized RV,
rs79940214, associated with MKKS (Supplementary Fig. 18b), which
encoded a centrosome-shuttling protein and was associated with
many genetic diseases, including McKusick-Kaufman syndrome
(OMIM id: 236770)44,45 and Bardet-Biedl syndrome 6 (OMIM id:
605231)46,47. Another example is one prioritized intronic RV,
rs76984877, that is associated with gene EXT2 (Supplementary
Fig. 18b), whichwas associatedwith hereditarymultiple exostosis, type
248,49. We also identified five prioritized RVs associated with gene BCR
(Supplementary Fig. 18b), which has been frequently reported to be
associated with chronic myeloid leukemia50,51.

We further cross-referenced aWatershed-prioritized RVs with
trait variants from 1234 well-powered GWAS summary statistics from
UK Biobank (UKBB) and literature (Supplementary Data 5), resulting
in 1385 RVs associated with 171 aOutlier genes in 1186 traits. We
focused on the subset of 623 traits, which also have evidence of
colocalization with 3′aQTLs (Supplementary Data 6). Notably, aOut-
lier prioritized RVs fell in or nearby genes had evidence of colocali-
zation with 3′aQTLs having larger trait effect size than the non-
colocalized RVs (P = 0.0014, one-sided Wilcoxon rank–sum test;
Fig. 5a). We also conducted a permutation test to determine whether
these prioritized RVs exhibit larger effect sizes on these complex
traits and diseases. We found that the mean odds of aOutlier-
prioritized RVs had amore significant effect size than non-prioritized
RVs (P = 2.5 × 10−15, one-sided and paired Wilcoxon rank–sum test;
Supplementary Fig. 19a). To exemplify the larger effect size in
aOutlier-prioritized RVs, we focused on two traits: height related
traits (UKBB trait ID: 50_irnt and 20015_irnt) and high blood pressure
(UKBB trait ID: 6150_4). This analysis revealed a significant shift in the
odds favoring RVs with higher aWatershed posterior probabilities
over those with lower ones (P = 1.6 × 10−9 and P = 2.3 × 10−54, respec-
tively; one-sided Wilcoxon rank–sum test; Fig. 5b, c; Supplementary
Fig. 19b). In the case of height related traits and high blood pressure,
these aOutlier prioritized RVs had larger effect sizes on the trait than
other variants within a 1Mb of the RV, including RVs prioritized by
eOutliers or sOutliers. Notably, for the height related traits, the RV
(rs112567314), located in the intron of CUL3, had a greater effect size
than other variants within 1Mb and RVs prioritized by eOutlier or
sOutlier (Fig. 5d). Similarly, for high blood pressure, the RV
(rs893929), located in the intron of USP38, also had a greater effect

Fig. 3 | Functional rare variants (RVs) and RBPs associated with aOutliers.
a Enrichment of aOutlier-associated RVs (n = 739) in PAS and AU-rich motifs. In
panels (a, e), central dots show the log transformed odds ratio, and lines show 95%
confidence interval. b The aOutlier of MKKS. Y-axis presents median Z-score and
X-axis shows samples ranked by median Z-score. The outlier is highlighted in red.
c,dTheminigenes and 3′RACE assays (n = 3 replicates) for the 3′UTRsofMKKS and
SUGP1 in HEK293T and HeLa cells. In panels (c, d, j, k), the structures of minigene
reporters are shown at the top, and PCR priming data for both long and short
isoforms are presented below. Tested RVs altering PAS motifs are indicated with
red asterisks. GAPDH was used as a reference. “bp” represents base pair.
e Enrichment of intronic aOutlier-associated RVs (n = 117) disrupting splice sites
comparedwithRVs associatedwith nonoutliers. The splice site is defined as nine bp
fromD-3 toD + 6 for thedonor site and sixbp fromA-3 toA + 3 for the acceptor site.

f, g aOutliers in TXNRD2 (f) and HMGCL (g). h Consensus donor site sequences in
outlier and nonoutlier individuals. i. Strength of donor splice sites in intronic
aOutlier individuals (MUT, n = 69) and controls (WT, n = 69), one-sided Wilcoxon
rank-sum test P-value is 8.35 × 10−19. The central lines represent the median; boxes
span from the 25th to 75th percentile, and whiskers extend to 1.5 × interquartile
range. j, k Minigenes and 3′ RACE assays for the intronic APA of TXNRD2 (j) and
HMGCL (k) in HEK293T and HeLa cells. (n = 3 replicates). l Enrichment of RBP
binding regions in aOutlier-associated RVs compared to nonoutlier RVs. P-value
was obtained from Fisher’s exact test. Data are presented as -log10(P) and odds
ratio.m, n An example of aOutlier in TOLLIP. RNA-seq reads coverage of the
aOutlier and three nonoutlier individuals in the 3′UTR region were presented. One
RV was identified within binding region of CSTF2T. Source data are provided as a
Source Data file.
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Fig. 4 | Development and evaluation of the APA-based Watershed
(aWatershed) model. a Performance of the aWatershed model (red) compared to
the RIVER model (blue) and the genomic annotation model (orange). Data are
presented as the area under the precision–recall curve (AUC-PR). b The correlation
between aWatershed predicted posteriors and GAMpredicted posteriors. RVswith
posteriors > 0.5 in either group were filled with red. c Edge weights connecting top
genomic annotation features to latent regulatory variables in aOutlier signal (red),
eOutlier signal (green), and sOutlier signal (blue), ranked by weight in decreasing
order. The top threemost influential genomic features are highlighted in bold font.
d The proportion of RVs leading to aOutliers. RVs were stratified based on

aWatershed (red) and GAM (orange) posterior probability for APA signal.
e, f Evaluation of aWatershed-prioritized RVs using the data estimated from a
published massively parallel reporter assay. RVs were stratified into two groups
based on aWatershed APA posterior probabilities (i.e., probabilities > 0.5 (n = 149)
and ≤0.5 (n = 3,598)), and poly(A) site usage change was compared for reference
and alternative alleles in each group (e), and proportion of large-effect (absolute
log Fold change > 1) was compared between the two groups (f). Box plots show the
median and first and third quartiles, and whiskers extend up to 1.5 times the
interquartile range. P-values were calculated using the one-sided Wilcoxon
rank–sum test.
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size than 99.6% of variants within 1Mb, including the nearest trait-
associated significant variants as well as eOutlier or sOutlier RVs
(Fig. 5e). Collectively, our results demonstrate the capability of
aWatershed in prioritizing RVs with large effect sizes on APA, sig-
nificantly impacting complex traits and diseases.

Strong convergence between rare and common variants on
DDX18 links APA regulation with cancer susceptibility
Emerging evidence suggests potential interactions between rare and
common variants in affecting the samedisease genes52–54. As expected,
we also observed the strong convergence effect on 3’ UTR APA

Fig. 5 | Trait effect sizes for aOutlier RVs prioritized by aWatershed.
a Comparison of the trait effect size of aOutlier prioritized RV (red) nearby genes
with evidence of colocalization to non-prioritized RVs (gray) nearby the same
genes. Box plots show themedian and first and third quartiles, andwhiskers extend
up to 1.5 times the interquartile range. P value was calculated using the one-sided
Wilcoxon rank–sum test (n = 77,388 RVs). b, c Distribution (red) of odds estimated
from permutation test assessing how often randomly drawn aWatershed-
prioritizedRVs have larger effect sizes in GWASof height (b) or highbloodpressure
(c) thanmatchednon-prioritizedRVs across genes. The null distribution (in gray) of
odds was obtained from a permutation test by randomly drawning two RVs from a
non-prioritized RV set only. P-value was calculated from the one-sided Wilcoxon
rank‒sum test. d Manhattan plot (left) across 20Mb in chromosome 2 for GWAS

signals of height (50_irnt) in the UKBB. The aOutlier prioritized RV rs112567314 in
the colocalized region was highlighted by the red triangle, and the GWAS lead SNP
is indicated by a blue diamond. The blue square denotes RVs prioritized by eOut-
liers or sOutliers in the same region. UKBBMAF vs. effect size for all variants within
1Mb of the aOutlier prioritized RV was shown on the right. eManhattan plot (left)
across 20Mb in chromosome4 forGWASsignals of highblood pressure (6150_4) in
the UKBB, and the scatter plot (right) shows the UKBB MAF vs. effect size for all
variants in a 2Mb region cross the aOutleir prioritized RV (rs149094812). The red
triangle highlights the aOutlier prioritized RV, and the blue diamond highlights the
GWAS lead SNP. In panels (d, e), P-value of each dot was obtained from genome-
wide association test.
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regulation between RVs and common variants (Supplementary
Fig. 20). To further mechanistically examine their convergence effects
on disease, we focused on aWatershed prioritized RVs and their
associated genes. We found 126 out of the 278 aOutlier RV associated
genes were also identified as susceptibility to disease risks, including
cancer risks through 3′aQTLs in our gene-based association studies55,56

(Fig. 6a). Among the top-ranked APA genes that were prioritized by
both RV and 3′aQTLs analyses (Fig. 6b), we noticed several highly
constrained genes (pLI score > 0.9), andwe particularly focused on the
gene DDX18, a member of the DEAD-box RNA helicase family, that was
identified as an APA-mediated susceptibility gene across many cancer
types57,58. Moreover, CRISPR-Cas9 based gene essentiality screens also
demonstrated that DDX18 has an essential role in cancer cell
proliferation59,60 (Fig. 6c). Examining our 3′aQTLs data revealed

significant associations between common variants and 3′ UTR APA of
DDX18 across tissues, with themost significant one was found near the
3′ end (Fig. 6d and Supplementary Fig. 21a–c). Intriguingly, an aWa-
tershed prioritized RV, rs1680042046, located near the distal poly(A)
site ofDDX18, was identified in the outlier individual (Fig. 6e, f). This RV
alters the hexamer motif “AUUAAA” to “AUUAAG” (Supplementary
Fig. 21b) and has a highly deleterious effect (CADD= 17.5) (Supple-
mentary Data 1).

To further experimentally validate the convergence effect of RVs
and common variants on DDX18, we designed minigenes introducing
the APA variants by PCR-based site-directed mutagenesis in HEK293T
andMCF7 cells (Fig. 6g). We then performed 3′ RACE to quantitatively
evaluate the effect of the common variant (rs1052628; A >G) alone, the
RV (rs1680042046) alone, or their joint effect on APA. We first mutate

Fig. 6 | The convergence effect of rare and common variants links APA to
human diseases. a Intersection of disease risk genes identified by 3′aQTLs using
gene-based methods, including colocalization and transcriptome-wide association
study and genes associated with aWatershed-prioritized functional APA RVs. 278
genes associated with RVs having aWatershed posterior score > 0.5 were involved.
b The top 20 intersected genes are ranked by aWatershed posterior score.
c Distribution of dependency scores estimated from CRISPR-Cas9 essentiality
screening assays in cancer cells for genes associated with RVs prioritizing by
aWatershed and also identified as cancer risk genes by 3′aQTLs analysis. d Boxplot
shows the association between the common variant (rs1052628) and 3′UTR APA of
DDX18. The outlier individual with the rare variant was labeled. For panels c and d,
the center horizontal lines represent the median values; boxes span from the 25th
to 75th percentile, andwhiskers extend to 1.5 × interquartile range. e aOutliers (left)

and eOutliers (right) of gene DDX18. Data are presented asmedian Z-score (y-axis),
and individuals (x-axis) are ranked bymedian Z-score. Outliers are highlightedwith
red dots. f RNA-seq reads coverage of DDX18 3′ UTR region and the last second
exon in the outlier individual (red) and non-outlier (control) individual (gray).
gMinigenes ofDDX18 3′UTR containing the commonAPA variant and the rare APA
variant. h 3′ RACE assays with DDX18minigenes containing only the RV or only the
common variant, or both the RV and the common variant. Assays were performed
in HEK293T cells. i The bar plot shows the usage of dPAS in each minigene mea-
sured through image J. Error bar represents the standard deviation and a two-sided
student t-test was used to test the difference (n = 6 independent experimental
replicates). jThe 3′RACEassays ofDDX18minigenes inMCF7cells.GAPDHwasused
as the loading control. Source data are provided as a Source Data file.
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the reference A allele to the alternative G allele for either RV or the
common variants. In HEK293T cells, this mutation reduced distal
poly(A) site (dPAS) usage for both the common variant and RV (two-
sided Student’s t-test P = 1.5 × 10−6 and 2.3 × 10−7; Fig. 6h, i), indicating
that both variants indeed trigger DDX18 APA regulation. A similar APA
effect was also observed in MCF7 cells (Fig. 6j). To further assess the
functional roles of DDX18 APA regulation in breast cancer cells, we
measured DDX18 protein level using luciferase reporter assays and
assessed the effect of gene silencing on the proliferation of MCF7 cells
proliferation. We observed lower luciferase activities in the short 3′
UTR isoform of DDX18 and the reporter containing RV or both RV and
common variant (Supplementary Fig. 21d, e). Knockdown of DDX18 in
MCF7 results in inhibition of cell proliferation (Supplementary
Fig. 21f, g). Collectively, these findings highlight the critical role of rare
variants in understanding the risk of common diseases and offer a
novel approach to linking functional rare variants to complex diseases.

An online data portal for aOutlier and aWatershed RVs
To broaden the accessibility of our findings to the research commu-
nity, we have developed a user-friendly online data portal named rar-
eAPA (https://bioinfo.szbl.ac.cn/rareAPA/index.php), which serves as a
comprehensive, publicly accessible resource. The homepage of rar-
eAPA provides an overview of the available resources and features,
with a navigator bar at the top for easy access (Supplementary
Fig. 22a). The rareAPAdata portal allows users to explore aOutliers and
associated RVs through both a search engine and a browser interface.
For instance, by querying a specific gene, such as SUGP1, the search
engine returns a table listing all aOutliers across 49 GTEx tissues
(Supplementary Fig. 22b). Users can refine their search by selecting a
specific tissue from a drop-down menu at the top of the results table.
Additionally, the table allows users to filter results by either “3′UTR” or
“Intronic” aOutliers. Users can visualize the queried aOutlier as a
scatter plot by clicking the “Scatter plot” button in the result table
(Supplementary Fig. 22c). These scatter plots can be downloaded in a
publish-ready scatter PDF format for further use. The portal also fea-
tures a genome browser for exploring aOutliers and associated RVs
(Supplementary Fig. 22d). Moreover, rareAPA includes a curated list of
prioritized RVs generated using our aWatershed algorithm, enabling
users to examine rare variants along with their aWatershed posterior
scores. Our portal supports batch downloading of all single-tissue
aOutliers and multi-tissue aOutliers with a list of available files acces-
sible via the navigator bar on the home page.

Discussion
The human genome contains a plethora of rare genetic variants whose
functional effects and underlying molecular mechanisms are challen-
ging to interpret. In this study, we introduce the aOutlier as an emer-
ging molecular phenotype reflecting aberrant 3′ UTR or intronic APA
usage across multiple samples. aOutlier can be used to identify func-
tional rareAPA variants. By analyzing population-scale transcriptomics
data using our DaPars225,29 and IPAfinder algorithms18, we identified
1534 multi-tissue aOutliers based on European individuals. These
aOutlier genes exhibit unique molecular features, such as genomic
lengths and GC-content, setting them apart from other molecular
outliers, such as eOutliers and sOutliers. Importantly, aOutliers can aid
in identifying a distinct class of rare functional variants. We observed
that aOutliers-associated RVs are more likely to be deleterious and are
highly enriched in outlier individuals. Mechanistically, these aOutlier-
associated RVs canmodulate APAusage by either altering PAS, AU-rich
elements, or splice donor sites, as confirmed by saturation mutagen-
esis data and 3′ RACE experiments.

To further enhance the utility of our aOutlier atlas, we adapted a
Bayesian hierarchical predictionmodel (aWatershed) by incorporating
genomic features with multiple functional signals, including aOutliers,
eOutliers, and sOutliers. This integration aims to predict the

probability of RV leading to aberrant APA usage. Notably, our aWa-
tershed model outperformed models trained only on genomic fea-
tures or those combined with aOutlier signals alone. Moreover,
aWatershed-prioritized RVs exhibited more significant effects on
APA regulation than non-prioritized RVs. The predictive power of
aWatershed was validated using GWAS summary data from the UKBB,
showing that aWatershed-prioritized RVs had larger trait effect sizes
than non-prioritized RVs, as exemplified by RVs near POLR2L and
ATP5F1D associated with height and BMI, respectively.

Interestingly, we observed a significant proportion of intersection
between aOutlier transcripts and 3′aQTL associated transcripts in
matched tissue, suggesting the potential interplay of common variants
and RV in APA regulation, similar to previous findings in gene
expression studies52,53,61,62. Additionally, a rare deletion 16p11.2 and
common variants in chromosome 16p modulate downstream gene
expression and affect the risk for autism52. Moreover, using minigene
reporters and 3′ RACE assays, we demonstrated the potential additive
effect of rare and common APA variants on DDX18 3′ UTR regulation.
We further demonstrated that the regulation of DDX18 3′ UTR con-
tributes to DDX18 protein expression level, which is tightly linked to
breast cancer cell proliferation. In summary, our study identifies a
novel set of rare functional variants that influence APA and connects
these RVs to human phenotypes, providing valuable information for
the identification of novel genes associatedwith increaseddisease risk.

Methods
Ethics statement
This study complies with all relevant ethical regulations. Collection
and use of the human genotype and RNA-seq data from GTEx in this
study were approved by the GTEx consortium. The ethical procedures
for data collection, including informed consent and ethics approval,
have been described in the original GTEx project documentations and
publications63. No additional ethics review was required for this study.

Statistics and reproducibility
No statistical method was used to predetermine sample size, which
wasmostly based on the availability of the samples in the GTEx cohort.
The experiments were not randomized, and the investigators were not
blinded to allocation during experiments and outcome assessment, as
the study is not a randomized controlled trial study. We carried out
most statistical tests with R (v3.6.3), including Fisher’s exact test, Wil-
coxon rank-sum test, and Student’s t-test with basic functions fish-
er.test, wilcox.test and t.test, respectively. Please refer to the
corresponding sections in Methods for details on statistical tests.

GTEx data collection and processing
We downloaded both RNA-seq raw sequencing data and whole-
genome genotype data of the v8 release of the GTEx project from
dbGAP (accession: phs000424.v7.p2). Expression outlier (eOutlier) and
splicing outlier (sOutlier) data, and the metadata of samples (filename:
GTEx_Analysis_v8_Annotations_SampleAttributesDD.xlsx) and subjects
(filename: GTEx_Analysis_v8_Annotations_SubjectPhenotypesDD.xlsx)
were downloaded from GTEx Portal (https://gtexportal.org/home/).
The GTEx RNA-seq dataset contains 17,832 samples representing 54
biological tissues collected from 838 donors. For this study, we inclu-
ded data from 49 tissues, each with at least 70 samples. Original GTEx
RNA-seq reads were aligned with the human genome (hg38/GRCh38)
using STAR v.2.7.3a64, with the following alignment parameters:
outSAMtype, BAM; SortedByCoordinate; outSAMstrandField, intro-
nMotif; outFilterMultimapNmax, 10; outFilterMultimapScoreRange, 1;
alignSJDBoverhangMin, 1; sjdbScore, 2; alignIntronMin, 20; and
alignSJoverhangMin, 8. The aligned BAM files were sorted and
further converted to bedGraph format using BEDTools v.2.27.165.
The genotype data in VCF format (filename: GTEx_Analysis_
2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.vcf.gz)
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was processedwith vcftools v.0.1.13 to calculateMAF across all subjects
and extract allele information for each variant.

3′ UTR APA and intronic APA quantification
To quantify the 3′UTRAPA, we analyzed alignment files in BAM format
using the DaPars2 algorithm. We followed the workflow implemented
in our 3′aQTL analysis25,66. Briefly, the BAM files were firstly trans-
formed to bedGraph formatwith a bin size of 1, which records the read
coverage of each position in the genome. Before analyzing APA, we
downloaded the gene annotation file containing all transcripts of
genome build hg38 in RefSeq database through the UCSC Genome
Browser, from which we extracted 3′ UTR region of each transcript
using script “DaPars_Extract_Anno.py”. The DaPars2 algorithm then
detects theproximalpoly(A) site in the 3′UTRregionof each transcript
and calculates the relative usage of the distal poly(A) site by the script
“Dapars2_Multi_Sample.py” for all samples in each of the 49 tissues.
This is indicated as the Percent of Distal Poly (A) site Usage Index
(PDUI) only if a proximal poly(A) site is detected. For intronic APA
detection and quantification, we used IPAfinder18, which is a python-
based tool that enables de novo identification and quantification of
intronic APA (IPA) events using RNA-seq data. IPAfinder can identify
potential IPA sites and calculate the Intronic poly(A) site Usage Index
(IPUI), which represents the proportion of total transcripts that are
intronic-polyadenylated for each intronic APA event18,37,67. BAM files
were analyzed together by IPAfinder and separated by tissues.

Covariate correction and normalization
To avoid batch effects and unobserved confounders in each tissue, we
adjusted the sample genotype and APA usages with known covariates,
such aspopulation structure, sex, and sequencing platform.Briefly, for
genotype data, we first removed sites marked as “wasSplit” from the
GTEx analysis freeze variant call format (VCF) using BCFtools v.1.10.2.
We further applied the PEER model68 with sex, age, sequencing plat-
form, and the top five genotype principal components as known
covariates to estimate a set of latent covariates for PDUI or IPUI values
in each tissue. The number of PEER factors was optimized based on
tissue sample size, as suggested by the GTEx Consortium; 15 PEER
factors were chosen for sample sizes <150, 30 PEER factors were
selected for sample sizes ranging from 150 to 250, and 35 peer factors
were chosen for sample sizes >250. Before running the PEERmodel for
inferring hidden covariates, PDUI/IPUI values in each tissue were
quantile normalized to remove batch effects.

APA outlier calling
After inferring the hidden covariates for each tissue, we calculated
PDUI/IPUI residuals by regressing out inferred PEER factors and known
covariates, including population structure, sex, and sequencing plat-
form, using the function “PEER_getResiduals”. In each individual tissue,
we obtained normal-distributed Z g, tð Þ score for each gene (g) in the
tissue (t) by scaling the PDUI/IPUI residuals across samples with the
following equation, Xr g, tð Þ denotes the residuals of PDUI/IPUI values,

�Xr g, tð Þ and sd Xr g, tð Þ� �
represent themean and standard deviation of

the residuals across samples, respectively:

Z g, tð Þ= Xr g, tð Þ � Xr g, tð Þ
sd Xr g, tð Þ� � ð1Þ

We defined two types of aOutliers in the current study. One is single-
tissue aOutlier,which is called froma single tissue basedon theZ-score
of each gene in that tissue. When the absolute Z-score of an individual
exceeds a threshold of three for a gene, then the individual is called a
single-tissue aOutlier for that gene. The other is multi-tissue aOutlier,
for which we calculated a median Z-score7,8 for each APA event across
all tissues when data were available and restricted our analysis to
individuals with APA measurements in at least five tissues. The

threshold of five tissues was defined by considering both robustness
and the number of aOutliers can be identified (Supplementary Fig. 23).
Multi-tissue aOutliers were defined as those with an absolute median
Z-score >3. The same threshold was used for eOutlier and sOutlier
calling7,8. Our method allowed that one gene could have multiple
aOutlier individuals, and one individual could also be aOutliers of
multiplegenes. Toaccount for situations inwhichwidespreadaberrant
APA might occur in an individual due to non-genetic influences, we
removed 11 individuals in which the proportion of tested genes
identified asmulti-tissue aOutliers exceeded 1.5 times the interquartile
range of the distribution for aOutlier gene proportion across all
individuals. These 11 individuals were marked as global outliers.

Estimation of replication rates of aOutliers
To estimate the replication rate of aOutliers between different tissues,
we selected one of the 49 GTEx tissues each as discovery tissue, and
compared aOutliers detected in it with those of the other tissues. For
replication rate calculation, we only considered the shared aOutlier
genes in both tissues and an aOutlier to be replicated only when the
gene and individual of the aOutlier matched between the compared
tissue pairs. For multi-tissue aOutliers replication, we used the cross-
validation method8 to estimate their replication rate. Specifically, we
randomly divided 49 human tissues into two groups: a discovery
group comprising 39 tissues and a replication group with the
remaining 10 tissues. For each iteration, we randomly selected a subset
of tissues t (t = 10, 15, 20, 25, 30) from the discovery and identified
multi-tissue aOutliers within these tissues with an absolute Z-score
threshold of 3 in at least five tissues.We then calculated the replication
rate as the proportion of multi-tissue aOutliers in the discovery group
that had an absolute median Z-score of 2 or 3 in the replication group.
To estimate the expected replication rate, we randomly selected
individuals in the discovery group who had APA usage data in at least
five tissues for a given gene and assessed their replication status in the
replication group. This process was repeated 10 times for each size of
the discovery group (t).

RV annotation
We defined RVs as those with MAF < 1% within the GTEx European
individuals and with MAF < 1% in non-Finnish Europeans within
gnomAD69. Singletons were defined as RVs with minor allele only
presents once in GTEx European individuals and were extracted using
vcftools. The annotation of RVs was performed by Ensembl VEP
(release 104), which assigned 36different annotation terms to eachRV,
including protein-coding gene position (e.g., “splice_donor” “spli-
ce_acceptor,” “frameshift”) and regulatory regions (e.g., “TFBS_abla-
tion”, “TF_binding_site”). Annotation terms were grouped into one of
the four classes based on predicted impact: “High”, “MODERATE”,
“MODIFIER” and “LOW”. The high-impact one was used for variants
assigned with two or more annotations. In addition to 36 VEP anno-
tations, we added two other annotations to each RV; “PAS region”
describes variants located within 50bp upstream of the annotated
PAS, and “PAS signal” refers to variants located at the PAS motif
“AAUAAA” and its additional 14 variants (“AUUAAA”, “UAUAAA”,
“AGUAAA”, “AAAAAA”, “AACAAA”, “AAGAAA”, “AAUAUA”, “AAUACA”,
“CAUAAA”, “UUUAAA”, “ACUAAA”, “AAUAGA” and “GAUAAA”). We
also used genomic annotations of variants extracted from CADD v.1.5
release (http://cadd.gs.washington.edu/download).

RV enrichment analysis
We examine the enrichment of Rare Variants (RVs), including single-
nucleotide variants (SNV) and small insertion and deletion (indel) near
aOutlier genes. Only genes with at least one aOutlier individual were
considered, and the remaining individuals for the same genes were
treated as nonoutlier controls. We first counted the RVs present within
1 kb, 2 kb, or 10 kb of the outlier genes in both outlier and control
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individuals and built a 2 × 2 contingency table for each of the flanking
region, containing the number of aOutliers with RVs, the number of
nonoutlier controlswithRVs, thenumberof aOutlierswithoutRVs, and
the number of controls without RVs. We then calculated Odds Ratios
(ORs), P-value, and 95% confidence interval (CI) using Fisher’s exact
test in R base package. We grouped variants into four groups based on
their MAF (0–1%, 1–5%, 5–10%, and 10–25%), and performed enrich-
ment analysis for each group. We also conducted enrichment for RVs
that stratified by VEP annotations and CADD scores as
described above.

Enrichment analysis for RVs that influence PAS and AU-
rich motifs
To identify potential regulatory variants associated with aberrant APA
events, we defined RVs located within the gene body or in the 10 kb
region surrounding outlier genes in outlier individuals as aOutlier RVs.
Those in nonoutlier individuals in the same region were classified as
nonoutlier RVs. For each aOutlier RV and nonoutlier RV located in the
50-bp region upstream (PAS region) of the poly(A) sites annotated in
PolyA_DB V.3.270,71, we extracted its upstream and downstream 5 base
pairs sequences and examined whether it matched with one of the 15
known PAS motifs by using script “dna-pattern” in RSAT (https://
github.com/rsa-tools). We then summarized all tested RVs and con-
ducted PAS motif enrichment analysis using Fisher’s exact test, which
determined the odds ratios (ORs) and 95% confidence intervals (CIs)
for each PAS motif. To perform enrichment analysis at the 12 known
AU-rich motifs, we restricted RVs to those within the 100bp flanking
the annotated poly(A) sites. We then counted RV enrichment analysis
for each of the AU-rich motifs using the same method as for PAS
motifs.

Identification of aOutlier RVs enriched RNA motifs
We focused on multi-tissue aOutlier associated RVs located within the
gene body region, which spans from 3 kb downstream of the tran-
scription start site (TSS) to the endof the gene.Weextracted the 3base
pairs of sequences flanking each RV from both sides. Next, we used
DeepBind v0.1139 to score these 7-mer sequences using 617 pre-built
models, including 515 transcription factors and 102 RNA-binding pro-
teins fromHomo sapiens. For each 7-mer sequence,we selected the top
three motifs with a DeepBind score of at least 0.1. To validate the
enrichment of RVs in predicted binding motifs, we created a control
set of RVs by randomly shuffling the genomic locations of multi-tissue
aOutlier associated RVs within the same gene body regions. We used
Fisher’s exact test to estimate the level of enrichment.

Identification of aOutlier RVs enriched RBPs
We obtained CLIP-seq data for 166 RNA-binding proteins (RBPs) from
the Encyclopedia of DNA Elements (ENCODE) data portal for HepG2
and K562 cells. We only considered significant binding peaks with P-
values < 0.01, shared by two biological replicates for each RBP. To
assess the enrichment of aOutlier RVs in RBP binding peaks, we
selected RVs associated with multi-tissue aOutliers within gene body
regions representing the region of 3 kb downstream of the transcrip-
tion start site (TSS) to the end of the gene. We created a control RV set
by randomly shuffling the genomic locations of multi-tissue aOutlier
associatedRV setwithin the samegene body regions.We then counted
the RVs in binding peaks of each RBP using bedtools. Finally, we
compared the RVs between the two sets using Fisher’s exact test to
determine the enrichment.

Development of a Bayesian prediction model that integrates
APA outlier signals
To prioritize rare functional variants with significant impact, we
improved theWatershedBayesianhierarchicalmodel by incorporating
APA outlier signals with other layers of transcriptomic outlier signals

and genomic annotations. The improved model called aWatershed,
includes a layer of genomic annotation features (G) which denotes the
40 observed genomic features aggregated over all RVs in the outlier
individual that are within 10 kb region of the gene, a fully connected
conditional random field (CRF) layer (Z) represent the unobserved
regulatory variables for each of the three transcriptomic outlier signals
(APA, mRNA expression, and splicing), and a layer of variables (E)
representing the observed outlier status of each transcriptomic data
type. The three layers were linked by the following conditional dis-
tributions:

Z jG � CRFðα,βAPA,βRNA,βSplice, θÞ ð2Þ

Ek jZk � Categorical ðφkÞ � 8k 2 K ð3Þ

φk � Dirichlet C, . . . ,Cð Þ ð4Þ

βk � Normal
1
λ

� �
, ðk =APA, Expression, SpliceÞ ð5Þ

Where K represents the three outlier signals (APA, Expression, and
Splice), βk are parameters defining the contribution of the 40 genomic
features to the CRF of the three outlier signals, α defines the intercept
of the CRF for each outlier signal, θ represent parameters defining the
edge weights between pairs of the three outlier signals, φk are the
paramters denoting the categorical distributions of each of the three
outlier signal, and C and λ are hyper-parameters.

To train and evaluate aWatershed, we utilized all gene-individual
pairs that have at least one of the three multi-tissue outlier signals,
which are defined as the absolute value of Z-score greater than 3 or P-
value less than 0.0027 for splicing outliers, measured in GTEx v8 data.
We also used a set of 38 binary and continuous genomic annotation
features aggregated across all rare variants within the 10 kb region,
flanking each gene. We then trained aWatershed to learn edge weights
connecting the three transcriptomic outlier signals, weights repre-
senting the contribution of each genomic annotation for each type of
outlier signal, and other parameters, as described previously7,8.

To evaluate aWatershed, we selected pairs of individuals with the
same set of rare variants associated with the same gene (known as
“N2pair”) from the training dataset. We estimated the posterior
probability of a functional rare variant in the first individual of the pair
and used the outlier status of the second individual as a label for
evaluation. We also trained and evaluated the genomic annotation
model on each layer of the three transcriptomic signals to determine
whether the integration of transcriptomic outlier signals contributes
to the prediction of rare functional variants. We compared the results
to those obtained from the aWatershed model. After evaluation, we
utilized the aWatershed prediction model to calculate posterior
probabilities.

3′aQTL mapping across 49 GTEx tissues
Genetic associations between GTEx common variants within 1Mb of
each gene and PEER-corrected APA usage were mapped by Matrix
eQTL72, as described in our previous study25. Known covariates,
including sex, RNA integrity number, platform, top five genotype
principal components, and unobserved covariates inferred fromPEER,
were used during 3′aQTL mapping with Matrix eQTL. The number of
PEER covariates for each tissue was used as suggested by the GTEx
Consortium. We performed 1000 rounds of permutation to obtain
empirical P-values for each gene, whichwere then adjusted using the R
package qvalue.
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Colocalization analysis between GWAS summary statistics
and 3′aQTL
We conducted colocalization analysis comparing GWAS summary
statistics from theUKBB and literature and 3′aQTL summary data from
49 human tissues using the coloc v.5.1.0.1 package in R73. Only GWAS
summary data for traits with at least 10,000 cases (binary traits) or
50,000 participates (continuous trait) and with at least 10 SNPs over-
lapped with aOutlier-associated RVs were kept, which resulted in 1186
well-powered traits. We extracted the sentinel SNPs for each GWAS
trait, defined asGWAS SNPs with P < 5 × 10‒8, located at least 1Mb away
from more significant variants. We then searched for colocalizing
signals within the 1-Mb region surrounding each sentinel SNP. The
coordinates from 3′aQTL summary data were converted from human
genome build 38 (hg38) to build 37 (hg19) by CrossMap software74 to
match the version used in all GWAS summary statistics. As defined by
the coloc method, five posterior probabilities under five different null
hypotheseswere calculated. In detail, PP0 represents the nullmodel of
no association. PP1 and PP2 represent the probability that causal
genetic variants are associatedwith disease signals or 3′aQTL only. PP3
represents the probability that the genetic effects of trait signals and 3′
aQTL are independent, and PP4 represents the probability that trait
signals and 3′aQTL data share causal SNPs. The current study classified
colocalized events as those with PP4 >0.75.

3′ UTR APA transcriptome-wide association study (3′aTWAS)
analysis
We used APA quantitative data that was previously used for 3′aQTL
mapping25,56,66 and genotype data of individual genomes from whole
genome sequencing (WGS) of GTEx consortia to construct 3′aTWAS
model using FUSION75 for each of the 49 human tissues. To avoid the
effects of confounders, well-established factors used in 3′aQTL map-
ping, including gender, sequencing platform, and other covariates,
were incorporated to adjust APA usages. To build the TWAS model,
four different models embedded in FUSION were used for weight
calculation, including best linear unbiased predictor (blup), elastic-net
regression (enet), lasso regression (lasso), and single best eQTL (top1).
Subsequently, the cross-validation approach was employed to choose
the optimal 3′aTWAS model for each gene. Of note, only genes exhi-
biting significant heritability estimates (cis-h2) (Bonferroni-corrected
P <0.05) were retained for subsequent analysis. The built models were
then applied to GWAS summary statistics for gene-based association
analysis, and a significant association was defined by the FDR<0.05.
The disease risk genes identified by 3′aTWAS in two or more tissues
were used for further analysis.

Prioritization of trait-associated RVs
Todetermine the frequencywithwhich randomly selected aWatershed-
prioritized RVs exhibit larger GWAS effect sizes than matched non-
prioritized RVs, we conducted a random sampling test (n = 1000) on all
RVs using posterior probabilities obtained from the aWatershed pre-
dictionmodel andeffect sizes fromUKBBGWAS summary statistics.We
used aWatershed-prioritized RVs based on aOutlier signals, matched
non-prioritized RVs, as well as GWAS effect sizes, gene IDs, and prior-
itized scores as input data. We defined matched non-prioritized RVs as
thosewith a posterior probability of <0.1 andMAFwithin ± 0.001 of the
selected prioritized RVs in the UKBB cohort.

For each gene in each trait, we randomly selected one prioritized
RV and one matched non-prioritized RV and then identified the one
with the largest absolute GWAS effect size in the pair. By summarizing
all genes in the trait, we computed the odds of observing a prioritized
RVwith a larger absolute effect size than a non-prioritized RV across all
genes. To generate a null distribution of odds, we repeated this pro-
cess for matched non-prioritized variants only and randomly selected
and compared two non-prioritized RVs for each gene.

Cell culture
HEK293T and MCF7 cells were purchased from the Cell Bank of the
Type Culture Collection at the Shanghai Institute of Biochemistry &
Cell Biology, Chinese Academy of Science. Cells were maintained in
Dulbecco’s modified Eagle medium (DMEM; Invitrogen, #11960044)
supplemented with 10% fetal bovine serum (Gibco), 100 μg/ml strep-
tomycin, and 100-units/ml penicillin at 37 °C in a humidified incubator
with 5% CO2.

Plasmid construction
All primers used in this study are listed in Supplementary Data 7.
For intronic APA (IPA) minigenes, the candidate intron and its
flanking exons were amplified from genomic DNA as wild-type
fragments. For 3′ UTR APA minigenes, the 3′ UTR of each gene
was amplified from genomic DNA as wild-type fragments, and
mutations were introduced by PCR-based site-directed mutagen-
esis. In short, genomic DNA from HEK293T and MCF7 cells was
amplified by PCR using primers to generate two 20–25 bp over-
lapping fragments containing a mutant site. The IPA wild-type and
mutant fragments were subcloned into the EcoRI and BamHI sites
of the pcDNA3.1 vector, while 3′ UTR APA wild-type and mutant
fragments were subcloned into the XhoI and PmeI sites of the
mpCHECK2 vector by the One Step Cloning Kit (Vazyme). Two
sets of predesigned shRNAs from Sigma against DDX18 were used
to clone into pLKO.1-puro vector.

Transient transfection
For transient transfection, HEK293T andMCF7 cells were plated in
a 2 ml culture medium at 6 × 105 cells/well in six-well plates. After
24 h of culture, cells were transfected with 2 μg of wild-type or
mutant minigene plasmid using Lipofectamine 2000 (Invitrogen),
according to themanufacturer’s instructions. The culturemedium
was replaced at 6 h post-transfection, and cells were harvested for
RNA extraction at 48 h post-transfection. Total RNA was extracted
using TRIzol reagent (Invitrogen), according to the manu-
facturer’s instructions, and cDNA was synthesized using the Fas-
tKing RT Kit (Tiangen, KR116) with the S-CDS primer. All cDNA
was diluted 4-fold in nuclease-free double-distilled H2O for
further use.

3′ RACE
The total length of 3′ UTR was identified and amplified from the total
RNA of NCI-H1299 cells by 3′ RACE using the HiScript-TS 5′/3′ RACE Kit
(Vazyme, RA101) following the manufacturer’s protocol. 3′ RACE was
performed using the S-PCR primer and pcDNA3.1-F or mpCHECK2-F
primer to distinguish minigene RNA from endogenous RNA, respec-
tively. The 3′ RACE PCR products were separated by gel electrophor-
esis, and excised bands were purified for Sanger sequencing using the
Zymoclean Gel DNA Extraction kit. Cleaned DNA fragments were
cloned into the PCE2 vector using the 5min TA/Blunt-Zero Cloning Kit
(Vazyme, C601) and bidirectionally sequenced with M13 forward and
reverse primers. At least five colonies were sequenced for every gel
product that was purified. Primer sequences are listed in Supplemen-
tary Data 7.

Dual-luciferase reporter assay
MCF-7 cells were seeded 1 day prior to transfection. The Renilla luci-
ferase in the mpCHECK-2 vector was transfected into cells using
Lipofectamine 3000 Transfection Reagent (Invitrogen, cat#:
L3000015) according to the manufacturer′s instructions. Forty-eight
hours post-transfection, firefly, and renilla luciferase activities were
measured by Dual-Luciferase Assay System (Promega, #E1980) on a
BioTek Synergy H1 plate reader with full waveband. Each assay was
measured in three independent replicates.
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Cell viability and proliferation assays for shRNA-mediated
knockdown
shRNA-expressing lentivirus was produced with the third-generation
packaging system in human embryonic kidney (HEK) 293 T cells. For
lentivirus infection, target cells (MCF7) were seeded in a 6-well plate
16–18 h before infection and were grown to 70–80% confluency upon
transduction. The culture medium was removed, and cells were incu-
batedwith virus supernatant alongwith 8μg/ml polybrene. Puromycin
was applied to kill non-infected cells 2days after infection. After two
days of selection, when non-infected control cells were all dead, sur-
viving cells were split and maintained with the same concentration of
puromycin. Cells were trypsinized, resuspended at 1 × 104 cells/ml, and
seeded in 96-well plates, with each well containing 100ul medium of
1 × 103 cells. Cell viability and proliferation were determined using
CCK8 assays (Yeasen, cat#: 40203ES76) at designated time points (day
1, day 3, day 5, and day 7) by measuring the absorbance at 450 nm,
following the manufacturer′s instructions. Values were obtained from
three replicate wells for each treatment and time point. Results were
representative of three independent experiments.

The comprehensive data portal for aOutliers
We have established a database along with a web interface called rar-
eAPA (https://bioinfo.szbl.ac.cn/rareAPA/index.php) on a standard
LAMP (Linux + Apache + MySQL + PHP) system, which serves as a
comprehensive resource presenting detailed and comprehensive
information on rareAPA events and their associated RVs. All thesedata
in the rareAPA were stored in MySQL (www.mysql.com). The inter-
active web pages were implemented using HTML, CSS, JavaScript, and
PHP languages (www.php.net), with several JavaScript libraries
(JQuery.js, DataTable.js, and IGV.js) and Bootstrap framework (a pop-
ular framework for developing interactive websites) on Red Hat Linux
powered by an Apache server (www.apache.org). This data portal is
valuable for exploring aOutliers and their associated functional rare
variants. With rareAPA, users can search, browse, and visualize
important information on aOutliers in 49 human tissues. Users can
search by gene or tissue name and scrutinize rare APA events among
individuals in each tissue. Additionally, users can also visualize aOut-
liers using a scatter plot or explore them through a genome browser.
Furthermore, rareAPA provides a curated list of prioritized RVs using
the aWatershed algorithm, allowing users to examine rare variants and
their aWatershed posterior scores. Additionally, rareAPA offers batch
downloading of all single-tissue aOutliers and multi-tissue aOutliers.
The rareAPA is freely available online without registration or login
requirements.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw transcriptome and genome sequencing data from the GTEx
project V8 used in this study are available at the database of Genotypes
and Phenotypes (dbGaP) under the accession number
phs000424.v7.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v7.p2]76. All processed GTEx data,
including gene expression outlier (eOutlier) and splicing outlier
(sOutlier), are available via the GTEx portal [http://gtexportal.org]. The
RNA-seq data of LCLs of the 731 individuals are available from the
Sequence Read Archive under the accession PRJNA851328 [https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA851328]. GWAS summary sta-
tistics used in this study were obtained from UK Biobank GWAS
[https://www.nealelab.is/uk-biobank], Finn Gen [https://www.finngen.
fi/en], and JENGER. The details about the GWAS summary statistics are
listed in SupplementaryData 5. Genomic and functional annotations of
rare variants are available via the Combined Annotation Dependent

Depletion (CADD v1.5) [https://cadd.gs.washington.edu/], and gno-
mAD v3.1 [https://gnomad.broadinstitute.org/]. The crosslinking and
immunoprecipitation (CLIP) assay data for RNA binding proteins used
in this study are available at The Encyclopedia of DNA Elements77,78

(ENCODE) [https://www.encodeproject.org/]. The data described in
this study are freely available for querying, visualizing, and down-
loading at http://bioinfo.szbl.ac.cn/rareAPA/index.php, a website por-
tal dedicated to rare APA. Source data are provided with this paper.

Code availability
DaPars2 is available at https://github.com/3UTR/DaPars2, and IPA-
Finder can be accessed through https://github.com/ZhaozzReal/
IPAFinder. The codes for mapping 3′aQTL are available at https://
github.com/3UTR/3aQTL-pipe. The custom scripts and source codes
for data analysis relevant to this study are available, under the MIT
license, at Github repository: https://github.com/Xu-Dong/rareAPA
and Zenodo: https://doi.org/10.5281/zenodo.10576656.
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