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ABSTRACT
Purpose: Impaired glucose metabolism-related genetic variants likely interact with obesity-modifiable

factors in response to glucose intolerance, yet their interconnected pathways have not been fully charac-

terized.

Methods: With data from 1,027 postmenopausal participants of the Genomics and Randomized Trials

Network study and 15 single-nucleotide polymorphisms (SNPs) associated with glucose homeostasis, we

assessed whether obesity, physical activity, and high dietary fat intake interact with the SNP–glucose vari-

ations. We used regression analysis plus stratification and graphic approaches.

Results: Across carriers of the 15 SNPs, fasting levels of glucose, insulin, and homeostatic model

assessment-insulin resistance (HOMA-IR) were higher in obese, inactive, and high fat-diet women than

in their respective counterparts. Carriers within subgroups differently demonstrated the direction and/or

magnitude of the variants’ effect on glucose-relevant traits. Variants in GCKR, GCK, DGKB/TMEM195

(P for interactions = 0.02, 0.02, and 0.01), especially, showed interactions with obesity: obese, inactive,

and high fat-diet women had greater increases in fasting glucose, insulin, and HOMA-IR levels. Obese

carriers at TCF7L2 variant had greater increases in fasting glucose levels than nonobese carriers (P for

interaction = 0.04), whereas active women had greater decreases in insulin and HOMA-IR levels than

inactive women (P for interaction = 0.02 in both levels).

Conclusions: Our data support the important role of obesity in modifying glucose homeostasis in response

to glucose metabolism–relevant variants. These findings may inform research on the role of glucose home-

ostasis in the etiology of chronic disease and the development of intervention strategies to reduce risk in

postmenopausal women.

K E Y W O R D S

glucose metabolism–related genetic variant, high-fat diet, obesity, physical activity, postmenopausal

women

1 INTRODUCTION

Glucose intolerance is thought to be central in the develop-

ment of chronic diseases such as type 2 diabetes mellitus

(T2DM), metabolic syndrome, and cardiovascular disease

(CVD) (Ainsworth, Haskell, & Whitt, 2000; Arcidiacono,

Iiritano, & Nocera, 2012; Belkina & Denis, 2010; McCarthy,

2010). In particular, hyperinsulinemia and insulin resis-

tance (IR) are key determinants of many obesity-relevant

cancers, including reproductive (e.g. breast, endometrial,

prostatic, ovarian) and nonreproductive (e.g. colorectal,

kidney, esophageal, gastric, pancreatic, liver) cancers

(Boesgaard et al., 2010; Bookman, Din-Lovinescu, &

Worrall, 2013; Clayton et al., 2011). Besides its importance

in glucose homeostasis, insulin is an essential hormone in

anabolic processes in early cell growth and development,

directly through the insulin receptor and indirectly through

the insulin-like growth factor receptor (IGFR), and via their

main downstream signaling pathways (Boesgaard et al., 2010;

Clayton et al., 2011). Insulin receptors that are mainly found
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JUNG ET AL. 521

in adipose tissues, muscle, and liver cells are overexpressed

in tumor cells, resulting in the enhanced anabolic state nec-

essary for tumor growth and development, via downstream

insulin signaling (Arcidiacono et al., 2012; Booth, Roberts,

& Laye, 2012). In particular, activated insulin receptors and

IGFRs upregulate insulin response substrate-1, a crucial

mediator leading to oncogenic potential, enhancing growth

factor-dependent proliferation and affecting cell metabolism

(Arcidiacono et al., 2012; Boesgaard et al., 2010). Thus,

impaired glucose metabolism, such as IR, leading to hyper-

glycemia and hyperinsulinemia, contributes to abnormal

multiple cellular signaling cascades, overexpression of these

receptors, and hyperactive signaling pathways, and therefore

may be associated with carcinogenesis.

Impaired glucose metabolism is a heterogeneous disor-

der reflecting both genetic and lifestyle factors that jointly

influence susceptibility (Arcidiacono et al., 2012; McCarthy,

2010). Conditions related to glucose intolerance are energy

imbalance and obesity (particularly visceral adiposity)

(Ainsworth et al., 2000; Arcidiacono et al., 2012; Belkina &

Denis, 2010; Boesgaard et al., 2010; Clayton et al., 2011).

The high-fat Western diet and physical inactivity contribute

to energy imbalance and are thus important in glucose home-

ostasis (Ainsworth et al., 2000; Boesgaard et al., 2010; Buet-

tner, Scholmerich, & Bollheimer, 2007). By using fasting lev-

els of glucose, insulin, and homeostatic model assessment

(HOMA), the Meta-Analyses of Glucose and Insulin-Related

Traits Consortium conducted a metaanalysis of genome-wide

association (GWA) studies that revealed 17 loci associated

with fasting glucose homeostasis (Boesgaard et al., 2010;

Chan, Huang, & Meng, 2014; Clayton, Banerjee, Murray, &

Renehan, 2011; Dupuis et al., 2010). Previous studies evaluat-

ing genetic polymorphism variations in glucose metabolism–

relevant genes have not yet provided clear links to the traits

related to glucose homeostasis. The effects of these variants

are modest and do not account for all the genetic variance in

glucose intolerance.

These genetic variants can interact with correlated lifestyle

factors such as obesity, physical activity, and diet; e.g. the

risk of such variants for glucose intolerance may be reduced

by desirable lifestyle modifications. Studying gene–lifestyle

interactions is undoubtedly important, but research incor-

porating molecular, individual, social, and environmental

determinants is limited (Dupuis, Langenberg, & Prokopenko,

2010). Moreover, the few population-based or trial data have

yielded replicated results suggesting limitation in the studies,

such as small sample sizes, racial differences, and adjustment

for limited sets of physiologic and behavioral factors. Inter-

action studies that include more comprehensive covariates

can reduce potential confounding effect. In addition, interac-

tion studies are complicated to model for testing hypothesis-

driven questions. For example, most studies evaluating effects

of gene–lifestyle interaction on relevant traits have depended

on only P-values of effect size for the interaction, but a more

comprehensive analytic approach, such as a stratification and

graphic evaluation, is needed to reveal apparent differences

between subgroups in direction and magnitude of the effect

size (Jung, 2014).

We conducted this study among postmenopausal women,

a population highly susceptible to obesity and increased mor-

bidity and mortality, to understand genetic variation in glu-

cose tolerance–related traits. Using fasting levels of glucose,

insulin, and HOMA-IR, we evaluated whether the same vari-

ants influence glucose variations in subgroups stratified by

effect modifiers (i.e., obesity, measured by body mass index

[BMI], waist circumference, and waist/hip ratio [w/h]; phys-

ical activity; and high-fat diet). We hypothesized that the

extent to which genetic risk variants influence glucose intoler-

ance is greater among participants who are obese, less physi-

cally active, or have higher dietary fat intake than among their

respective counterparts. Identifying such gene–lifestyle inter-

actions will provide insights into the role of glucose intoler-

ance in the development of chronic disease including obesity-

related cancer, and suggest strategies to reduce the risk in

postmenopausal women.

2 MATERIALS AND METHODS

2.1 Study population

The study included postmenopausal women who were

enrolled in the Genomics and Randomized Trials Network

(GARNET) study, a substudy of the Women’s Health Ini-

tiative (WHI), which aims to identify genetic variants asso-

ciated with response to treatments for conditions of clinical

or public health significance (Hale, Lopez-Yunez, & Chen,

2012; Haskell, Lee, & Pate, 2007). Details of that study’s

rationale and design have been described elsewhere (Hong,

Chung, & Cho, 2014; Howe, Subbaramaiah, Hudis & Dan-

nenberg, 2013; The Women’s Health Initiative Study Group,

1998). WHI study participants were recruited from 40 clin-

ical centers nationwide between 1993 and 1998; eligible

women were 50–79 years old, postmenopausal (i.e. having

had a hysterectomy or no menstrual bleeding for the previ-

ous 6 months [if age ≥ 56] or 12 months [if age 50–55]),

expected to live near the clinical centers for at least three years

after enrollment, and able to provide written consent. WHI-

GARNET participants were enrolled in the WHI Hormone

Therapy (HT) trial, met eligibility requirements for submis-

sion to the database of Genotypes and Phenotypes, and pro-

vided DNA samples. Of 4,949 participants who were invited

to the WHI-GARNET study, 4,894 underwent genotyping as

part of WHI-GARNET, a GWA study (Haskell et al., 2007;

Hong et al., 2014; Howe et al., 2013; Ingelsson, Langen-

berg, & Hivert, 2010). For this study, we included women

with fasting glucose and/or insulin concentrations available

at baseline (i.e. at screening or first annual visit [AV1]) and
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excluded women whose blood was collected after fewer than

8 hours’ fasting and those with unreliable glucose concentra-

tions (i.e. < 4 mg/dl), resulting in 1,241 participants. Addi-

tionally, we excluded 214 without information on covariates,

which left a final total of 1,027 women (83% of the 1,241).

We obtained approval from the institutional review board of

the University of California, Los Angeles.

2.2 Data collection

Standardized written protocols and periodic quality assur-

ance (QA) visits from the coordinating center were used to

assure uniform data collection. As additional data QA, when

reporting or data-entry errors were detected, they were cor-

rected or treated as missing data; corrections for discrep-

ancies between answers to main-sub questions or among

relevant variables were also made according to data QA

procedures. Participants completed self-administered ques-

tionnaires, providing demographic, and socioeconomic infor-

mation, medical, and reproductive histories, and lifestyle

behaviors. Trained staff obtained anthropometric measure-

ments, including height, weight, and waist and hip circumfer-

ences. We used the data from the screening visit (or AV1). Of

46 variables initially selected from a literature review for their

association with obesity and glucose intolerance, 26 were

finally selected for this study after multicollinearity test and

univariate and/or stepwise regression analyses.

Demographic and socioeconomic characteristics included

age, race, education, and marital status; medical histories

included cancer, CVD, DM, hypertension, high cholesterol

(requiring pills ever), and family history of DM. Reproductive

histories included pregnancy history, history of hysterectomy,

or oophorectomy, ages at menarche and menopause, oral con-

traceptive use, and exogenous estrogen use (both opposed

and unopposed). Lifestyle variables included dietary intake,

physical activity, and depressive symptom. Dietary intake was

evaluated with the Food Frequency Questionnaire; after step-

wise analysis, we included total calories, dietary total sug-

ars, and percentages of calories from protein, monounsat-

urated fatty acids (MFA), and polyunsaturated fatty acids

(PFA). Physical activity was measured via metabolic equiv-

alent task (MET); recreational physical activity, combining

walking, and mild, moderate, and strenuous physical activity,

was assigned a MET value corresponding to intensity. The

total MET⋅hours⋅week−1 was calculated by multiplying the

MET level for the activity by the hours exercised per week

and summing the values for all activities (Haskell et al., 2007;

Kirchhoff, Machicao, & Haupt, 2008; Lam, Chang, Rogers,

Khoury, & Schully, 2015). Total physical activity values strat-

ified participants into two groups, with 10 METs as the cutoff,

according to current American College of Sports Medicine

and American Heart Association recommendations (Haskell

et al., 2007).

2.3 Genotyping and outcome variable

Genotyping for WHI-GARNET participants was performed

with the HumanOmni1-Quad single–nucleotide polymor-

phism (SNP) platform (Illumina, Inc., San Diego, CA). Geno-

typing QA was ensured using a standardized protocol at the

University of Washington GARNET data coordinating center

(Haskell et al., 2007; Hong et al., 2014). SNPs were included

on the basis of missing call rate (<2%), number of discordant

calls (<1%), and Hardy–Weinberg Equilibrium (P ≥ 1e-4).

Fifteen SNP candidates available for this study were selected

by their association (P < 5e-8) with fasting glucose and/or

insulin concentrations in the previous metaanalysis with inde-

pendent replication (Chan et al., 2014; Dupuis et al., 2010;

Manning, Hivert, & Scott, 2012).

Outcome variables were fasting levels of glucose, insulin,

and HOMA-IR. Glucose was analyzed using the hexokinase

method on a Hitachi 747 (Boehringer Mannheim Diagnos-

tics, Indianapolis, IN). Most insulin testing was by radioim-

munoassay (RIA) method (Linco Research, Inc., St. Louis,

MO); later testing used an automated ES300 method. The

two methods yielded comparable results for insulin lev-

els. Coefficients of variation for glucose and insulin were

1.28% and 10.93%, respectively. HOMA-IR, as a surrogate

of IR, was estimated as glucose (unit: mg/dl) × insulin (unit:

𝜇IU/ml)/405 (Matthews et al., 1985).

2.4 Statistical analysis

Differences in participants’ characteristics by effect modifiers

(BMI, waist circumference, w/h, physical activity, and high-

fat diet) were assessed using unpaired 2-sample t tests for

continuous variables and chi-square tests for categorical vari-

ables. If continuous variables were skewed or had outliers,

Wilcoxon’s rank-sum test was implemented. Multicollinear-

ity was evaluated by using coefficient of multiple determina-

tion, tolerance, and variance-inflation factor for each exposure

variable, using remaining covariates as its predictors; no sig-

nificant multicollinearity was present.

Multiple linear regression with an additive model was per-

formed to produce effect sizes and 95% confidence inter-

vals (CIs) of the exposure (glucose metabolism–relevant SNP,

treating the genotypes as ordinal or categorical variables)

to predict the outcomes of interest (fasting glucose, insulin,

and HOMA-IR levels). For the regression assumptions that

were met, while glucose levels were analyzed without trans-

formation, insulin, and HOMA-IR levels were natural log–

transformed.

To determine whether obesity and associated lifestyles

modified the gene–glucose variations, besides performing a

formal test using the regression model (including an inter-

action term such as gene*lifestyle), we stratified participants

by the effect modifier and compared between-subgroup effect

sizes of the exposure (SNP) on the outcomes of interest.
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Additionally, we evaluated the interactions graphically by

plotting the means of glucose traits for each genotype of the

SNP according to the strata defined by the effect modifier.

We used R (v 2.15.1) software and then reanalyzed all data

using PLINK (v1.9); all results were comparable. A 2-tailed

P value < 0.05 was considered significant. Since all our anal-

yses were essentially exploratory, all P-values we reported

were unadjusted for multiple testing.

3 RESULTS

Participants’ characteristics stratified by BMI (<30.0 and

≥30.0) are summarized in Table 1. Obese women were more

likely to be younger (P = 0.01), black (P < 0.05), not cur-

rently married (P = 0.04), and to have more relatives with

DM (P < 0.05) and more comorbid conditions such as CVD

(P < 0.05), DM (P < 0.05), and hypertension (P < 0.05). In

addition to being more prone to having undergone hysterec-

tomy or oophorectomy (P = 0.01) and earlier menarche (P <

0.05) and menopausal transition (P = 0.01), obese women

were more likely to be inactive (P < 0.05) and to consume

more total calories (P < 0.05), with higher percentages of

calories from MFA (P < 0.05) and PFA (P < 0.05). Conse-

quently, obese women tended to have greater waist circumfer-

ences (P < 0.05) and w/h (P < 0.05). Further, obese women

were more likely to have higher fasting glucose (P < 0.05),

insulin (P < 0.05), and HOMA-IR levels (P < 0.05). Using

a cutoff value relevant to glucose intolerance (Buettner et al.,

2007), we also stratified participants by waist circumference,

w/h, physical activity, and high-fat diet, and compared their

characteristics (supplementary Table S1.1–4).

Fifteen SNPs in previous GWA studies associated

with fasting levels of glucose, insulin, and HOMA-IR

were selected to evaluate their associations with glucose-

homeostasis traits. The allele frequencies of these SNPs in

our population were consistent with the frequencies in a

European population (McTiernan, Kooperberg, & White,

2003). No significant differences occurred in allele frequency

between strata (obesity, physical activity, and high-fat diet)

(Tables 2, S2.1–4).

Glycemic loci associated with fasting levels of glucose,

insulin, and HOMA-IR, stratified by obesity status (BMI < 30

vs. ≥ 30; waist ≤ 88 vs. > 88; w/h ≤ 0.85 vs. > 0.85) and

obesity-relevant variables (physical activity [MET] ≥10 vs.

<10; calories from fat <40 vs. ≥40%).

The fasting glucose, insulin, and HOMA-IR levels of

obese, inactive, and high fat–diet women were higher than

those of nonobese, active, and low fat–diet women, regard-

less of genotypes, indicating the glucose-relevant traits pro-

portionally associated with obesity and the relevant vari-

ables. In addition, within each locus, the effect of vari-

ants on glycemic traits differed by obesity status and

obesity-relevant variables, implying that interactions between

genetic variants and obesity affect glucose homeostasis. We

then sought to characterize these relationships.

Most SNPs demonstrated differences in direction and/or

magnitude of the associations with glucose-relevant traits

within subgroups (Table 3, supplementary Table S3.1–4).

Carriers of GCKR rs780094 G allele overall showed

increased glycemic traits in both nonobese and obese women,

stratified by obesity status variables (i.e. BMI, waist circum-

ference, and w/h). Among these variables, abdominal adi-

posity (w/h >0.85; P for interaction = 0.02) was related to

a greater allele-dependent increase in fasting glucose lev-

els than was overall obesity (BMI ≥30) (Fig. 1A–C). These

carriers in the higher fat–diet group (≥ 40%) also displayed

greater allele-dependent increases in fasting levels of glucose

(P = 0.03), insulin (P = 0.04), and HOMA-IR (P = 0.02)

than in the lower fat–diet group (supplementary Table S3.4,

Fig. 1D). Carriers of GCK rs4607517 A allele in obese or

inactive women had greater allele-dependent increases in fast-

ing glucose levels than those in nonobese or active women

(P for interaction = 0.02 in w/h; P = 0.01 in physical activ-

ity) (supplementary Fig. S1C, D). Similarly, obese carri-

ers of TCF7L2 rs4506565 T allele showed a greater allele-

dependent increase in fasting glucose levels than nonobese

carriers (P for interaction = 0.04 in w/h) (supplementary Fig.

S2A3).

In contrast, carriers of C2CD4B rs11071657 A allele in

nonobese women had greater allele-dependent decreases in

fasting insulin and HOMA-IR levels than in obese women

(in waist circumference, P for interaction = 0.01 for insulin

and <0.05 for HOMA-IR) (supplementary Fig. S3A2, B2).

Likewise, these carriers were associated with greater allele-

dependent decreases in fasting insulin and HOMA-IR levels

in the low fat–diet group than in the high fat–diet group (sup-

plementary Figs. S3A4, S3B4).

In addition, for the association with glycemic traits, allele

A carriers of rs2191349 in DGKB/TMEM195 in women with

BMI < 30 showed allele-dependent decreased levels, whereas

the counterpart women had allele-dependent increases in fast-

ing glucose (P for interaction = 0.01), insulin, and HOMA-

IR levels. A similar pattern was shown for carriers of PROX1

rs340874 G allele: in nonobese (BMI <30), they were related

to allele-dependent decreases in fasting glucose levels, but in

obese women (BMI ≥30) they were associated with allele-

dependent increased levels, although neither result reached

statistical significance. Likewise, women with BMI ≥30 car-

rying G allele of rs11558471 in SLC30A8 were related to

allele-dependent increases in glucose-related traits, differ-

ently from those with BMI <30 group (P = 0.04 for insulin

and HOMA-IR levels) (Table 3).

A few SNP carriers in the physical-activity and fat-intake

subgroups had different patterns of interactions with glycemic

traits, than they had in the obesity-status subgroups. For fast-

ing glucose levels, carriers of rs4506565 TCF7L2 T allele

in physical-activity subgroups displayed patterns similar to
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T A B L E 1 Characteristics of participants, stratified by obesity (measured via BMI), in the Genomics and Randomized Trials Network Study of the

Women’s Health Initiative

Nonobese group (BMI < 30.0) Obese group (BMI ≥ 30.0)

(n = 633) (n = 394)

Characteristics n (%) n (%)

Age in years, median (range) 65 (50–79) 63 (50–79)a

Race

White (not of Hispanic origin) 535 (84.5) 318 (80.7)a

Black 24 (3.8) 41 (10.4)

Other 74 (11.7) 35 (8.9)

Education

≤ High school 254 (40.1) 179 (45.4)

> High school 379 (59.9) 215 (54.6)

Current marital status

Not married 237 (37.4) 174 (44.2)a

Married 396 (62.6) 220 (55.8)

Family history of diabetes mellitus

No 427 (67.5) 229 (58.1)a

Yes 206 (32.5) 165 (41.9)

Cancer ever

No 613 (96.8) 386 (98.0)

Yes 20 (3.2) 8 (2.0)

Cardiovascular disease ever

No 566 (89.4) 327 (83.0)a

Yes 67 (10.6) 67 (17.0)

Diabetes everb

No 627 (99.1) 377 (95.7)a

Yes 6 (0.9) 17 (4.3)

Hypertension ever

No 465 (73.5) 237 (60.2)a

Yes 168 (26.5) 157 (39.8)

High cholesterol requiring pills ever

No 563 (88.9) 354 (89.8)

Yes 70 (11.1) 40 (10.2)

Oral contraceptive use

Never 388 (61.3) 231 (58.6)

Ever 245 (38.7) 163 (41.4)

Exogenous estrogen use

No 400 (63.2) 248 (62.9)

Yes 233 (36.8) 146 (37.1)

Pregnancy history

No 53 (8.4) 30 (7.6)

Yes 580 (91.6) 364 (92.4)

History of hysterectomy or oophorectomy

No 359 (56.7) 190 (48.2)a

Yes 274 (43.3) 204 (51.8)

Age at menarche in years, median (range) 13 (≤ 9–≥ 17) 12 (≤ 9–≥ 17)a

Age at menopause in years, median (range) 49 (28–60) 48 (21–60)a

(Continued)
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T A B L E 1 (Continued)

Nonobese group (BMI < 30.0) Obese group (BMI ≥ 30.0)

(n = 633) (n = 394)

Characteristics n (%) n (%)

METs⋅hour⋅week−1

<10 436 (68.9) 322 (81.7)a

≥10 197 (31.1) 72 (18.3)

Depressive symptomc

< 0.06 587 (92.7) 359 (91.1)

≥ 0.06 46 (7.3) 35 (8.9)

Waist circumference in cm, median (range) 81.0 (64.0–106.0) 101.0 (69.6–125.0)a

Waist/hip ratio, median (range) 0.795 (0.574–1.128) 0.844 (0.621–1.238)a

Total calories in kcal, median (range) 1560.0 (605.9–4784.0) 1655.0 (603.5–4992.0)a

% calories from protein, median (range) 16.4 (5.2–33.0) 17.0 (9.2–32.0)

% calories from MFA, median (range) 12.7 (2.9–27.6) 13.7 (6.1–24.7)a

% calories from PFA, median (range) 6.4 (1.9–14.8) 6.9 (2.5–15.9)a

Dietary total sugars in g, median (range) 91.3 (21.5–525.9) 95.3 (16.9–264.0)

Glucose in mg/dl, median (range) 93.0 (67.0–362.0) 98.0 (71.0–316.0)a

Insulin in 𝜇IU/ml, median (range)d 8.3 (3.3–43.9) 13.2 (3.6–74.6)a

HOMA-IR, median (range) 1.9 (0.7–24.0) 3.3 (0.8–35.7)a

BMI, body mass index; HOMA-IR, homeostatic model assessment–insulin resistance; MET, metabolic equivalent; MFA, monounsaturated fatty acids; PFA,

polyunsaturated fatty acids.
aP < 0.05, chi-square test or Wilcoxon’s rank-sum test.
bA participant was considered to have diabetes if a doctor had ever said that she had diabetes when she was not pregnant.
cDepression scales were estimated by using a short form of the Center for Epidemiologic Studies Depression Scale and categorized with 0.06 as the cutoff to

detect depressive disorders.
dInsulin levels were measured via either radioimmunoassay or automated ES300 method; the two methods gave comparable results at the insulin levels WHI

participants were likely to have. When a participant had both results, the average levels were used in the analysis.

those in other obesity-status subgroups, but the allelic variant

affected fasting insulin and HOMA-IR levels differently, with

allele-dependent decreases in both at a greater magnitude in

the active than in the inactive women (P for interaction = 0.02

in both levels) (supplementary Fig. S2B, C). Further, although

carriers of rs35767 IGF1 A allele did not have a significant

association with glucose-related traits in the obesity-status

subgroups, the variant resulted in a greater allele-dependent

decrease in fasting HOMA-IR levels in inactive women than

in active women (P = 0.04; supplementary Table S3.3); addi-

tionally, women with high dietary fat intake had higher fasting

glucose levels than women in the lower fat–diet group (P for

interaction = 0.01; supplementary Table S3.4).

Cancer patients (n= 28) had no significant association with

SNP-glucose variations. A sensitivity test using data includ-

ing DM history (n = 23) compared with data excluding that

characteristic revealed no apparent differences in both uni-

variate and multivariate analyses.

4 DISCUSSION

In this cross-sectional study of a large cohort of post-

menopausal women, by using 15 glucose metabolism–related

SNPs previously reported their association with glycemic

metabolic traits (Chan et al., 2014; Dupuis et al., 2010;

Manning et al., 2012), we investigated whether the genetic

variants influence glucose homeostasis by interacting with

obesity status or other relevant lifestyle factors. Limited pre-

vious studies have incorporated gene and lifestyle factors, and

studying gene–environment interactions is very complex; the

analytic results require careful interpretation (i.e., not focus-

ing only on P values) and need to be ascertained with var-

ied testing approaches (Jung, 2014). We used traditional but

crucial methods for testing interactions such as stratification

and graphic evaluations and found that most of the glycemic

loci we studied interacted with obesity status, physical activ-

ity, and dietary fat intake.

Most carriers of the genetic variants among obese, inac-

tive, or high dietary fat–intake groups had greater allele-

dependent increases in glucose-intolerance traits, compared

with the respective counterpart groups. Our results are con-

sistent with those of other studies (Chan et al., 2014;

Clayton et al., 2011; Dupuis et al., 2010; Manning et al., 2012;

Nettleton, Hivert, & Lemaitre, 2013; Walford et al., 2012)

in that carriers of common variants in GCKR and GLIS3

are associated with glucose intolerance. Moreover, these

carriers show greater allele-dependent increases in fasting
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T A B L E 2 Allele frequencies of 15 glucose metabolism–relevant SNPs, stratified by obesity (measured via BMI) among 1,027 participants in the

Genomics and Randomized Trials Network Study of the Women’s Health Initiative

Effect allele frequency

Nonobese group
(BMI < 30.0)

Obese group
(BMI ≥ 30.0)

SNP Chromosome Nearest gene
Risk allele

(effect/other) (n = 633) (n = 394)

rs340874 1 PROX1 G/A 52.2 49.1

rs780094 2 GCKR G/A 60.8 63.6

rs560887 2 G6PC2 G/A 76.1 74.9

rs11920090 3 SLC2A2 A/T 14.7 13.7

rs2191349 7 DGKB/TMEM195 A/C 53.7 53.8

rs4607517 7 GCK A/G 16.4 16.6

rs11558471 8 SLC30A8 G/A 31.4 29.2

rs7034200 9 GLIS3 A/C 52.0 51.9

rs10885122 10 ADRA2A C/A 84.4 83.9

rs4506565 10 TCF7L2 T/A 31.1 31.5

rs11605924 11 CRY2 A/C 49.5 52.3

rs174550 11 FADS1 G/A 32.8 33.0

rs10830963 11 MTNR1B G/C 28.1 24.4

rs11071657 15 C2CD4B A/G 63.2 65.9

rs35767 12 IGF1 A/G 15.7 19.9

BMI, body mass index; SNP, single-nucleotide polymorphism.

glucose levels among obese and high fat–diet women than

among their counterparts. In particular, carriers of the

TCF7L2 variant demonstrated an inverse relationship with

insulin and HOMA-IR levels, but this relationship interacted

with physical activity; i.e., active women had greater allele-

dependent decreases in both fasting insulin and HOMA-IR

levels than inactive women.

Interestingly, two SNPs carriers in DGKB/TMEM195 and

SLC30A8 had a positive predisposition to glucose intoler-

ance only among obese women, in contrast with their negative

association among nonobese women. This suggests a robust

gene–obesity interaction with glucose metabolism. Most pre-

vious investigators have reported only a positive relation-

ship of these variants with glucose-relevant traits, without

accounting for the effect modification of the obesity status

(Boesgaard et al., 2010; Chan et al., 2014; Dupuis et al., 2010;

Walford et al., 2012).

Although heterogeneity of interaction effects between obe-

sity subgroups was observed for G6PC2 and FADS1, our

findings overall are consistent with those of previous meta-

analysis and epidemiologic studies, and their gene func-

tions have been established. A TCF7L2 variant that has

been related to T2DM (Nettleton, McKeown, & Kanoni,

2010; Palmer, McDonough, & Hicks, 2012; Saxena, Elbers,

& Guo, 2012; Scott, Chu, & Grarup, 2012; Zeggini et al.,

2008) indicates involvement in beta-cell malfunction; thus,

in this and other studies (Dupuis et al., 2010; Kirchhoff

et al., 2008; Nettleton et al., 2013; Walford et al., 2012), the

common variant in this gene is inversely related to insulin

levels with increased glucose levels. Moreover, we found a

more profound effect of this variant among obese or inac-

tive women, implying a gene–obesity interaction that may

contribute to the heterogeneity of T2DM etiology. In addi-

tion, GCKR and IGF1 variants were related to IR; both are

highly expressed in the liver, contributing to hepatic IR (Chan

et al., 2014). GCKR encodes a glucokinase regulatory pro-

tein, which inhibits glucokinase, a key protein in glucose

metabolism, leading to increased hepatic glucose production

(Chan et al., 2014; Walford, Green, & Neale, 2012). This sup-

ports the biological plausibility of our findings, indicating that

this variant is related to increased glucose and insulin levels.

Further, our finding that these carriers, among women with

visceral obesity or high-fat diet, are associated with greater

allele-dependent increases in glucose and insulin levels sug-

gests adiposity’s strong role in modulating the GCKR vari-

ant’s effect on glucose homeostasis. IGF1 encodes insulin-

like growth factor 1 and the null effect of this gene is

abnormal glucose homeostasis, but the role of the IGF1 vari-

ant in insulin sensitivity and glucose tolerance is not well

understood (Chan et al., 2014; Dupuis et al., 2010). Our data

for this variant revealed heterogeneous results (increased fast-

ing glucose but decreased HOMA-IR levels), warranting fur-

ther study of this variant’s function and potential interaction

with lifestyle factors.

Glucose intolerance, representing impaired beta-cell func-

tion and/or deregulation of the insulin signaling pathway,
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F I G U R E 1 Graphs present distributions of adjusted mean levels of fasting glucose by genotypes of rs780094 in GCKR in 1,027 participants in the Genomics

and Randomized Trials Network Study of the Women’s Health Initiative, stratified by A body mass index, B waist circumference, C waist/hip ratio, and D high

fat diet intake

is key to the development of chronic diseases such as

T2DM, metabolic syndrome, and CVD (Ainsworth et al.,

2000; Arcidiacono et al., 2012; Belkina & Denis, 2010;

McCarthy, 2010). Particularly, defects in the insulin-secretion

system and abnormal glucose homeostasis leading to IR are

crucial determinants of many obesity-relevant cancer types

(Boesgaard et al., 2010; Bookman et al., 2013; Clayton

et al., 2011), suggesting that the adiposity-related carcino-

genetic pathways intermingle with the glucose-intolerance

system (Boesgaard et al., 2010; Clayton et al., 2011;

Zeggini, Scott, & Saxena, 2008). Obesity potentiates the

effect of glucose metabolism–relevant genetic variants on

glucose homeostatic traits (Arcidiacono et al., 2012). Our

results reflect the joint effect of genetic predisposition and

relevant lifestyle modifiers, including obesity status, physi-

cal activity, and high dietary–fat intake. This could be due

to tissue-specific responses to an obesogenic environment

by producing hormones and proinflammatory cytokines that

are involved in glucose metabolic–signaling cascades and

may interact with genetic variants determining glucose home-

ostasis (Ainsworth et al., 2000; Arcidiacono et al., 2012;

Belkina & Denis, 2010); but further experimental confirma-

tion for the related mechanisms is required. Moreover, in

addition to beta-cell function–related variants, further studies

incorporating variants associated with the insulin signaling

pathway may explain these complicated mechanisms more

comprehensively.

We chose not to consider a multiple-comparison adjust-

ment in the data analysis for testing our hypothesis-driven

questions. On the basis of prior findings of 15 loci sig-

nificantly associated with glucose metabolism, we hypothe-

sized their interactions with lifestyle modifiers and explored

their modulation with genetic variants that influence glu-

cose homeostasis. We acknowledge that with many analyses,

we might have a few false positive results, and the results

should be interpreted with care, especially when P-values

are close to the assumed level of significance. We evaluated

glucose traits at one time point, which prevented us from

assessing changes over time in those circulating levels. Addi-

tionally, our study was conducted among postmenopausal

women, which limits the generalizability to other populations.

However, our sample was drawn from a well-characterized

cohort with varied covariates, which could reduce potential

confounding. Finally, all of our data underwent rigid data

QA processes, which may lessen information bias, including

misclassification.
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In conclusion, our findings support the important role of

obesity in modifying glucose homeostasis in response to glu-

cose metabolism–relevant genetic variants. Our study may

provide a better understanding of the identification of gene–

lifestyle interactions and will inform research on the role

of glucose homeostasis in the etiology of chronic disease

including obesity-related cancer and development of inter-

vention strategies to reduce disease risk in postmenopausal

women.
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