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MULTIPLE MESON PRODUCTION IN NUCLEON- ANTINUCLEON ANNIAILATIONS
leRoy F. Cook, Jr. and Joseph V. Lepore
Lawrence Radiation Laboratory

University of California
Berkeley, California

December 2, 1959

ABSTRACT
A two-parameter model is proposed for treating complicated production

problems in a relatively simple way. It is assumed that the interaction may be

characterized by a range of interaction and by a coupling strength, After the

model is developed, it is applied to the problem of pion production in N-N

annihilations., The two parametere are fixed by the experimentai data for the

multiplicity and energy spectra. It is found that all the data can be satisfied if one
chooses: the radius of interaction to be one pion Compton wavelength. Under certain

rectrictions the model reduces to the Fermi model.
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MULTIPLE MESON PRODUCTION IN NUCLEON-ANTINUCLEON ANNIHILATIONS*
ieRoy F. Cook, Jr.Tﬁand Joseph V. lenore
Lawrence Radiation Laboratory

University of California
Berkeley, California

December 2, 1959

INTRODUCTION

Since the discovery of the antiproton in 1955, 1 a large amount of experimental
work has been devoted to its interaction with nucleons. &5 The résults of these
investigations present two conspicuous Ieaturesvz (a) cross sections that are large
g:ompared to similar N-N interactions and (b) multiplicities that appear large in

light of calculations based on the Fermi model6 if a radius of interaction ie chosen

to agree with current ideas of nuclear structure, i.e. 1/p. ?

8-10

Recently, several authors have attempted to understand one or both

of these features on the basis of phenomenological models that preserve our
present understanding of the nucleon structure, and of these, two have been

moderately successful, vie., those of Koba and Ta;km:la8 and of Ball and Chew. 9

‘Thie work was performed under the auspices of the U. 8. Atomic Energy

Commission.

! Submitted in partial satisfaction of the requirements for the degree of Doctor

of Philosophy at the Uniirersity of California, Berkeley, California.

Present address: Palmer Physical Laboratory, Princeton University,

Frinceton, New Jersey.



~4- UCRL-~8841 Rev

The model of Koba and Takeda attempts to describe both of the salient
features by means of two distinct interactions. It is assumed that the actual
N-N annihilation occurs between the cores, producing pions, and in such a
short time that the pion clouds are unaffected. The resulting '"unattached! clouds
then disperse, producing additional pions. By assigning an effective core radius of
3/3pu, they are able to fit the total and absorptive cross sections as well as the
pion multiplicity fairly well. IHowever, it is difficult to understand the available
energy-spectra data on this basis. Thus if we assume that all the pions emitted are in
8 states, relative to the barycentric dystem of the N-N system, we have kR 2 0,
where k is the wave number and R is the radius of interaction. Accordingly, we
should expect for the maximum contribution, kR~ 2 or k-~ 400 Mev/c. i On thia
basis we would obtain a momentum spectra peaked around 400 Mev/c. Although
this is in agreement with an average value of E&/ 8, it is rather large with respect to
the experimental value, viz., k-~ 300 Mev/c. Koba and Takeda point out that
interactions in the annihilation region can change the energf spectra and that their
actual numabrical value for the effective c'ore radius is not to be taken seriously,
but one wonders whether any reasonable effective core radius, producing half
of the piona, will lead to the correct spectfa.‘ This is particularly true if the
cross-section data ie still to be satisfied.

The approach of Ball and Chew, although along the same lines; eliminates
this problem. They treat 6n1y the problem of cross sections and assume that the
"cores' annihilate in the sense that an ingoing-wave boundary condition is present
to represent the large probability of annihﬁation if the particles come close together.
On this basis they are able to obtain the low-energy experimental data for the cross
sections., TIurther, the results of their calculations, as expected in the considered

energy range, are very insensitive to the location of this boundary.
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Considering the success of Ball and Chew, it is not unreasonable to hope that
the pion multiplicity can also be treated without attaching special characteristics
to the nuclear core and pion cloud. However, attempts along this line of reasoning,

12,13, 14 have not lead to

e. g., by the Fermi model and modifications to it,
favorable resulta., Present results show, nevertheless, that a similar approach
will reproduce the experimental data if one includes (a) the approximate energy
dependence of the matrix eilements, which are neglected in the Fermi model, and
(b) the results of the calculation of Ball and Chew with respect to the partial waves

involved in annihilation. The present model cannot be considered a statistical

model in the Fermi sense, but under certain restrictions reduces to it.

II. THF INTERACTION MODEIL

A. Formulation of the Proposed Model

In this section we will develop a model, the interaction model, for treating
complicated production problems in 2 relatively simple way.' As the essential
physical approximation, we assume that the primary features of a given process
are produced by an interaction confined to a small volume in coordinate space and
further characterized by a parameter giving the coupling strength. In order to
implement this approximation, we begin by writing the scattering amplitude in the
coordinate representation. The resulting integral equation is regritten in terms
of some comnplete set of atates, these ntaten heing chosen for their convenience in
describing the procesza. The coefficients of these states, the partial-wave scattering
amplitudes, are coordinate integrals over the interaction operator, and we introduce
tho above approximation by restricting the limits of the integrals to a small volume

of space. Of course, these contributions must be such that the appropriate
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quantum numbere are conserved. This physical approximation is closely related
to that in the Fermi model, and in fact we shall show that under certain restrictions
the interaction model reduces, essentially, to the Fermi model.

We begin by constructing the states té describe a given system of particles.
Proceeding in the usual way, we describe physical one-particle states by a
complete orthonormal set of one-particle state vectors in a Hilbert subspace. The
subspace describing a state of n particles of different types, i.e., nucleons
pions, etec., is given by the direct product of n one-particle subspaces
corresponding to the apprbpriate type of particle. The total Hilbert space is given
by the gum of all such subspaces. We may choose as the basis set for the one-
particle state vectors the coordinate eigenvectors, and the n-particle subspace
baeis set for particle types i,..., j, is therefore

rl...rn") = {rl ) I rn" N

Of course, depending on the nature of the particles, we must symmetrize the
state vectors appropriately.
In the following, we shall confine ourselves to nucleons and pions for
which we will us>e i r } and 1 £ ), respectively. A syetem of nucleons and
pions is thus given as

i [ -2
IN® Y = % z by TN £ S
i : np' 1 '

i o Bareser i) [ BreeoX_;
| n=0 p=0 r‘} 1 P 1
100.

n n

TR S (1)
where G"np(rl‘ L £ 1°°e %p) represents the probability amplitude for finding n
nucleons and p pions at their respective positions, FpoeeerT i @l. oo %p. i
l N % ) represents a system of noninteracting particles, then, of course, we have
¢np(r1. .o '?,p) = @(rl). .o \i»(rn) Pl §,l). .o ¢(§,p). where np(ri) and &( &j) represent
the appropriate one-particle wave functions for describing nucleons and pionsg,

respectively.



-ba. UCRL~-884]1 Rev

In the Schrodinger picture, the time development of such & system of

particles is given by the Schrodinger equation,

, . 6 |
Bo+¥) ¥ =t —]¥ ),
ot
where : p ) ia the state vector for the system and 'f_ig is the Hamiltonian s

operator for a system of noninteracting aucleons and pions. The interaction operator,
i, contains all of the interaction and can include the creation and destruction of
particles.
If we congider this as a stationa,z-y-state scattering problem in which there
is a continuoue incoming and outgoing flux of particles, we have
-iEOt .

. AN
g\£9>56 %“V/‘o

which gives
. - | N
(o-Fo) [er=X 1¥)

and we apply the usual scattering formalism. We thus have the formal solution,

40 = egy v v gl X v D (2)
where ! ¢0 h and q 0(I?ZG) are defined by the equations,

(Fo-Ho) ¥ =0 (3)
and

(Bq-Hy) ., By =1 . (4)

o

and v!«» is the identity operator, As geen from Fq. {3), the state vector c}:o
represents a free particle state of nucleons and pions with a total energy Ee. and
from Fgq. {4), 0(?0) is the free many-particie Green's operator for the

parameter, ;:20.
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For definiteness, we can take :;)O ) to represgent a state of n' nucleons

and p' vions for which we have

Eg = EANJ) # oo+ E(N )+ Wlwg) +... ¢ W(up') .

Thus the probability amplitude for finding a state of n nucleons and p pions is
given by the scalar product of iw - with the subspace describing the system of
n nucleons and p pions. If we use the coordinate basis set for this projection,

then we find, from Eq. (2),

7 r ‘ Vit T En ' )
\\ l...rn gl'.-gp“w._& l‘l... g}.)}'ﬁbon'p'.)

4<rl...§p3 T olEQ V¢

or {5)

Glrpees § )= e 0(E) 8

P m'épp'

i g3 3 ] . ] ’.
".! d r 'co.d gp go(rl...gp,rl ...»gp ‘EO)

X rl!é-.. QP' ; A\ v,
4',%‘-’ |
which is an integral equation to detérmine | ¢ /) .
If we confine ourselves to the problem of particle production in collisions

and aanihilations, then Egq. (5) becomea

q;(r!...:n.gl...gp) = ‘;rdsrl‘...daﬁp' _ O(rl...ﬁp; r!'...§p'; “0)

XCrpeen 8V w0 (6)

We now introduce a complete aat of states in terms of the identity operator; these



-8 UCRL~-8841 Rev

states are energy eigenfunctions with additional quantum numbers chosen for
their convenience in treating a particular problem. Representing these states

by v and 7w for the nucleons and pions, respectively, from ¥q. (6) and using
E vy =mly ) amd By wn)

we have:

- see = W

) L ) 'l
\al(fl‘“ gp)_ n (rl..-gp‘ it ”p {E - E
0 { P

Yo M

xderl'... a’e COTPL NLANPRER)
;(<rl.'... gp' !Xll 4)_)}.

To be precise, we must of course define the Green's function properly, but we
will take the point of view that the primary effect is to impose ehergy conservation,

That {3, we know

T,==-21i8(F_ - E
a

- . +
ab T&i’b where Tab = ($a » v Q‘b ) .

B
Additienal factors will' occur, but in the actual calculations we will work only

with ratios for which we may assume that these factors balance out. Thus we

replace the Green's function by a Kronecker delta and write

‘V(rl"-gp) =

L

”En l’l...% Vl... ﬂpp SEO;, £.1+‘..+wp K“(Vl...ﬂp)v_ ¥

@
where.ls E
o

AITNOLE AP A AR D

()

r

3 3
le...np) = j d’r,'...d gp'( vl...qp
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Of course, (v 1 .v\p) is just the scattered wave amplitude in terms of another
complete set. From Eq. (7) we have for the total probability,

= 2 BE E

2
o [ | (9
vim - 0 l+"'+pl 1"

In the present development we shall propose an approximate method of
calculating ¢(vl. . .np). Rewriting Eq. (8) we have

4;(»'1...11?): /d3r1‘...daﬁp' @‘vl (rl')...«&‘ (E,p')(’rl'...@p' ;X' ¢> .

B
(10)

This is an overlap integral in the usual fashion if we interpret \/rl'. o &p' v )

as an initial state. We will adopt this viewpoint in the sense that {_rl .. ép' §Y .

specifies the conserved dynamical variables, remembering that the effect of the

interaction operator must also be included. In order to calculate q;(vl. . .np). we

approximate the effect of <r1' oo if,p' WL P > by assuming that the essential

features of the problem are given by considering only the contributions from a

small volume of the coordinate space. We will always consider ourselves to be

working in the barycentric system, and then we will take
vy R~ P Y ' -y
<r1l...§p {viq,} = Gy Gy WV olryptllE)")

= n. p - - :

G "GP COR - 7 ") B(R =6 ") Y (7). T ISIN) (N m),
(11)

where GN and G“ are of the nature of dimensionless coupling constants, C

is a constant determined by our interpretation of the initial state, i.e.,

A Nin 2 3 3
J g R e S B =1, (12)
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and Y(?l'. cos ./é\p'). S{N), and I(N =) are angular, mechanical spin, and

isotopic spin functions, respectively. We take GN. Gw' and R as characterizing

the interaction leading to a given final stsate, w(vl. . .qp). In order to distinguish

this approximation from the form in Eq. (10) we will write,

S(v l...qp) = GNnG“P jdgrl'...dsﬁp'\i‘ﬁ V) (x‘l')...¢* (Qp') gj (rl'...ép') .

b

(13)

Although we represent the effect of the interaction by the factors GN and
G, and we interpret ? (r". . .ép') as an initial state, _‘P (rl'. o &p') can
poseibly have other properties that are related to the interaction. From a field-
theoretic viewpoint, we would expect V itself to be composed :0of particle fields
combined to produce current terms. It is not unreasonable thus to expect
S(v 1 .np) to have additional energy dependence. In general, this is unknown, and
is suppressed in Eq. (13), However, since pions are involved in the procéu.

pion field operators should occur in V. We can at least include the normalization

of this field and write, instead of Eq. (13),

3 ] 3’: ] * [] -3

8 ceed g,p ¢ Vl(:.-l )...@np (Gp)
(r,'...5 ")

XEP 1 P , ' (14)
Vv ZwlR...ZG;R

) n~ p
’s(vl'”ﬂp):GN Gﬂ d

where we include the factor R for dimensional reasons. Instead of Eq. (9) we
have
P._= X &

‘ |2
np o EGE  +. ot e IS(VI...HP)I . (15)
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| In the above, P {r l. .o &p') has been taken to be a step function in the
radial coordinates, but this is not necessary and other forms could be chosen.
However, if this model is at all meaningful, the resaults should be practically
independent of such variations. In the present case involving nucleons and pions,
we should expect from other considerations, e.g., Fermi model or static model,
that R should be at most of the.order of a pion Compton wavelength. If the
nucleons are considered nonrelativistic, then the free-particle wave functions do not
have violent changes for r £ R, and we would not expect the results obtained by using

a step function to vary appreciably from those resulting from another choice.

B. Relation to the Fermi Model

Before considering the problem of N-N annihilations, we shall show that,
with additional restrictions, the interaction model essentially reduces to the Fermi
model, 6 Consider the case where the complete set consists of plane waves. Then

from Eq. (13), we write

i e n 3_ ., 3
snp(Rl.....Rn.kl.....‘Ep) Gy G‘;,jd Fyte..dlg

LTt - T ,
x 2 cee 2 I - I
aa VAP SAE R

We neglect the possible rnechanical and isotopic spin dependence of g/ (ry'... ép')

and take an isotropic angular distribution. Then from Eq. (11) we have
? (l’l'... a;—,p.) = CG‘R - tl')...e(R - gp') 9

where C, determined from Eq. (12), is
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Typical integrals are of the form,

= iy (BR)
18) = / 2 ¥ P o(Rr.p) = 4w r® - :
BR

where j‘ (BR) is the usual spherical Bessel function. Thus, we can write

-tp)/2 (e 3PP HKR) g, (kR)

« o0

)
S(R,...E ) = GG, P (‘i‘-’- R’ |

3 viatp)/2 KR kpR
and
2n. 2p . > 3 AP nt+p
P =G,y G & é . {(4v R7) %3
N EE +0.. tw
np f " RX 0’1 “v Vv iP
2 2
5y SR i GkpR)
2 2
(KIR) (kpR)

(16)

with the condition that the momentum values must be such that momentum is conserved.
Now let us impose the condition that the kinetic energy available to the

particles is small so that K,R<(C1 and kR <{1 for all i. Using the relation,

yBR_~ 0 BR \

i8R
3,6 -

P ‘4',

we have

) 41r
+p
KR & 0 2n. 2p . 3 B
P > GG, P 8y
np N n R.E. O,El-h..'ﬂn ( v‘“"'p .

and the matrix element is independent of the momenta. Passing to a continuous

spectrum and setting C'N = G =1, we obtain Fermi's result,
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4n 3 \ P
P I-f-r jd3K...d3k BE, - E =v..- ),
np (2m) 1 P 0 1 P

with the additional constraint that momentum be conserved. Of course, one
could certainly take the point of view that in the Fermi model only the product
GZ 3-;—— R3 is important. Thus if kR 1, then a two-parameter model, the
interaction model, reduces to a one-parameter model, the Fermi model.

If we had made the reduction in terms of angular momenta, the result
would not have been as clear, but since we take kR ({1, it féllows that only
S waves will contribute, and thus the matrix element is independent of the momenta.

As pointed out in the introduction, in the case of N-N annihilation, the
Fermi model yields a surprisingly large value for the interaction radius to give
the correct pion multiplicity. The above remarks show that this is not
surprising, for in N-N annihilation, if we chose R ~ 1/p, we would have
kR~ 1 to 7, and the restriction kR ({1 would certainly not be satisfied.
However, it is atill possible to use a very crude approximation in the case of
plane waves to arrive at a rough ide$ of the interaction radius, | We notice from
Eq. (16) that we are summing (or integrating) over a product of similar functions.
One should expect that the main contribution to the sum should occur when these
functions are all near their maximum values, i.e., kR ~2, Thus we consider

the average value of k, k, in a given process and estimate R. In N-N

annihilations, we can write

E
—; = .EZ + pz = .-—9_ N
M
where MM is the experimental multiplicity. Considering the relevant quantities,
this gives R ~ (0.7) L . This number does not include the effects of momentum

K
conservation or of the wave-function symmetrization, and a somewhat better

estimate leads to R ~ (0.9) 1 .
p.
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III. APPLICATION TO NUCLEON-ANTINUCLEON ANNIHILATION
A, Analygis in Terms of Angular Momenta

In this section we will treat the problem ofamultiple meson production in
N-N annihilations. In order to accomplish this, it is convenient to use as our
complete set of states those which are eigenfunctions of the energy and angular
momenta. Ball and Chew9 have shown that only certain partial waves in the
N-N system annihilate to produce mesons, thus we wish to impose the condition
that the meson system form only these angular momentum states. This is most
eaeily done by using angular-momentum eigenfunctions.

We are interested in the scattered-wave amplitudes for a system of p

pions (we shall consider K-particle production later), and from Eq. (14) we have

o P 3 3. .= . * \f(glu- @P)
S(nl...fsp) G"Jd 5,1...d ‘o $ " (;1)...¢ n (g,p) ; Zmll{...zm -
P

Since we wish to use a complete set of angular momentum states, we take

L
/.4 &ki mi ﬂi

4y B)=

§ V
By
where X1 (i) is an isotopic-spin wave function, and D is the radius of the

normalization volume. Thus we write ——— .

. Zklz...ZkPZ
S(ng- .- np) = G“. oF :
g T m, Gl )
xﬁ et T dy gy 6, d)xy G) B (17)
1 P t, ®b)Yy o 4, v 2R 2w R
Zklz...?.k 2 =
- (hevom) . (18)
N/ oP 1%
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For the probability we have, from ¥qs. (15) and (18),

[ 2

!
i
H

P = z F iw S(nye . m) | .

nl...% 0

which becomes, in the limit D - & |

1*. . +wp

{

2 2 1 2
dk. ..k “dk S(Eg - wp-. .m0 1 S(nl...qp)g .

" 1 ;1

4

2 P ,.
P=(2) 223z /k

P m B
(19)

Thus, in order to determine the probability for a state of p pions, it is necessary

to determine the g(n‘. . ﬂp)- However, before proceeding to that calculation, we
must first recognize that the pions are bosons and symmetrize the wave functions.

We accomplish this approximately in the usual way by just including the normalization

factor. Using Eqse. (17) and (18), we find

CoNy ) 2
| n ! |
T Pi M ; 7 a3 3,
S('ﬂl... 'qp) = G‘“ . "'—"“""""'"_""p'. ': // d gxoood ’;p
‘- n,; * ﬁ 1(4‘ 4 )
T . » AR
X2 g )Y (800", ) e B
i /] wR...?-prl

i 1
(20)

where N'r; is the number of times a particular state, (k £ m f), occurs, Thia
approximation has the effect of neglecting poasible cross terms in {'ﬁ' E Z. but
again since we will always work with ratios we may assume that this effect is small.

Now consider P ( él. .o gp). From Eq. (11) we have
7 N . = - - N o 2 '
¥ (?;1. .o i:,p) C G(R' 61). . O(R ,""p) Y(gl. o ;p) I(w), (11')
where Y({ 1 gp) gives the angular dependence and is thus a superposition of

angular momentum states. Thus let us write,

Y(El...?ép)z z a My Mg 2, (21)

Y Gge s e
J‘.)M J 1 P

J
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If we wish, we may also write

MA A M M A A :
E, ...g zJ- A‘ Y . LN ] ] ZZ ~
Yy (byeee8p) = §p0e3, Aapeesy Yoy (). 8p) (22)
where Y M. @ /Q) is an eigenfunction of J, M, jJyec.j_ .
J Jl...jp i P 1 p
We can form YJMj . in the usual way as
l...Jp
: o e x .M- 0..‘ e ae » e &
e, @l AR oM Jyeedy peecdpe Bpee
P “l"'“p
By Koo
¥, L @E)..Y, PE). (23)
jl jp P

Equations (21), (22), and (23) allow us to express the amount of various partial
waves in the N-N system contributing to the annihilation, the possible values of the
pion angular momenta, and their m-value contributions. We write the isotopic spin

part in an analogons way and obtain, after the angular and isotopic-spin integration,

T,y M2
Stne.on)=C e r,lm‘p(kl...kp)
Pt

¥ M, M . ,
X 1384 25 Ay ‘1""p J'Mf‘x'"‘p ‘x""p ml"'mp>]
xg'x blzBIz I1;1...1 1...1;B...B (24)

{Ix I xO l..'.'l 5' coe e o e &y o0 p).

-]

where we have set

G

2
(k (Y .k ) = I[ ['—-—-‘E‘—_ g

2 1°°° ‘p 1 P i /TJ;E—Q s

Thus from Eqs. (19) and {24), we find

2, 2 P 2 2
P = Co ) [kl di ...k Sl S(EG - wy-e. .- )

2

2| 21 1 (2 1 2
X E z oz’ "'JM IAJMx 1 bt | By 7y 1
J’M I.las ll...‘p 1
TN, 1) 12
n
X F (k,...%k ) (26)
P! ‘l""p 1 P
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where we have used the relation,

< . 51 1. y
E \J’M, 1 -‘p l Ipmxo.omp:)‘\J .M' ‘looo-‘p ‘l...ipml...miﬁ
ml...mp

l"o looo

"

-

= Sy50 Pmme

At large distances we take the N-N system to be a plane wave; thus
-only M = 0 values will contribute. ¥urther since we consider an averaging over
the N-N states, we consider the A and B terms to be independent of the
various variables and set them equal to one. Finally we impose the results of
the calculations of Ball and Chew and take a 7 and bI to be one or zero
corresponding to whether a given N-N state, (J,I), will or will not annihilate,

The initial charge state, of course, determines Iz. Because of the normalization

of the angular functions, we take c? - (R3/3)'p, and thus from EFq. (26) we have

. 3P 2 2 ‘ .
pp — (6/“3. )J kl dkl. ookp dkp 5(r0 - wl-. s e - up,
B N 4
“ﬂi‘( 1’]% 1 ‘Z
P Pl e 'F (ejoo k) |
p Y B L
J.I  f£....1¢ 1 p

1 P

(27)

where &' means the sum over the states (J,I) leading to annihilations.
J,1

This can be cast into a more convenient form by considering summations of
the ll. - ‘P on F, - 1 (kl. oo kp) in Eq. (27). Since the integrals are independent
(except for the energy delta function) and we integrate over all the momenta, we
see that F is invariant under such permutations. Thus ioxf a particular selection

of the fy..., zp. which we shall call the set { { t i, F gives the same

K, l' * o p
]
contribution. Since there are —Ei possible permutations, we have
P (N_') v
n

n
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=7 lF k...k)|? =% R ___ |& (k,...k
ll...lp Il""p 1 p sots TI‘(N“") 2{11...1‘3) 1 p)I

n

and thus arrive at
3.p 2 2
P = (6/mR )fkl dicy. . R Pk B(EG < 0 -l - )

z . (28)

X pd

J,I sets

iy ey |

B. Calculation of the Probabilities

In order to calculate the probabilities, it is convenient to inveafigatc the

properties of the quantities F {‘ ) } (kl’ .o kp) . From the previous section
1 P

we know

G P f @

- b s 2 . 2 . .

F{l 1 £ } e j ®1 dg’il' °t f gP dg? ' 1 (kl{"l)
P } ZwlR. . ZwPR 0 4]

"j‘p (kpgp)e(a - ) BR - ﬁp) '

(25')
and thus we have products of integrals of the form,
& - kR |
[t 5, kE)o®-t)e A [ p3, pd
A U T T L A Py Jp 1Pg)AP;
0 i kl 0 i
x‘i (i, R)
n——-—-—g-—-k (29)

i

2
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The quantities K, '(kiR) have been plotted in Fig. 1 for £ =0,1,2. From
i
Eqs. (28) and (29), we can write

= (6/m)PR Gﬁ""’fa,(klm.. j 4 R) 8(FQ R - @R - ... - wR)

' 2
R R
x & 2 —hr ) .. “tp P :

J,1 sets . 4
Zwl Rk 1 R) &upR(kpR)

This becomes, 16 2fter introduction of the variable ziz = kizRZ + p.zaz .

ppa(b/«)l’cw"‘? A fdz ['dz BEGR -2, - ... -2)

J,1 sets b

/uR /}AR

X All (zl;pR). .o A.‘ (zp; uR) , (30)
o
where

| K, 2 (/2% - u®r%)

Ay (5 uR) = —> : 31
i

2 2,27 8/2
22,2 - u2r?]
In Fige. 2a and 2b we have plotted A,(z;uR) for R = 1/2p and
Raz1/p, respectively, for various values of 1,

Although it is possible to perform the integrations in Eq. (30) explicitly, it

is more convenient to approximate the functions Al (zsi i HR) by Gauesians. Thus let us
i

take
- 2
z - ?J“
Al(z;uR) = Hlexp J- SR . R s (32)
§ a
a ! '
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where H!(pR). ?l {(¢R), and a, (LR) are constants independent of 2z, and we

impose ths condition

2

; 2 -8 =
[ dzH‘ exp - ﬂ;—-—-—-‘-—] } =/ Ag{z;pR)dz = A‘(pR) . {(33)
' a
pR ! kR

However we notice

pR -0

and thus, from Eq. (33) we obtain

L AR

ay(uR) =
f V= H, (4R)

where A‘ (kR) iz determined by measuring the area under the curves in Fig. 2

with a planiméter. and we take

H ,(uR) = Max [A, (25 pR)}
which occurs for = ='££ . Thus H,( pR), Z,( pR) and a,(pR) are determined,
and A‘ {z; KR) is represented by Gaussian forms. To show that this approximation
is not a bad one we have plotted the appropriate Gaussian for £ =0 and £ =3
in Fig. 2a as dashed curveas.
From Eqs. (30) and (32) we thus write
P, = (6/m)° % = HEGR, BR; £). .4 ), (34)

JII sete

where
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I(EOR,;&R;II. . .Ep) = dzl. )Z dzp S(FOR -z-.. -zp)
HR

P ,
| (z. -%.)) ¢
X l Hy exp| - -1
i a,
i=l t

This integral can be well approximated (see Appendix} and gives

Ay (MR}... Ag (kR)
HEGR pRi 2. L) = 1 P

1 P \/’;‘

exp| -

\/az+... +at
1 p

Table I lists the appropriate quantities for R = 1/p and 1/2p,

The value of I(EOR. pR; L.... lp) was calculated on the IBM-650

1
computer for various values of £ for R = 1/(3u), 1/(2n), 3/(4n), and 1/p.
Further, these calculafiona were done for an incident antiproton with a laboratory

ummkineticenérgy of 200 Mev, and all following resbulta are for this energy.

To arrive at the probabilities, we must impose the various conservation
laws. For a given J and I of the system, only certain sets of £ vailues are
allowed, these { values being determined by the seiection rules. The selection

rules have been discussed by many authora”' 18

and are given in Table II. Further,
as pointed out earlier, Ball and Chew have shown that not all combinations and
values of J and 1 will contribute to the annihilation. In Table II only those states

with a transmission coefficient of one will contribute. Using the results from the
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Parameters for the Gausasian approximation

R=1/p
t A, 1) H,(1) a, (1) 2,(1)
0 0.0939 0.0533 0.9%2 1.82
1 0.0706 6.0277 1.438 3.1¢
2 0.0520 0.0170 1.725 4.62
3 0.0403 0.0130 1.750 5.80
4 0.0320 0.0090 2.007 7.07
5 0.0258 0.0063 2.310 8.20
6 0.0225 0.0046 2.753 9.40
7 0.0210 0.0037 3.205 10.50
8 0.0205 0.0035% 3.302 11.70
9 0.0205 0.0035 3.302 12.90
R=1/2n
t Al(l/Z) Hz(l/?.) ag(l/Z) ?;'i(l/?.)
] 0.1030 0.0533 1.085 1.60
1 0.0746 0.0277 1.513 3.05
2 0.0550 0.0170 1.812 4,60
3 0.0420 0.0130 1.901 5.80
4 0.0325 £.009¢ 2.029 7.07
5 0.0258 0.0063 2.310 8.20
6 0.0225 0.0046 2.753 9.40
7 0.0210 0.0037 3,20% 10.50
g 0.0205 €.0035 3.302 11.70
9 0.0205 0.0035 3.302 12.90




~-23- UCRL-884] Rev

Table II

Table of selection ruiles, a

1
0 1 2 3
n
1. i 3. 1
s s, 3’8,
b 3.1 3_ 0 1.1 3.1
even P lPo 1?1 3 Pl IPZ
3.0 3.0 1.0 3.0
5 3 Py 3 2 1 P2 3 93
e 1.1 3.1
odd P 350 ES1
3_ 0 1. 0 3.1
D 1 57F 1 F1 3 B 3p 1
3 P,
30 1 1.0 1.0 3.1
1 2y 1 P, 3 D, 1 23
5 T

2The notation employed for 1 LJ is as follows: S, is the spin state;
I, the isotopic spin state; 1., the orbital angular moremtuia; T, the transmission

coefficient; J, the total anguiar ranornentum.

icr n

i

2, the diagonal terms are removed.

3, 33P0 does not coatribute.

1]

¢ For n
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1B8M 650 and the selection rules as modified by Ball and Chew, we can now
calculate the probabilities, How the states are selected will depend on the initial
N-N state. The following results are for the case of P-P annihilations. The
probabilitiea are given in Table Il for the cases when R = 1/(2u), 3/(4n), and
1/p, where G_ is adjusted to give a multiplicity of 4.90.

At thig point no mention of momentum coneervation has been made, but
the quantities in Table I include it in an approximate way,” Fermi hae calculated
the statistical weight for n outgoing particles without momentum conservation,
and Lepore and Stuart have calculated th‘e same guantity with momentum con-
servation. 19 Gall these SnF and SnL g* Fespectively. By including momentum
conservation, the possible final states are restricted, and thigz, of course, leads
to a reduction of the statistical weight. Although the statistical weights have
little meaning in themselves, their ratio, San/ Sn 5 should give the fractional
reduction of the statistical weignat in an absolute sense., Since the probabilities
are proportional to the statistical weights, thie ratio should give 2 good approximate
evaluation of the reduction of the probability ratios. JFwven though the Fermi model
is not as general as the present :nodel, the {ractional reduction produced should be
compatible with the apirit of the present calculation. ,

In order to calculate thie fractional reduction, it ia convenient to use the
explicit- formulas of Lepore and Stuart which apply only to extremely relativistic
particles, Of course, in the cage of annihilation, 211 of the pions are not
relativistic, but on the other hand, the effect i3 most pronounced for small numbers
of pions, in which case the particles are at least relativistic. Further for larger
multiplicitiea, the probabilities are small and do not greatly influeance the value of

the multiplicity. The explicit forrmulas are
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Table 11

Probabilities for finding a certain number, p, of pions.

Pp, R = 1/(2p) pp.n = 3/(4p) Pp. R=1/p
0.024 0.016 0.014
0.151 0.221 0.236
0.260 0.213 0.190
0.220 0.208 0.235
0.174 0.179 0.144
0.091 0.100 0.104
0.046 0.046 0.055
0.018 0.014 0.017

0.008 0.004 0.005
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R IEBn-l

SnF =

2u
 (3n - 1) %

and

SL8° 2! fan - 41 g7

allS
w202 y40-4 50 1) (20 - 2)t (3 - 4)Y

According to the previous remarks, we write,

pW¥.p WO Snlﬁ
n e} ]
nF

where in and in° represent the probability for finding n particles with

and without including moinentum conservation, respectively. It is coavenient to

work with,
pnw . p Wo
b = Rza n .
w -y WO
PZ ’*)Z.
where
n ni.S SZE‘
RZ =
nkF SZLS
We find,
R, =1 R, = 1131
3 58
RZ = 2.45 i“Z = 14,09
4 _ . 9
RZ. = 4,26 RZ = 17.14
R,” = 6.19 k19 20.28
8.6 =872
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C. Multiplicity

-

As seen in Section IIIE, the probabilities depend on two parameters,
Kk and (, which in Table III have been adjusted to give a2 multiplicity of 4.9. In
order for the model to have any physical meaning, it should satisfy at ileast
two sets of data. In the case of P-? annihilation, these two sets are taken
to be the pion multiplicity and energy spectra.

The total pion multiplicity, A, is given as

P

N n
M(G,R) = 3—%—1—%:' ’
4]
nfz _5_2_
where N is the maximum number of pions that can be produced compatible

with the energy , E In Fig. 3, the results of the calculations are given by 3\

0
plotting the mmuitiplicity against GZ for curves of constant R.

Since only charged annihilation events are measuvred experimentally, it is
of interest to give probabilities for various numbers of prongs and for the charged,
M*, and uncharged, M°, multiplicity ae well as the total multiplicity. In Table IV
we give the results for the case when M = 4.9 with R = I/;L and 1/(2y), where G
is adjusted appropriately. Column Il gives the probability of finding a given number
of prongs resulting from an annihilation with a certain total number of final particles,
n. Column Il gives the same probability weighted tc give the probability of finding
a certain total number of final particles. At the bottom of Column II, we find
the probabilities for finding a particular number of prongs. The probabilities given
for’ various numbers of prongs are in agreement with the present experimental
rea;u.lts. although the two-prong aanihilation evénts seem to be somewhat high. The

fractions of charged particles resulting frorm a particular mode are given in Column Il

’f‘hese fractions lead to the final result, ) !
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. , ME = 3.24
R = 1/(2p) WO - Lo
and
R = 1/a MZ: 3.21
MY = 1.69.

This is in agreement with the present experimental results. Given the total

number of charged particles resulting from a group of annihilations, Colurnn IV
gives the fraction contributed by annihilations resulting in n final particles. These
are to be compared with the probabilities given in Section IIIB, where 2 amall

difference is observed.

D. Enerpy Spectra

We have scen in Section lIIC that it is possibie to fit the experimental
data for the pion multiplicity by an appropriate choice of both G and R. In this
section we shall show that the data available on the energy spectra can alsc be
described, and leads to definite values of G and K,

The energy distribution of the pions is

2p

P (E R, pR; =z, )dz, = (/¥ G oz ' P 35
plFoRs bR npde; = (6/mP G 2 2 —=F (35)
» l-.p ‘2_: n.
-

: ' 2 ¥ - Z "It. s : . ?
AAEI (zl,}u\) I(;.QR 1’ ;,3,1?2 Ep)dzl

We have scen from ¥ig, 2 that Aﬁ (zl; pR} is effectively zero except in a given
i
region; thus 23 an approximation we take

RoR =20 BR: £, 0 ) 22 HFR - unR; Ly ).



Table IV

Frobabilities for varions prong multiplicities

Column Ia

" 0 2 4 6 8 10
2 0.167 0.833 Y 0 0 Y
3 0.100 0.900 0 0 0 ¢
4 2.035 6.567 0.4060 Y 0 0

5 0.014 0.338 0.648 0 0 ¢ v

O

]
[ 0.005 0.176 0.635 0.184 0 ¢
7 0.002 0.086 0.503 0.410 0 0
8 0 0.10 0.19 3.700 G.10 ¢
9 0 0 .05 0.500 0.450 0

10 Y G ¢ 0.15 0.60 0.15

| c

O

: »

%1 am indebted to . Desai, Lawrence Radiation Laboratory, University of California, Berkeley Y

o«

o

for supplying these nunbers. Those for n = 8, 9, and 10 are estimates. »

=

s

<

Table IV cont.



Table 1V (Continued)

Column II
! !
g R = 1/(2u) R=1/p
n .
0 2 " 6 8 16 o 2 4 6 8 10
2 0.004  ©0.020 0 0 0 o | 0002 o.012 0 0 0 0
3 0.015  0.136 0 0 o 0 ! 0.024  §.212 0 0 o 0
4 50.009 0.147  0.104 0 0 ¢ 0.006 0.108 0.076 0 0 0
5 0.003  0.074  0.143 o 0 0 0.063  0.079  0.152 0 0 0
6 0.001 0.031 0.110  0.032 0 ¢ . 0001 0025 0.091 0.026 0 G
7 0 0.008  0.046  0.037 0 0 0 0.009 0.052  0.043 0 0
8 ¢ 0.005 0.005 0.032  0.005 0 0 0.006  0.006  ©.037  0.006 0
9 0 0 0.001  ©.009 0.008 0 0 @  40.001  0.009 0.007 0
10 o 0 o 0.001  0.005 0.00! 0 o 6 0.001  0.003 0.001
|
Total
0.032 0.421  0.409 C.111  0.018 0.061 0.036  0.451  0.378  0.116  0.016 0.0C}

Table IV (Cont. )

nOE-

AY 1HB8-THON



Table 1V (Continued)

Column Iil

I ; T T
: R = 1/{2u} ; R=1/n
a .:
o 2 4 6 8 10 g 0 2 i 6 8 10
i
; ! o
2 o 0.020 0 0 0 0 0 6.012 0 0 0 o
3 o 0.091 0 0 0 0 , 0 G.141 9 0 c 0
4 ;u 0.074  0.104 5 0 0 0 0.054 ©0.076 0 0 g
5 A 0.030  0.115 9 0 6 Lo 0.032  0.122 0 o 0
6 o 0.010  0.073  0.032 0 0 o 0.008  0.060 0.026 O ol
7 1 o 0.602  9.026  0.032 0 c |0 0.063 0,030 0.037 0 o
3 1y 0.001  0.003  0.024  0.005 o | 5.002  0.003 G.028 0O 0
9 ‘0 o 0 0.006  0.008 0 z 0 0 0 0.006 0.007 0
10 io g 0 0.001  0.004  0.061 . 0 0 0 0 0 0
i * ;
Totai l
o 0.228  0.321  0.095 - 0.017  0.003 Jj 0 9.25¢  0.291 0.097 0.015 0O

AN [FBA-"THON
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Table IV (Continued)

Colwmn IV
R = 1/(2p) R=1l/p
0.030 ' 0.ci8
0.138 0.216
0.269 0.198
0.219 0.236
0.174 0.144
0.091 ¢.107
0.050 0.060
0.021 0.020

0.009 0
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This allows us to calculate these quantities on the IBM-65C computer in exactly
the same way a8 was done for the actual probabilities. In this case we obtain the
energy spectra as a superposition of the energy depeandences of the various angular-
momentum functions. The coefficients are deterrnined primarily by the values of

the I(EOR - il. pE !2

. lp) and by the fact that we have

[+
ooy ReuX) = : TR R oz .
IP(I.OL,HR) E i p(}...ork, pi; ai)dél .
R

The resulting kinetic-energy distributions, }?(LOR, uRiw), =ure plotted
in ¥Pig. 4 for R = 1/(2x), 3/(4), and 1/p. The calculations hecome quite
tedious for R ) 3/(4p) aand the curve for R = 1/n is estimated by asswming that
the increasge in higher angular rnomentum states is linear. Although this is not
correct, the curve for R = 1/u should not be toc different from that calculated

explicitly. [For the total spectra, the acteal contributions are

L

¢ 1 1 1
Py » 5 jeldws o [7.59 Ay lwr = )+ 2,29 Ao =5 )
1027 Afwr A ) 40,31 A fer — ) | dw
. Zo vy d oA -3 e "z" B ?
3F .
p—2 , L gaws 2 58 By (e 21 a6 Ayl 3
4p 4 dp 4 4
2 3 . .3
£ 2,14 Ajfw; 2 ) 40,69 A fw; = )4 U0 Afw =) dw,
2 3 4 -
4 4 4
and
Fo l T
Pl , 1, Wjdw= -~ [ 4,41 A (w; 1) +5.23 A {w; 1)
B b 0 :

£ 3,22 A e 1) + 109 A (1) ¢ 007 A e 1)) dw,

which are normalized as, jP(I-,DR, Wity widw = 1,
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These distributions are io be compared with the recent experimental
data of lorwitz et al., 20 Agnew, 21 and Goldhaber et al. 2 in Fig. 5. Although
the experimental data has a range in incident energy of from ¢ to 500 diev, the
fractional change in the total energy in the barycentric system ig small, and it
is reasonable to compare our calculations with their data. It shouid be pointed
out that the data presented is the charged-pion spectra, while the curves in
Fig. 4 are for both charged and uncharged pions. However, as mentioned in
Section 1lII{, the vrobabilities for caarged wnd uncharged pions do noi differ
appreciably, and thue, within tae framework of the present model, we can expect
their spectra to be essentially the same, The data of Coldhaber et al, includes
only 4- and 6-prong events, but the effect of the 2-prong events should be\,s’man.
just raising slightly the interrmediate section of the histograrn (300 to €30 Mev).
The comparison shoews that the results of the choice R = 1/y vive 2 good
representation of the data, particularly for that of Coldhaber et al., where the
statistics ars best.

It ie interestiuy to note, however, that the characteristic feature of the
lower-energy data is found in the height of the distribution &t the moest probable
kinetic ¢nergy 175 Mev. Ii this has statistical significance, it can poesibly be
related to the selection rules in the angular omentum states., [t has been pointed
out that for annihilations at rest the predominant angular momentum states
contributing are § or P, 23 Thus we should expect a rezlative increase in S
and P atate pions which will have the effect in the theoretical curves of raising

the maximum while reducing the iatermediate and tail regions,
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IV. CONCLUSIONS

As pointed out in the introduction, the nucleon-antinucleon interaction
shows two primary effects, viz., an "anomalously' large total cross section
and pion multiplicity. However, the data on the total and elastic cross sections
can be understood, as shown by the work of Ball and Chew, 9 in much the same
way as the nucleon-nucleon interaction in the energy range where the use of the
WKB} approximation is justified. The present paper shows that it is also possible
to understand the data available concerning the pion multiplicity as well as the data
concerning the energy spectra of the emitted pions, while still maintaining that the
interaction takes place in a volume characterized by a radius of one pion Compton
wave length. This is accomplinl;xed by meaking two physical assumptions, The first
of theee is that only thoae partial waves with a transmission coefficient of one,
as obtained from the results of the calculations of Ball and Chew, will contribute
to the production of pions. This has the effect of restricting the number of possible
initial etates as seen in Table II. The other consists of including, in an approximate
way, the momentum dependence of the matrix elements involved in the annihilation
reaction. This momentum dependence strongly influences the probability of
finding a particular number of pions with assigned values of the angular momentum,
arid thus is the essential feature in obtaining the theoretical energy spectra.

In connection with these remarks it is of some interest to estimate the
relative importance of these two physical characteristics, viz., the matrix element
is momentum-dependent, and only certain partial waves are annihilated. If we
' ignore the momentum dependence, then in accordance with the remarks in

Section Il we have a one-parameter model with an effective volume of



-
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R, G) = Gz( 2. Rs). However, using the curves in Fig., 3, we see that this
3

effective volume varies; in fact, to produce a multiplicity of 4.9, we have for
AR, G)

1

o2, 6) =60 (L L 12)=13¢0
0 0
B 2p
3 1
n( .+l 8’3 4'2 Qo Q("'"""". 19)’:004 QO.
4p . 3p
where QO = i ] (l/ )3. It seems reasonable to assurme that these differences
3

are primarily due to the restrictions on the annihilating partial waves, since the
momentum dependence has been removed. However, using the Fermi model to
give a multiplicity of approximately five, we must have © -~ 10 5'20 . Becauee
we have taken into account approximately the effett of the partial waves, it appears
that the discrepancy between 10 1'20 and the figures given above is due to the
inclusion of the momentum dependence of the matrix element. Therefore, we
sce that for R~v1/p the two physical characteristics both produce about the
same effect, i.¢., to reduce the effective volume, but for R< 3/(4p) the
restrictions on the annihilating partial waves become the predominant feature.
There remain two problems in meson-producing annihilations which should
be investigated. Recently, measurements have boen made on the angular
correlation of the pions; in particular, the angles between the emitted pions
have been measured in two charge combinations, 24 On the basis of momentum
conservation, it is possible to obtain the angular distribution of these angles,
neglecting the charges. In the pairing by unlike charges one finds approximate
agreement with the theoretical curves, but for the like charges a marked dis-
agreement appears. It has been suggested that this phenomena may be the result

of a final-state pion-pion interaction, but it has also been pointed out that the effect

of the Boee statistics should not be overlooked. This question is being investigated
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in order to determine whether or not there is evidence for a .'ll-ﬂ interaction.
Our calculations do not include such an effect, but one should expect that even a
final -state interaction would not change the results in Section Iil in an essential
way since the correlation functions given by Kalogeropoulos are not very different
for the two charge combinations. 24

The second problem to be investigated is that of strange-particle production.
The present experimental data show that approximately 5% of the annihilations
involve K particles, this factor depending slightly on the incident energy. Although
the interaction model can treét K-particle production, the reeults would not be
definitive and have not been treated in this paper., At present, essentially no
information is available concerning the energy spectra of pions produced with K
particles in annihilation. Thus we have only one piece of data to fit two parameters.
If it were possible to relate the coupling strength, _ G, to the various coupling
constants in field theory, then it would be possible to estimate the effect on the
basis of present data. For example, if one were to assume gsome relation between
the G values and the field-theory coupling constants, and that the form of the
w-N and K-N interactions were the same, then GK would be approximately
known, and the radius for K«partide production would then be chosen to agree
with the experimental data.

As indicated in Section 11, the present model can be used to treat any
production problem, and it may be of some interest to examine the data available
on pion production in N-N collisions. It is known that the Fermi model does not
give remarkably good agreement with the experimental data, and it is to be hoped

that the same parameters would satisfy the N-N data as have satisfied the N-N data.
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APPENDIX

We wish to evaluate

I=LE R, #R; zl...zP)z [ dzl...J dzpB(EOR—al-... -zp)
R KR

r "2 12
(, 2y -2 J iz =-z_!
AH, ...H, exp ( . ") P ee. expl el ,
! P ] * *p |
We begin by noticing
- 2 - 2z
2, =%, z2_ -~z :
\‘co-H! exp - "‘R-"—'E“ ;

[ ] [ -] | : . -
1 de,.../ de_H eXp’ - e :
1 J P e, -
- O - 90 i : ! v i P ' f

A Q(EOR-zi-.,. -zp).

and taus we have

1 o-i¢ o © . - -
[= — da [ dey... [ dz_ &REQ-Ep-... m)
2% I /
wei6 J-oo /--a
z 12 o] - 2

z1 - 5 R T
Kﬂ‘ pr ’ - ) K‘I! exp ¢ - :-k"_""‘;" [

1 ! a ! p a

1 p l
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w.i¢ .
“!“-‘ H‘ . e oH! da QlaREO
Zn 1 P
_.._ie.
-]
. 2 . -~
X dz, exp [-(zl/al) - ia(z + zl)] “es
- Q0
«©
/dz exp [ (= /a) -ia(z + % )]
Wik -ia(RE Zy oo -2 )
= am— H oooH dq e P
2 1 £
nw l P
-®w-ig
A exp [ (aal/l) - (aa_/2) ]
oD /zl i K & « - iua Z“E
A t:lzs1 exp -{ + 2221 dz_exp| -[ B +—E
a 2 a 2
A\ : ]
-0 - T
: w-i¢ ,
= ""l'-" H‘ -ooH‘ ‘ d“exp [__-id(REO-{l-o.. ";
2n 1 P P
~waie€
-(52/4) (az«t» +a2)ﬂ up‘/za a
l LI BN 3 p J l..l p

= -2
~(RE, «2, = ... =3 ) ‘r
S “p/ZH a,...Hd, a_ exp 9 1 2.
2n ‘l 1 ‘p P a “ 4+ ta”
| 1 b 1
Waig
A da exp ( - 3—-\/alz+ ..+a2
2
waie
2
- -z
p)




-40- UCH L-8841 Rev

— — 2
"(RF - Z - .o-z)
= L up/z!-ll aj...H, a exp g 1 > P
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Jake.. 122
1 2
Ay BR) ... Ay (R)
= p
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A
A

which is the desired resulit.
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LEGENDS

Fig. L K,(kR) vs. kR for £ =0, 1,dnd 2,
Fig. 2. (a) A, (z,1) vs. z for £ =0,1,2, and 3 (solid curve)} with comparison to
Gaussian approximation for 4 = 0 and 3 (dashed curve).
(b) A (z, 1/2) vs. z for £ = 0,1, and 2,
Fig. 3, Multiplicity vs. (32' for constant R values.
Fig. 4. Energy spectra as a function of the barycentric pion kinetic energy for
R = 1/p, 3/(4p), 1/(2p), with G values chosen to give a multiplicity of 4.9.
Fig. 5. (a) Bpectra data of Horwitz et al. ;20 6 events at an average incident
energy of 50 Mev and 75 events at rest. (b} Spectra data of Agnew;Zl
100 events at an average incident energy of 80 Mev and 30 events at rest.
(c) Four- and six-prong spectra data of Goldhaber et al. ;2'2 450 events

at an average incident enoergy of 450 Mev and essentially no events at rest.



>

10.
l1.

12,
13.
14,

15,

16,
17.

-43- UCRIi.-8841 Fev
FOOTNOTES

Chamberlain, Segré, Wiegand, and Ypsilantis, Phys. Rev. 100, 947 (1955).

Chamberlain, Chupp, ¥Fkspong, Goldhaber, Goldhaber, Lofgren, Segre,
Wiegand, Amaldi, Baroni, Castagnoli, Franzinetti, and Manfredini,
Phys., Rev. 102, 921 (1956).

Agnew, Chamberlain, Keller, Mermod, Roger, Steiner, and Wiegand, FPhys,
Rev. 108, 1545 (1957).

Goldhaber, Kalogeropoulos, and Silberberg, Phys. Rev. 110, 1474 (1958).

Chamberlain, Goldhaber, Jauneau, Kalogeropoulos, Segre, and Silberberg,
Phys. Rev. 113, 1615 (1959).

Enrico Fermi, Progr. Theoret. Phys. 5, 570 (1950). - ;

We always take A=c= 1, and p is the pion rest mass.

Z. Koba and G. Takeda, Progr. Theoret. Phys. 19, 269 (1958).

J.S. Ball and G. Chew, Fhys. Rev, 109, 1385 (1958); J.S. Ball and
J. Fulco, Phys. Rev. 113, 647 (1959).

Ziro Koba, Progr. Theoret. Phys. 19, 594 (1958).

Bhabha has argued in a similar fashion, although in a slightly different sense;
see Il J. Bhabha, Proc. Roy. Soc., A, E_L?_,_Z?B {1953).

R. Gatto, Nuovo cimento 3, 468 (19564,

George Sudarshan, Fhys. Rev. 103, 777 (19561.

5. Z. Belen'kii and L. 8. Rozental', Soviet Physics (JETP) 3, 786 (1956).

Although not explicitly written out, such integrals are always considered to
include sums over the variéus spin spaces.

Again, since we will work with ratios, we have dropped a factor of R.

Charles Goebel, Fhys. Rev. 103, 258 (1956).



18.
19.

20.

21.

22,

23.
24.

-V UCRL-8841 Rev

T.D. Lee and C. N, Yang, Nuovo cimento 3, 749 (1956). ' g

J. Lepore and R.N. Stuart, Phys. Rev. 94, 1724 (1954); see also Richard
H. Milburn, Revs. Modern Fhys. 27, 1 (1955). |

Horwitz, Miller, Murray, and Tripp, Low-Energy Antiproton Interactions in
Hydrogen and Deuterium, UCRL-8%91, January 7, 1959.

Lewis Agnew, Antiproton Interactions in Hydrogen and Carbon Helow 200 Mev
(Thesis) UCRL-8785, July 1959.

Goldhaber, Fowler, Goldhaber, Hoang, Kalogeropoulos, Powell, Fion-Pion
Correlations in Aatiproton Annihilation E.-venfs. UCRL-BBM. July 14, 1959,
and private communication. The experimental histogram consists of at
least 80% hydrogen events. Details concerning the selected sample are
available in the paper quoted.

Day, Snow, and Sucher, Phys. Rev. Lett. 3, 61 (1959).

Theordore Kalogeropoulos, A Study of the Antiproton Annihilation FProcess
In Complex Nuclei (Thesis), UCRL-8677, March 6, 1959; see also

reference 19.



Ol

Sl

1d

Si

8l

0




p=3

J= 2

006 |-
0.051—
004

0.02}-

(2/1°2)Ty

00l



p=2

| 2
|0
8




000! 006 008 00.

009 005§ OOt

00g 002 00l O

! [

T T 1

cOlxd

¥ m:o_ Xm



M — oy e S . 3 »,-Mw'».’-.::._ -3 gy SN
P - -

= P S = an

NI

g
o

N o ‘W;~‘; ——
\

B e

TN N T T e
o~ : =

et N

R ESSDE

« |
4x10°— e e T
3x 107 (Cl) e
2 X I()ﬂ—— g —

3x10°f— s
waee | 1
{ o)
2x|(33— ope
Tess —
—

o NN = T

0O 100 200 300 400 500 600 700 800 900 000 100 1250
| T7r(MeV)

"9(’5*4' 219

S

>





