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Abstract

Linear stability of Einstein metrics and Perelman’s lambda-functional for manifolds

with conical singularities
by

Changliang Wang

In this thesis, we study linear stability of Einstein metrics and develop the theory
of Perelman’s A-functional on compact manifolds with isolated conical singularities.
The thesis consists of two parts. In the first part, inspired by works in [DWWO05],
[GHPO03], and [Wan91], by using a Bochner type argument, we prove that complete
Riemannian manifolds with non-zero imaginary Killing spinors are stable, and provide
a stability condition for Riemannian manifolds with non-zero real Killing spinors in
terms of a twisted Dirac operator. Regular Sasaki-Einstein manifolds are essentially
principal circle bundles over Kahler-Einstein manifolds. We prove that if the base
space of a regular Sasaki-Einstein manifold is a product of at least two Kéahler-Einstein
manifolds, then the regular Sasaki-Einstein manifold is unstable. More generally, we
show that Einstein metrics on principal torus bundles constructed in [WZ90] are
unstable, if the base spaces are products of at least two Kahler-Einstein manifolds.

In the second part, we prove that the spectrum of —4A + R consists of discrete
eigenvalues with finite multiplicities on a compact Riemannian manifold of dimension
n with a single conical singularity, if the scalar curvature of cross section of conical
neighborhood is greater than n — 2. Moreover, we obtain an asymptotic behavior for
eigenfunctions near the singularity. As a consequence of these spectrum properties,
we extend the theory of Perelman’s A-functional on smooth compact manifolds to

compact manifolds with isolated conical singularities.
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Chapter 1

Introduction

A Riemannian manifold (M",g) is Einstein if the Ricci curvature Ric, is constant,
l.e.

Ric, = kg, (1.0.1)

for some constant k, and k is called the Einstein constant of ¢g. Einstein metrics on a
compact manifold M™ of dimension n > 3 appear in the several variation problems as
critical points of some natural Riemannian functionals. For example, Einstein metrics
on a compact manifold are critical point of the normalized total scalar curvature
functional (see for definition). Then, it is natural and important to study how
the second variation of the normalized total scalar curvature functional behaves at
an Einstein metric. This leads to the stability problem of Einstein metrics.

Einstein operator A = V*V — 2R acts on symmetric 2-tensors, where (Rh),] =
Rigjihw for h € C*(S*(M)). The second variation of the normalized total scalar
curvature functional at an Einstein metric g is given by —W(AEh, h) r2(ar)
when restricted in traceless transverse directions, i.e. h € C°(S?(M)) satisfying

trgh = 0 and d;h = 0, where d,4h is the divergence of h. An Einstein manifold is said
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stable if (Agh, h) r2(ary) > 0 for all traceless transverse symmetric 2-tensors h, unstable
otherwise, and strictly stable if (Agh, h)p2(ary > c(h, h) r2(ar) for some constant ¢ > 0.
If the manifold is non-compact, we only consider compactly supported symmetric
2-tensors h. In Chapter 2, we will present more detailed background materials for
stability of Einstein metrics.

In Chapter 3, we study the stability of a special class of Einstein manifolds,
which are Riemannian (spin) manifolds with non-zero Killing spinors. Complete
Riemannian manifolds with non-zero Killing spinors have been classified in [B&r93],
[Bau&9al, [Bau89b], [FKK9], and [FK90] (also see [BEGKII]).

Let (M™, g) be a Riemannian manifold with a non-zero Killing spinor o with the
Killing constant p # 0, i.e.

Vyo =uX o, (1.0.2)

for any vector field X on M", where V* denotes the canonical connection on the
spinor bundle induced by the Levi-Civita connection on the tangent bundle 7'M, and
“ . 7 denotes the Clifford multiplication. Then the Riemannian manifold (M™, g) is
an Einstein manifold with the scalar curvature R = 4n(n — 1)u? (see, e.g. [Fri00]).
Because the scalar curvature is real, p can only be real or purely imaginary. A
non-zero Killing spinor is said to be imaginary (resp. real) if its Killing number is
imaginary (resp. real). We refer to [Fri00] and |[LMS89] for spin geometry.

If we set 4 =0 in , i.e. Vo =0 for any vector field X, then o is called
a parallel spinor. Riemannian manifolds with non-zero parallel spinors are Ricci-flat,
i.e. the Ricci curvature is zero. X. Dai, X. Wang, and G. Wei proved that manifolds
with non-zero parallel spinors are stable in [DWWO05|] by deriving a Bochner type

formula, and rediscovering a result in [Wan91], also see [GHPO3]| for the formula.

Moreover, an imaginary Killing spinor is of type I if there exists a vector field X
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such that X - ¢ = /=10, and otherwise, o is of type II. H. Baum proved that n-
dimensional complete Riemannian manifolds with imaginary Killing spniors of type II
with Killing constant y/—1v are isometric to the n-dimensional hyperbolic space H", ,
with constant sectional curvature —422. N. Koiso proved that Einstein manifolds with
negative sectional curvature, in particular, hyperbolic spaces, are stable in [Koi79]
(also see [Bes87]). Indeed, by the first inequality in 12.70 in [Bes87], one can see
that (V*Vh — 2Rh, h)2 > 4(n — 2)v%(h, h) ;2 for all compactly supported traceless
transverse 2-tensors h on the hyperbolic space H", .

Therefore, we focus on Riemannian manifolds with imaginary Killing spinors of
type I and ones with real Killing spinors. Recently, in [Kr615], K. Kroncke proved that
complete Riemannian manifolds with non-zero imaginary Killing spinors are stable
by using a warped product structure of these manifolds and a result in [DWWO05].
We obtain an estimate for Einstein operator on complete Riemannian manifolds with

imaginary Killing spinors of type I by using a Bochner type formula in [DWWO05] and

[Wan91], and meanwhile, provide a shorter proof for this stability result.

Theorem 1.0.1 Let (M", g) be a complete Riemannian manifold with a non-zero

imaginary Killing spinor of type I with Killing constant p. We have

/ (Aph, h)dvol, > —[2(n — 2) — 4]2 / (h, hydvol,. (1.0.3)

for all compactly supported traceless transverse symmetric 2-tensor h.

Corollary 1.0.2 Complete Riemannian manifolds with non-zero imaginary Killing

spinors are strictly stable.

On the other hand, by a similar Bochner type argument, we obtain a stability

condition for Riemannian manifolds with non-zero real Killing spinors.

3
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Theorem 1.0.3 The Riemannian manifold with non-zero real Killing spinor o with

Killing constant u is stable if the twisted Dirac operator D satisfies

(D —p)* > (n— 1)1,

on {®(h) : h € C*(S*(M)),trh = 0,0h = 0}, where D : C®*(S @ T*M) — C®(S ®
T*M) with the spinor bundle S, and ® : C=(S*(M)) — C*(S @ T*M) is defined as
@(h) = hijei 0 R €j.

Unlike the case of imaginary Killing spinors, we cannot conclude a general stability
result for manifolds with non-zero real Killing spinors. Indeed, standard spheres are
well-known stable manifolds with real Killing spinors. On the other hand, Jensen’s
sphere is an unstable Riemannian manifold with one non-zero real Killing spinor (see,
e.g. [ADPS83|, [Bar93], [Bes87], [Jen73|, and [Spall] for this interesting example).
Thus, the real Killing spinors case is more interesting for us. Another reason why
Riemnnian manifolds with real Killing spinors, especially whose stability, are inter-
esting and important is that these manifolds play an important role in supergravity
theory. By the classification results of Th. Friedrich and I. Kath, O. Hijazi, and C.
Bar, even dimensional, except 6 dimensional, Riemannian manifolds with real Killing
spinors are standard spheres, which then are strictly stable.

Existence of real Killing spinors on odd dimensional manifolds is closely related
to Sasaki-Einstein structures (see, [Bar93|, [FK89], and [FK90]). Regular Sasaki-
Einstein manifolds are essentially total spaces of principal circle bundles over Kahler-
Einstein manifolds (see, e.g. [Blal0]). It is well-known that a product of two Einstein
manifolds with the same Einstein constant is an unstable Einstein manifold with a
typical unstable direction. By relating the Einstein operator on the total space of

a principal circle bundle to the Einstein operator on the base space, we show that
4



Introduction Chapter 1

if the base space of a regular Sasaki-Einstein manifold is a product of at least two
Kéhler-Einstein manifolds then the lift of the typical unstable direction on the base
is an unstable direction on the regular Sasaki-Einstein manifold. In particular, we

obtain the following instability result.

Theorem 1.0.4 If the base space of a reqular Sasaki-Finstein manifold is a product
of at least two Kahler-FEinstein manifolds, then the regular Sasaki-FEinstein manifold

1s unstable.

In Chapter 4, we study instability of Einstein metrics on principal torus bundles.
Besides regular Sasaki-Einstein manifolds, many other interesting Einstein metrics
constructed on the total spaces of principal circle bundles and more generally prin-
cipal torus bundles. For example, in [WZ90], M. Wang and W. Ziller constructed
some Einstein metrics on the total spaces of principal torus bundles over products
of positive curved Kahler-Einstein manifolds. Some of their examples are regular
Sasaki-Einstein. In most of their examples, the base spaces, which are products of
Kéhler-Einstein manifolds, however, are not Einstein. As we study the instability
of regular Sasaki-Einstein manifolds, we relate the Einstein operator on the total
spaces of principal torus bundles to the Einstein operator on the base spaces. As a
consequence, we obtain the following instability result for Wang and Ziller’s Einstein

metrics on principal torus bundles.

Theorem 1.0.5 Letm: P — B = M; X --- X M, be a principal torus bundle, and
g be the Einstein metric on P constructed by M. Wang and W. Ziller in [WZ90]. If

m > 2, then the Finstein manifold (P, g) is unstable.

In Chapter 5, we develop the theory of Perelman’s A-functional on compact mani-

folds with isolated conical singularities. The recent proof of the Yau-Tian-Donaldson

5
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conjecture has demonstrated that metrics with conical singularities are not only im-
portant in themselves but also providing a powerful tool for studying smooth metrics,
see, [CDS15] and [Tianl5]. Riemannian manifolds with conical singularities also ap-
pear as Gromov-Hausdorff limits of smooth manifolds, and as singularities of Ricci
flow. These motivate us to study Einstein manifolds with conical singularities and
Ricci flow on manifolds with conical singularities.

The Perelman’s A-functional (see for definition) on a compact manifold
enables us to view Ricci flow as a gradient flow, and Ricci-flat metrics come out as
critical points of the A-functional. Thus, as the first step toward our goal for studying
Einstein metrics and Ricci flow on manifolds with conical singularities, we have ex-
tended the theory of Perelman’s A-functional to compact Riemannian manifolds with

isolated conical singularities defined as the following.

Definition 1.0.6 We say (M",d,g,p1,--- ,px) is a compact Riemannian manifold

with isolated conical singularities at py,--- , pr, if
e (M,d) is a compact metric space,

o (Mo, gln) is an n-dimensional smooth Riemannian manifold, and the Rieman-

nian metric g induces the given metric d on My, where Mo = M\ {p1,--- ,px},

o for each singularity p;, 1 <1 < k, 3 a neighborhood U,, C M of p; such that
Up, {01, -+ ok} = {pi}, (U \{pi}s 9lu,,\jwiy) 15 isometric to ((0, ;) x N;, dr? 4
rth) for some g; > 0 and compact smooth manifold N;, where r is coordinate
on (0,&;) and h, is a smooth family of Riemannian metrics on N; satisfying
h. = ho+o(r®) as r — 0, where a;; > 0 and hy is a smooth Riemannian metric

on N;.

Moreover, we say a singularity p is a cone-like singularity, if the metric g on a

6
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neighborhood of p is isometric to dr* +r*hg for some fized metric hy on cross section

N.

In the rest of the thesis, we will only work on manifolds with a single conical
singularity because there is no essential difference between one single singularity case
and multiple isolated singularities case.

Because Perelman’s A-functional A(g) is essentially the smallest eigenvalue of
—4A, + R,, we first study the spectrum of —4A, + R,, and we obtain the following

spectrum result.

Theorem 1.0.7 (Dai,—) Let (M",d, g,p) be a compact Riemannian manifold with a
conical singularity at p. If the scalar curvature Ry, > (n—2) on N, then the operator
—4A, + R, with domain C°(M \ {p}) is semibounded, and the the spectrum of its
Friedrichs extension consists of discrete eigenvalues with finite multiplicity Ay < Ay <

A3 < --- ) and Ay — 400, as k — +o0.

Theorem 1.0.8 (Dai, —) Let (M",g,p) be a compact Riemannian manifold with a

single conical singularity p with Ry, > (n — 2) and satisfying

r |V (hy = ho)| < C; < 400,

n (1.0.4)
for some constant C;, and each 0 <1 < 5 + 2,
near p. Then eigenfunctions of —4A, + R, on satisfy
u= 0(7“_%2), as r— 0. (1.0.5)

Consequently, the first eigenvalue is simple.

Moreover, if the singularity is cone-like, eigenfunctions have asymptotic expansion
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at the conical singularity p as

400 +o0 Pj

U~ Z Z Z r (I r)Pugy,, (1.0.6)

j=1 1=0 p=0

where u;;, € C°(N™1), p; =0 or 1, and s; = —"T_Q + —”#j;(n_z), where p1; are

eigenvalues of —Ap, + Rp, on N1

Consequently, we can define the A-functional on a compact Riemannian manifold
with a single conical singularity as the smallest eigenvalue of —4A, + R,. Then A(g)
smoothly depends on g. Let g(t) for t € (—7,7) be a smooth family of Riemannian
metrics with a single conical singularity at p satisfying Rp,@) > (n — 2) and the
asymptotic condition (1.0.4) near p, with g(0) = g and % |,_og(t) = h. We obtain the

following first variation formula.

Proposition 1.0.9 (Dai, )

d

E)\(g(t))]tzo = / (—Ric, — Hess,f, h) e~ dvol,. (1.0.7)
M

From the first variation formula , we can conclude that critical points of
the A-functional are Ricci-flat metrics with a single conical singularity at p, and the
A-functional is non-decreasing along Ricci flow with a single conical singularity at
p. The derivations of the first variation formula and this consequence are similar to
that on compact manifolds. The main difference and difficulty is that some boundary
terms appear when we use the Stoke’s theorem on manifolds with conical singularities.
It turns out that the asymptotic behavior of eigenfunctions of —4A, + R, obtained
in Theorem [1.0.8|is exactly what we need such that the boundary terms vanish while

approaching to singularity p.
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Then, if the initial metric ¢ is a critical point of the A-functional, i.e. a Ricci-flat

metric with a conical singularity at p, we have the following second variation formula.

Proposition 1.0.10 (Dai, )

pe 1 1 .
Ao = /M<—§A%h+(5g(5gh+ | Hessy(n), e fdval,, (103)

where Agvp, = —04(64h).



Chapter 2

Background materials

In this chapter, we fix some notations and conventions, present some background
materials for linear stability problems of Einstein metrics, and briefly review previous

works on dynamic stability of Einstein metrics.

2.1 Notation and conventions

In this section, we fix some notations and conventions that we need in this thesis.
Let M be a smooth manifold and £ — M be a smooth vector bundle.
C*°(M) = {smooth functions f: M — R}.
C>°(E) denotes the space of smooth sections of a vector bundle E.
QF(M) = {differential k-forms on M}.
TEM = @F(T*M) is the bundle of k-tensors, and k-tensors are section of 7*M.
SE(M) = @*(T*M) is the k times symmetric tensor product of the cotangent bundle
T*M.
Let (M™,g) be a n-dimensional Riemannian manifold with the Levi-Civita con-

nection V, which naturally extends to tensors. In general, {e;, - e,} denotes a

10
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local orthonormal frame of T'M around the point in the problem. The Riemannian

curvature tensor is defined as
R(X, Y, Z, W) = g(—VXVyZ +VyVxZ + V[ny}Z, W),

and R;ju = R(e;, e;,ex, e;). The Ricci curvature tensor is (Ricy)i, = Z?Zl R;jrj, and
the scalar curvature is R, = szzl Rijij.

Let f € C*°(M) be a smooth function on M™. The Hessian Hess,f of f is a
symmetric 2-tensor defined as Hess,f(X,Y) = X(Y(f)) — (VxY)f, for any pair of
vector fields X and Y on M™. Af =tr,(Hess,f) is the negative Laplacian of f.

04 denotes the divergence defined as

b, : C(TEM) — C=(T"'M)

n

o = (5906)()(17"' an—l) = —Z(Veioz)(ei,Xl,-n ;Xk—l)-

i=1

0; denotes the formal adjoint of the C°°(S*(M)) restriction of § with respect to the
natural L? inner product on tensors induced by the Riemannian metric g.
A Laplacian operator V*V acting on tensors is defined by
V'V C®%(TEM) — C=(T*M)

n

a = (VVa)(Xy, -, X)) ==Y (VVa)(es, e, X1, -+, Xp).

=1

The natural curvature contraction operator R acting on symmetric 2-tensors is

11
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defined by

R:C®(S*(M)) — C>®(S*(M))

h — (}C’%h)” = Z Rikjlhkl-

k=1

Then Einstein operator acting on symmetric 2-tensors is defined as Ap = V*V —
2R.

We also use V9, A,, (V9)*V9, RY , and A% to denote the Levi-Civita connection,
Laplacian on functions, Laplacian on tensors, curvature contraction operator on 2-
tensors, and Einstein operator with respect to the Riemannian metric g, respectively,
if it is necessary to emphasize the corresponding metric in order to avoid possible

ambiguity.

2.2 The normalized total scalar curvature

In this section, we recall variational formulae of the normalized total scalar curvature
and discuss a variational characterization of Einstein metrics on a compact manifold.
For more detailed information, we refer to [Bes87|, [Kro13], and [Vial3].

As we have seen in Introduction, (M", g) is Einstein if Ric, = kg for a constant
k. In this definition, we require the proportional factor k to be constant. Actually,

by using the second Bianchi identity, we have

Proposition 2.2.1 (see, e.g. Corollary 4.19 in [Bes87]) Let (M", g) be a Riemannian
manifold of dimension n > 3. If there is a function f such that Ricy, = fg, then f is

a constant and (M", g) is Finstein.

Einstein metrics on a compact manifold M" of dimension n > 3 naturally appear

in the variational problem as critical points of the normalized total scalar curvature
12
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functional defined on the space M of all Riemanian metrics on M". The normalized

total scalar curvature for g € M is defined as

S(g) = W/MRgdvolg, (2.2.1)

where dvoly is the volume form of g, V(g) = [, dvoly, and R, denotes the scalar
curvature of g. We note that the functional S: M —Ris diffeomorphism invariant
and scale-invariant.

Let g(t) for t € (—7,7) be a smooth family of metrics on M"™ with g(0) = ¢
and 4g(t)]i—o = h € C>(S*(M)). We have the following first and second variation
formulae of the normalized total scalar curvature functional, see e.g. [Bes87] and
[Vial3].

—n

~ ~ 1
S -h=
2n

! d R 2
: S(g(t)) im0 = ——— —Ri g

R,)g, hydvol,, (2.2.2)

where R = ﬁ Il o Bgdvoly is the average scaler curvature. We can see that the metric
g is a critical point of g, ie. §; - h vanishes for an arbitrary variation direction A if
and only if

2—n—
. 2.2.

Ric, = (% +

By Proposition [2.2.1] then (M",g) is Einstein. Therefore, a metric on a compact
manifold of dimension n > 3 is a critical point of the total scalar curvature functional
S if and only if it is an Einstein metric. If g(0) = ¢ is an Einstein metric, then the

second variation formula is given by

S, (h,h) = %S(g(t))\tzo = ﬁ /M(Pgh, h)dvol,, (2.2.4)

13
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where

1 o 1
P,h = — §V*Vh + Rh + 0,4 (5gh) + §Hessg(trgh)

g

I (B ftrgh) + 58,(6) — 22 (ery )l (2:2.5)
-,

with (tryh) = @ [y (trgh)dvoly, and (Rh)U = Rigjihi. Then we define a symmetric

quadratic as

S (hiy = — / (P,h, h)dvol,. (2.2.6)
Vig) = Ju

2.3 Stability of Einstein metrics

To understand the complicated stability operator P, in ({2.2.5)), we recall a decompo-
sition of symmetric 2-tensors, and we examine the operator P, on each factor in the
decomposition.

The natural L? inner product on C*°(S?(M)) is given by

(h,h) = /M(h, h) gdvol,, (2.3.1)

for h, h € C*°(S?(M)), where (h, h), is the pointwise inner product on tensors induced

by the Riemannian metric g. And let

5,1(0) = {h € C¥(S*(M))] d,h = 0},

g

try'(0) = {h € C*=(S*(M))] try(h) = 0},

g

Imé; ={6;a| aeQ' (M)} C C™(S5*(M)).

14
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Lemma 2.3.1 ([Koi79], Lemma 4.57 in [Bes87]) For any compact Riemannian man-

ifold (M™, g), we have the orthogonal decomposition

C=(S*(M)) = (Imd? + C=(M) - g) & (8,(0) N tr;*(0)). (2.3.2)

g

Both factors are infinite dimensional.
Further, if (M™,g) is Einstein, but not the standard sphere, this decomposition

can be refined into
C®(S*(M)) = Imd, & C™(M) - g & (6,(0) Ntr, ' (0)). (2.3.3)

Let us consider the second variation formula ([2.2.4)) restricted on each factor in

the decomposition ([2.3.3]).

1. h € Imé;, ie. h =0 for some o € Q' (M).

By the definition of ¢; in Notation and Conventions, we have
. 1
h=d,a= Eﬁa#g, (2.34)

see e.g. Lemma 1.60 in [Bes87] (note that the sign in the lemma was incorrect).
Therefore, h is a variation direction coming from a diffeomorphism action on
metrics. Because the functional S is diffeomorphism invariant, gg(h,h) = 0.
In other words, the second variation of the normalized total scalar curvature

functional at an Einstein metric vanishes restricted on Imd,.

2. he C®(M)-g,ie h= fgfor some f € C®(M).

15
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By straightforward calculations, we have

_2—n

Pg(fg) 9

2—n n—2 2—n  —
(Agf)g + T(Rgf)g + THessgf — TRgfg, (2.3.5)

where f = ﬁ fM fdvol,. From this, we can easily see that P,(cg) = 0 if f is
a constant function f = c¢. Actually, this can be seen from the fact that the
functional S is scale-invariant, and h = cg is a variation direction coming from

a metric rescaling. Therefore, we have

(Py(f9), fg) = (Py((f = N)g). (f = [)g)- (2.3.6)

So without loose of generality, we can assume f = 0. Then the second variation

in the direction h = fg is given by

S (f9.f9)

= (P(f9), f9)
12— 2 _9
= v g Aot S (Rea+ g Hesso . f9) (25.)
1 n—2
- —(n—1)A f — .
V(g)nT_z 5 /M( (n—1)A,f — R,f) - fdvol,
> 0.

The last inequality follows from the Lichnerowicz eigenvalue estimate for A,
(see, e.g. Theorem 4.70 in [GHL]). Thus, the second variation of the normalized
total scalar curvature functional at an Einstein metric is non-negative restricted

on conformal variation directions.

3. h e, 0)Ntr,1(0).

In this case, we call h a traceless transverse symmetric 2-tensor, or simply a
16



Background materials Chapter 2

TT-tensor. The stability operator P, restricted on TT-tensor will be much

simplified, and given by
1 o
P,(h) = —§V*Vh + Rh. (2.3.8)

This will be the main operator in the stability problem of Einstein metrics. We

make the following definition.

Definition 2.3.2 (Einstein operator) We call the second order differential op-
erator

Ap =V*V — 2R : C®(S*M) — C=(S*M) (2.3.9)

the Einstein operator.

Remark 2.3.3 The Einstein operator Ag is closely related to the Lichnerowicz
Laplacian Ay. Indeed, on an Einstein manifold (M™, g) with Einstein constant
k

AL = Ag+ 2k.

Then the second variation formula of the normalized total scalar curvature

functional S restricted on T'T-tensors is given by

1
—H/ (Agh, h)dvol,. (2.3.10)
M

S = = g

Because the derivative term V*V of the operator Ag is a non-negative term,
[y (Agh, h)dvol, > 0 for most TT-tensors h. However, in general there still
are some TT-tensors h so that [, (Agh,h)dvol, < 0. More precisely, Ag is
a self-adjoint elliptic operator and the manifold M is compact. Therefore, its

17
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spectrum consists of eigenvalues \; < Ay < A3 < --- with finite multiplicities,
and \; — +o0 as ¢ — +oo. Thus, the second variation of the normalized
total scalar curvature at an Einstein metric is non-positive in most TT-tensor
directions, however, in general may be negative in some TT-tensor directions.

This motivates the following notion of stability of Einstein metrics.

Definition 2.3.4 (Stability of Einstein Manifolds) Let (M™,g) be a compact Ein-
stein. manifold. (M",g) is stable if [, ,(Agh,h)dvoly > 0 for all TT-tensors h,
and otherwise, (M™,g) is unstable. (M",g) is strictly stable if [, (Agh,h)dvol, >

¢ [y (h, hydvoly for some constant ¢ > 0 and all TT-tensors h.

Remark 2.3.5 In Definition we only defined stable, unstable, and strictly sta-
ble compact Finstein manifolds. Similarly, we can define stable, unstable, and strictly
stable mon-compact Einstein manifolds by replacing TT-tensors by compactly sup-

ported TT-tensors in Definition |2.3.4].

Remark 2.3.6 The decomposition (|2 15 orthogonal with respect to the quadratic
form Sg(h, ﬁ) Indeed, the first factor is in the null space of Sg(h, ic) because S is
diffeomorphism invariant. Thus, it suffices to check that g;(fg, h) =0 iftrygh =0
and d;h = 0. By , we have

1
(fga — 2/ n Hessgf,h>dvolg
Vig) » Ju
1“/ (= Vféh)dvol
Vig) = Ju
= 0.

18
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2.4 Some other variational characteristics of Ein-
stein metrics

In addition to the normalized total scalar curvature functional, Einstein metrics on a
compact manifold M"™ are also critical points of some other Riemannian functionals,
for example the total scalar curvature functional S(g) = [, Rydvol, restricted to My,
i.e. § | Mj. Moreover, Ricci-flat metrics (Einstein metrics with zero Einstein con-
stant) are critical points of Perelman’s A-functional A(g), namely, the first eigenvalue

of —4A, + R, acting on C°(M). Here
My ={geM | Vig) =1},
and note that

T,M; ={h € C>®(S*M) | / (g, hydvol, = 0}, (2.4.1)

see, e.g. the proof of Theorem 4.21 in [Bes87].

Let us briefly discuss the total scalar curvature functional S(g) = [, Rydvol,
restricted to M. There are very detailed calculations for the first and the second
variation formulae of this Riemannian functional in [Bes87].

The first variation formula of the total scalar curvature S is given by

d

S/ -h=—S(g(t))|i=0 = / <&g — Ricg, h)dvol,,. (2.4.2)
o T 2

Thus, g is a critical point of S if and only if %g — Ricy, = 0. If we take trace for this,
we obtain ”T’QRg = 0. So, if the dimension n > 3, then R, = 0, and further Ric, = 0.

Therefore, a Riemannian metric g is a critical point of S if and only if it is Ricci-
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flat, i.e. Ricy, = 0. On the other hand, by (2.4.1) and (2.4.2), g is a critical point

of S | M if and only if %g — Ricy = cg for some constant c. Then by Proposition
2.2.1} g is Einstein. Thus, a Riemannian metric g is a critical point of S | My if and
only if it is Einstein.

The second variation formula of S | M; at an Einstein metric g is given by

(5 1 M0 ) = 5508 T M) (9(0) e
- / ((h,—%V*Vh+5*5h+6(5h)g (2.4.3)

1 R o
— E(A(trg)h)g - 2—;(trgh)g + Rh))dvol,

For the derivation see 4.53 in [Bes87].
Analyzing the second variation formula (2.4.3)) by using the decomposition (2.3.3)),

we can see that the behavior of the second variation formula ([2.4.3)) is the same as that

of the second variation (2.2.4) of S. (S | M)

o(h, h) vanishes restricted to Imd*, and

is non-negative restricted on C*(M)-g, for the same reason as for . Moreover,
(8 My)s(h,h) = =3 [, (h, Agh)dvoly, for TT-tensors h. Therefore, an Einstein
metric is always a saddle point of S | My, and we can make the same notion of
stability of Einstein metrics by considering S [ M.

Moreover, the stability problem of Einstein metrics was also similarly studied with
respect to the variation formulae of the Perelman’s v-entropy, which was introduced in
[Per(2], for Einstein metrics with positive Ricci curvature, and the variation formulae
of vi-entropy, which was introduced in [FINO5], for Einstein metrics with negative
Ricci curvature. For example, H-D. Cao and C. He studied stability of Einstein
metrics with respect to v-entropy on symmetric spaces of compact type in [CHI13].
We refer to [CZ12], [CHIO4], and [Zhull] for the variation formulae of the v-functional

and the v -functional and their detailed derivation.
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In the rest of section, we briefly describe a variational characteristic of Ricci-
flat metrics by considering the Perelman’s A-functional (see for definition)
introduced by G. Perelman in [Per02]. We refer to [Has12] for detailed calculations
of variation formulae of the A-functional. In [DWWO05], they derive the variation
formulae of the first eigenvalue of the conformal Laplacian —A, + 4(’;—’_21)1%9. The
derivation of the variation formulae of Perelman’s A-functional is very similar. So
we also refer to [DWWO05]. The A-functional plays important roles in studying Ricci
flow, and in next section, we will discuss this more later.

The first variation formula of the A-functional is given by

Ay h= %/\(g(t))ho = / (—Ricy, — Hess,f, hye ! dvol,,. (2.4.4)
M

A Riemannian metric g is a critical point of A if and only if —Ric, — Hess,f = 0 for
some function f. By using the second Bianchi identity and maximal principle, then
f has to be a constant function and Ric, = 0, see, e.g. Proposition 1.1.1 in [CZ06].
Thus, a Riemannian metric is critical point of X if and only if it is Ricci-flat.

The second variation formula of the A-functional at a Ricci-flat metric g is given

by

d? 1 . 1 _

Ay (hyh) = @)\(g(t))hzo = /M<—§AEh + 0,040 + §Hessgyh, hye fdovl,, (2.4.5)
where v, is a solution of Ay, = d,0,h, and f is constant obtain from the first
variation formula. Note that on Ricci-flat manifolds, Agp = Ap.

In order to understand the formula (2.4.5) better, we still use the decomposition
(2.3.3). The same as two Riemannian functional we discussed before, Imd; is in the

null space of the quadratic form induced by the second variation )\g . In particular,
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Ay vanishes on Imd,. Then because for u € C*°(M)

and

0,(0g(ug)) = —Hessgqu,

when h = ug, we have

1 1 1 1
_iAEh + 0,040 + §Hessgyh = E(Agu)g — iHessgu. (2.4.6)
Thus,
Ay (ug,ug) = (Agu)ue ' dvol, = — |Vul|Ze ™ dvol, <0, (2.4.7)
2 M 2 M

where f is a constant function. In other words, the second variation X of the A-
functional at a Ricci-flat metric g is non-positive on the conformal variation direc-
tions.

Another consequence of is that the second and the third factors in the
decomposition are orthogonal with respect to the quadratic form induced by
Ay. Indeed, if h € 6,1(0) Ntr,*(0),

1

1
(Hessyu, hYe™ dvol, = —5/ (Vu,dh)e dvol, =0,  (2.4.8)
M

M

where f is a constant function. Therefore, the decomposition (2.3.3) is orthogonal
with respect to the quadratic form induced by X at a Ricci-flat metric g.
When we restrict on TT-tensors, the third factor in the decomposition ({2.3.3)),

Ni(h,h) = =% [, (Agh, hye~Tdvol,, where f is a constant function. Thus, by using
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the A-functional, we can make the same notion of stability of Ricci-flat metrics (special
Einstein metrics) as Definition [2.3.4 However, the second variation formulae of the
(normalized) total scalar curvature and that of the A-functional at a Ricci-flat metric
restricted to conformal variation direction have opposite sign. As we have seen, an
Einstein metric, in particular, a Ricci-flat metric, is always a saddle point of the total
scalar curvature functional and of the normalized total scalar curvature functional
because of . But we could expect a Ricci-flat metric to be local maximum

point of the A-functional because of (2.4.7)).

2.5 Ricci flow and dynamic stability of Einstein
metrics

Besides the stability discussed in the previous sections, which is usually referred as
linear stability, we can also discuss a dynamic stability for Ricci-flat metrics via
Ricci flow because they are stationary points of Ricci flow. By considering certain
normalized Ricci flow whose stationary points are general Einstein metrics, similarly
we can discuss a notion of dynamic stability of Einstein metrics. Dynamic stability
and the relationship between the linear and dynamic stability of Einstein metrics
have been studied in [GIK02|, [Has12], [HM14], [Kr615], [Ses06], and [Ye93]. In this
section, we briefly review previous main results in this topic.

Let M™ be a manifold of the dimension n > 2. A family ¢(¢) of Riemannian

metrics on M™ is called Ricci flow if it is a solution of the initial value problem

8 .
£g(t) = —2Ricym,
ot 9(t) (2.5.1)

9(0) = 9o-

23



Background materials Chapter 2

R. Hamilton introduced the concept of Ricci flow and proved the short time existence
in [Ham82]. We refer to |[CK04] and [Top06] for introductions to Ricci flow. Ricci
flow has been utilized most notably by G. Perelman in his celebrated proof of the
Poincaré Conjecture in [Per(2], [Per03a], and [Per03b]. More details of Perelman’s
work can be found in |[CZ06], [KLOS], and [MT07]. One of Perelman’s breakthrough
contributions is the introduction of certain Riemannian functionals for studying Ricci
flow in [Per02].

Now let us discuss Perelman’s F-functional and A-functional. Let (M, g) be a

compact Riemannian manifold. The F-functional is defined by

Flg.f) = /M (Ry + [V fP)eav), (25.2)

for f € C°(M). Ricci flow can be viewed as the gradient flow of the F-functional.

Let u = e‘g, then F-functional becomes
.r@ﬂo:i/(qvuﬁ+¢@u%mg. (2.5.3)
M
Perelman’s A-functional is defined by

A@:MU@W|LMMZQ (2.5.4)

Then the A-functional has the following two properties.

1. A(g) is the smallest eigenvalue of the operator —4A,+ R, by (2.5.4]) and (2.5.3)).

2. Mfunctional is increasing along Ricci flow, because Ricci flow is the gradient

flow of the F-functional and the definition (2.5.4)).

We have used the property 1 as a definition of the A-functional in Section 1.3.
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Ricci-flat metrics are stationary points of Ricci flow. So it is natural to study the
behavior of Ricci flow starting at a metric close to a Ricci-flat metric, when we view

Ricci flow as a dynamic system. This is the dynamic stability of Ricci-flat metrics.

Definition 2.5.1 (Dynamic stability and instability of Ricci-flat metrics) Let (M™, g)
be a Ricci-flat metric. We say g is dynamically stable if for any neighborhood V of g
in M there exists a smaller neighborhood U C V' such that Ricci flow starting in U
exists and stays for all time t > 0 in V and converges to a Ricci-flat metric in V.
We say g is dynamically unstable if there exists ancient Ricci flow emerging from
g, i.e. a nontrivial Ricci flow g(t) defined on (—o0, g), which converges to a Ricci-flat

metric as t — —o0.

Remark 2.5.2 Similarly, we can make a notion of dynamic stability for general
Einstein metrics, by replacing “Ricci-flat” by “Einstein”, and replacing “Ricci flow”

by “a normalized Ricci flow” in Definition [2.5.1]

For Ricci-flat metrics, N. Sesum proved that dynamic stability implies linear sta-
bility, and she also showed that a linear stability together with an integrability as-
sumption implies dynamic stability in [Ses06]. Then, R. Haslhofer provided a new
proof for Sesum’s result by proving a Lojasiewicz-Simon inequality for Perelman’s
A-functional, and he also proved that if a Ricci-flat metric is not linearly stable, then
it is dynamically unstable in [Has12]. And further, in [HM14], R. Haslhofer and R.
Miiller got rid of the integrability assumption in Sesum’s result. Therefore, for Ricci-
flat metrics, two kinds of stability notions, linear stability and dynamic stability, are
equivalent.

For general Einstein metrics, R. Ye proved that strictly linear stability implies

dynamic stability in [Ye93]. Recently, by generalizing R. Haslhofer and R. Miiller’s
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work, K. Kroncke proved a dynamic stability result under weaker assumptions, and

he also proved a dynamic instability result in [Kr613| as follows.

Theorem 2.5.3 (K. Kroncke) Let (M, g) be a compact Einstein manifold, other than
a standard sphere, with Einstein constant p. Suppose that (M, g) is a local mazimizer
of the Yamabe functional and if the smallest non-zero eigenvalue A of the Laplacian
satisfies X > 2u. Then (M, g) is dynamically stable.

Suppose that (M, g) is not local mazimizer of the Yamabe functional or the smallest
non-zero eigenvalue X of the Laplacian satisfies A < 2u. Then (M, g) is dynamically

unstable.

Remark 2.5.4 The condition, a local mazimizer of the Yamabe functional, is in
between strictly linear stability and linear stability. More precisely, strictly linear
stability tmplies a local maximizer of the Yamabe functional, and which implies linear
stability. Conwversely, linear stability together with an integrability assumption implies

a local mazimizer of the Yamabe functional.

26



Chapter 3

Stability of Riemannian manifolds

with Killing spinors

In this chapter, we study stability of Riemannian manifolds with non-zero Killing
spinors, which then are Einstein manifolds. We prove that all complete Riemannian
manifolds with imaginary Killing spinors are strictly stable by using a Bochner type
formula in [DWWO05], [GHP03], and [Wan91]. This stability result was also proved by
Klaus Kroncke recently in a different way. A similar argument for real Kiling spinors
gives a stability condition for Riemannian manifold with real Killing spinors in term
of a twisted Dirac operator. Existence of real Killing spinors is closely related to the
Sasaki-Einstein structure. A regular Sasaki-Einstein manifold is essentially the total
space of a certain principal circle bundle over a Kéhler-Einstein manifold. We prove
that if the base space is a product of at least two Kéhler-Einstein manifolds then the

regular Sasaki-Einstein manifold is unstable.
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3.1 Overview and main results

Let (M™,g) be a Riemannian manifold with a non-zero Killing spinor o with the
Killing constant p, i.e.

Vio=uX o, (3.1.1)

for any vector field X on M", where V* denotes the canonical connection on the
spinor bundle induced by the Levi-Civita connection on the tangent bundle 7'M, and
“.” denotes the Clifford multiplication. Then the Riemannian manifold (M", g) is an
Einstein manifold with scalar curvature R = 4n(n — 1)u? (see, e.g. [Fri00]). Because
the scalar curvature is real, p can only be real or purely imaginary. A non-trivial
Killing spinor is said to be imaginary (resp. real) if its Killing constant is imaginary
(resp. real). We refer to [ETi00] and [LM89] for spin geometry.

X. Dai, X. Wang, and G. Wei proved that manifolds with non-zero parallel spinors
(which can be viewed as Killing spinors with Kiling constant zero) are stable in
[DWWO05] by deriving a Bochner type formula, and rediscovering a result in [Wan91],
also see [GHPO3| for the formula. Inspired by their work, we study the stability of
Riemannian manifolds with non-zero Killing spinors, which then are Einstein man-
ifolds. Th. Friedrich initiated the mathematical investigation of Killing spinors in
[Eri80]. And then complete Riemannian manifolds with Killing spinors were classi-
fied in [Bar93], [Bau&9al, [Bau89b], [FK&9], and [FK90]. We also refer to the book
[BEGKO91]. Riemannian manifolds with real and imaginary Killing spinors have sev-
eral very distinct properties. For example, if the Killing constant is real, then M is
compact. On the other hand, if the Killing constant is imaginary, then M is non-
compact (see |[CGLS86] and [Bau89b]). So we study these two kinds of manifolds
separately.

The main ingredient in this Bochner type argument is a Bochner type formula in
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[DWWO05] and [Wan91]. By combining the Bochner type formula and Baum’s clas-
sification results for complete Riemannian manifolds with imaginary Killing spinors
in [Bau89b], we obtain the following estimate for the Einstein operator on complete
Riemannian manifolds with non-zero imaginary Killing spinors of type I. Recall that
an imaginary Killing spinor o is of type I, if there exists a vector field X such that
X - & = /-1, and otherwise we say that it is of type II. Complete Riemannian
manifolds with non-zero imaginary Killing spinors of type II are hyperbolic spaces

(see, [Bau89bl), and therefore they are strictly stable (See, [Bes87] and [Koi79]).

Theorem 3.1.1 Let (M", g) be a complete Riemannian manifold with a non-zero

imaginary Killing spinor of type I with Killing constant p. We have

/ (V*Vh — 2Rh, hydvol, > —[2(n — 2) — 4],%/ (h, h)dvol,. (3.1.2)

for all compactly supported traceless transverse symmetric 2-tensor h.

Consequently, we show that complete Riemannian manifolds with non-zero imaginary
Killing spinors are strictly stable.

In the case of real Killing spinors, we have the following estimate.

Theorem 3.1.2 Let (M",g) be a Riemannian manifold with non-zero real Killing

spinor with Killing constant u, then for all traceless transverse h € C*(S*(M)),

/(AEh, h)dvolg:/ (D(IJ(h),D(I)(h»dvolg—Q,u/ (D®(h), ®(h))dvol,
M M M (3.1.3)

—n(n —2)u? /M<h, h)dvol,,.

Unlike the case of imaginary Killing spinors, from this estimate we cannot conclude
a general stability result. Actually, we have both stable and unstable examples: stan-

dard spheres are stable Riemannian manifolds with real Killing spinors; the Jensen’s
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sphere is an unstable Riemannian manifold with a real Killing spinor. We obtain

a stability condition for manifolds with non-zero real Killing spinors from Theorem

B.1.2

Corollary 3.1.3 The Riemannian manifold with non-trivial real Killing spinor with

Killing constant p is stable if the tunsted Dirac operator D satisfies

(D= ) > (n— 12,

on {®(h) : h € C*(S*(M)),trh = 0,5h = 0}.

Most Riemannian manifolds with non-zero real Killing spinors are either standard
spheres in even dimensions, or Sasaki-Einstein in odd dimensions. And all regular
Sasaki-Einstein manifolds are the total spaces of principal S'-bundles over Kahler-
Einstein manifolds. Let 7 : (M**! ¢g) — (B*,G, J) be a principal S'-bundle with
a connection 71, where (M?*7*1 g) is regularly Sasaki-Einstein, (B*,G, J) is Kéhler-
Einstein, and 7 is a Riemannian submersion. Here G is the Kéhler metric on B?,

and J is the almost complex structure on B?. In the following, h = 7*h, for all

h € C=(S2(B)).

Proposition 3.1.4

((A%h, By = ((ASh, h) + 4(h,h) +4(h o J h)) o, (3.1.4)
and therefore,
/ (A% R, h)dvol, = / ((A%h, B) + 4(h, h) + 4(h o J, h))dvolg. (3.1.5)
M B

where ho J € C*(S?(B)) with ho J(X,Y) = h(JX,JY).
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Corollary 3.1.5 If there exists a traceless transverse 2-tensor h € C*°(S?*(B)) such

that [,(((VE)*VCh—2R%h, hydvolg < —8 [, (h, h)dvolg, then (M, g) is unstable.

Corollary 3.1.6 If the base space (B?*,g) is a product of two Kdahler-Einstein man-

ifolds, then (M*7T1, g) is unstable.

3.2 Riemannian manifolds with imaginary Killing
spinors

In this section, we review classification results of Riemannian manifolds with Killing
spinors and some properties of Killing spinors. We will mainly focus on complete Rie-
mannian manifolds with imaginary Killing spinors studied in [Bau89a] and [Bau89b],
because Baum’s results about the structure of complete Riemannian manifolds with
imaginary Killing spinors play a very important role in our estimate of the Einstein
operator on these manifolds.

Let us first recall two differences between manifolds with real Killing spinors and

manifolds with imaginary Killing spinors pointed out in [Bau89b] (also see [CGLS86] ):

1. Let (M"™, g) be a complete Riamnnian manifold with a Killing spinor o. If ¢ is
real with non-zero real Killing constant, then M™ is compact. If ¢ is imaginary,

then M"™ is non-compact.

2. Let f(x) := (o(x),0(x))s, denote the length function of a non-zero Killing
spnior . If o is real, then f is constant. If o is imaginary, then f is a non-

constant and nowhere vanishing function.

As pointed out by Klaus Kroncke in [Kré15], the fact that the length function

f of an imaginary Killing spinor is not constant will cause some issues when we
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use the Bochner type argument in [DWWO05] to estimate the Einstein operator on a
Riemannian manifold with imaginary Killing spinors. In order to deal with the issues,
we investigate the length function f more carefully, and we recall some properties of
the length function f proved in [Bau89b]. Let (M™, g) be a complete Riemannian

manifold with an imaginary Kiling spinor ¢ with Killing constant p = +/—1v.
Lemma 3.2.1 ([Bau89b])

1. The function

w(r) = (1) — 15|V ()] (3:21)
is constant on M™.
2. Let {e1, -+ ,e,} be a local orthonormal frame of TM around x. The we have
Re(e; - o(x),e; - o(z)) = ;5 f(x), (3.2.2)

where Re means taking the real part.

3. Let dist denote the distance in S, with respect to the real scalar product Re( , )s,.

Then
4o = f(x) - dist*(V,,v/—1o(z)) > 0, (3.2.3)

where Vy(z) ={X -o(z)] X €e T,M} CS,.

As in [Bau89b], a Killing spinor o is of type I if ¢, = 0 and a Killing spinor is of type
ITif g, > 0. By , this is essentially the same as the simple characteristic of
Killing spinors of type I and IT mentioned in Introduction. H. Baum has the follow-
ing classification results for complete Riemannian manifold with imaginary Killing

spinors.
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Theorem 3.2.2 ([Bau89b]) Let (M",g) be a complete connected Riemannian man-
ifold with an imaginary Killing spinor of type II with the Killing constant /—1v.
Then (M™, g) is isometric to the hyperbolic space H", . with the constant sectional

curvature —4v?.

Theorem 3.2.3 ([Bau89al[Bau89b]) Let (M",g) be a complete connected Rieman-
nian manifold with an imaginary Killing spinor of type I with the Killing constant
V—1v. Then (M™, g) is isometric to a warped product (F"~! x R, e~**h+dt?), where
(F™=1 h) is a complete Riemannian manifold with a non-zero parallel spinor.
Conversely, let (F"1, h) be a complete Riemannian manifold with non-zero paral-
lel spinors, then the warped product (M™, g) := (F" ! x R, e™"th + dt?) is a complete

Riemannian manifold with imaginary Killing spinors of type L.

Recall how to construct a Killing spinor of type I on (F"~! x R, e *!h + dt?) from
a parallel spinor on (F™"~1 h). When n — 1 is even, the spinor bundle over the warped
product (F" ! xR, e~ "*h+dt?) is isometric to the tensor product of the spinor bundle
over (F"~1 h) and the spinor bundle over (R,dt*). When n — 1 is odd, the spinor
bundle over (F"~! x R, e~*'h 4 dt?) is isometric to the direct sum of two copies of
the tensor product of the spinor bundle over (F"~! h) and the spinor bundle over
(R, dt?). The spinor bundle over (R, dt?) is a trivial 1-dimensional complex vector

bundle. We will use the same notation to denote two isometric spinors.

e If n — 1 is even, and parallel spinor on F"~!is ) = (7,4 ~), where the decom-
position is the v/—1 and —/—1 eigenspaces decomposition for the action of the
complex volume we = (v/—1)%e;---e,_1 on the spinor bundle on F"~! then
we can take

oc=c Yt ®1 (3.2.4)

as an imaginary Killing spinor of type I on the warped product manifold.
33



Stability of Riemannian manifolds with Killing spinors Chapter 3

e If n — 1is odd, and parallel spinor on F"~! is ¢, then we can take
c=e (Y1, ®1) (3.2.5)

as a Killing spinor of type I on the warped product manifold, where “ " ” denotes
the isomorphism between two spin representations coming from projections to

the first and the second components of Cl(n—1)®C = End(CnTﬁ)@End((Canz).

Because the length of a parallel spinor is constant, we can always normalize the

parallel spinor ¢ on F' so that for the Killing spinor ¢ in (3.2.4)) and (3.2.5)) we have

(0,0) = e 2t

Thus for the Killing spinor obtained above we have the length function
f=e? (3.2.6)

only depending on the ¢ variable on R factor. We can also see that ¢, = 0. Moreover,

we can see that the action of the vector field % on the Killing spinor ¢ is given by

(5;) -0 =V-1o. (3.2.7)

3.3 Bochner type formula

In this section, we recall a Bochner type formula coming from Killing spinors in
[DWWO05] and [Wan91], and present a proof.
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Let (M",g) be a Riemannian spin manifold with spinor bundle § — M. The

curvature of a connection V on a vector bundle £ — M is defined as

Rxyo=-VxVyo+ VyVxo+ V[ny}(f, (331)

for a section ¢ € C*(F) and vector field X, Y € C®(TM). Let RS be the curvature

of V¥ on the spinor bundle. Let {ei, -+ ,e,} be a local orthonormal frame of the
tangent bundle and {e',--- e} be its dual frame. We have
S 1
R%yo = 1R<X’ Y.e;, e;)ee; - o, (3.3.2)

for any spinor o. If there exists a Killing spinor o with Killing constant p, the Ricci

curvature tensor satisfies

(see, e.g. [Fri00]). As in [DWWO05], we define a linear map ® : S?(M) — S @ T*M
as

®(h) = hyjei-o @€ (3.3.4)

Proposition 3.3.1 ([Wan91|) Let D be the twisted Dirac operator acting on the

twisted spinor bundle S @ T*M, and h be a symmetric 2-tensor on M. Then

D*D®(h) =®(Agph) +n(n — 2)u*®(h) + 2uDd(h) 335
3.3.5
+4pP(trh)e; - o @ el — 4u(Sh); - o @ el

Proof: Fix a point # € M, choose a local orthonormal frame {ey, - - , e, } around
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x such that Ve; = 0 at x. Then, at x,

D*D®(h) = V., Ve hijeree; - 0 @ € + Ve hijeree; - Vo o @ el
+ Ve hijeree; - Vfla ®e + hijeree; - kaVfla ® €
= Ve, Vehijereie; - 0 @ € + Ve hij(ere, + eer)e; - Vo o0 @ ¢
+ hijeree; - kaVflU ® el
=V, Ve hijeree; - o® el — 2uVe, hijeier - 0 @ el
(3.3.6)
+ thijekeleielek o®el
= -V, Ve hije; 0@ el — %Rekelhzjekelei o®eél
—2uV, hijeier o ®@e + (n — 2)2,u2hijei o e
= o(V*'Vh) + %Rkljphipekelei o®e + %Rkliphpjekelei o®e

—2uV, hijeier 0 @€ + (n — 2)*1*®(h).

In the third equality, we use the Clifford relation epe;+¢,6, = —20,,;, and V}%O’ =uX-o

for any vector field X. In the fourth equality, we use twice the fact

eeier - ¢ = (n—2)e; - ¢

for any spinor ¢, which can easily be obtained by using the Clifford relation.
By using the Clifford relation, (3.3.2)), and (3.3.3), we have

1 . o .
§Rkljphipekelei co® el = ®(—2Rh) — 4p°®(h) + 4pPtrhe; - o ® € (3.3.7)

1 .
§Rkliphpj€kelei co®el =4(n—1)u*d(h), (3.3.8)
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—2uV, hijeier, - 0 @ € = —4u(dh) ;o @ e + 2uey - D(Ve, h), (3.3.9)

e - B(Vo,h) = DB(h) — (n — 2)ud(h). (3.3.10)

By plugging (3.3.7)), (3.3.8)), (3.3.9)) and (3.3.10)) into (3.3.6)), we get (3.3.5). |

3.4 Stability of Riemannian manifolds with imag-
inary Killing spinors

In this section, we obtain an estimate for the Einstein operator on complete Rie-
mannian manifolds with imaginary Killing spinors of type I. As a consequence of the
estimate and Baum'’s classification results, we prove that all complete Riemannian
manifolds with imaginary Killing spinors are strictly stable.

Let (M", g) be a Riemannian manifold with an imaginary Killing spinor o of type
I with the Killing constant ¢ = v/—1v. We have the following property for the map
® defined in ((3.3.4).

Lemma 3.4.1 For all h,h € C*(S?(M)), we have
Re(®(h), ®(h)) = (h,h) f, (3.4.1)

where f = (o,0) is the length function.
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Proof:
Re(®(h), ®(h)) = Re(hijhle; -0 @ el e -0 @ €'))
= Re(hijﬁkj(ei -~ € 0))
= hijﬁij@(@i -~ € 0))
= hijhi;f.
In the last step, we use (3.2.2)). [ |

Lemma 3.4.2 I[fo is a Killing spinor of type I as in (3.2.4) or (3.2.5)), then we have

||(%) -0l = [[e(h)]]

Proof:  Choose a local orthonormal frame of TM as {e; = %, ZIREE
by (B27), we have
0 0 0 , ,
(57) @) = (5) - (hj(5) -o@e’ + ;hz‘jez‘ o®e)
0 , .
=\ _1hlj(§) 0 Q el — V -1 ZZ; hijei 0 ® el.
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Then by (3.2.2)), we have

1) @) = Re((5) - @(h), (=) - (h)
= Re<\/—_1h1j(%) el — \/—_12 hije; -0 @€,
00 Y wd
\/Tlhll(g)wf@e —ﬂ;hklek~a®e>
= hijhi; f
= Jla(n)]”

Theorem 3.4.3 Let (M™,g) be a complete Riemannian manifold with an imaginary

Killing spinor o of type I with Killing constant u = «/—1v. Then we have

/ (Agh, hYdvol, > [n(n — 2) — 4]v? / (h, h)dvol,, (3.4.3)

for all compactly supported traceless transverse h € C§(S?*(M)).

Proof: By Proposition [3.3.1], for all traceless transverse symmetric 2-tensor h,

®(Agh) = D*D®(h) — n(n — 2)p*®(h) — 2uD®(h). (3.4.4)

By Theorem we can take a Killing spinor as in (3.2.4)) or (3.2.5) depending on

dimension n of the manifold. Then we know the length function is given by

f=e? (3.4.5)

By (3.4.4)), and Lemma [3.4.1} for any compactly supported traceless transverse h €
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C§°(S%(M)), we have

/(AEh,h)dvolg:/ Re(q)(AEh)’CI)(h»dvolg

M f
:/ Re(D*DCID(h),CI)(h»dUOl
M f !
(3.4.6)
®(h), P(h
—n(n —2)u? /M deolg
Re(—=2uD®(h), ®(h
[ RSO0 B0,
By using and doing an integration by parts, we obtain
Re(D*D®(h), ®(h)) _ [ ID2(n)|?
/M 7 dvol, = /M 7 dvol,
oy,
+/ Re(DCID(h),ny(m) ¢<h)>dvolg.
M
By Cauchy inequality, we have
0 0
Re(D®(h), 2v(5.) - ®(h)) 2 —[[D2(A)]| - [[2v(5;) - (h)]
ID2(R) 12+ 42 (&) - 2(h))?
- 2
_ Do) [P + 42| @ (h)|?
2
Thus we have
Re(D*D®(h), ®(h)) 1 | D®(h)]?
dvol, > = | —————dwvol
/M / =2 /M g (3.4.7)

—2y2/ (h, h)dvol,,
M
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Similarly, by Cauchy inequality, we have

Re(=2uD®(h), ®(h)) L [ |[D2(h)|
/M 7 dvoly, > _5/]\/[sz]019

(3.4.8)
—2u2/M(h, h)dvol,

Plugging (3.4.7)) and (3.4.8)) into (3.4.6)), we complete the proof. [

Then Theorem [3.4.3] enables us to prove the following stability result recently

obtained in [Kré15] in a differential way.

Corollary 3.4.4 Complete Riemannian manifolds with non-zero imaginary Killing

spinors are strictly stable.

Proof: By Theorem [3.2.2] complete Riemannian manifolds with Killing spinors
of type II are isometric to hyperbolic spaces, and therefore are strictly stable (see
[Koi79], and the proof of Theorem 12.67 in [Bes87]). Let (M™, g) be a Riemannian
manifold with Killing spinors of type I. If n > 4, then by Theorem m (M", g) is
strictly stable. If n < 3, we know it has negative constant sectional curvature, and

therefore it is also strictly stable. [ |

3.5 Stability of Riemannian manifolds with real
Killing spinors

In this section, we give a stability condition for manifolds with real Killing spinors
in terms of a twisted Dirac operator. Because the length function of a real Killing
spinor is constant, an estimate for the Einstein operator can be obtained easier than
the case of imaginary Killing spinors. However, unlike imaginary Killing spinor case,
from the estimate we cannot conclude a general stability result for manifolds with

41



Stability of Riemannian manifolds with Killing spinors Chapter 3

real Killing spniors.
Let (M", g) be a Riemannian manifold with a real Killing spinor o with Killing

constant pu. Without loss of generality, we can choose ¢ to be of unit length.

Lemma 3.5.1 For all h,h € C*(S?(M)), we have
Re(®(h), ®(h)) = (h, h).

Then by Proposition 3.3.1) Lemma(3.5.1} and the fact that x [, (D®(h), ®(h))dvol,

is real, we obtain the following estimate for the Einstein operator V*V — 2R.

Theorem 3.5.2 ([GHPO3], [Wan91]) If the Killing constant u is real, then, for all

traceless transverse h € C=(S?*(M)),

/(AEh,h)dvolg:/ (D®(h), D®(h))dvol,
o / (DD(h), ®(h))dvol, (3.5.1)

—n(n — 2)u? /M<h, h)dvol,.

Remark 3.5.3 As mentioned in [Diel3] and [Kr615], Theorem has been used
to obtain a lower bound on the eigenvalues of the Einstein operator in [GHP03]. The

lower bound is —(n — 1)%u?, as we can also see in the following Corollary [3.5.4]

Corollary 3.5.4 A Riemannian manifold with a non-zero real Killing spinor with

the Killing constant p is stable if the twisted Dirac operator D satisfies
(D —p)* > (n— 1)1,

on {®(h) : h € C>(S*(M)),trh = 0,0h = 0}.
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Proof: By Theorem for traceless transverse symmetric 2-tensor h, we have

/M (Aph, h)dvol, = /M (D = 12 (h), d(h))dvol,

(3.5.2)
—(n —1)*? /M<h, h)dvol,,.

This implies the stability condition. |

3.6 Some unstable regular Sasaki-Einstein mani-

folds

In this section, we study instability of regular Sasaki-Einstein manifolds, which are
essentially total spaces of principal circle bundles over Kéhler-Einstein manifolds
with positive first Chern classes. A product of two Einstein manifolds (B™, g;) and
(B, g3) with the same positive Einstein constant is an unstable Einstein manifold.
Indeed, h = Z—ll — z—z is an unstable traceless transverse direction. We show that if
the base manifold of a regular Sasaki-Einstein manifold is a product of two Kahler-
Einstein manifolds then we obtain an unstable direction on the Sasaki-Einstein man-
ifold by lifting this unstable direction on the base Kahler-Einstein manifold to the
total space.

Let us first recall some basic facts about Sasaki manifolds. For details, we refer to

[Bla10] and [FOWO09]. A quick definition of Sasaki manifolds is given as the following,
see, e.g. [FOW0Y).

Definition 3.6.1 (Definition 1 of Sasaki manifolds) (M™,g) is said to be a Sasaki
manifold if the cone (Ry x M,dr* + r?g) is Kdihler, where R, = (0,+00), and r is

coordinate on R .
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Remark 3.6.2 From Definition [3.6.1, we note that a Sasaki manifold has to be of

odd dimension.

There are several equivalent definitions of Sasaki manifolds. The one given in the fol-
lowing looks more complicated and tells us more about structure on Sasaki manifolds

themselves.

Definition 3.6.3 (Definition 2 of Sasaki manifolds) Let (M?**1 g, ¢, n,€) be a Rie-
mannian manifold of odd dimension 2p + 1 with a (1,1)-tensor ¢, 1-form n, and a

vector field €. Tt is a Sasaki manifold, if
(1) n A (dn)” #0,
(2) n(§) =1,
(3) ¢* = —id+nRE,
(4) 96X, ¢Y) = g(X,Y) = n(X)n(Y),
(5) 9(X,¢Y) = dn(X,Y),

(6) the almost complex structure on M?PT1 x R defined by

JX ) = (60X — fEn(X) )

15 integrable,

for all vector fields X and Y on M**'. The vector & is called the Reeb vector field.
And this is a reqular Sasaki manifold if the Reeb vector field & is a reqular vector field.

If, in addition, g is an Einstein metric, then this is a Sasaki-Einstein manifold.
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Remark 3.6.4 As consequences of Definition [3.6.3, we have ¢p& =0, no ¢ =0, and
Vx§ = —¢X, in particular, Ve§ = 0. Moreover, £ is a Killing vector field. For

details, see, e.g. [Blal0)].

Remark 3.6.5 Let us recall one more definition of Sasaki manifold. (M™,g) is a
Sasaki manifold if there exists a Killing vector filed & of unit length on M™ so that

the Riemann curvature satisfies the condition

RxeY = —g(&Y)X + g(X, Y)¢, (3.6.1)

for any pair of vector fields X and Y on M™. Then from (3.6.1), we can easily see

that on a Sasaki-Einstein manifold (M", g) of dimension n, Ric, = (n — 1)g.

The relationship between real Killing spinors and the Sasaki-Einstein structures
has been observed by T. Friedrich and I. Kath in [FK89] and [FK90], and then was
further studied by C. Bér in [Bar93]. We briefly summarize their results as the

following.

Theorem 3.6.6 (T. Friedrich and I. Kath, and C. Bér) A complete simply-connected
Sasaki-Einstein manifold of dimension n with Einstein constant n — 1 carries at least
2 linearly independent real Killing spinors with distinct Killing constants equal % and
—% for n = 3(mod4), and to the same Killing number equals % for n = 1(mod4),
respectively.

Conversely, a complete Riemannian spin manifold with such spinors in these di-

mensions is Sasaki-Einstein.

Remark 3.6.7 T. Friedrich also proved that a complete 4-dimensional manifold with

a real Killing spinor is isometric to the standard sphere in [Fri81]. And O. Hijazi
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proved the analogous result in dimension 8 in [Hij86]. More generally, C. Bdr proved
that all complete manifolds of even dimension n, n # 6, with a real Killing spinor are
isometric to standard spheres in [Bdr93]. Thus, complete manifolds of even dimension

n, n # 6, with a real Killing spinor are strictly stable.

Remark 3.6.8 In the first part of Theorem 3.6.6, we need at least two linearly in-
dependent real Killing spinors in order to have a Sasaki-FEinstein structure. Actually,
on a complete Riemannian spin manifold of odd dimension, except 7, existence of
one Killing spinor automatically implies the existence of the second one that we need
in Theorem [3.6.60l The 7-dimensional manifolds with a single linearly independent
Killing spinor have been studied in [Kat90] and in more details in [FK97]. We also
refer to the book |[BFGKO9I1J. The Jensen’s sphere is a 7-dimensional complete mani-
fold with a single linearly independent Killing spinor, and it is unstable as mentioned
in Introduction. We refer to [ADP83], [Bar93/, [Bes8], [Jen75], and [Spall] for this

interesting example.

Now let us recall the construction of a typical regular Sasaki manifold in [Blal0].
Let (B% G, J) be a Kéhler manifold of real dimension 2p, with the Kahler form
Q= G(-,J-), where G is a Riemannian metric and J is an almost complex structure.
Then let 7 : M?**! — B? be a principal S*-bundle with a connection 1 with the
curvature form dn = 27*Q. Let £ be a vertical vector field on M?*1 generated by
S'-action, such that n(§) = 1, and X denotes the horizontal lift of X with respect to

the connection 7 for a vector field X on B*. We set

e~

6X = Jm. X, (3.6.2)

and

g(X, Y) = G(W*X7 W*Y) + U(X)WY)’ (363)
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for vector fields X and Y on M#*!. Then (M#**! g ¢,n,&) is a regular Sasaki
manifold.

Conversely, any regular Sasaki manifold can be obtained in this way, see, e.g.
Theorem 3.9 and Example 6.7.2 in [Blal0]. Moreover, if (M2, g) is Sasaki-Einstein
with Einstein constant 2p, then (B?, G, J) is Kéhler-Einstein with Einstein constant
2p + 2.

We fix some notations before carrying on calculations. V9 and V¢ denote the
Levi-Civita connections on (M?*! g) and on (B%, G), respectively. RY and Ric?, and
RY and Ric denote Riemann and Ricci curvatures on (M?P*! g) and on (B%,Q),
respectively. In the rest of this section, we use X, Y, Z, W, - - - to denote vector fields on
B* and we use )Af, }7, Z, W, .-+ to denote their horizontal lift to M2+ with respect to
the connection 7. And we choose and fix a local orthrnormal frame {X;, X5, -+, X, }
of TB. Then {Z,A/X\V;, e ,)/(\2;, ¢} is a local orthonormal frame of TM. We use VY

to denote V<, and V¢ to denote V§ .

Lemma 3.6.9 On a reqular Sasaki manifold (M**1 g, $,n,€) constructed above.
We have

6, X] = LX =0,

VLY = VY - QX Y)E,
VIX = Vi{=-0X,
Vi = 0.

Proof: ~ The first equation follows from the fact that the horizontal distribu-
tion is S! invariant and ¢ is generated by the S'-action. Then the rest properties
for covariant derivatives follow from properties in Remark [3.6.4] the first equation,

and the fundamental equations of a submersion in [ONe66] (also see [Bes87] for the
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equations).

Let h € C®(S%(B)), and then h = 7*h € C*®(S%(M)). Then by Lemmam

and straightforward calculations, we obtain a relationship between (Vg)*Vg% and

(VE)*VECh.

Lemma 3.6.10

(ViVih)y; = (7" (V{VER))iy — 2hy,
(ngz;;jl)ij = (7" (Vgax, M)
(VIVER)y; = —2hi; + 2h(6X;, 6X)),

and therefore,

(V)" Vh)y; = (7 (V) VOR))i; + 4hi; — 2h(6X;, 6 X)), (3.6.4)

for all 1 < i,5 < 2p, where we take summation for the repeated index k through 1 to

2p.

Because m : M?*! — B2 is a Riemannian submersion, by the fundamental
equation in [ONe66] and also in Theorem 9.26 in [Bes87], we have the following

relationship between curvature tensors on M?’*! and ones on B?.

Lemma 3.6.11

RIX,Y,Z, W) = (x*RE)(X,Y, Z,W)

— 2 Q)(X, V) (7 Q) (Z, W)

o o (3.6.5)
— ()X, 2)(7*Q)(Y, W)
+ (T Q) (X, W) (r*Q)(Y, Z),
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RI(X, &Y, 8) =g(X,Y), (3.6.6)

and therefore,

Ric)(X,Y) = (7*Ric®)(X,Y) — 29(X,Y). (3.6.7)

From (3.6.7)), we can see that if g is Einstein with Einstein constant & then G is
also Einstein with Einstein constant k£ + 2. Moreover, the above relations between

curvatures directly imply a relation between R9h and RCh.

Lemma 3.6.12

(R9R)i; = (*(Rh))i; — 3h(¢X,, 0 X;)
I (3.6.8)
— ()X, X;) Y (X, 0Xi),
k=1

forall1l <i,5 <2p.
Proposition 3.6.13

(V9)*V9h — 2Rh, h) = (((VE)*VCh — 2Rh, h)
(3.6.9)
+ 4(h,hy + 4(h o J, h)) o .

Therefore,

/ (V)Y — 209F, Rydvol, — / ((VE)"VCh — 205k, h)
w B (3.6.10)
+4(h, h) + 4(h o J, h))dvolg.
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Proof: By Lemma|3.6.10| and Lemma [3.6.12] we directly have

((V9)*V9h — 2Rk, h)
— (((VE)*VCh — 2R, h) + 4(h, h) (3.6.11)

A(R( T+, J2), b + 2(trg(h(J-,))?) o .

Then if suffices to show that trg(h(J-,-) = 0. Because (B*, G, J) is Kéhler, in

particular complex, we can choose a local orthonormal frame of T'B in the form of

{X1,-- . X}, J Xy, -+, JX, ).

Then
p p
tra(h(J-,) = Y h(J X, Xo)+ Y h(J*X;, JX;) =0,
i=1 =1
by using J? = —id and the symmetry of h. [ |

We choose a local orthonormal frame
{le"' 7XpaJX17"' aJXp}
of T'B as in the proof of Proposition [3.6.13 and set

h(X;, X;

)

WX, JX;) = hg
h(JX:, X;)
)

h(JX;, JX;
forall 1 <i,5 <p.
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Then we have

p
(h,h) = Z (hijhij + hijhg + hijhi; + hizhi;), (3.6.12)
i,j=1
p
(hoJ.h)y =" 2(hihiz — hizhiz) < (h, h). (3.6.13)
ij=1

For any h € C*(S5?(B)), by doing directly calculations, we have that tr,h = trgh,
(0,0)(X) = (6¢h)(X), and (6,h)(€) = —trg(h(J-,-)) = 0. Consequently, if & is

traceless and transverse, then so is h.

Corollary 3.6.14 If there exists a traceless transverse 2-tensor h € C*°(S?*(B)) such

that [,((VE)*Vh — 2R9R, h)dvolg < —8 [ (h, h)dvolg, then (M?**1,g) is unstable.

Proof: Proposition |3.6.13| and the inequality ((3.6.13|) directly imply the conclu-

sion. ]

Corollary 3.6.15 If the base space (B*,G) of a reqular Sasaki-Einstein manifold
(M?P*1 g) is the Riemannian product of Kahler-Einstein manifolds (B, G1) and

(B§p27 G2)7 where y41 + P2 =D, then (M2p+1’ g) is unstable.

Proof: Set h = 2%1 — 2%"2. h is a traceless transverse symmetric 2-tensor and is

an unstable direction of (B, G) = (B:™,G4) x (B3"*,Gy). Let us recall

Ric, = (2p1 + 2p2)g, (3.6.14)

Ricg = (2p1 + 2p2 + 2)G. (3.6.15)
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Then we have

R R
ML

VE)*Veh — 2RCh, h) =
v T

Moreover,

hoh) = (hoJh)=— +—.
(h,h) = { ) 2 2

Thus, by Proposition [3.6.13] we have

L 1
(V9)'V9h — 2R, h) = —2(p1 +ps — 1)(— + —) <0,

if both p; > 1 and py, > 1.
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Chapter 4

Instability of Einstein metrics on

principal torus bundles

In this chapter, we generalize the instability result for regular Sasaki-Einstein metrics
in Chapter 3 to Einstein metrics on principal torus bundles. In particular, we prove
that the most of Einstein metrics on principal torus bundles constructed by M. Wang

and W. Ziller in [WZ90] are unstable.

4.1 Overview and main results

In addition to regular Sasaki-Einstein manifolds, S. Kobayashi proved the existence of
an Einstein metric on the unit circle bundle of the canonical line bundle over a Kahler-
Einstein manifold with positive first Chern class in [Kob63]. Then, more generally,
M. Wang and W. Ziller constructed Einstein metrics on principle torus bundles over
Riemannian products of Kahler-Einstein manifolds with positive first Chern classes

in [WZ90].
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Theorem 4.1.1 (M. Wang and W. Ziller) Let (M;,q;),i=1,---,m, be Kdihler-
FEinstein manifolds with the first Chern classes ¢i(M;) > 0, and # : P — B =
My x -+ x My, be a principal circle bundle whose Euler class is e(P) = > bim}a;,
where b; € 7, m; : B — M; is the projection onto the ith factor, and o; € H?*(M;,7Z)
is indwisible. Then if e(P) # 0, P carries an Einstein metric with positive scalar
curvature uniquely characterized up to homothety by the requirements that 7™ is a
Riemannian submersion with totally geodesic fibers and that the metric on B is of the

form x1migy + -+ + T, G for some choice of Xy, Ty,

Theorem 4.1.2 (M. Wang and W. Ziller) Let (M;,¢;), 1 < i < m, be Kdihler
manifolds with ¢y(M;) > 0, and 7 : P — B = My x - x M, be the principal T"
bundles, r < m, with characteristic classes [; = Z;nzl bijmiag, © = 1,---,r, where
bij € Z and o; € H*(M;,Z) is indivisible. Then if the matriz (b;j)yxm has mazimal
rank, there exists an Finstein metric on P with positive scalar curvature such that
1s a Riemannian submersion with totally geodesic flat fibers and such that the metric

on the base B is a product of the Kdahler-FEinstein metrics.

Let m : P — B be a principal G-bundle with a principal connection # where G is
a connected Lie group acting on P on the right. Let § be a Riemannian metric on B,

and let ¢ be a left-invariant metric on G. Define a metric g on P as

9(X.,Y) = g(m.X,m.Y) + g(0(X),0(Y)), (4.1.1)

for any pair of vector fields X and Y on P. Then 7 : (P, g) — (B, ) is a Riemannian
submersion with totally geodesic fibers isometric to (G, g).
Recall some notations and facts about Riemannian submersions in [Bes87]. # and

Y denote the horizontal and vertical distributions, respectively. A vector field £ on P
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is projectable if there exists a vector field £ on B such that 7,(E) = E, and then we
say that E and E are 7-related. A vector filed E on P is basic if it is projectable and
horizontal. In general, X,Y, Z will denote horizontal vector fileds on P and U, V, W
vertical vector fields. In [ONe66], B. O’Neil defined the tensor 7" and the tensor A for
Riemannian submersions. The fibers of the principal bundles that we are discussing
about are totally geodesic. Thus, the O’Neil’s tensor 7" vanishes on them. Let w be
the curvature form of the principal connection 6. The O’Neil’s tensor A is related to
w by

O(AxY) = —%w(X, Y. (4.1.2)

Proposition 4.1.3 Take G to be S* in the above construction of principal bundle,
and choose § such that the length of S* is 2m. Let 0 be a principal connection with
curvature form df = w*n, where n is a closed 2-form on B. Then we have

(V9)*V9h — 2R9h, h) = ((VI)*V9), — 2R9h, h) o 7 "
4.1.3

+ (eimalughij + nanjhihig) o
for all symmetric 2-tensors h € C>°(S?*(B)), where h = 7*h, hij = h(Xi, X5), e =
n(Xe, Xi), and hij = h(Xi, X;), with {X;} a local orthonormal frame of TB, and X;

the basic vector fields m-related to X;.

Corollary 4.1.4 The Finstein metrics constructed in Theorem are unstable if

m > 2.

More generally, take G to be a torus 7", which splits into 77 = S x --. x S%.
Let {e1, - ,e,} be a basis of the Lie algebra of 7" coming from this decomposition
of T". Let m : P — B be a principal T"-bundle with a principal connection 6

with the curvature form df = 7*n with n = >_) _, neeo. We use U, to denote the
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vertical vector fields generated by e, through T"-action on P, for each 1 < a < r.
Let gop = §(Ua,Us). The we have the following relationship between the Einstein

operators on the total space and the one on the base space.

Proposition 4.1.5

(V9" — 2R9R, h) = (V9)*V9h — 2R9h, h) o1
+ [gaﬁ(na)ki(ﬁﬁ)kzhzjhij (414)

+ Gap(Ma)ik(ns) hathig] o ,

for all symmetric 2-tensors h € C=(S?(B)), where h = ©*h, hi; = M X, X;), (Na)ri =
(1) (Xi, X;), and hy; = h(X;, X;), with {X;} a local orthonormal frame of TB, and

X, basic vector fields m-related to X;.

Corollary 4.1.6 The FEinstein metrics constructed in Theorem [4.1.2| are unstable if

m > 2.

4.2 Einstein operator on principal circle bundles

In this section, we prove Proposition [4.1.3]

Let 7 : P! — B" be a principal circle bundle with a principal connection 6 with
the curvature form w = df = 7*n), where 7 is a closed 2-form on B. As in ([{.1.1), let
g be a Riemannian metric on B, and then set g = 7§+ 60 ® 6. Then 7 : (P!, g) —
(B™, g) is a Riemannian submersion with totally geodesic fibers. Let U be a vertical
vector field generated by S'-action on P"™ with §(U) = 1. For any pair of horizontal
vector fields X and Y on P, by , we have AxY = —%w(X, Y)U. And further,
if X and Y are basic, then AxY = —%'r;(X, Y)U. Throughout the rest of this section,
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we choose and fix a local orthonormal frame {X7,--- |, X,,, U} of TP around the point

in the problem, where Xy, --- , X, are basic

Lemma 4.2.1 Let X and Y be basic vector fields. We have

U,X] = LyX =0,

. 1 ..
VY = VRY - on(X. V).
1 ..
VIX = VU = n(X, X)X,
ViU = 0.

In the second equality, actually V%Y 18 a vector field on the base B. But here, we

use it to denote its horizontal lift to P.

Proof: The first equation follows from facts that X is horizontal, U is generated

by S!-action, and the horizontal distribution is S'-invariant. Then the rest of equa-

tions follow from O’Neil’s fundamental equations for Riemannian submersions, and

facts that tensor 7' vanishes and AxY = —in(X,Y)U.

Let h € C=(S?(B")) be a symmetric 2-tensor on B", and then h = 7*h be a

symmetric 2-tensor on P"*!,

Lemma 4.2.2

(V9)*VIh);; = (Vg)*vgh)ij oT

1 1
+ Z (SMkimkihay + =MkiMha —

2 2

k=1

where, © and j run through 1 to n.

o7

(4.2.1)

1
577ik77jlhkl) om,
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Proof: By definition, we have

(Vo) VER) (4.2.2)

= =(ViVih)(Xi, Xj) + (Vg 4, W) (X3, X;) = (VEVER) (X3, X5),

where, and throughout this proof, V{ means Vg(k, VZ means V“;k, and take sum for

repeated indices k,[ through 1 to n. Now we compute each of these three terms.

(ViViR)(Xi, X;) = Xp Xi(M(Xi, X;)) — Xi(R(ViXG, X;)) — X (h(Xi, VX))
— Xip(h(VIXi, X;)) + h(VIVIX:, X;) + h(VIXi, VIX;)
— Xip(h(X;, VIX;)) + h(ViX;, VIX;) + h(X;, VIVIX;)

= [Xp X, (h(X;, X)) — X (h(V]XG, X)) — Xi(h(Xi, VEX;))

— Xi(h(VXi, X)) + h(ViVIX;, X;)

~ Sy + (VX VIX,)

— Xi(W(Xi, VX)) + (VX VIX;)

+W(X;, VIVIX;) — }lnkjnklhil] om

S 1 . 1 .
= [(VIVIh)ij — =neinibu; — —kjnihal o .

4 4
(4.2.3)
In the second equality, we use m.(V{V;X;) = VZVgX} — immsz-
Then, because VX = VZXk — %nkkU = V%Xk, we have
(V2 B)(Xi, X;) = (V2,  h)ijo. (4.2.4)
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For the third term, we have

(VEVEh)i; = UU (ki) = 2U (W(VE X5, X)) — 2U (h(XG, VX))
+ AV X, X)) + 20(VE X0, VX)) + h(X;, VIV X)) (4.2.5)

1 1 1
= [kamlhz]’ + 577ik77jlhkl + anknkmil] oT.

Here, we used facts that h;;, h(V{,X;, X;), and h(X;, V{,X;) are constant along fibers,

since h is the pull-back of a 2-tensor on the base. We also used m,(V{,V{X;) =

leniknlel-
Plugging (4.2.3)), (4.2.4), and (4.2.5) into (4.2.2), we complete the proof of the
lemma. |

By using the fundamental equations for Riemannian curvature tensor for Rieman-
nian submersions (see, Theorem in [ONe66], or equation (9.28f) in [Bes87]) and that
AxY = —%77()? ,Y)U for basic vector fields X and Y, we have the following relation

between Riemannian curvature tensor on the total space and that on the base.

Lemma 4.2.3
- 1 1 1
Riju = Rijia o+ (=5 + 05070 — 0adlgt) © 7, (4.2.6)
and therefore,
(Rh)i; = (Rh)y o + ( 1i J +1i ) (4.2.7)
L= .. 0O R . . — =N, O /N
2 ij OT 2 P NikMNj1 ki 4 o Nk Mt Nkl T,

where i, 7, k, and | run through 1 to n.
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Proof of Proposition [£.1.3} By using Lemma and Lemma [£.2.3] we have

((V9)"Vh — 2R%h, by = Y " ((V9)"V?h — 2R%N),;hy;
i,j=1

= (Y (V) Voh — 2R%R) ) o

ij=1
1 o 1 o
+ ”;l_l[Enkinklhljhij + §nkj77klhlihz'j

1 P 1 v oy 1 ..
- §nik77jlhklhij + §7hk77jlhklhij - énkjnilhklhij] om

= ((V9)*V9h — 2RIh, h) o7
+ (nkinklhljkij + niknjlhklhij> oT.
0,4,k l=1
In the last step, we use facts that 7;; is anti-symmetric and ﬁij is symmetric about

indices ¢ and j.

4.3 Instability of Einstein metrics on principal cir-
cle bundles

In this section, we prove Corollary [4.1.4]

A necessary and sufficient condition for g defined in to be Einstein is given
in [Bes87] and [WZ90]. We recall the condition for torus bundles given in [WZ90).
As mentioned in [WZ90], any left-invariant metric on a torus is bi-invariant and flat,
so Ric; = 0, and the curvature w = dff = 7*n on a principal torus bundle is the
pull-back of a closed 2-form 1 on B. Then, (P, g) is Einstein with Einstein constant
k iff

n is a harmonic form on (B, g), (4.3.1)

60



Instability of Einstein metrics on principal torus bundles Chapter 4

1 40X X), U)K, ), V) = KU, V), (132)
Ricy(X,Y) = 3 37 (X, X, n(V, X)) = ha(X, V), (433

for any pair of vector fields X and Y on B, where {X;} is a local orthonormal frame
of TB.

We recall the construction of Einstein metrics on principal circle bundles over
products of Kéhler-Einstein manifolds in [WZ90]. Let (M;,g;), i = 1,--- ,m, be
Kéhler-Einstein manifolds with first Chern classes ¢;(M;) > 0 and real dimension
n;. Write ¢1(M;) = q;a;, where o; € H*(M;,7Z) is indivisible and ¢; € Z. Normalize
gi such that [w;] = 2ma;, equivalently, Ric, = g;g;, where w; is the Kéhler form of
gi. Let m: P — B = M, x --- x M,, be a principal S'-bundle whose Euler class is
e(p) = > bimia;, where b; € Z, and 7; : B — M, denotes the projection onto the
1th factor. Choose a Riemannian metric on B as § = 217791 + - - - + Ty, G, Where
Z1,- -+, Ty are constants to be determined. Let n = ) b;wfw;, and 6 be a principal
connection on P such that df = 7*n. And choose the left-invariant metric on S* such

that the length of S! is 2. Then Einstein conditions (4.3.2)) and (4.3.3)) become

b2
ZnF — 4k, (4.3.4)
22N =1 ... ) 4.3.5
.I'j 2<Qf]) ) J ’ , T ( )

M. Wang and W. Ziller proved the existence of an unique solution of the system of

equations (4.3.4)) and (4.3.5) about x;, provided e(P) # 0, and therefore, obtained

61



Instability of Einstein metrics on principal torus bundles Chapter 4

the existence of Einstein metrics on the circle bundle P.
Proof of Corollary [4.1.4; On M. Wang and W. Ziller’s Einstein manifolds con-

\
structed above, n = S7 bmiw;. Assume m > 2. Let h = xl:zgl - mZi” be a

symmetric 2-tensor on B", where n = Y. n; is the real dimension of the base prod-
uct manifold. A is traceless and transverse, i.e. 5gﬁ = 0 and trgﬁ = 0. These imply

that 0;h = 0 and tryh =0, ie. h = 7*h is a traceless transverse 2-tensor on P.

(V9)*NVIh — 2R9b, h)

9 5’717T191 TaT3g2, (X1TIg1  TaT5g2
== E Rijia - )i ( - )

k jl
i kel U ny no
— _2(R901291 + Rngz)
ny L
:_2( q1 i q2 )
ZL‘lTLl ToTo
1 b? b2
=2k ) - =+ ).
( TlQ) (nlx% TLQI%)

In the last step, we use the equation (4.3.5]).

Z nkinklhlj fvl@

i,k 1=1

n
TITE gL Tamig TITE gL Tamhg
:Z Zbﬂ-wskzzzbtﬂ-twtkl(lll_ 222)1](111_ 222)1]'
1,7,k l=1 s=1 = m 2 m N2
1)2 1)2
n%leuxlgl 2Hw2|‘ngz

b2 b2

+
2n1x1 2n2x

and similarly,
bi b3
2nyx?  2ngxd’

Z niknjlhklilij =

iyjykylzl
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Combining these equations and Proposition [4.1.3] we obtain

o o1 2
(VTR — 28h, ) = —2k( Ly = Zmna(mtng)

ny o Mo n3 + nj

This implies that if m > 2, then M. Wang and W. Ziller’s Einstein metrics on circle

bundles are unstable.

4.4 Einstein operator on torus bundles
In this section, we prove Proposition [.1.5

Lemma 4.4.1 Let X and Y be basic vector fields. We have

Ua, X] = Ly, X =0,

o

. 1 S
VLY = VLY — 2o (X, Y)U.,

2
1 o
V%QX:VLL;{UOL = égaﬁnﬁ(XaXz)Xw
VI U; = 0,

where a and [ run through 1 to r, and take sum for repeated indices.

Proof: This first equation follows from facts that the horizontal vector field X
is T"—invariant and U, is generated by e, through 7T"-action. The second and third
equations follow from the O’Neil’s fundamental equations for Riemannian submer-
sions and facts that AyY = —1n,(X,Y)U,, and tensor T vanishes on 7"-bundles
that we are considering. Let us check the fourth equality. Because the tensor T van-
ishes, V“{]a Us is vertical. Actually, V?]a Ug = V?Ja Us, when we restrict on each fiber.

Then because any left-invariant metric on a torus is bi-invariant, i.e. g is bi-invariant,
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and by the well-known formula for the connection of a bi-variant metric on a Lie
group (see, e.g. Corollary 3.19 in [CE]), we have V{, Us = V?]&Ug =3[0, Ug] = 0.

In the last equality, we use the fact that a torus is an Abelian group. [ |

Lemma 4.4.2
9\*¥\79 979}, 1, 1 1. 1
(V9)'V9h); = ((V9)"VIh);; + Zga,@(na)ki(n/j)klhlj + Zgaﬂ(na)kj(nﬁ>klhli

1. 1 )
— Zgaﬁ(na)ik<nﬂ>klhlj — Z.%zﬁ(ﬁoc)ik(”ﬂ)jlhkl (4.4.1)

1. . 1. -
— ;lgaﬁ(ﬁa)ik(ﬁﬂ)ﬂhkl - Zgaﬁma)jk(nﬁ)klhli-

Lemma 4.4.3

1. 1. L,
Rirji = Rikji — §9aﬁ(7la)ik(n6)jl + Zgaﬂ(na)kj(nﬁ)u - Zgaﬂ(na)ij(nﬁ)kl (4.4.2)

Proofs of these two lemmas are very similar to the proofs of lemmas in Section 4.2.

So we omit their proofs. Then these two lemmas directly imply Proposition [4.1.5]

4.5 Instability of Einstein metrics on principal
torus bundles

In this section, we prove Corollary [4.1.6]

We recall Wang and Ziller’s construction of Einstein metrics on principal 7" bun-
dles over a product of Kahler-Einstein manifolds. Consider a principal 7" bundle
7 : P — B. Choose and fix a decomposition 77 = S! x --- x S'. Let 3, € H*(B,Z),
a=1,---,7 be the Euler classes of the circle bundles P/T"~! — B where T"~! C T"
is the subtorus with ith S! factor deleted. Then the T7-bundle is classified by char-

acteristic classes f,.
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Let (M™,gs), s =1,--- ,m, be Kdher-Einstein manifolds with positive first Chern
classes ¢i(M,) = gsa5, where ay € H?(M,,7Z) is indivisible and ¢, € Z. Normalize
gs such that [wy] = 27may, i.e. Ricy, = ¢sgs, where wy is the Kéhler form of g,. Let
7w P — B™ = M" x--- X M"™ be a principal T"-bundle with characteristic classes
Bo =Y 0 basmiaj, « =1,--- 7. Let 6 be a principal connection on the 7" bundle
with the curvature form w = df = 7*n with n = ! | na€q and 7, = Y 0| basTiws.
Recall that {ej,--- ,e.} is a basis of the Lie algebra of 7" coming from the chosen

decomposition of 7", and §n5 = §(€a, €s) is a left invariant metric on 77,

Then Einstein conditions and - become

S basb sTs Aoy
Zx—i:4k9 P 1<a,pB<r, (4.5.1)
s=1 S
(0% bOLSb S
Zgﬂ Bk s=1,--,m. (4.5.2)
76 1

By showing existence of solutions of the system of equations (4.5.1)) and (4.5.2)),

M. Wang and W. Ziller obtain Einstein metrics on these principal torus bundles,
provided that the matrix (bas)rxm With 7 < m has maximal rank.

Proof of Corollary [£1.6f Assume m > 2. The same as in the proof of Corollary
4.1.4] we take h = % — %. Let h = 7*h. Then dsh =0, tryh =0, and

(V)" Vo — 2RIR By = —2(- L+

r1ny ToNg

1 1
= -2(— + —)k
(nl o) (4.5.3)
Z gaﬁb 1b,82 Z gaﬁb 25,32
g M o

m

In the last equality, we use equations (4.5.2)). And because 1, = > .- basws, and
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||ws||mggg = 27;52 fors=1,---,m,
gaﬂ(na)ki(nﬁ)klhljilij = gaﬁ(”a)ik(nﬁ)jlhklhzj
Z Japba1bse 1b52 Z Japba2bs2 (4.54)
vt 2n a2 2no13
Then Proposition [4.1.5| implies
o 1 1 2
(V*Vh — 2Rh, ) = —2k(— + —) = — "1”22(”1 t”” (h, h), (4.5.5)
ny N2 ny +nj

and we complete the proof.
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Chapter 5

Perelman’s \-functional on

manifolds with conical singularities

In this chapter, we prove that on a compact manifold with a single conical singu-
larity the spectrum of the operator —4A + R consists of discrete eigenvalues with
finite multiplicities, if the scalar curvature R satisfies a certain condition near the
singularity. Moreover, we obtain an asymptotic behavior for eigenfunctions near the
singularity. As a consequence of these spectrum properties, we extend the theory of
the Perelman’s A-functional on smooth compact manifolds to compact manifolds with
a single conical singularity. All these work and results also go through on compact

manifolds with isolated conical singularities.

5.1 Overview and main results

As we have seen from (12.5.4]), the Perelman’s A-functional on a smooth compact
manifold is essentially the smallest eigenvalue of the operator —4A+ R. Consequently,

we can also define the A-functional on a compact smooth manifold as the smallest
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eigenvalue of —4A + R, which is the definition of the A-functional that we want to use
on compact manifolds with isolated conical singularities. Therefore, we first study
the spectrum of —4A 4+ R on a compact Riemannian manifold with isolated conical

singularities defined as the following.

Definition 5.1.1 We say (M",d,g,p1,--- ,px) is a compact Riemannian manifold

with isolated conical singularities at py,--- , pg, if
o (M,d) is a compact metric space,

o (Mo, g|n,) is an n-dimensional smooth Riemannian manifold, and the Rieman-

nian metric g induces the given metric d on My, where Mo = M\ {p1,--- ,px},

o for each singularity p;, 1 < i < k, their exists a neighborhood U, C M of
pi such that Up, 0 {p1,--+ ,pe} = {pi}, (Up, \ AP}, 9lu, \(pi}) s isometric to
((0,&;) x N;,dr* + r*h,) for some €; > 0 and a compact smooth manifold N;,
where 1 is a coordinate on (0,g;) and h, is a smooth family of Riemannian
metrics on N; satisfying h, = ho + o(r*) as r — 0, where a; > 0 and hy is a

smooth Riemannian metric on Nj.

Moreover, we say a singularity p is a cone-like singularity, if the metric g on a

neighborhood of p is isometric to dr? +1r%hg for some fized metric hg on cross section

N.

Remark 5.1.2 We do analysis on (M™,d,g,p1,--- ,px) away from singular points

P1, Dk

In the rest of this chapter, we will only work on manifolds with a single conical

singularity because there is no essential difference between one single singularity case
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and multiple isolated singularities case. And all work and results on manifolds with a

single conical singularity go through on manifolds with isolated conical singularities.
Recall some basic facts about cones over compact smooth manifolds. Let C'(N, hg) =

(Ry x N,g = dr? +r2hg) be the Riemannian cone over a compact (n-1)-dimensional

smooth Riemannian manifold (N, hg). Then we have:

n—1

1
A, = 0+ Or + 58, (5.1.1)

r

R, — %[Rho—(n—l)(n—%]. (5.1.2)

From and (5.1.2)), we can see that on the cone the operator —4A + R is
a Schrodinger operator with singular potential. Actually, the potential function R,
behaves like O(Z) as r — 0, i.e. blows up near the tip of the cone. This type of
operators have been studied in several literatures, for example in [BS87] and [RS2].

Let us first look at the simplest one-dimensional example of singular Schrodinger
operators that is mentioned in [BS87] and also studied in [RS2]. Let L, = —j—;—k;% be
an unbounded operator in L?(R,) with the domain D(L,) = C$°(R, ), where a € R
is a constant and R, = (0,4+00). By Hardy’s inequality, if a > —i, the operator
L, is nonnegative on C§°(R ), in particular semi-bounded. Actually, by some simple
scaling technique we can see that a > —%1 is not only a sufficient condition but also
a necessary condition for L, to be semi-bounded. Thus, the operator L, is either
nonnegative or not semi-bounded.

In [RS2], Michael Read and Barry Simon give the following criterion for essential

self-adjointness of a Schrodinger operator with a spherically symmetric potential:

—A+V(r) on R, where r = (31, 22)2.

Theorem 5.1.3 (Theorem X.11 in [RS2]) Let V(r) be a continuous symmetric po-
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tential on R™\ {0}. If V(r) satisfies

V(r)+

(n=Dn=-31

3
4 r?2 = 4r?’
then —A 4V (r) is essentially self-adjoint on C§°(R™\ {0}). If V(r) satisfies

(m-Dn-31 _c 3

<
0<V(r)+ 1 S S 1

then —A + V(r) is not essentially self-adjoint on Cg°(R™\ {0}).

From the above one-dimensional and higher dimensional examples we can see that
certain conditions on the potential function R, actually on Ry, should be necessary,
if we expect that the operator —4A + R is semibounded, and its Friedrichs extension
then has nice spectrum. It turns out that Ry, > (n — 2) is a sufficient condition, and

we have one of main results in this chapter as the following.

Theorem 5.1.4 (Dai, —) Let (M",d, g,p) be a compact Riemannian manifold with
a conical singularity at p. If the scalar curvature Rp, > (n — 2) on N, then the
operator —4A, + R, with domain C5°(M \ {p}) is semibounded, and the spectrum of
its Friedrichs extension consists of discrete eigenvalues with finite multiplicity Ay <

A < A3 <o+ and A\, — 400, as k — +00.

In [BP03], B. Botvinnik and S. Preston proved that the spectrum of the conformal
Laplacian on a compact Riemannian manifold with isolated tame conical singularities

consists of discrete eigenvalues with finite multiplicities. The conformal Laplacian

—A + 4(’;__21)1% is also a singular Schrodinger operator. A tame conical singularity

is given as a cone over a product of the standard spheres. Therefore, the scalar

curvature of the cross section of a tame conical singularity satisfies the condition in

Theorem [5.1.4] and our result is more general. Our idea of the proof of Theorem
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[5.1.4) is similar to the one in [BP03]. We use certain weighted Sobolev spaces that
can be compactly embedded in L?*(M). And by doing some estimates, we show that
the operator —4A + R is semi-bounded and the domain of its self-adjoint extension is
in a weighted Sobolev space. Then we can use the spectrum theorem for self-adjoint
compact operators to obtain the property of the spectrum of the operator —4A + R.

Theorem enables us to define the M\-functional as the smallest eigenvalue of
—4A + R. However, when we derive variational formulae of the the A-functional,
it turns out that certain asymptotic behavior of eigenfunctions near singularities is

necessary. We have another main result in this chapter as the following.

Theorem 5.1.5 (Dai, —) Let (M",g,p) be a compact Riemannian manifold with a

single conical singularity p with Ry, > (n — 2) and satisfying

r |V (b, — ho)| < C; < 400,

, (5.1.3)
for some constant C;, and each 0 <1i < 5 + 2,
near p. Then eigenfunctions of —4A, + R, on satisfy
u= 0(7“_7?2), as r — 0. (5.1.4)

Consequently, the first eigenvalue is simple.
Moreover, if the singularity is cone-like, eigenfunctions have asymptotic expansion

at the conical singularity p as

+oo +oo Pj

wn YOS Tt )y, (5.1.5)

j=1 1=0 p=0

where uj;, € C°(N"1), p; =0 or 1, and s; = _an + —”M_Z(n_m, where 1; are
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eigenvalues of —Ay, + Ry, on N"71.

On a manifold with a cone-like singularity, a small neighborhood of the singularity
is a finite exact cone over a compact smooth manifold. On this neighborhood, we can
separate variable and explicitly solve the eigenfunction equation in term of eigenfunc-
tions on the cross section of the cone and some hypergeometric functions. By using
classical elliptic estimates and some estimates for the hypergeometric functions, we
then obtain the asymptotic expansion ([5.1.5) of eigenfunctions on manifold with a
cone-like singularity.

On a manifold with a conical singularity, we cannot do explicit calculations.
Therefore, instead, we do some estimates to obtain an asymptotic order near the
singularity for eigenfunctions in (5.1.4). We first work on small finite cones, on which
we can obtain some weighted Sobelov inequalities and weighted elliptic estimates by
using scaling technique. The asymptotic condition for the asymptotically con-
ical metric implies weighted Sobelov norms and weighted C*-norms with respect to
exactly conical metric dr? + r2h, are equivalent to ones with respect to asymptoti-
cally conical metric dr? 4 r2h,.. Then these weighted Sobelov inequality and weighted
elliptic estimates still hold on an asymptotic finite cone. This implies the asymptotic
order in by using elliptic bootstrapping. And further, we can obtain variation

formulae of A-functional on compact manifolds with a single conical singularity.

5.2 Weighted Sobolev Spaces

In this section, we introduce weighted Sobolev spaces on compact Riemannian mani-
folds with conical singularities and establish the compact embedding property for the
weighted Sobolev spaces.

Let (M™, g, p) be a compact Riemannian manifold with a single conical singularity
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at p, and U, be a conical neighborhood of p such that (U, \ {p}, glv,\{p}) is isometric
to ((0,€) x N,dr? +r2h,.). For each k € N and § € R, we define the weighted Sobolev
space HE(C.(N)) to be the completion of C5°(M \ {p}) with respect to the weighted

Sobolev norm
k

lallign = [ 20 ) dvol, (5:2.1)

=0
where V'u denotes the ith covariant derivative, and y € C*(M \ {p}) is a positive

weight function satisfying

—_

it geM\U,
x(q) = (5.2.2)
if r=dist(q,p) < §,

3 =

and 0 < (x(¢))™* <1 forall g e M\ {p}.
For the simplicity of notations, we set H*(M) = HJ_.(M). The we have the

following compact embedding of H*(M) into L*(M).

Theorem 5.2.1 (Dai, —) The continuous embedding
i: HY(M) — L*(M) (5.2.3)

is compact for each k € N.

Before proving Theorem [5.2.1] we prove the analogous compact embedding theo-
rem on finite cones. Let (C.(N),g) = ((0,€) x N,dr?+r?h) be a finite cone. We define
the weighted Sobolev space HY(C.(N)) on the cone (C.(N), g) to be the completion

of C5°(C(N)) with respect to the weighted Sobolev norm

k
1 %
HW%@WW:LWQ:WEEﬁMm“%' (5.2.4)

1=0
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We also set H¥(C.(N)) = H,’j_%(C'e(N)). Then we have the following compact

embedding on a finite cone.

Lemma 5.2.2 (Dai, —) The continuous embedding
it HY(C(N)) = L*(Cc(N))

1s compact for each k € N.

Proof: Because ||l gx(c,v)) = [l myc.(vy): for k > 1 € N, we have continuous
embedding H*(C.(N)) — H'(C.(N)), for k > | € N. Therefore, it suffices to show
that the embedding: i : H'(C.(N)) < L%(C.(N)), is compact. Let (C.(N),§) =
((0,€) X N, dr? + h) be a finite cylinder, and W2 ?(C.(N)) be the usual Sobolev space
on the cylinder C.(N), which is the completion of Og°(5€(N )) with respect to the
norm:

lullwsoiony = [ 02+ [u)dvots
Ce(N)

where Vu is the gradient of u with respect to the metric ¢g. It is obvious that the

mapping:

L*(C(N), g) = L*(C(N),9)

is unitary, where n = dim(N) + 1. We will show that

3 . 1.~
lullm oy 2 min{l, Sl 2@, vy (5.2.5)

for all u € C§°((0,¢€) x N). This then completes the proof, since the embedding

Wo(C(N)) = L*(C(N), 9)
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is compact by the classical Rellich Lemma.
Now we prove the inequality (5.2.5). Let 0 = puy < po < psz < -+ 7 +00 be

eigenvalues of the positive Laplacian, —Apy, on the compact Riemannian manifold

(N,h), and 1, 9,13,- -+ be corresponding eigenfunctions. Let u € C§°((0,€) x N).

We expand the function u and u, respectively, as

u(r,z) = Zuz(r)wz(x)
u(r,x) = Zaz(r)l/}z(fﬂ)

where u;(r) =r~

||u||§11(ce(zv))

1
:/ (Zu? + |Vul2)dvol,
Ce(N)

r2

1
—/ ( —u? + |0ul® + ]VNU\ )dvol,,

Y

)

//Nzu e +<;u;<r>w o)

=1

r2 Zul )V i (2))*]r™  dvolydr

[ S+ ) + 5 Sl

Z/OE[%Z(lJr (n—1)4n—3) + ) (

-/ 6[;(§+m)(uz(r)) +;<a;>2]dr
3

= Domin{1, LY

5

ui(r))

o i Zui@(r)ﬁd

Q]T"_ldr

(5.2.6)
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|

Proof of Theorem[5.2.1] As in the proof of Lemma [5.2.2] it suffices to show that
HY(M) — L*(M) is compact. Because (U, \ {p}, glv,\(p}) is isometric to ((0,€) x
N,dr? + r2h,), where h, = ho + o(r®), for some a > 0, if we define gy = dr? + r2hy

on (0,€) x N, there exists 0 < ¢; < {, such that on (0,¢;) x N,

1
590 < g < 2go.

Then for any u € C§°((0,€) x N), we have

1 n
21T%||u||12111(061(N),g0) < Hu‘ﬁfl(cq(zv),g) <23 HUH%{l(CEI(N),gO)a (5.2.7)

1

or e, g < lelz e, g < 22 Mellz2c, ov).0) (5.2.8)

By Lemma [5.2.2} inequalities (5.2.7)) and (5.2.8) imply that the embedding

H'(Ce,(N),g) = L*(C4(N), g) (5.2.9)

is compact. Set My = M \ (0,%) x N. The compactness of embedding Wy (Mp) —
L?*(My) and the compactness of the embedding (5.2.9) imply the compactness of the
embedding H'(M) < L*(M).

5.3 Spectrum of —4A + R on a finite cone

In this section we study the spectrum of the operator L = —4A + R on a small finite

cone (C.(N), g) = ((0,€) x N, dr?+r2hg) with Dirichlet boundary condition. By using
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the compact embedding results obtained in the previous section and establishing
a semi-boundedness estimate for the operator L, we show that the spectrum the
Friedrichs extension of L on a small finite cone with the Dirichlet boundary condition
consists of discrete eigenvalues with finite multiplicities.
Let
L=—4A+ R: L*(C{(N)) — L*(C.(N))

be a densely defined unbounded operator with the domain Dom(L) = C5°(C(N)).

Theorem 5.3.1 (Dai, -) If the scalar curvature Ry, on the cross section (N"!, hy)

satisfies Ry, > (n — 2), then

(Lu,w) e > dollwl| grca vy

for all u € C§°(C.(N)), and some constant dy > 0 that depends on mij{}{Rho (x)} and
Te

n. In particular, the operator (L, Dom(L) = C§°(C.(N))) is strictly positive.

Proof: Because the manifold (N"~! h) is compact, and Ry, > (n — 2), we have
min{ Ry, (2)} > (n — 2).
And because
4—9

(n—1)(n—2)—T[(n—l)(n—3)+1]+5—>n—2, as 0\, 0,

there exists dg > 0, such that

4 — oo

?éij{}{Rho ()} >(n—-1)(n—-2)— [(n—1)(n —3) + 1] + do. (5.3.1)

7



Perelman’s A-functional on manifolds with conical singularities Chapter 5
Set
1
L50 — —<4 — (So)A + R - 7“_250
Then
1
L = L5, — 0oA + r_Q(SO’
and for any u € C§°(C(N)),
(Lu,u)p2 = / (Lu)udvol,
Ce(N)
= / (Ls,u)udvol,
Ce(N)
1
+ / [(=doAu)u + = dgu?]dvol,
Ce(N) "
= / (Lsyu)udvol,
Ce(N)
1
+ 50/ (|Vul* + —2u2)dvolg
Ce(N) r
= (L(;Ou, U)Lz + 60||u||H1(CE(N))’
Thus it suffices to show that (Lsyu,u)p2 > 0.
Actually, we claim that
(Lsyu,u)r2 > C|lu| 2, (5.3.2)

for all u € C§°(C(N)), where

4 — dg

C = min{min{ Ry ()} — [(n = 1)(n — 2) -

78
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Now we prove the claim (5.3.2)). For any v € C§°(C.(N)), we can expand it as the
following in terms of eigenfunctions ;(x) of operator —(4 — d9)Ap, + Rp, — do with

eigenvalues p;,

u= Zul(r)goz(x) (5.3.3)

Then by using (5-1.1) and (5.1.2),

[e.9]

Ls,u = Z[—(4 — Sl (r) — (4— )2 ; 1u;(r) - T—12(—ui +(n —1)(n —2))]¢.
Let @;(r) = r"= u;(r), then we have
= ~1 1 4 — 50 ~ _n—1
Lsyu = Z[_(4— do)t; + ﬁ(ﬂz‘ —(n—1)(n—2)+ 1 (n=1)(n=3))u;(r)]r™"= ;.

1=0

Because p; — 400 as ¢ — 400, we can take large enough iy € N such that for all

i>dg, pi—(n—1)(Mn-2)+%E2n-1)(n-3)> 1
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(Lsyu, )2
= /CE(N)(L(;Ou)udvolg
= [ [ 1St + - (- -2
6,

(n = 1)(n = 3))a(]r~"= v a;(r)r™ T k" dvoly,dr

=0

+

4
- /0 6 g[—(zl — o)l (r)adr
-/ i{im ~ (=10 = 2) + 20 = 1~ 3))a(r)
- [ > u- s

[ S = = D= 2+ T 0 - @)

= [ Y-yt

0 ,_
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By using Hardy’s inequality,

-/ > (4w

/E O —(n=1)(n—2)+ _450(71—1)(n—3)](uz(r>>2}d7"
/6 ki )P
/E 0 —(n—=1)(n—2)+ ;50( 1)(n = 3)](a(r))*}dr

> {gg]g{Rm)} ~[n =10 —2)
Syl [ e

and since p; — (n — 1)(n — 2) + 2 (n — 1)(n — 3) > 1 for all i > i,

11_/24 So) (@ (r))2dr

1= zo+l

/ > (gl = (0= D=2+ 520 = 10~ ()

1=ig+1
/ i=ig

>C’/2:uZ 2d7’

=10

This proves (5.3.2)). So we complete the proof. [

Corollary 5.3.2 (Dai, —) If the scalar curvature Ry, on (N""' hy) satisfies Ry, >

(n —2), then the operator (L, Dom(L) = C§°(C.(N))) has a self-adjoint strictly pos-
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itive Friedrichs extension (L, Dom(L)). Moreover, Dom(L) C HY(C.(N)), and the
image Ran(L) = L2(C.(N)).

Proof: The existence of the self-adjoint strictly positive and surjective extension
follows from the Neumann Theorem in [EK], because the operator (L, Dom(L)) is
strictly positive by Theorem [5.3.1] Moreover, from Theorem [5.3.1, we can obtain
that the completion of C3°(Cc(N)) with respect to the norm ||u||, = (Lu,u)2 is a
subspace of H'(C.(N)). Thus from the construction of the Friedrichs extension in the

proof of the Neumann theorem in [EK], we can easily see that Dom(L) C H'(C.(N)).

Theorem 5.3.3 (Dai, -) If the scalar curvature of (N""', hy), Ry, > (n —2), then
the spectrum of the Friedrichs extension of the operator —4A + R on (C.(N),g =

dr? 4+ r?hg) consists of discrete eigenvalues with finite multiplicities
AM <A< A3

and A\, — +00 as k — +oo.

Moreover, eigenfunctions {@;}22, form a basis of L*(C(N)).

Proof: By the Corollary|5.3.2] the Friedrichs extension L : Dom(L) — L*(C.(N))

is one-to-one and onto. And its inverse

L' L}(C.(N)) = Dom(L) < H'(C.(N)) = L*(C.(N))

is a self-adjoint compact operator, because the embeddding H'(C.(N)) < L*(C(N))
is compact. Then the spectrum theorem of self-adjoint compact operators completes

the proof. [ |
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5.4 Spectrum of —4A + R on compact manifolds
with a single conical singularity

In this section, we study the spectrum of the operator —4A + R on compact Rie-
mannian manifolds with a single conical singularity. By using the semi-boundedness
estimate for the operator —4A + R on a small finite cone, we establishing the same
estimate for the operator —4A + R on compact Riemannian manifolds with a single
conical singularities. And then, we prove that the spectrum of the operator —4A + R
on compact Riemannian manifolds with a single conical singularity consists of discrete

eigenvalues with finite multiplicities.

Theorem 5.4.1 (Dai, —) Let (M",g,p) be a compact Riemannian manifold with a
single conical singularity at p. If the scalar curvature Ry, on (N""' hgy) satisfies
Ry, > (n — 2), then there exists a large enough constant A, such that the operator
La = L+ A satisfies:

(Lau,uw)r2any > Cllul| g

for all w € C§°(M \ {p}) and some constant C > 0. In particular, the operator
(La, Dom(La) = C3°(M \ {p})) is strictly positive.

Proof: The conical neighborhood (U, \ {p}, 9|v,\{p}) of conical singularity p is
isometric to ((0,€) x N, dr?+r%h,), where h, = hg+ o(r®), for some a > 0. Then the

scalar curvature on the conical neighborhood is given by

Ry = (i — (n— 1)(n—2) + o(r"))
| (5.4.1)

= —(Ray = (n = 1)(n = 2) + o{r*)).
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Because Ry, > (n — 2), there exists 3(n) € (0, 1) such that

1
Bn)?

Ry, > (n—1)] (n—2)—(n—3)]—1.

Then there exists ¢(n) > 0, such that on (0,¢(n)) x N,

B(n)’go < g < ﬁgo,

1
p(n)

B(n)Rp, <1m*Ry+ (n—1)(n—2) < Ry, .

For any u € C§°((0,¢(n)) x N), we have

(Lu, U)LQ(CE(n)(N)) = (—4AU + RU)UdUOlg

(4)Vul* + Ru®)dvol,

1
> [4B8(n)"|Vulg, + —B(n)" Rygu®

1

r2

g [
Ce(n) (N)

5 (Ryy — Bn)"(n — 1)(n — 2))uludvol,,

r

_|_

(—(n - 1)(n 2>>ﬁ]dvoz%

> B(n)"Chllullmc,,, v

The last inequality follows the same argument as in theorem [5.3.1} i.e. for any u €

Coo((0,€(n)) x N),
(Lu,u)Lz(CG(n)(N)) Z ﬁ(n)”C&HuHHl(CG(n)(N)) (542)
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We cover the manifold M by the conical neighborhood (0, €(n)) x N of singularity
p and the interior part My = M \C(O,ée(n))(N ). We construct a partition of unity

subordinate to this covering as following. Let p; a function on C(NV) satisfying

with 0 < py(r,z) < 1. We extend p; trivially to the whole M, and we still use p; to
denote the extended function. Let p; = 1 — p;. Then {py, p2} is a partition of unity
subordinate to the covering.

For any u € C§°(M),

(Lpu,u) = / (Lpuy + Lpug)(uy + ug)dvol,
M
:/ (LBul)uldvolg+/ (Lpuq)ugdvol,
M M

—|—/ (LBug)uldvolg—l—/ (Lpusg)usdvoly,
M M

where u; = pyu, us = pou, and Lg = L + B for some B > 0.

By (5.4.2), we have
/ (Lpuy)uidvol, > 5(71)"01/ O3 |ur]® + |Vu1|2)dvolg,
M M

where (] is a positive constant.

85



Perelman’s A-functional on manifolds with conical singularities Chapter 5

Because us is compactly supported in M, and R is bounded on My, i.e. there

exists Cy < 0 such that R > C5 on M,, we have

/ (Lpug)ugdvol, = / (—4Auy + (R + B)ug)usdvol,
M Mo
_/(qwmme+mmﬁmw%
My

Z@/(Wmf{ﬂmmm%
My

By integration by parts,

(Lpug)uidvol,

g\

/ (Lpuq)ugdvol,
M

(Vuy, Vug)dvol, +/ (R + B)ujuqdvol,

M

(uVp1 + p1Vu,uVps + p2Vu)dool,

!
Se

—i—/ (R + B)ujuqdvol,
M

:\

u*(0,p1)(0,p2)dvol,, +/ upa(0,p1)(0ru)dvol,,
Ce(N)

+/ upl(a,,pg)(aru)dvolg—i-/ p1p2|Vul*dvol,
Ce(N)

Ce(N)

—i—/ (R + B)ujuadvol,,.
M

Then we have

/ u2(8rp1)(0rp2)dvolg > Cg/ u2dvolg,
M

M
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/ up2(0rp1)(0ru)dvol, = upz(0,p1) (0pu)r™ tdvoly, dr
C:(N)

S~
S— o

g

1 €
-5 /(8Tp2)(arpl)uzr”_ldvolhrdr
2 N
1 €
- _/ /02(5301)u27“"_1dv0lhrdr
2 Jo Jn
1 €
_ _/ / UQM(H _ 1>7"n_1d’l}0lh7,d’r‘
2 0 JN r
- 1/6/ u2ﬂ2(87~pl)t7°(h71ﬁhr)rnfldvolh dr
2 Jo N " or r
> C'4/ u?dvol
M

for some negative constant C3 and Cl.

Similarly, we have

M

/ up1(0rp2)(0ru)dvol, > 05/ u2dvolg,
Ce(N)

for some constant Cs.

Thus

/M(LBul)Udeolg > /M(p1pg|Vu|2 + (R + B)ujusg)dvol,
+ (C5 4+ Cy + C5) /M u?dvol,,
> /M(ppoIVuF + uyug)dvol,,
+ 06/ u*dvol,,
M

Where, 06 = Cg + C4 + 05
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Similarly, we can show

(w1, u2) gy ary < C7/ (p1p2| Vul* 4+ uyus)dvol + C’g/ u?dvol,,,
M M

for some C7 > 0, such that C% < B(n)"C4,Cy, and Cg > 0
Thus

1 C
/ (Lpuq)ugdvol, > 5<u1,u2)H21(M) + (Cs — —8)/ u*dvol,,,
M 7 M

and therefore,

1 C
/ (Lpu)udvoly > —(u,u) g1 + 2(C — —8)/ u*dvol,,.
M Cr : Cr" Ju

Let A = B +2(& — (), then we have
Cr

1
/M(LAu)udvolg > a(u,u)H%(M),

in particular,

1
(Lau,u)pe > —||ull32,
7

C

ie. (L =—4A+ R,Dom(L) = C$°(M)) is strictly positive. |

Theorem 5.4.2 (Dai, —) Let (M, g,p) be a compact Riemannian manifold with a
single conical singularity p. If the scalar curvature Ry, on (N"' ho) satisfies Ry, >
(n — 2), then the spectrum of the Friedrichs extension of the operator —4A + R on

(M, g,p) consists of discrete eigenvalues with finite multiplicity

A< A< A<
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and A\, — +00.

Moreover, eigenfunctions {@;}32, form a basis of L*(M).

Proof: The proof is the same as the proof of the Theorem [5.3.3] |

5.5 Asymptotic behavior of eigenfunctions of —4A+
R on compact manifolds with a single cone-like
singularity

In this section, we obtain an asymptotic expansion for eigenfunctions of —4A + R
near a singularity on manifolds with cone-like singularities, on which we can explicitly
express eigenfunction in terms of some hpyergeometric functions, and eigenvalues and
eigenfunctions on the cross section.

Let (M",g,p) be a compact Riemannian manifold with cone-like singularity p,
and U, be a neighborhood of p so that U,\{p} is diffeomorphic to (0,¢) x N, and
on U\{p}, g = dr* + r*hg. Let pu; < py < puz < --- be eigenvalues of the operator
—4Ap, + R, on the Riemannian manifold (N, hg), which is the cross section of conical
part of (M", g,p), and 1y, 19,13, - - - be corresponding normalized eigenfunctions, i.e.

[illz2 = 1.

By using the classical Sobolev embedding theorem and elliptic regularity, let s =
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2n, we have

|0i]| oo < K||hi]|ws .2
< Ko C([Willwe-22 + [[(~48%, + Rug)illw-22)

= KO (U [l il w22

< O+ |pal)™ ||9allwo.2

= C(1+ |pl)"
Let u be an eigenfunction of the operator —4A, + R(g) with eigenvalue A, i.e.
—4Agu+ R(g)u = M. (5.5.1)

On the conical neighborhood U,\{p}, we do the the following expansion for the eigen-

function wu:
—+o0

w=Yu;(r)i(x), (5.5.2)

=1

where z is the coordinate on N.
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By plugging (5.1.1)), (5.1.2), and (5.5.2)) in the equation (5.5.1]), we have

n—1 1 o3
—4Au+ R(g)u = —4(9? + Or+ —50g)) Y (uith)
=1
1 =

+ 5 (Rlgo) = (n = 1)(n = 2)) Y (wiy)

i=1

S n—1 1
= Z(_4ui Vi —4 , uh; — 4ﬁuiAgo¢i>

+ Z R(go)ughi — (n — 1)(n — 2) uith)

= Z[—ﬁlu;’m — 42
=1

+OO " - 1 / 1
= > — 4" = S+ (0= (0 - 2))uilts
=1

+oo
= Z AU p;.
i=1

1
u ¢z QleZ (n - 1)(” - 2)ﬁuzwz]

Thus we obtain the following equations.

ST T

—4u —4
r

We rearrange it to get the equation

ol v i(u - %(A (= 1)(n— 2)))us = 0. (5.5.3)

Now let’s solve the equation (5 in three cases for different signs of A.

Case 1: A = 0. Then equation ([5.5.3) becomes the following Euler equation.

" -1, 11
ul — ;= o5l — (0= 1)(n = 2)Ju; = 0 (5.5.4)
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By directly solving equation ([5.5.4]), we obtain

n— vV i—(n—2) n— vV i—(n—2)
w;(r) :Aﬂ‘_TQJ’ 2 +Bz-r_72_ o , (5.5.5)
+oo
where A; and B; are some constants. And because u = > u;;(x) € L*(M,g),
i=0
n— Vi —(n— . .
obviously for large i, u;(r) = AT 2), i.e. B; =0 for large i.

Case 2: X\ > 0. In this case, we will make a transformation for our function to get
a Bessel equation.

Let

Then

Plugging them in the equation ([5.5.3]), we obtain the following Bessel equation.

5 )+éh;(\/§7’)+[l— %}l(ﬂi—(n—%)]hi(@):o.

Thus
Vr Vr Vr
hi( 2 ) - Ai(]%\/ Mi*(nf2)( 2 ) + BiY%\/Mi*(an)( 2 )’

where A; and B; are some constants, and J,(z) and Y, (z) Bessel functions of first
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and second kind respectively. Hence we obtain

_n=2 Vr _n=2 Vr
Uz(’r) = Ai"" 2 Jl uif(n72)<T) + BiT 2 Y%\/m(T) (556)

2

Bessel functions have the following asymptotic behavior. If v — +o00 through real

values, with z #£ 0 fixed, then

1 ez,

Y, (z) ~ —\/g(%)_”.

Thus as in Case 1, for large i, u;(r) = Air’%J%m(gr), ie. B; =0.

Case 3: A < 0. We use the results in [Bath3]. If 1 + y/p; — (n — 2) is not an

integer, then

J(2)

—— L Feo ypiz(n=2) SNk
w; =Ar~ T (V=Ar) HW@‘ e Z ( e (V=)

2
= L+ Vi —(n=2) K

1—\/%2—(”_2) e_\/?r f (1—\/Mz'2—(n—2))k ( /—)\’I‘)k

= Vii— -2 K

(5.5.7)

+ By T (V—=Ar)

k=0 (

where A; and B; are some constants, and () = x(x +1)---(z +n —1).

93



Perelman’s A-functional on manifolds with conical singularities Chapter 5

If 1+ /i —(n—2) =1+ mis a positive integer, then

w =Ar "7 (V=Ar) e f (52 (V=Ar)* (5.5.8)

1—|—m k!

—I—Bir_nT_l(\/—_)\r)H?me_@ (=)™ {(Z (( 7 ) (Vo) ) log(v=Ar)

mil(5%) Vi L+ m)e K
+o0 1+m - - k
+;<§jm§k(¢(1—; —|—]€) ¢(1+k)_¢(1+m+k))( kﬂ)\)
(m—1)!' = (5™ (V=Ar)E
e e me w )

where A; and B; are some constants, and ¢ (z) is the logarithmic derivative of the
Gamma function I'(z). And as in the previous cases, for the large i, B; = 0.
Combining the above explicit computations and estimates for eigenfunctions ¢,

we obtain the following asymptotic behavior for eigenfunction w.

Theorem 5.5.1 (Dai, —) Let (M",g,p) be a compact Riemannian manifold with a
single cone-like singularity p with Rp, > (n — 2), and u be an eigenfunction of the
operator —4A, + Ry, on M. Then w has an asymptotic expansion at the conical

singularity p as
+oo +oo Py

U~ Z Z Z ot (Inr)Pugy

j=1 1=0 p=0

where uj;, € C°(N™™1), p; =0 or 1, and s; = —5% + —Mj;(n_z), where (1; are

eigenvalues of —Ap, + Rp, on N1

Proof:  On the conical part U, \ {p}, as above we expand an eigenfunction with

eigenvalue \ as

= > uir)(a)
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In the rest of the proof, we set

For a fixed ro, u(rg,z) € L*(N), and

oo
+00 > |lu(ro, )| L2(v Z |ui (1) > Z |Ai|27’a(n_2)+yi.

=10
Then for all r < ro,
S sl )e@)] < C 3 A+l
1=10 =10
> _n=2, Y r n—2,
:C Az 2+2]_ in—_T—‘r?
> Ay R+ (D)
1=10

—(n— viy L ng T \—(n— vi\ 2
OO 1A (1 ()

110 ZZO

< 400

If A > 0, by the solution ([5.5.6)), there exists i; € N such that for all ¢ > 4y,

2y (Y, “(WT)WZ i
2 i 4 ¢ mIl(zv; +m+ 1)

m=
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Fix rg > 0. Then for r < rg and 7 > iy,

1 \/X?"

C(ro) Vr v
( 4

F(%yi + 1)( 4

n=2 vi _n=2
| Ai|r™ )2 < ui(r)] < [Ailr™ =

CTut ) )%,

where C(rg) =

]. \/XT’O vi
Vi—i—l))Q( 4 )"

+00 > [u(ro, 2)|| 2wy = Z|uz ro)] >Z|A 2rg " 2( e

=11

Thus for all r < ry,

_n=2 1 VAr v n
Z:|uZ r)ei(x |<C’7“OCZ|A|7° 2 F(%Vi—|-1)< 1 )2 (14 |])" < +o0.

=1 =11

If A < 0, by the solutions ((5.5.7) and ((5.5.8)) there exists i € N such that for all

1> 1y

1+v; >0 1+V1 \/
Arii(\/ AT) J; Z { xr)* .

kO —l—u, k!

Then for r < rg and 7 > iy
_n—=1 14y 4v;
Al (VAR < ()] < 2 AT (V)

Thus as above,

o0

S lui(r)ui(a)| < e

1=12 1=12

1+v,
V=r) 7T (14 )™ < +oo.

Hence in all three cases, Y .o, u;(r)¢;(x) absolutely converges to u(r,z) for all

r < ro uniformly about x € N. By plugging (5.5.5)), (5.5.6), (5.5.7) or (5.5.8) in

u(r,z) = > "2, wi(r)y;(z), we obtain the asymptotic expansion.
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Similarly, we can show that derivatives of the expansion series with respect to r

variable also absolutely converge. And then we complete the proof. |

Corollary 5.5.2 (Dai, —) Let (M™,g,p) be a compact Riemannian manifold with a
single cone-like singularity p with Ry, > (n — 2). The eigenfunctions of —4A, + R,
on satisfy

_n—=2

), as r—0.

u=o(r
Consequently, the first eigenvalue is simple.

Proof: By combining the fact that eigenfunctions in H'(M) and the asymptotic
expansion in Theorem [5.5.1 we obtain the asymptotic order in the Corollary. And
this asymptotic order enable the proof of Courant’s nodal domain theorem in [Chal
work on manifolds with a single cone-like singularity with Rj, > n — 2. Thus, the

first eigenvalue is simple. [ |

5.6 Asymptotic behavior of eigenfunctions of —4A+
R on compact manifolds with a single conical
singularity

In this section, we obtain an asymptotic order for eigenfunctions near the singularity
on manifolds with a single conical singularity. For this purpose, we first establish
Sobolev inequality and elliptic estimate for weighted norms on a finite cone analogous
to that on R™ in [Bar86].

We first work on a finite cone (C.(N) = (0,€) x N,g = dr? + r*hy). We define
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weighted uniform C*-norms on a finite cone C.(N) as

k

lulles = sup > |Viul), (5.6.1)

Ce (N) 1=0

for k € N and 6 € R. When k = 0, we use Cs to denote C§. Then similar to (iv)
of Theorem 1.2 in [Bar86], we use scaling technique to obtain the following weighted

Sobolev inequality.

Lemma 5.6.1 (Dai, -) If u € Hf(C(N)), and k > 2 + 1, then

lullere. vy < Clliullase. vy (5.6.2)

for some constant C = C(n, k,d,¢€).
Moreover,

IV'u(r,z)| = o(r~°) as r— 0.

Proof: Let u(r, z) be a function on the finite cone C.(N), where z is a coordinate

on N, and set

ug(r, x) = u(ar, ), (5.6.3)

for a positive constant a. And let C,., ., = (r1,72) X N be a annulus on the finite cone

C.(N), for r; < ry <e. Then by a simple change of variables, we have

HUHH(’;(CMLMZ) = aﬂS”UaHH(’;(C”Q), (5.6.4)

and

||u||C§(CaT1,aT2) = G_SHUCLHC[@(CTNQ)- (5.6.5)

Let C; = ((5)"™'€, (3)7€) x N be an annulus on the cone C.(N). For any fixed
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j € N, by choosing a = (%)j7 r = (%)6, and ry = € in ([5.6.4) and 1) and using

the usual Sobolev inequality, we have

1. .
||U||cg(c]-) = (5) ﬂs”“(%)j”cg(co)

1.
< (5) ﬁCHU(%)J'HHg(CO)
= C||U||H§(cj)

< CH“HH};(CE(N)),

where the constant C'is independent of j. Therefore, we obtain the Sobolev inequality

ullesc.vy < Cllullarc. vy

Because |[ul|gxc. vy < oo we have |[ullgrc,) = o(1) as j — oo. Therefore, we
have [V'u(r,z)| = o(r=*) asr — 0,since  sup  r"|Vlu(r,2)| < |lullcc,) <
(%)J+1e<r<(%)ﬂe

O”“HH};(@)- |

Similar to Proposition 1.6 in [Bar86], we also have the following elliptic estimate.

Lemma 5.6.2 (Dai, -) Ifu € HY ?(C.(N)), and Lu € H}"}(C(N)), then

lull ooy < CULUl -2 ic, vy + 1ull =2, ay)»

for some constant C = C(n, k,d,¢€).

Proof: The inequality follows from the usual interior elliptic estimates and the
scaling technique as in the proof of Lemma [5.6.1] |
Now we consider finite asymptotic cones. Let (C.(N) = (0,€) x N, g = dr*+r%h,)

be a finite asymptotic cone, where h,. is a family of Riemannian metrics on N satisfying
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h. = ho + o(r®) as r — 0 for some a > 0 and a Riemannian metric hy on N. On
the finite asymptotic cone, we can also define weighted Sobolev norms and weighted
. k .
uniform C%-norms the same as ones on a finite cone. We use || - || ko)) and
|- crcu(ny) o denote weighted norms on the finite asymptotic cone.
We make an extra assumption for the asymptotically conical metric g = dr?+r?h,

as

[V (hy = ho)| € CL(CN)), for 0<i< 242, (5.6.6)

where the covariant derivative V and the norm |- | of tensors are with respect to the
exactly conical metric dr? + r2hy. Then asymptotic condition of the metric
implies that r'|V'w| is bounded for all 0 <4 < % + 2, where w if the difference tensor
between the Levi-Civita connection for the asymptotically conical metric and the
one for the exactly conical metric. And then as arguments in the proof of Theorem
[.2.0] for sufficiently small €, these weighted norms with respect to the asymptotically
conical metric on C(NN) are equivalent to corresponding weighted norms with respect
to the exact cone metric on C¢(NN). Therefore, by Lemma and Lemma [5.6.2]
we have the following Sobolev inequality and elliptic estimates on a sufficiently small

finite asymptotic cone.

Lemma 5.6.3 (Dai, ) If € is sufficiently small, v € H¥(C.(N)), and k > 5+ 1,

then

HUH@;(CE(N)) < C||“Hﬁ§(c€(1v))a (5.6.7)

for 1 =0, and 1, and some constant C' = C(n, k,J, €).

Lemma 5.6.4 (Dai, —) If € is sufficiently small, u € ﬁf’Z(C’E(N)), and Lu €
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H¥2(C.(N)), then

el s oy < CULl g2y + Ul a2y

for 2 <k < % +2, and some constant C' = C(n,d,¢€), where L is also the operator

—4A + R with respect to the asymptotically conical metric.
These Sobolev inequality and elliptic estimates imply the following asymptotic

order for eigenfunctions of —4A + R near the tip of a finite asymptotic cone.

Theorem 5.6.5 (Dai, —) Let u be an eigenfunction of L = —4A + R on a finite
asymptotic cone (C(N),dr? 4+ r?h,) with Ry, > (n —2) and (5.6.6). Then

n—2

Viu| =o(r—z %), as r—0,

fori1=0 and 1.

Proof: Because we only consider the asymptotic behavior of the eigenfunction
near the tip of the cone, without loose of generality, we can assume e is sufficiently

small so that Lemma and Lemma hold on C(N). In the proof of Theorem

5.3.3, we have obtained that the eigenfunction v € H*(C,) = ﬁllfg(C’e(N)). Then

Lu € ﬁ[l_%(CE(N)) C f[ll_z_%(Ce(N)), since Lu is a scale multiple of u. Then

by Lemma |5.6.4 u € ﬁ3_%(C’€(N)). By applying this elliptic bootstrapping, we

n—2

obtain that u € ﬁ[%_];(CE(N)). Therefore, by Lemma [5.6.3) v = o(r~"z ), and

IVu| = o(r—"2" 1), as r — 0. |
As a direct consequence of Theorem [5.6.5] eigenfunctions of —4A~+ R on a manifold

with a single conical singularity have an asymptotic behavior near the singularity.

Corollary 5.6.6 (Dai, —) Let (M™,g,p) be a compact Riemannian manifold with a

single conical singularity p with Ry, > (n—2) and (5.6.6|) near the singularity p. The
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eigenfunctions of —4A, + R, on satisfy

n—

|Viu| = o(r_TQ_i), as r— 0,

for1 =0 and 1. Consequently, the first eigenvalue is simple.

5.7 M-functional on manifolds with a single conical
singularity

In this section, we define the Perelman’s A-functional on manifolds with a single
conical singularity and obtain its first and second variation formulae as an application
of spectrum properties of the operator —4A + R we obtained in previous sections.

Let (M", g, p) be a compact Riemannian manifold with a single conical singularity
at p with Ry, > (n —2) and near p. We define the A\-functional as the first
eigenvalue of —4A+ R. Let u be the corresponding normalized positive eigenfunction,
ie. fM u*dvol, = 1 and

—4Au + Ru = M. (5.7.1)

Let u = @—5’ then 1) becomes
A=2Af—|Vf*+R. (5.7.2)

Let g(t) for t € (—7,7) be a smooth family of metrics on M™ with a single conical
singularity at p satisfying Ry, > (n—2), and (5.6.6)) near p for all g(¢), and g(0) = g.
Differentiating (5.7.2) in ¢ gives

A=2Af+2Af + R — (|Vf]?), (5.7.3)
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where “upperdot” denotes the derivative with respect to t at t = 0. Multiplying the
equation (5.7.3) by e~/ and then integrating over M", we have

A:/ (2Af +2Af + B — (VI ]2)e ! dvol,. (5.7.4)
M

Let’s look at the second term in the integral in ((5.7.4]).

/ 2A fe~ dvol, = / (8, f)e Fr"Ldvoly,
M\C:(N) OC(N)
—/ 2(V £,V fre ! dvol,
M\C.(N)

— 0<€—(n—2)+(n—1)—1)

—/ 2<Vf',Vf)e’fdvolg
M\C(N)

—>—/ 2V, Ve ldvol, as ¢ — 0,
M

where the boundary goes away along the limit because of the asymptotic behavior of
the eigenfunction in Theorem [5.6.6]

For other terms, plug the standard variation formulae for the scale curvature R
and the Laplacian A (see [Bes87] or [DWWO05]) into (5.7.4). Then similar to the
second term when we do integration by parts all boundary terms go away. Therefore,

we obtain the same first variation formula as that on the smooth compact manifolds.

Proposition 5.7.1 (Dai, -)
A= / (—Ric, — Hess, f, h),e~ dvol,, (5.7.5)
M

where h = g¢.
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Corollary 5.7.2 (Dai, —) The critical points of \-functional are Ricci-flat metrics

with a single conical singularity at p.

Proof: By Proposition [5.7.1], a critical point is a metric g with a single conical
singularity at p satisfying

—Ricy — Hessyf = 0.

/ A(e™Ndvol, = / or(e7Nr"tdvoly,
M\Ce(N) OC(N)

_ O(T—(n—2)—1+(n—1))

=o0(l) -0 as r—0,

ie. [, A(e)dvol, = 0. Therefore, the proof of Proposition 1.1.1 in [CZ06] applies

here and completes the proof. [ |

Proposition 5.7.3 (Dai, —) At a critical point, i.e. a Ricci-flat metric g with a single

conical singularity, the second variation formula is given by
. 1 . 1_, _f
A\ = M<_§AL’gh + 6,040 + §Vg(l/h), h),e~" dvoly, (5.7.6)

where Agvp, = —0,(0,h).
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