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Pyrrole-containing alkaloids have long captured the attention of the synthetic chemistry 
community due to their intriguing and reactive chemical architectures; such is the case of 
curvulamine and associated polypyrrole natural products. Curvulamine, curindolizine, 
and the related bipolamines share a unique compact pentacyclic skeleton flanked by two 
electron-rich pyrroles and up to seven stereocenters. Synthetic access to these complex 
alkaloids has previously been limited to curvulamine and bipolamine I. In this work, we 
aim to chronicle the results of our synthetic investigations into this family of unique 
alkaloids. In the first chapter, we provide an overview into their isolation and antibiotic 
properties, and discuss our initial synthesis of curvulamine which frames our studies in 
subsequent chapters. The second chapter describes the total synthesis of curindolizine 
and the substrate scope of a microwave-assisted method to access pyrroloazepinones, 
bicyclic heterocycles used in the synthesis of curvulamine and curindolizine. Finally, in 
the last chapter we describe the synthetic strategies used to access bipolamine C, D, G, 
and I and describe the unexpected reactivity of some pyrrole-containing intermediates 
along this journey. 
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Chapter 1 

Overview of the Curvulamine-Type 
Alkaloids 
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1.1  Curvulamine-Type Alkaloids, Isolation and Biosynthesis 
 

The Pleosporaceae is the most diverse family of ascomycete in the Dothideomycetes 
class of fungi.1 Species belonging to this family are reported to be endophytes, epiphytes 
or parasites and inhabit a broad range of ecosystems.2 Notable Pleosporaceae are found 
in the genera Bipolaris and Curvularia, which contain species known to reside in tropical 
and subtropical environments and have symbiotic relations with plants and marine 
animals.3-6 The intimate symbiotic connection of these fungi to other species has driven 
the interest of the scientific community to investigate the biosynthesis and biological 
activities of the secondary metabolites produced by organisms in these genera.7-10  

As part of a campaign to identify novel agents with promising biological activities, Tan 
and co-workers identified two fungi present in the fish Argyrosomus argentatus: 
Myrothecium sp. Z16 and Curvularia sp. IFB-Z10. The first fungus was isolated from the 
spermary glad of the fish and the second was isolated from the intestinal tract.7,8 The 
fungal broth obtained from Myrothecium sp. Z16 was found to exhibit antimycotic activity 
against Candida albicans, Trichophyton rubrum, and Aspergillus niger. The broth 
obtained from Curvularia sp. IFB-Z10 was found to have antibiotic activity and shown to 
inhibit the growth of the following bacterial strains: Peptostreptococcus sp., Veillonella 
parvula, Bacteroides vulgatus, and Streptococcus sp. with minimum inhibitory 
concentrations (MICs) in the low micromolar range (0.37 μM).8 Notably, Tan and co-
workers identified a novel bis-pyrrole alkaloid named curvulamine (1) as the agent 
responsible for these antimicrobial activities. The structure of 1 was unequivocally 
assigned by single crystal X-ray crystallography and confirmed a unique [5,7,6,5]-fused  
tetracyclic bispyrrole skeleton.  

Since the initial discovery of 1, Tan and co-workers have identified more than 11 
nitrogen-containing secondary metabolites with skeletons akin to curvulamine (1) (Figure 
1.1A).10 In 2016, as part of an effort to further investigate the biological properties of 1, 
an unexpected and novel nitrogenated alkaloid, namely curindolizine (2), was discovered 
when scaling up the cultivation of Curvularia sp. IBF-Z10. Single crystal X-ray 
crystallography was employed to assign the structure of curindolizine (2).9 Due to its 
structural similarities to curvulamine (1), 2 is believed to be a metabolite derived from 1 
after a regiospecific Michael addition of the eastern pyrrole of 1 into 3,5-dimethylindolizin-
8(5H)-one.9 Recent studies by the Tan group on the biosynthesis of these nitrogenated 
metabolites shed light on the biosynthetic gene cluster (BGC) responsible for making 
curvulamine (1).7 In this work, the cuaB gene was identified as being responsible for 
assembling the C10N indolizine unit, a key component in all curvulamine-type alkaloids.  
This finding triggered a genome mining campaign to search for homologous fungal 
biosynthetic gene clusters (BGCs) in genomes catalogued in databases from the Joint 
Genome Institute (JGI) and the National Center for Biotechnology Information (NCBI). 
From this study, the fungus Bipolaris maydis (ATCC48331) was identified as not only 
possessing cuaB, but also a set of distinctive genes coding for tailoring enzymes 
predicted to facilitate the synthesis of novel indolizine-type alkaloids. The culture broth of 
Bipolaris maydis failed to produce any detectable quantity of nitrogenated secondary 
metabolites under laboratory conditions; but fermentation along with the overexpression 
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of the putative transcription factor bipF afforded 9 new nitrogenated alkaloids with 
indolizine scaffolds similar to curvulamine (1). These new nitrogenated metabolites were 
named bipolamines A-I (3-11) and analysis of their structures revealed various oxidation 

patters that are attributed to the tailoring enzymes cytochrome P450 monooxygenase, 
cofactor F420-depented oxidoreductase, and an α-ketoglutarate-dependent oxygenase.  

The C10N indolizine unit (see 12) is a common element in all curvulamine-type 
alkaloids (vide supra), and their members can be grouped into three different categories 
based on the number of these indolizine units present in their carbon skeleton (Figure 
1.1B).11 Bipolamine A (3) and bipolamine B (4) are the simplest congeners with a single 
methylated tetrahydroindolizine C10N skeleton (12). These metabolites are believed to be 
early biosynthetic building blocks to higher order curvulamine-type alkaloids.10 The C20N2 
group of congeners, is the most diverse and contains the largest number of family 
members. The tetracyclic C20N2 bisindolizine skeleton (13) in these curvulamine type 
alkaloids is functionalized with different levels of oxidation and hydroxylation patterns. 
The preserved tetracyclic C20N2 core is believed to be derived from the fusion of a C10N 
indolizine unit (12) to a cleaved indolizine biosynthetic intermediate. The final category of 
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curvulamine-type alkaloids is the product of enzymatic addition of a C10N unit to the C-8 
position of the tetracyclic C20N2 bisindolizine skeleton. To this date, curindolizine (2) is the 
only known higher-order curvulamine alkaloid in this group containing a C30N2 skeleton 
(14).  

Two studies by Tan and co-workers has partially elucidated the biosynthesis of the 
curvulamine alkaloids.8,10 In the first study, evidence was obtaining for a polyketide origin 
of curvulamine (1) via isotopic labeling experiments. Curvularia sp. IFB-Z10 was 
cultivated in the presence of 1-13C or 2-13C enriched sodium acetate, and 13C NMR 
analysis of the fungal culture extracts revealed a curvulamine skeleton with 13C 
enrichment in an alternating fashion, indicative of a polyketide origin of this alkaloid. 
Notably, no labeling was observed at C-9, C-10, C-19 or C-20 in either of these 
experiments. This indicated the possible involvement of other carbon sources and 
enzymes in the biogenesis of the skeleton of 1. Further 13C labeling experiments 
employing [2,3-13C] alanine resulted in 13C enrichment at C-9, C-10, C-19, and C-20 in 
curvulamine (1). In subsequent biochemical experiments, pyridoxal-5’-phosphate(PLP)-
dependent oxoamine synthase (AOS) was identified as a key enzyme in the formation of 
the C10N indolizine unit. As stated, the C10N unit is believed to be an early intermediate 
in the biosynthesis of all curvulamine alkaloids. This hypothesis was confirmed by 
cultivating Curvularia sp. IFB-Z10 in the presence of a known inhibitor of AOS, which 
blocked production of 1. More recently, Tan and co-workers sequenced the genome of 
Curvularia sp. IFB-Z10 and identified the biosynthetic gene cluster and enzymes involved 
in the synthesis of early precursors en-route to curvulamine (1) and seemingly the rest of 
the curvulamine alkaloids.10 

It is proposed that the cuaA gene encodes the polyketide synthase machinery to 
condense one acetyl-CoA and three malonyl-CoA into linear β-keto enone 15. cuaB 
encodes a multipurpose enzyme that first condenses alanine with PLP forming iminium 
16. cuaB then triggers a PLP mediated chain release involving a Claisen condensation of 
16 with enone 15. Subsequent decarboxylation, aerobic oxidation, intramolecular 
condensation and dehydration produces cyclic hemiaminal 17. Polyene 17 is proposed 
to be the key synthetic unit in the biogenesis of all the curvulamine alkaloids. Genes cuaC 
and cuaD encode the enzymes responsible for converting hemiaminal 17 into indolizine 
18 and epoxide 19. It is postulated the C20N2 skeleton is generated after a coupling event 
between 18 and 19 and a series of redox reactions, however the precise mechanism of 
this biosynthetic step remains elusive. The biosynthetic gene cluster of Bipolaris maydis 
indicates that tailoring enzymes such as cytochrome P450 dependent monooxygenases 
and oxidoreductases could further functionalize the C20N2 skeleton giving rise to the 
diversity of oxidation patterns found in the curvulamine alkaloids.10  

In a separate study, during the investigations of curindolizine (2), Tan and co-workers 
isolated procuramine (20) from the culture broth of Curvularia sp. IFB-Z10.9 Interestingly, 
incubation of 20 and curvulamine (1) in the presence of Curvularia sp. IFB-Z10 protein 
lysate formed curindolizine (2). The individual enzymes involved in this transformation 
were not identified, but a plausible route to 2 might involve dehydration of 20 to form 3,5-
dimethylindolinone (21), which can undergo regioselective Michael addition with 1 
followed by a reduction and dehydration.  
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It is worth noting that while these previously described studies provide information 
about the plausible biosynthetic pathway of the curvulamine alkaloids, a complete 
biogenesis remains elusive, especially with respect to how the seven-membered ring is 
formed. 

 
1.2  Biological Activity of the Curvulamine-Type Alkaloids  
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bipolamine A (3)
bipolamine D (6)
bipolamine E (7)
bipolamine F (8)
bipolamine G (9)
bipolamine H (10)
bipolamine I (11)

curvulamine (1)

Compounds Veillonella parvula Streptococcus sp. Bacterioides vulgatus Peptostreptococcus sp.

4.20
2.87
0.73
3.52
0.32
0.35
1.53

0.37
8.40
>10
2.92
3.52
0.32
2.94
>10

0.37
8.40
5.74
2.92
3.52
0.32
1.47
>10

0.37
>10
5.74
5.85
3.52
0.32
2.94
>10

0.37

Table 1.1 Antibacterial activity (MICs in μM) of the curvulamine alkaloids.  
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Natural products have been employed throughout history for the treatment of various 
ailments and have been a rich source of potential drug candidates.12-14 Natural products 
sourced from fungi, such as penicillin, have played an important role in modern 
medicine.15 Particular focus has been paid to fungal symbionts because they produce 
secondary metabolites that promote the proliferation and survival of their hosts.16-18 In 
2014, Tan and co-workers discovered the fungal ectosymbiont Curvularia sp. IFB-Z10 in 
the gut of the white croaker, a marine organism that feeds on carrion. Evaluation of the 
fungal extracts against a broad range of bacterial strains revealed potent antibiotic activity 
against Gram-positive and negative bacteria. Upon further examination, the antibacterial 
activity observed on the crude extracts was attributed to the denitrogenated alkaloid 
curvulamine (1).8 Isolated 1 was found to exhibit low micromolar minimum inhibitory 
concentrations (MICs) against Veillonella parvula, Streptococus sp., Bacteroides 
vulgatus, and Peptostreptococcus sp. (Table 1.1). In an antibacterial assay, 1 was shown 
to be more selective and potent than tinidazole, a prescribed antibiotic and anti-
parasitic.19,20  

Curindolizine (2), a metabolite also isolated from Curvularia sp. IFB-Z10 was also 
tested for antibacterial activity, but found to be inactive against the bacterial strains used 
in the curvulamine studies.9 In a broader screen for biological properties, 2 was evaluated 
for anti-inflammatory activity using the Griess method, and gratifyingly displayed anti-
inflammatory properties in lipopolyssacharide-induced RAW 264.7 macrophages by 
inhibiting nitric oxide production.21 Nitric oxide is a signaling molecule heavily involved in 
the pathogenesis of inflammation. The antagonistic property of 2 extends to cytokines 
TNF-α, IL-1β, and IL-6, which are also involved in inflammation pathways in cells. It is 
worth noting that despite the structural similarities of curindolizine (2) with the rest of the 
curvulamine alkaloids, it is the only congener reported to exhibit anti-inflammatory activity. 

To date, the precise mechanism of action of the Curvularia sp. IFB-Z10 and Bipolaris 

maydis bioactive metabolites (2-11) is still unknown. It is possible that 1 and its congeners 
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bind to a protein pocket disrupting bacterial proliferation in a non-covalent mode of action, 
such is the case for the polyketide antibiotic erythromycin which stops the synthesis of 
bacterial proteins by blocking the nascent peptide exit tunnel (Figure 1.3).22,23 
Alternatively, one can also envision a covalent mode of action like β-lactams such as the 
antibiotic penicillin may be operative.24,25 This mode of action would require reactive sites 
in 1 that can interact with protein residues. A cursory analysis of the  structure of 
curvulamine (1) shows no electrophilic sites, however under conditions where the C13-
C3 ether bridge is protonated and ionizes, several electrophilic sites could be unveiled. 
This newly formed intermediate (see 21) could act as a covalent inhibitor in the presence 
of nucleophilic amino acid residues to form bacterial protein-small molecule complex 23 
inhibiting bacterial proliferation (Figure 1.3). This hypothesis may explain the lack of 
bioactivity of bipolamine I (11), the only metabolite with a C-14–C-3 ether bridge, which 
would be unable to form electrophilic intermediate 21.  

Our total synthesis campaign was in part motivated by a desire to develop the tools 
necessary to carry a proper investigation on the biological targets of the curvulamine 
alkaloids and it will be discussed in greater detailed later in this chapter. 

 
1.3  Distinctive Challenges in the Synthesis of Pyrrole-Containing Natural Products 

 
Pyrroles are electron rich heterocycles with reduced aromatic character compared to 

benzene.26-29 A combination of these two features define the pyrrole reactivity. This five-
membered heterocycle can undergo oxidation via single electron processes, protonation 
in mild acidic conditions, facile attack by electrophilic reagents, and extrusion of benzylic 
leaving groups (Figure 1.4).26 These processes can produce highly reactive cationic 
intermediates that readily polymerize or undergo side reactions in solution, greatly limiting 
the compatibility of many chemical transformations of synthetic targets containing pyrrole 
fragments. The pyrrole reactivity is increased when electron-donating substituents are 
present and attenuated with electron-withdrawing groups. 

 

Figure 1.4 Native pyrrole reactivity.  
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The curvulamine alkaloids contain a unique [5,7,6,5] tetracyclic core with two electron-
rich pyrrole units that are particularly sensitive to oxidative and acidic reaction conditions 
(Figure 1.5). To overcome this challenge, historically a combination of deactivating groups    
or pyrrole surrogates are employed when attempting to synthesize this subgroup of 
alkaloids.30 In the case of curvulamine (2), one of the pyrrole units can be masked as an 
aromatic 10π heterocycle, an observation which ultimately proved to be critical in the 
synthesis of this natural product. 

1.4  The Total Synthesis of Curvulamine  
 
The intricate structures and promising biological activities of the curvulamine alkaloids 

has attracted the attention of the scientific community and they have become appealing 
targets for synthetic organic chemists.31-33 Our group has reported pioneering work in this 
area beginning with the first total synthesis of (–)-curvulamine (1)34, followed by 
subsequent reports describing the total synthesis of curindolizine (2)11 and four 
bipolamines.35 In this chapter, we provide an overview of the synthesis of 1 which is 
intended to provide context for the subsequent chapters that will describe in detail the 
synthesis of four Bipolaris maydis metabolites (6,7,9,11) and curindolizine (2).  

Figure 1.5 Conserved structural features found in all curvulamine alkaloids.  
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It was envisioned that 1 could be broken down into three smaller building blocks 
depicted in Figure 1.6. From the proposed bond disconnections between C-3–C4, C-5–
C-6, and C-12–C-13, synthetic fragments that contained functional groups harboring 
potentially desirable reactivity could be identified. Retrosynthetically, curvulamine (1) was 
traced back to tetracycle 24 after various redox manipulations and removal of a two-

carbon unit. Tetracycle 24 in turn, could be disconnected to pyrrolo[1,2-a]azepin-7-one 
25 and cyanohydrin 26 via a proposed Michael addition and annulation sequence. This 
convergent step allowed for an initial foray into the reactivity of nitrogen-containing 
heterocycle 25, which will be further discussed in the following chapter.  

The synthesis began with the preparation of the pyrrole containing fragments 25 and 
26. The pyrrolo[1,2-a]azepin-7-one 25 fragment was elaborated in two steps. First, 
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pyrrolecarbaldehyde 27 and (E)-4-methoxybut-3-en-2-one (28) were joined via an aldol 
condensation, followed by microwave irradiation of the resulting enone to illicit cyclization. 
An expedient three-step sequence was developed to synthesize cyanohydrin 26 
beginning with nucleophilic substitution of methyl 2-bromopropanoate (29) with the metal 
salt of 2-methyl pyrrole. Then DIBAL reduction of the methyl ester gave an intermediate 
aldehyde which was reacted with TMSCN in the presence of LiClO4 to give 26, which was 
immediately used without further purification. These two fragments were coupled by 
deprotonation of 26 with NaHMDS to form the sodium anion which, in the presence of 
LiCl, underwent selective addition to pyrrolo[1,2-a]azepin-7-one 25 aided by lithium 
chloride. This Michael type addition afforded a product with the desired positional 
selectivity in moderate yields forging the first C-C bond in the planned annulation strategy. 
Recognizing that an oxidative process was required to realize the second key bond 
formation in the annulation, the enolate formed after the 1,4 addition was quenched with 
NIS to give enone 30 in a combined 64% yield. While this reaction favored the undesired 
configuration at the C-2 stereocenter, this was addressed later in the synthesis. Simple 
irradiation of 30 with a 390 nm light source in the presence of a polar protic solvent 
promoted the cyclization event yielding tetracycle 24. Treatment of 24 with excess ethyl 
vinyl ether lithiate produced 31 with the desired formal acyl addition in 55% isolated yield. 
As previously stated, the methyl bearing stereocenter C-2 needed to be epimerized and 
lactol 31 offered such opportunity. Conformational analysis suggested that allylic 1,3-
strain between the methyl groups at C-1 and C-10 could be minimized with axial 
positioning of the C-1 methyl group providing the desired configuration. Heating 31 with 
sodium methoxide in methanol yielded a 2.3:1 thermodynamic mixture of lactols favoring 
the desired isomer 32 in 85% yield. At this stage, the last hurdle to overcome was the 
removal of the hydroxyl group at the bridgehead position, which was accomplished in two 
steps. First, lactols 31 and 32 were deprotonated with KHMDS and subsequent acylation 
of the resulting anion with ClCSOPh in the presence of DMAP, generated a separable 
mixture of thiocarbonate epimers 33 and 34. Then, Barton-McCombie deoxygenation 
under mild heating with concomitant enol ether hydrolysis during acidic workup afforded 
methyl ketone 35. Finally, stereodivergent reduction of the methyl ketone 35 with (R)-2-
methyl-CBS-oxazaborolidine and BH3•DMS afforded a separable 1:1 mixture of 
curvulamine (1) and epi-curvulamine with 97% yield and 95% ee respectively. In 
summary, the first total synthesis of (-)-curvulamine (1) was accomplished in a total of 10 
steps from commercially available materials. 

 
1.5  Aims for the Pursuit of the Cuvulamine Alkaloids 

 
Alkaloids have long captured the attention of the synthetic community due to their 

intriguing chemical architectures and promising biological activities.13 Pyrrole-containing 
alkaloids exhibit a broad range of bioactivities, and their structural complexity present a 
noteworthy challenge for the practitioners of total synthesis.30 Among the many families 
of alkaloids, natural products containing electron-rich pyrroles represent an 
underexplored family for which limited established strategies and methodologies exist. As 
a result, chemists must often devise novel approaches for the construction of such 
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complicated frameworks, triggering the development of new methods and synthetic 
strategies to access various types of pyrrole scaffolds. Due to the paramount importance 
of the pyrrole nucleus in multiple chemical applications (Figure 1.8), new synthetic 
methods to access these nitrogenated heterocycles is essential.26,27,36,37 We aimed to use 
our pursuit of the total synthesis of the curvulamine alkaloids as a platform to explore 
novel chemistries and strategies to access electron rich natural products and 
functionalized pyrroles.  

Preliminary studies on the biological properties of these secondary metabolites have 
revealed antibiotic or anti-inflammatory properties with MICs in the low micromolar range 
(vide supra). Low isolation yields have so far prevented testing against a wider range of 
pathogens. Our aim is to improve upon our pioneering synthesis of curvulamine to allow 
for a scalable and unifying strategy to access all the curvulamine alkaloids, with the end 
goal of performing a comprehensive evaluation of their biological activities. We also plan  
in due time, to investigate the antibiotic mode of action of curvulamine (1) and bipolamines 
(2-11). The synthesis of an alkyne-functionalized curvulamine or bipolamine derivative 
will enable us to perform isotopic tandem orthogonal proteolysis-activity based protein 
profiling (isoTOP-ABPP).38 We predict that advanced proteomics will aid our goal of 

Figure 1.8  Applications of pyrroles to different scientific areas. 1.8A. Pyrroles found 
in nature. 1.8B. Pyrroles in commercial drugs.1.8 C. Applications of pyrroles in 
material science. 
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gaining a fundamental understanding of the antimicrobial mechanism of action of these 
interesting metabolites.  
 
1.6  Conclusion 

 
The aim of this chapter is to provide a fundamental understanding of the curvulamine 

alkaloids and a framework of knowledge for subsequent chapters. The following chapters 
will discuss in greater detail our strategies, obstacles and solutions that ultimately 
culminated in the syntheses of curindolizine (2) and four Bipolaris maydis metabolites: 
bipolamines C,D,G, and I. It is also the goal of this dissertation to document the chemical 
reactivity and unique findings obtained in our campaign to synthesize these intriguing 
natural products.  
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2.1 Introduction 
 

The first part of this chapter will elaborate on the background development and the 
plausible mechanism of a microwave-induced method used to synthesize substituted 
pyrrolo[1,2-a]azepin-7-ones, an underexplored family of aromatic heterocycles. In 
addition, a description of the scope of this method will be provided as well as a brief 
discussion on some of the applications of pyrrolo[1,2-a]azepin-7-ones in the context of 
drug discovery. The remainder of the chapter will disclose our findings from exploring an 
initial biomimetic approach toward curindolizine (2) and the lessons we learned from this 
initial approach. Lastly, this chapter will recount the synthetic strategy used to realize the 
first total synthesis of curindolizine (2). 
 
2.2  Forays into a Microwave-Induced Synthesis of New Pyrrolo[1,2-a]azepin-7-
ones 
 

During our synthetic investigations toward curvulamine (1)1, we were required to 
synthesize large quantities of pyrrole[1,2-a]azepin-7-one 25. Initially, a 3-step procedure, 
inspired from the work of Radley and co-workers, was applied to the synthesis of 5,7-
fused bicycle 36 (Figure 2.1A).2 First, intramolecular conjugate addition of pyrrole-2-
carboxaldehyde (37) onto methyl vinyl ketone 38 produced Michael addition product 39 
in good yield using K2CO3 in DMF. Then, methyl ketone 39 was heated to reflux under 
basic conditions (NaOEt, EtOH) to provide a separable mixture of aldol condensation 
products 36 and 40 in a combined 71% yield. Finally, 41 was obtained after oxidation of 
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the lithium enolate of 36 with Mukaiyama’s reagent (42).3,4 This approach was not 
implemented during the synthesis of 1 because of the lack of selectivity in the aldol 
condensation step. In 1988, Flitsch reported the synthesis of analogous pyrroloazepinone 
43 from vinylogous amide 44 using flash vacuum pyrolysis (FVP).5,6 In analogy to the 
work of Flitsch, a straightforward alternative was developed that used Boc-protected 
pyrrole-2-carboxaldehyde (27) as the starting material (Figure 2.1C). An intermolecular 
aldol condensation was performed after addition of the sodium enolate of (E)-4-
methoxybut-3-en-2-one (28) to 27 which gave enone 45 in 71% yield (NaHMDS, THF). 
Notably, concomitant Boc deprotection was observed which presumably occurred via a 
transesterification-type reaction of the initial aldol addition with the Boc-carbamate group 
followed by an E1cB reaction to generate enone 45. Microwave-induced thermal 
cyclization of 45 in the presence of base proceed to give pyrrolo[1,2-a]azepin-7-one 25 in 
60% yield (DBU, PhMe, 160 °C). While several mechanisms could be proposed for this 
transformation, based on the identification of (Z)-45 during reaction, we hypothesized that 
this cyclization process could be occurring via two mechanisms. In one possible scenario, 
25 could be formed after a  conjugate addition of the pyrrole unit into the vinylogous ester 
followed by extrusion of methoxide via an E1cB reaction. Another possible mechanism 

involves a concerted 10π electrocyclic ring closing reaction with concomitant elimination 
of methoxide to yield cyclized product 25.  

Substituted pyrrolo[1,2-a]azepin-7-ones have been employed in drug discovery, 
particularly in oncology and neuroleptic research.7,8 Given the limited number of existing 
methods to synthesize pyrroloazepinones,6,9-11 we investigated the application of this 
microwave-induced cyclization to synthesize novel pyrrolo[1,2-a]azepin-7-ones (Figure 
2.3). We initially examined the synthesis of pyrroazepinones bearing different aryl groups 
(46-48). Compounds 46-48 were prepared in three steps.  First. Suzuki coupling 
(Pd(dppf)Cl2•DCM, K2CO3) of iodopyrrole 49 with an aryl substituted boronic acid gave 
the corresponding coupling products 50-52 in good yields. Second, the coupling products 
were subjected to a base-mediated intermolecular aldol condensation (NaHMDS,THF) 
with vinylogous ester 28 yielding enones 53-55. Third, microwave irradiation (DBU, μW) 
of 53-55 gave monosubstituted pyrroloazepinones 46-48 in excellent yields. Encouraged 
by these initial results, we synthesized  disubstituted pyrrole 56 from methyl pyrrole 57  
by means of a Vilsmeier-Haack formylation and Boc protection sequence (Oxalyl chloride, 
DMF then Boc2O, THF). Aldol condensation of the sodium enolate of 28 and 56 produced 

Figure 2.2 Proposed mechanism for the synthesis of 25 from 45. 
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enone 58 in 73% yield using NaHMDS in THF. Thermal cyclization of 58 proceeded to 
give the corresponding pyrroloazepinone 59 in 52% yield (DBU, μW). We extended the 
screening investigations of this method to the synthesis of more complex heterocycles 
such as 60 and 61. Cyclization precursor 62 was expediently prepared from 
tetrahydroindole 63 after formylation (t-BuLi, DMF), Boc protection, and addition of the 
enolate of 28 to intermediate 64 (NaHMDS, THF). Indole 65 was made in two steps: first, 
regioselective formylation of 66 generated aldehyde 67 (POCl3, DMF), second, an aldol 
addition of the sodium enolate of 28 to 67 (NaHMDS, THF). Both tetrahydrindole 62 and 
indole 65 underwent microwave-induced thermal cyclization (DBU, μW) to give 61 and 
60, respectively albeit with diminished yields. Lastly, we sought to demonstrate that 
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pyrroles substituted with aldehydes and ketones were suitable substrates to prepare 
pyrroloazepinones. Pyrrolecarboxaldehyde 68 was used to make vinylogous ester 69 
(NaHMDS, THF), and microwave irradiation of 69 in the presence of DBU yielded 
pyrroloazepinone 41. We also observed that methyl ketone 70 could be transformed into 
intermediate 71, which underwent smooth cyclization to 72 in 72% yield (DBU, μW). In 
summary, the broad scope of this methodology illustrates its applicability to synthesize 
diverse pyrroloazepinones, scaffolds of potential importance in drug discovery.12-14 

 
2.3  Bioinspired Route Toward Curindolizine  
 

After securing a 10-step route to curvulamine (1),1 we decided to embark on a total 
synthesis campaign toward curindolizine (2), the most complex Curvularia sp. IFB-Z10 
secondary metabolite. 2 was serendipitously isolated from a large-scale cultivation broth 
of the Curvularia sp. fungus, and surprisingly was observed to be produced by the fungus 
preferentially over curvulamine (1). Motivated by this observation, Tan and co-workers 
investigated the biosynthetic origin of curindolizine (2).1,15,16 During these investigations 
procuramine (72) was isolated from the fungal cultivation broth, and interestingly, when 1 
and 72 were added to the cell lysate containing the fungal proteins, curindolizine (2) was 
subsequently detected. This led to the researchers to concluded that curvulamine (1) was 
a precursor of curindolizine (2). The Tan group proposed a biosynthetic process where 
an enzymatic coupling between 1 and 73 (an intermediate derived from 72) followed by 
additional enzymatic transformations ultimately yields curindolizine (2) (Figure 2.4).16 It is 
worth noting that while enzymes capable of promoting these reactions are suspected to 
be expressed by the fungus, Tan and co-workers did not perform sequencing experiments 
to identify the proteins responsible for producing 2.17-19  

Inspired by the way nature might synthesize curindolizine (2),16 we aimed to develop 
a synthetic plan to access electrophilic units analogous to enone 73, which we would then 
couple with curvulamine (1). To this end we devised simple chemistry to first synthesize 
tert-butyl ester 74 and then transform 74 into ketone 72 and allylic alcohol 75. A base-
catalyzed aldol reaction between the lithium enolate of tert-butyl acetate (LiHMDS, THF) 
and 76 generated ester 74 in a 6:1 diastereomeric ratio and combined 82% yield. Friedel-
Craft acylation of 74 under mild conditions (TMSOTf) generated procuramine (72) in good 
yields. Ester 74 underwent DIBAL-mediated reduction to generate an intermediate 
aldehyde, which cyclized and dehydrated upon  treatment with SiO2 to yield allylic alcohol 
75. With synthetic routes to 72 and 75, we proceeded to screen for conditions to couple 
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these units to curvulamine (1) (Figure 2.5B). Acid-catalyzed allylic substitution of 75 with 
curvulamine (1) in the presence of Brønsted acids PPTS (entry 1) or HCl (entry 2) failed 
to give curindolizine (2); instead, we only observed formation of 3,4-dimethyl-indolizine. 
Screening different Lewis acids such as ZrCl4 (entry 3), Sc(OTf)3 (entry 4), Mo(CO)6 (entry 
5) also failed to give any detectable amount of curindolizine (2); under these conditions 
curvulamine (1) and 3,4-dimethyl-indolizine were detected.20,21 Inspired by the work of 
Hartwig and co-workers, we attempted an iridium-mediated allylic substitution of 75 with 
curvulamine (1), but only 1 was recovered.22,23 Lastly, we subjected 75 to Tsuji-Trost 
conditions in an attempt to form a π-allyl complex which could be intercepted by 1, but we 
failed to observe any desired product.24,25 In the face of these unfortunate results, we 
moved to explore nonbiomimetic approaches to access the complex alkaloid 2.  
 
 

2.4  Revised Approach Toward the Synthesis of Curindolizine  
 

The rational solution to our problem was to install a handle on the eastern pyrrole and 
then investigate conditions for C-C bond-forming reactions. With that goal in mind, we 
explored conditions for a regioselective halogenation of 1 and 35. Halogenation of 1 with 
NBS in DCM resulted on an intractable mixture of products and halogenation of methyl 
ketone 35 proceed to give 76 as the single product (NIS, MeOH).  

Computational studies were performed on 35 to further understand the observed 
regioselectivity during the halogenation reaction. First, a conformational search on 
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Maestro was performed on 35 to find its low-energy conformers. Then, a density 
functional theory computational analysis was performed on the lowest-energy 
conformation to calculate the vibrational frequencies in the gas phase at B3LYP/6-
31G(d,p) level of theory. A population analysis in Gaussian provided us with the Mulliken 
values as well as information on the  frontier orbitals (HOMO-LUMO) of 35 (Figure 2.7). 
The Mulliken partial charges (Figure 2.7A) indicates a higher electron density in the 
western pyrrole compared to the eastern pyrrole; and a visual representation of the 
frontier molecular orbitals in 35 (Figure 2.7B), shows they are located on the western 
pyrrole. Therefore, we hypothesize that the observed regioselectivity of the halogenation 
reaction might be controlled by electronic effects.26,27   

 To overcome this regioselectivity challenge, we hypothesized that an intermediate 
with a deactivated western pyrrole, might undergo halogenation with the desired 
regioselectivity. Tetracycle 24 was identified as a suitable candidate to explore this 
hypothesis. The western pyrrole of 24 is conjugated to an electron-withdrawing group 
while the eastern pyrrole only has electron-donating substituents. Gratifyingly 24 
underwent clean regio- and chemoselective iodination to give 77 in 88% yield (NIS, 
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Acetone). As anticipated, the more electron rich pyrrole preferably reacts with NIS and 
halogenates the position with the higher electron density on the eastern pyrrole.   

Having secured a practical route to iodide 77, we proceeded to continue our 
investigations toward the synthesis of curindolizine (2).  The dihydroindolizine unit at C-8 
was envisioned to be derived from 78, which in turn could be made from iodide 77 in two 
steps. Addition of ethyl vinyl lithiate gave the corresponding product lactol product, but 
subsequent lithium-halogen exchange with t-BuLi followed by addition of the aldehyde 
electrophile gave reduction product 31 instead of 78 (entry 1). The observed product 31 
was believed to be formed after the protonation of the organolithiate with the lactol proton. 

Figure 2.9 Studies to utilize pentacycle 79 to elaborate curindolizine (2). 
 

N

Me

N Me

Me
H

H

O

OTMS

I
EtO

N

Me

N Me

Me

H

H

O

CNOTMS

I

Li

OEt

CeCl3
then add TMSCl

79%

77 79
N

Me

N Me

Me
H

H

O

OH

EtO

N

Me
Me

Investigation to 
synthesize 

dihydroindolizine

Figure 2.10 Total synthesis of curindolizine (2). 

N

Me

N Me

Me
H

H

O

OTMS

I
EtO

N

Me

N Me

Me

H

H

O

CN OTMS N

Me

N Me

Me

H

H

O

CN OTMS

N

Me

N Me

Me
H

H

O

H

OH
Me

N

Me

Me
t-BuO2C

H

NIS

Acetone
88%

I

Li

OEt

CeCl3
then add TMSCl

79%

N

Me

N Me

Me
H

H

O

OTMS

EtO

N

Me

Me
t-BuO2C

N

Me

N Me

Me
H

H

O

OH

(R)

EtO

N

Me

Me
t-BuO2C

H

N

Me

N Me

Me
H

H

O

H

OH
Me

N
Me

Me
H

+

N

Me

N Me

Me
H

H

O

OTMS

EtO

N

Me

Me
t-BuO2C

t-BuLi, then add 80
ZnCl2, A, Pd(PPh3)4

THF
80% (1:1 dr)

 SmI2, MeOH
THF

then add
TBAF
80%

1. NaOMe/MeOH, Δ
    57% (80% BRSM)
2. KHMDS then add
   ClCSOPh, DMAP, 83%
3. Bu3SnH, Et3B/O2
    then add HCl, 41%
4. (R)-CBS, 84% (1:1 dr)

  DIBAL

   then add SiO2
   70%

undesired
diastereomer

(+)-curindolizine (2)

O

Ot-Bu

Me
N

MeMeO2C

Me+

OTf
t-BuO2C

Me

N

Me

1. LiHMDS, THF
    –78 °C→25 °C 90% 
2. Tf2O, Et3N, DCM
   –78 °C→25 °C 88%

80

24 77 79

818283

84

(+)

Assembly of higher-order
curvulamine alkaloids by

Negishi coupling

22



To avoid this, the lactol was deprotonated prior the lithium-halogen exchange (entry 2). 
Unfortunately, the same reduction product 31 was isolated. Magnesium-halogen 
exchange using Turbo Grignard at cryogenic temperatures followed by addition of the 
electrophile gave a mixture of 31 and recovered starting material (entry 3). To explore 
other organometallic substrates, an organozinc was produced after transmetalation of the 
organolithiate with ZnBr2; addition of the organozinc reagent to aldehyde (76) resulted in 
the isolation of lactol 31. We rationalized that even after the deprotonation of the lactol 
such as in entry 2, the acidic alpha positions of the resulting ketone could still quench the 
organolithiate. To circumvent this problem, TMS protected lactol 79 was prepared after a 
CeCl3-assited addition of ethyl vinyl ether lithiate to 77 followed by in situ silylation. 
Lithium-halogen exchange of 79 with t-BuLi followed by addition of 76 proceed smoothy 
to give the desired 1,2 addition product. Unfortunately, all attempts to elaborate this 
intermediate to the desired indolizine product were met with failure.  

Next, we explored palladium-catalyzed reactions to utilize pyrrole 79 to complete the 
synthesis of curindolizine (2). Lithium-halogen exchange of 79 followed by ZnCl2-
mediated transmetalation gave the corresponding organozinc reagent, which underwent 
Pd-catalyzed Negishi coupling with 80 to yield a mixture of diastereomers 81 and 82 in 
80% combined yield.  The desired diastereomer 82 could be converted to ester 83 after 
a stereoselective reduction with SmI2 and silyl ether deprotection. NOESY experiments 
confirmed the desired relative stereochemistry between this newly formed stereocenter 
and the vicinal methyl group. Racemic 83 was converted to enanotiopure 84 in four steps: 
first, base mediated thermodynamic isomerization of the C-2 stereocenter (NaOMe, 
MeOH); second, thiocarbamate formation (KHMDS, ClSOPh, DMAP); third, Barton 
McCombie deoxygenation (Bu3SnH, Et3B, O2); and fourth, a CBS reduction (BH3•DMS, 
(R)-CBS catalyst). Based on our previous experiments in the preparation of 75, DIBAL 
reduction of ester 84 gave an aldehyde which cyclized and dehydrated in the presence 
of SiO2 to yield (+)-curindolizine (2) in 70% yield. 

 
2.5  Conclusions  

 
In this chapter, we have documented the result of our investigations on the mechanism 

and substrate scope of a microwave-induced method to access pyrroloazepinones. We 
have demonstrated the broad range of substrates that could be used in this 
transformation with the goal of enabling its implementation in areas such as drug 
discovery. Lastly, we have chronicled the first total synthesis of curindolizine (2), the only 
trimeric and most structurally complex curvulamine-type alkaloid.  
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2.8 Experimental Procedures and Characterization Data 
 
2.8.1 General Procedures 
 
All reactions were performed in flame- or oven-dried glassware under a positive pressure 
of nitrogen or argon, unless otherwise noted. Air-and moisture-sensitive liquids were 
transferred via syringe. When indicated, solvents or reagents were degassed by 
sparging with argon for 10 min in an ultrasound bath at 25 °C. Volatile solvents were 
removed under reduced pressure rotary evaporation below 35 °C. Analytical and 
preparative thin-layer chromatography (TLC) were performed using glass plates pre-
coated with silica gel (0.25-mm, 60-Å pore size, Merck TLC Silicagel 60 F254) impregnated 
with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to 
ultraviolet light (UV) and then were stained by submersion in an ethanolic anisaldehyde 
solution or ceric ammonium molybdate solution, followed by brief heating on a hot 
plate. Flash column chromatography was performed with silica gel purchased from 
Silicycle (SiliaFlash®, 60 Å, 230-400 mesh, 40-63 μm). Ethyl vinyl ether and 2-
bromopropanic acid methyl ester were distilled over calcium hydride prior to use. 
NaHMDS solutions were purchased from Sigma. All other reagents were used as 
received from commercial sources, unless stated otherwise. Anhydrous tetrahydrofuran 
(THF), dichloromethane (DCM), methanol (MeOH), dimethylformamide (DMF), and 
toluene (PhMe) were obtained by passing these previously degassed solvents through 
activated alumina columns. Proton nuclear magnetic resonance (1H NMR) spectra and 
carbon nuclear magnetic resonance (13C NMR) spectra were recorded on Bruker AV-600 
spectrometer at 23 °C. Proton chemical shifts are expressed as parts per million (ppm, δ 
scale) and are referenced to residual solvent (CDCl3: δ 7.26, C6D6: δ 7.16), unless stated 
otherwise. Carbon chemical shifts are expressed as parts per million (ppm, δ scale) and 
are referenced to the solvent (CDCl3: δ 77.16, C6D6: δ 128.06), unless stated otherwise. 
Data is represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = 
doublet of doublets, ddd, doublet of doublet of doublet, dt = triplet of doublets, t = triplet, 
q = quartet, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. 
Infrared (IR) spectra were recorded on a Bruker Alpha FT-IR spectrometer as thin films 
and are reported in frequency of absorption (cm-1). Only selected resonances are 
reported. High-resolution mass spectra (HRMS) were obtained by the mass 
spectrometry facility at the University of California, Berkeley using a Finnigan LTQFT 
mass spectrometer (Thermo Electron Corporation). X-ray diffraction data was collected 
at the Small Molecule X-ray Crystallography Facility (CheXray) at University of California, 
Berkeley using a Rigaku XtaLAB P200 equipped with a MicroMax 007HF rotating anode 
and Pilatus3 R 200K-A hybrid pixel array detector. Data were collected using CuKα 
radiation (λ = 1.5418 Å). 
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2.8.2 Experimental Procedures and Tabulated Characterization Data 

Pyrroloazepinone 41: Enone 36 (2.52 g, 17.1 mmol, 1.0 equiv.) was transferred (in 
benzene) to a 250 mL round bottom flask and was concentrated to dryness in vacuo. 
The 250 mL round bottom flask was then sealed, evacuated, and back filled with nitrogen 
(3x). The sealed flask was charged with THF (70 mL), and cooled to –78 oC. LiHMDS (1.0 
M in THF, 20.4 mL, 20.4 mmol, 1.2 equiv.) was added dropwise, and the resulting 
suspension was stirred for 30 min at –78 oC. In a separate flask, Mukaiyama’s reagent 
42 (4.04 g, 18.8 mmol, 1.1 equiv.) was azeotropically dried with benzene (3x) and then 
dissolved in THF (10 mL) under an atmosphere of nitrogen. The solution was then 
transferred via cannula to the reaction mixture, with an additional THF (5 mL) rinse 
ensuring quantitative transfer. Upon completion of the consumption of 36 as indicated 
by TLC, the reaction was quenched with saturated aq. NaHCO3 (50 mL). The solution 
was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with 
brine (50 mL), dried over Na2SO4, filtered, and concentrated in vacuo to afford a brown 
residue. The resulting crude residue was purified by column chromatography (15% 
EtOAc in hexanes→ 35% EtOAc in hexanes) to afford 41 (1.53 g, 10.5 mmol, 62%) as a 
yellow solid. TLC: Rf = 0.5 (40% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.39 (d, 
J = 12.3 Hz, 1H), 6.21 (dd, J = 12.3, 2.3 Hz, 1H), 6.13 (t, J = 2.3 Hz, 1H), 6.10 (dd, J = 
3.9, 1.6 Hz, 1H), 6.02 (d, J = 10.4 Hz, 1H), 5.98 (t, J = 3.3 Hz, 1H), 5.69 (dd, J = 10.4, 
2.4 Hz, 1H); 13C NMR (151 MHz, C6D6) δ 186.4, 132.7, 128.7, 127.6, 126.3(2C), 
118.1, 115.8, 111.9; HRMS (m/z): (ESI) calcd. For C9H8ON [M+H]+: 146.0600, found 
146.0599. 
 

Aldehyde 27: To a 1 L round bottom flask containing 5-methylpyrrole-2-carboxaldehyde 
(32.4 g, 296.9 mmol, 1.0 equiv.) was added THF (590 mL). The vigorously stirring 
solution was cooled to 0 °C, and DMAP (1.81 g, 14.8 mmol, 0.05 equiv.) and Boc2O (77.7 
g, 356 mmol, 1.2 equiv.) were added in a single portion sequentially. The resulting 
suspension was removed from the cooling bath and warmed to room temp, at which point 
the septum was removed allowing for evolved gases to escape. Upon consumption of the 
starting material as indicated by TLC, the reaction mixture was quenched with saturated 
aq. NaHCO3 (300 mL) and stirred for 30 min. The biphasic reaction mixture was 
poured into a separatory funnel and extracted with EtOAc (3 x 500 mL). The combined 
organic layers were washed with brine (100 mL), dried over Na2SO4, filtered, and 
concentrated in vacuo. The dark brown colored crude product was first filtered through a 
short silica gel plug (eluting with 50% EtOAc in hexanes), concentrated in vacuo, and 
purified by column chromatography (10% EtOAc in hexanes → 40% EtOAc) to afford 
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aldehyde 27 (56.5 g, 270 mmol, 91% yield) as a yellow oil. TLC: Rf = 0.3 (40% EtOAc in 
hexanes); 1H NMR (600 MHz, C6D6) δ 9.33 (s, 1H), 6.86 (d, J = 3.6 Hz, 1H), 5.63 (d, J = 
3.4 Hz, 1H), 2.13 (s, 3H), 1.28 (s, 9H); 13C NMR (151 MHz, C6D6) δ 178.3, 148.5, 138.2, 
134.4, 120.7, 111.1, 83.9, 26.5, 14.1(3C); IR (thin film) νmax (cm-1): 2979, 2932, 1745, 
1663, 1485, 1300, 1124, 861, 798, 777; HRMS (m/z): (ESI) calcd. for C11H16NO3 
[M+H]+: 210.1125, found 210.1126. 
 

Compound 45: To a flame-dried 1L round bottom flask was added (E)-4-methoxybut-3-
en-2-one (28) (8.13 mL, 79.7 mmol, 1.0 equiv.) and THF (478 mL). The resulting solution 
was cooled to –78 °C and NaHMDS (1.0 M in THF, 104 mL, 104 mmol, 1.3 equiv.) 
was transferred via cannula to the reaction mixture. The resulting suspension was then 
stirred for 30 min at –78 °C. In a separate flask, aldehyde 27 (20.0 g, 95.7 mmol, 1.2 
equiv.) was azeotropically dried with benzene (3x) and then dissolved in THF (20 mL) 
under an atmosphere of nitrogen. The aldehyde solution was then transferred via 
cannula to the reaction mixture, with an additional THF (5 mL) rinse ensuring 
quantitative transfer. The resulting reaction mixture was then stirred at –78 °C for 1 
hour, and upon consumption of the starting material as indicated by TLC, the reaction 
was then quenched with saturated aq. NH4Cl (200 mL) at –78°C. The mixture was 
warmed to room temperature and extracted with EtOAc (3 x 400 mL). The combined 
organic layers were washed with brine (200 mL), dried over Na2SO4, filtered, and 
concentrated in vacuo. The dark brown colored crude material was purified by column 
chromatography (10% EtOAc in hexanes → 45 % EtOAc in hexanes) to afford dienone 
45 (10.8 g, 56.5 mmol, 71%) as an orange solid. TLC: Rf = 0.4 (40% EtOAc in hexanes); 
1H NMR (600 MHz, CDCl3) δ 9.08 (s, 1H), 7.70 (d, J = 12.3 Hz, 1H), 7.48 (d, J = 15.7 
Hz, 1H), 6.50 (br s, 1H), 6.42 (d, J = 15.7 Hz, 1H), 5.98 (br s, 1H), 5.86 (d, J = 12.4 Hz, 
1H), 3.75 (s, 3H), 2.34 (s, 3H); 13C NMR (151 MHz, CDCl3) δ 189.3, 162.6, 135.1, 
132.8, 128.1, 118.0, 116.8, 109.8, 104.5, 57.6, 13.4; IR (thin film) νmax (cm-1): 3255, 
1600, 1546, 1274, 1089, 1035, 778, 618; HRMS (m/z): (ESI) calcd. for C11H14NO2 
[M+H]+: 192.1019, found 192.1020. 
 

Compound 71: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-
one (28). (60 mg, 0.60 mmol, 1.0 equiv.) and THF (3 mL). The resulting solution was 
cooled to –78 °C and NaHMDS (1.0 M in THF, 0.78 mL, 0.78 mmol, 1.3 equiv.) was 
added dropwise to the reaction mixture. The resulting suspension was then stirred for 1 
hour. In a separate flask 2-Acetyl-1-tert-butoxy carbonyl pyrrole (70) (150 mg, 0.72 mmol, 
1.2 equiv.) was dissolved in THF under an atmosphere of nitrogen. The ketone solution 
was then added dropwise to the reaction mixture at –78 °C. The resulting reaction mixture 
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was warmed up to –40 °C and stirred for 2 hours, and upon consumption of the starting 
material as indicated by TLC, the reaction was then quenched with aq. NH4Cl (1.5 mL). 
The mixture was warmed to room temperature and extracted with EtOAc (3 x 5 mL). The 
combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. 
The crude material was purified by column chromatography (0% EtOAc in hexanes → 
40% EtOAc in hexanes) to afford dienone 71 (69 mg, 0.36 mmol, 60%). TLC: Rf = 0.30 
(30% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 7.72 (d, J = 12.4 Hz, 1H), 7.43 – 
7.25 (m, 1H), 6.52 (ddd, J = 3.9, 2.7, 1.4 Hz, 1H), 6.32 (td, J = 2.7, 1.4 Hz, 1H), 6.20 (dt, 
J = 3.7, 2.5 Hz, 1H), 6.07 (q, J = 1.2 Hz, 1H), 5.66 (d, J = 12.4 Hz, 1H), 3.00 (s, 3H), 2.60 
(d, J = 1.1 Hz, 3H); 13C NMR (151 MHz, C6D6) δ 188.6, 162.3, 143.7, 133.5, 121.3, 
117.7, 111.8, 110.7, 108.4, 57.2, 16.6; IR (thin film) νmax (cm-1): 1656, 1617,1542, 
1422, 1308, 1248, 1207, 1131, 1093, 1044, 858, 738, 737; HRMS (m/z): (ESI) calcd. 
for C11H14NO2 [M+H]+: 192.1019, found 192.1019. 

 
Compound 65: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (25 mg, 0.25 mmol, 1.0 equiv.) and THF (1.5 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.33 mL, 0.33 mmol, 1.3 equiv.) was added 
dropwise to the reaction mixture. The resulting suspension was then stirred for 30 min. 
In a separate flask N-Boc-indole-2-carboxaldehyde 67 (76 mg, 0.31 mmol, 1.2 equiv.) 
was dissolved in THF under an atmosphere of nitrogen. The aldehyde solution was then 
added dropwise to the reaction mixture at –78 °C. The resulting reaction stirred for 1 hour 
at –78 °C, and upon consumption of the starting material as indicated by TLC, the 
reaction was then quenched with aq. NH4Cl (1.5 mL). The mixture was warmed to room 
temperature and extracted with EtOAc (3 x 5 mL). The combined organic layers were 
dried over Na2SO4, filtered, and concentrated in vacuo. The crude material was purified 
by column chromatography (0% EtOAc in hexanes → 50% EtOAc in hexanes) to afford 
dienone 65 (33 mg, 0.15 mmol, 60%) as a yellow solid. TLC: Rf = 0.30 (30% EtOAc in 
hexanes); 1H NMR (600 MHz, C6D6) δ 7.76 (d, J = 12.4 Hz, 1H), 7.64 (d, J = 15.9 Hz, 
1H), 7.54 (dd, J = 8.0, 1.0 Hz, 1H), 7.37 (s, 1H), 7.21 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 
7.13 – 7.05 (m, 2H), 6.57 (d, J = 2.1 Hz, 1H), 6.33 (d, J = 15.9 Hz, 1H), 5.75 (d, J = 
12.4 Hz, 1H), 2.99 (s, 3H); 13C NMR (151 MHz, C6D6) δ 186.9, 163.2, 138.2, 134.4, 
131.3, 129.3, 124.8, 124.6, 121.9, 120.9, 111.5, 108.5, 105.1, 57.4; IR (thin film) νmax 
(cm-1): 1644, 1605, 1588, 1345, 1307, 1254, 1126, 1068, 752, 738; HRMS (m/z): (ESI) 
calcd. for C14H14NO2 [M+H]+: 228.1019, found 228.1021. 
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Compound 50: To a flame-dried round-bottom flask were added tert-butyl-2-formyl-5-
iodo-1H-pyrrole-1-carboxylate 49 (100 mg, 0.31 mmol, 1.0 equiv.), phenylboronic acid 
(46 mg, 0.38 mmol, 1.2 equiv.), Pd(dppf)Cl2•DCM (30 mg, 36 μmol, 0.1 equiv.), K3PO4 
(140 mg, 0.66 mmol, 2.1 equiv.), dioxane (1.5 mL) and H2O (75 μL). The resulting solution 
was sparged with argon for 5 min, then the reaction mixture was stirred at 85 °C for 1 
hour. Upon consumption of the starting material as indicated by TLC, the reaction was 
then cooled down to room temperature and diluted with Et2O (3 mL) and H2O (3 mL). 
The biphasic mixture was poured into a separatory funnel and extracted with Et2O (3 x 
10 mL). The combined organic layers were washed with brine (10 mL), dried over 
Na2SO4, filtered, and concentrated in vacuo. The crude material was purified by column 
chromatography (0% EtOAc in hexanes → 30% EtOAc in hexanes) to afford aldehyde 50 
(54 mg, 0.20 mmol, 65%). TLC: Rf = 0.60 (30% EtOAc in hexanes); 1H NMR (600 MHz, 
C6D6) δ 9.95 (s, 1H), 7.24 – 7.18 (m, 2H), 7.06 – 7.01 (m, 3H), 6.79 (d, J = 3.8 Hz, 1H), 
5.95 (d, J = 3.8 Hz, 1H), 1.15 (s, 9H); 13C NMR (151 MHz, Acetone) δ 180.5, 150.0, 
141.9, 135.7, 133.1, 129.4(3C), 129.2(2C), 121.4, 113.1, 86.4, 27.4(3C); IR (thin film) 
νmax (cm-1): 2982, 2935, 1765, 1743, 1663, 1506, 1414, 1396, 1371, 1300, 1285, 
1260, 1140, 1075; HRMS (m/z): (ESI) calcd. for C16H17NO3Na [M+Na]+: 294.1101, found 
294.1100. 

 
Compound 53: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (37 mg, 0.37 mmol, 1.0 equiv.) and THF (1.5 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.48 mL, 0.48 mmol, 1.3 equiv.) was added 
dropwise to the reaction mixture. The resulting suspension was then stirred for 30 min. 
In a separate flask aldehyde 50 (133 mg, 0.49 mmol, 1.3 equiv.) was dissolved in THF 
under an atmosphere of nitrogen. The aldehyde solution was then added dropwise to the 
reaction mixture at –78 °C. The resulting reaction stirred for 1 hour at –78 °C, and upon 
consumption of the starting material as indicated by TLC, the reaction was then quenched 
with aq. NH4Cl (3.0 mL). The mixture was warmed to room temperature and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were dried over Na2SO4, filtered, 
and concentrated in vacuo. The crude material was purified by column chromatography 
(0% EtOAc in hexanes → 30% EtOAc in hexanes) to afford dienone 53 (50 mg, 0.20 
mmol, 54%). TLC: Rf = 0.30 (40% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 9.32 
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(s, 1H), 7.82 (d, J = 15.7 Hz, 1H), 7.73 (d, J = 12.3 Hz, 1H), 7.41 (d, J = 7.7 Hz, 2H), 
7.07 – 7.00 (m, 2H), 6.63 – 6.57 (m, 2H), 6.53 (dd, J = 3.8, 2.5 Hz, 1H), 5.74 (d, J = 
12.4 Hz, 1H), 2.98 (s, 3H); 13C NMR (151 MHz, C6D6) δ 187.9, 162.9, 137.0, 132.4, 
132.0, 130.9, 129.1(2C), 127.3, 125.1(2C), 121.1, 115.6, 109.5, 105.2, 57.3; IR (thin 
film) νmax (cm-1): 1637, 1600, 1549, 1462, 1291, 1258, 1206, 1142, 1090, 1045, 975, 
759; HRMS (m/z): (ESI) calcd. for C16H16NO2 [M+H]+: 254.1176, found 254.1176. 

 
Compound 51: To a flame-dried round-bottom flask were added tert-butyl-2-formyl-5-
iodo-1H-pyrrole-1-carboxylate 49 (120 mg, 0.37 mmol, 1.0 equiv.), 4-
fluorophenylboronic acid (60 mg, 0.43 mmol, 1.2 equiv.), Pd(dppf)Cl2•DCM (30 mg, 36 
μmol, 0.1 equiv.), K3PO4 (130 mg, 0.94 mmol, 2.5 equiv.), dioxane (1.5 mL) and H2O (75 
μL). The resulting solution was sparged with argon for 5 min, then the reaction mixture 
was stirred at 85 °C for 1 hour. Upon consumption of the starting material as indicated 
by TLC, the reaction was then cooled down to room temperature and diluted with Et2O (3 
mL) and H2O (3 mL). The biphasic mixture was poured into a separatory funnel and 
extracted with Et2O (3 x 10 mL). The combined organic layers were washed with brine 
(10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude material was 
purified by column chromatography (0% EtOAc in hexanes → 30% EtOAc in hexanes) 
to afford aldehyde 51 (71 mg, 0.25 mmol, 68%). TLC: Rf = 0.65 (30% EtOAc in hexanes); 
1H NMR (600 MHz, C6D6) δ 9.92 (s, 1H), 7.02 – 6.96 (m, 2H), 6.78 (d, J = 3.7 Hz, 1H), 
6.73 – 6.66 (m, 2H), 5.86 (d, J = 3.7 Hz, 1H), 1.15 (s, 9H); 13C NMR (151 MHz, C6D6) 
δ 179.5, 164.0, 162.4, 149.3, 140.0, 135.4, 131.1, 131.0, 120.9, 115.4, 115.2, 112.8, 
85.4, 27.1(3C); IR (thin film) νmax (cm-1): 2982, 1744, 1663, 1606, 1462, 1422, 1397, 
1299, 1260, 1220, 1159, 1139, 840, 802; HRMS (m/z): (ESI) calcd. for C16H17NFO3 
[M+H]+: 290.1187, found 290.1189.  

Compound 54: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (39 mg, 0.39 mmol, 1.0 equiv.) and THF (3.0 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.51 mL, 0.51 mmol, 1.3 equiv.) was added 
dropwise to thereaction mixture. The resulting suspension was then stirred for 1 hour. In 
a separate flask aldehyde 51 (140 mg, 0.48 mmol, 1.2 equiv.) was dissolved in THF 
under an atmosphere of nitrogen. The aldehyde solution was then added dropwise to the 
reaction mixture at –78 °C. The resulting reaction stirred for 1 hour at –78 °C, and upon 
consumption of the starting material as indicated by TLC, the reaction was then quenched 
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with aq. NH4Cl (1.5 mL). The mixture was warmed to room temperature and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were dried over Na2SO4, filtered, 
and concentrated in vacuo. The crude material was purified by column chromatography 
(0% EtOAc in hexanes → 40% EtOAc in hexanes) to afford dienone 54 (51 mg, 0.19 
mmol, 48%). TLC: Rf = 0.65 (30% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 9.30 
(s, 1H), 7.81 (d, J = 15.7 Hz, 1H), 7.68 (d, J = 12.4 Hz, 1H), 6.84 – 6.77 (m, 2H), 6.63 
(d, J = 15.7 Hz, 1H), 6.59 (dd, J = 3.8, 2.4 Hz, 1H), 6.39 (dd, J = 3.8, 2.5 Hz, 1H), 5.73 
(d, J= 12.4 Hz, 1H), 2.97 (s, 3H); 13C NMR (151 MHz, C6D6) δ 188.1, 163.3, 162.9, 
161.7, 136.1, 132.0, 130.9, 126.8(2C), 121.2, 116.1, 115.9, 115.5, 109.4, 105.0, 57.3; IR 
(thin film) νmax (cm-1): 1634, 1618, 1599, 1562, 1516, 1467, 1344, 1233, 1211, 851, 834, 
781, 684; HRMS (m/z): (ESI) calcd. for C16H15NFO2 [M+H]+: 272.1081, found 272.1082. 

 
Compound 52: To a flame-dried round-bottom flask were added tert-butyl-2-formyl-5-
iodo-1H-pyrrole-1-carboxylate 49 (110 mg, 0.34 mmol, 1.0 equiv.), 4-
methoxyphenylboronic acid (80 mg, 0.53 mmol, 1.6 equiv.), Pd(dppf)Cl2•DCM (25 mg, 31 
μmol, 0.09 equiv.), K2CO3 (120 mg, 0.87 mmol, 2.6 equiv.), dioxane (2.0 mL) and H2O 
(0.1 mL). The resulting solution was sparged with argon for 5 min, then the reaction 
mixture was stirred at 85 °C for 3 hours. Upon consumption of the starting material as 
indicated by TLC, the reaction was then cooled down to room temperature and diluted 
with EtOAc (3 mL) and H2O (3 mL). The biphasic mixture was poured into a separatory 
funnel and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed 
with brine (10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude 
material was purified by column chromatography (0% EtOAc in hexanes → 40% EtOAc 
in hexanes) to afford aldehyde 52 (70 mg, 0.23 mmol, 68%). TLC: Rf = 0.65 (30% EtOAc 
in hexanes); 1H NMR (600 MHz, C6D6) δ 9.86 (s, 1H), 7.26 – 7.20 (m, 2H), 6.77 (d, J = 
3.8 Hz, 1H), 6.72 – 6.67 (m, 2H), 5.99 (d, J = 3.7 Hz, 1H), 3.24 (s, 3H), 1.24 (s, 9H); 
3C NMR(151 MHz, C6D6) δ 179.0, 160.4, 149.8, 141.5, 135.0(2C), 130.5, 124.9, 
121.4(2C), 113.9, 112.1, 85.2, 54.8, 27.2(2C); IR (thin film) νmax (cm-1): 1762, 1743, 1660, 
1611, 1577, 1463, 1370, 1287, 1250, 1178, 1137, 1075, 1032, 835; HRMS (m/z): 
(ESI) calcd. For C17H19NO4Na[M+Na]+: 324.1206, found 324.1207. 
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Compound 55: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (40 mg, 0.40 mmol, 1.0 equiv.) and THF (3.0 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.52 mL, 0.52 mmol, 1.3 equiv.) was added 
dropwise to the reaction mixture. The resulting suspension was then stirred for 1 hour. In 
a separate flask aldehyde 51 (144 mg, 0.47 mmol, 1.2 equiv.) was dissolved in THF 
under an atmosphere of nitrogen. The aldehyde solution was then added dropwise to the 
reaction mixture at –78 °C. The resulting reaction stirred for 1 hour at –78 °C, and upon 
consumption of the starting material as indicated by TLC, the reaction was then quenched 
with aq. NH4Cl (3.0 mL). The mixture was warmed to room temperature and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were dried over Na2SO4, filtered, 
and concentrated in vacuo. The crude material was purified by column chromatography 
(0% EtOAc in hexanes → 40% EtOAc in hexanes) to afford dienone 55 (53 mg, 0.19 
mmol, 47%). 1H NMR (600 MHz, Acetone) δ 10.70 (s, 1H), 7.72 – 7.63 (m, 3H), 7.49 (d, 
J = 15.8 Hz, 1H), 7.00 – 6.95 (m, 2H), 6.77 (d, J = 15.7 Hz, 1H), 6.66 (dd, J = 3.7, 2.4 
Hz, 1H), 6.56 (dd, J = 3.8, 2.4 Hz, 1H), 5.90 (d, J = 12.5 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 
3H); 13C NMR (151 MHz, Acetone) δ 187.8, 162.7, 160.1, 137.7, 131.6, 130.9, 
126.7(2C), 125.7, 120.4, 117.4, 115.2(2C), 108.5, 105.9, 58.0, 55.7; IR (thin film) νmax 
(cm-1): 1599, 1569, 1549, 1517, 1468, 1439, 1281, 1252, 1206, 1183, 1088, 1075; 
HRMS (m/z): (ESI) calcd. for C17H18NO3 [M+H]+: 284.1281, found 284.1281. 
 

 
Compound 69: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (60 mg, 0.60 mmol, 1.0 equiv.) and THF (3 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.78 mL, 0.78 mmol, 1.3 equiv.) was added 
dropwise to the reaction mixture. The resulting suspension was then stirred for 30 min. 
In a separate flask N- Boc-pyrrole-2-carboxaldehyde 68 (140 mg, 0.72 mmol, 1.2 equiv.) 
was dissolved in THF under an atmosphere of nitrogen. The aldehyde solution was then 
added dropwise to the reaction mixture at –78 °C. The resulting reaction stirred for 1 hour 
at –78 °C, and upon consumption of the starting material as indicated by TLC, the 
reaction was then quenched with aq. NH4Cl (3.0 mL). The mixture was warmed to room 
temperature and extracted with EtOAc (3 x 5 mL). The combined organic layers were 
dried over Na2SO4, filtered, and concentrated in vacuo. The crude material was purified 
by column chromatography (0% EtOAc in hexanes → 40% EtOAc in hexanes) to afford 
dienone 69 (50 mg, 0.28 mmol, 47%). TLC: Rf = 0.35 (30% EtOAc in hexanes); 1H NMR 
(600 MHz, C6D6) δ 7.78 (d, J = 12.4 Hz, 2H), 7.64 (d, J = 15.8 Hz, 1H), 6.57 – 6.39 (m, 
1H), 6.37 – 6.24 (m, 2H), 6.18 (dt, J = 3.6, 2.5 Hz, 1H), 5.73 (d, J = 12.3 Hz, 1H), 2.96 
(s, 3H); 13C NMR (151 MHz, C6D6) δ 187.4, 162.6, 131.6, 129.3, 122.4, 121.0, 114.1, 
111.1, 105.0, 57.2; IR (thin film) νmax (cm-1): 1734, 1641, 1603, 1568, 1541, 1437, 1414, 
1290, 1125, 1088, 1035, 977, 740; HRMS (m/z): (ESI) calcd. for C10H12NO2 [M+H]+: 
178.0863, found 178.0861. 
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Compound 64: To a round bottom flask containing 4,5,6,7-tetrahydro-1H-indole-
2-carbaldehyde (55 mg, 0.37 mmol, 1.0 equiv.) was added THF (2 mL). To the 
resulting solution were added DMAP (2 mg, 16.4 μmol, 0.04 equiv.) and Boc2O (105 mg, 
0.48 mmol, 1.3 equiv.) in a single portion sequentially. The reaction mixture was stirred 
at room temperature for 1 hour, and upon consumption of the starting material as 
indicated by TLC, the mixture was diluted with EtOAc (3 mL) and quenched with aq. 
NaHCO3 (5 mL). The biphasic reaction mixture was extracted with EtOAc (3 x 10 mL). 
The combined organic layers were washed were dried over Na2SO4, filtered, and 
concentrated in vacuo. The crude material was purified by column chromatography (0% 
EtOAc in hexanes → 40% EtOAc in hexanes) to afford aldehyde 64 (59 mg, 0.24 mmol, 
65%). TLC: Rf = 0.50 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 10.21 (s, 
1H), 6.85 (s, 1H), 2.64 (tt, J = 6.4, 1.6 Hz, 2H), 2.12 (tt, J = 6.1, 1.7 Hz, 2H), 1.41 (pd, 
J = 5.9, 3.3 Hz, 2H), 1.38 – 1.32 (m, 2H), 1.28 (s, 9H); 13C NMR (151 MHz, C6D6) 
δ180.1, 149.4, 137.8, 134.6, 122.3, 121.6, 84.4, 27.6(3C), 25.4, 23.1, 22.9, 22.7; IR 
(thin film) νmax (cm-1): 2935, 1739, 1648, 1483, 1462, 1416, 1348, 1333, 1296, 1259, 
1144, 1125, 1086, 849; HRMS (m/z): (ESI) calcd. for C14H19NO3Na[M+Na]+: 272.1257, 
found 272.1258. 
 

 
Compound 62: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (60 mg, 0.60 mmol, 1.0 equiv.) and THF (3.5 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.78 mL, 0.78 mmol, 1.3 equiv.) was added 
dropwise to the reaction mixture. The resulting suspension was then stirred for 1 hour. In 
a separate flask aldehyde 64 (200 mg, 0.80 mmol, 1.3 equiv.) was dissolved in THF 
under an atmosphere of nitrogen. The aldehyde solution was then added dropwise to the 
reaction mixture at –78 °C. The resulting reaction stirred for 1 hour at –78 °C, and upon 
consumption of the starting material as indicated by TLC, the reaction was then quenched 
with aq. NH4Cl (3.0 mL). The mixture was warmed to room temperature and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were dried over Na2SO4, filtered, 
and concentrated in vacuo. The crude material was purified by column chromatography 
(0% EtOAc in hexanes → 50% EtOAc in hexanes) to afford dienone 62 (65 mg, 0.28 
mmol, 47%). TLC: Rf = 0.45 (30% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 7.83 
(d, J = 12.3 Hz, 1H), 7.69 (d, J = 15.7 Hz, 1H), 7.38 (s, 1H), 6.32 (d, J = 15.7 Hz, 1H), 
6.27 (d, J = 2.5 Hz, 1H), 5.81 (d, J = 12.3 Hz, 1H), 3.01 (s, 3H), 2.40 (tt, J = 4.8, 2.0 
Hz, 2H), 2.16 (q, J = 4.3, 3.2 Hz, 2H), 1.53 (td, J = 3.8, 1.9 Hz, 4H); 13C NMR (151 
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MHz, C6D6) δ187.2, 162.2, 132.8, 131.9, 127.6, 120.5, 119.1, 114.1, 105.2, 57.1, 23.9, 
23.4, 23.2, 23.1; IR(thin film) νmax (cm-1): 2932, 1637, 1602, 1570, 1546, 1411, 1362, 
1318, 1285, 1198, 1119, 1082, 975; HRMS (m/z): (ESI) calcd. for C14H18NO2 [M+H]+: 
232.1332, found 232.1333. 

 
Compound 56: To a round bottom flask containing 4-methyl-5-phenyl-1H-pyrrole-2- 
carbaldehyde (155 mg, 0.84 mmol, 1.0 equiv.) was added THF (5 mL). To the resulting 
solution were added DMAP (4.9 mg, 40 μmol, 0.05 equiv.) and Boc2O (253 mg, 1.16 
mmol, 1.4 equiv.) in a single portion sequentially. The reaction mixture was stirred at 
room temperature for 1 hour, and upon consumption of the starting material as indicated 
by TLC, the mixture was diluted with EtOAc (5 mL) and quenched with aq. NaHCO3 (5 
mL). The biphasic reaction mixture was extracted with EtOAc (3 x 10 mL). The combined 
organic layers were washed were dried over Na2SO4, filtered, and concentrated in vacuo. 
The crude material was purified by column chromatography (0% EtOAc in hexanes → 
35% EtOAc in hexanes) to afford aldehyde 56 (132 mg, 0.46 mmol, 55%). TLC: Rf = 
0.60 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 10.21 (s, 1H), 7.09 – 7.00 
(m, 5H), 6.81 (s, 1H), 1.70 (s, 3H), 1.08 (s, 9H); 13C NMR (151 MHz, Acetone) δ 
180.9, 149.8, 138.2, 134.4, 133.1, 130.5(2C), 129.1(2C), 122.2, 121.9, 85.7, 27.3(3C), 
11.3; IR (thin film) νmax (cm-1): 1739, 1663, 1605, 1508, 1465, 1443, 1415, 1371, 1337, 
1300, 1154, 1089, 703; HRMS (m/z): (ESI) calcd. for C17H19NO3Na [M+Na]+: 
308.1257, found 308.1257. 

 

Compound 58: To a flame-dried reaction tube was added (E)-4-methoxybut-3-en-2-one 
(28) (26 mg, 0.26 mmol, 1.0 equiv.) and THF (1.5 mL). The resulting solution was cooled 
to –78 °C and NaHMDS (1.0 M in THF, 0.33 mL, 0.33 mmol, 1.3 equiv.) was added 
dropwise to the reaction mixture. The resulting suspension was then stirred for 1 hour. In 
a separate flask aldehyde 56 (82 mg, 0.29 mmol, 1.1 equiv.) was dissolved in THF under 
an atmosphere of nitrogen. The aldehyde solution was then added dropwise to the 
reaction mixture at –78 °C. The resulting reaction stirred for 1 hour at –78 °C, and upon 
consumption of the starting material as indicated by TLC, the reaction was then quenched 
with aq. NH4Cl (1.5 mL). The mixture was warmed to room temperature and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were dried over Na2SO4, filtered, 
and concentrated in vacuo. The crude material was purified by column chromatography 
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(0% EtOAc in hexanes → 50% EtOAc in hexanes) to afford dienone 58 (50 mg, 0.19 
mmol, 73%). TLC: Rf = 0.35 (30% EtOAc in hexanes); 1H NMR (600 MHz, Acetone) δ 
7.67 (d, J = 12.5 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.51 – 7.42 (m, 3H), 7.31 (t, J = 7.4 Hz, 
1H), 6.81 (d, J = 15.7 Hz, 1H), 6.56 (s, 1H), 5.90 (d, J = 12.5 Hz, 1H), 3.78 (s, 3H), 2.26 
(s, 3H); 13C NMR (151 MHz, Acetone) δ 187.8, 162.8, 133.9, 133.7, 131.6, 129.5(2C), 
127.6(3C), 120.7, 119.6, 118.7, 118.6, 106.0, 58.0, 12.9; IR (thin film) νmax (cm-1): 1636, 
1597, 1550, 1458, 1437, 1410, 1350, 1331, 1291, 1267, 1082, 979, 768; HRMS (m/z): 
(ESI) calcd. for C17H18NO2[M+H]+: 268.1332, found 268, 1332. 

 
Standard Procedure for the microwave-assisted synthesis of substituted 
pyrroloazepinones 
 
To a 5 mL Biotage microwave vial was added dienone (50 mg, 1.0 equiv.), PhMe (2 mL), 
and DBU (2.0 equiv.). The resulting solution was sealed, placed in a Biotage microwave 
reactor, and heated at 160 °C for 2-4 hours. Upon cooling, the reaction mixture filtered 
through a cotton plug (eluting with EtOAc), concentrated in vacuo, and then purified by 
column chromatography chromatography (0% EtOAc in hexanes → 60% EtOAc in 
hexanes) to the corresponding pyrroloazepinone. 

Compound 25: The standard procedure was followed with dienone 45 (2.0 g, 10.5 
mmol, 1.0 equiv.) and DBU (3.1 mL, 21.0 mmol, 2.0 equiv.) to afford compound 25 
(1.0 g, 6.2 mmol, 60% yield) as a yellow solid. TLC: Rf = 0.4 (50% EtOAc in hexanes); 
1H NMR (600 MHz, CDCl3) δ 7.28 (d, J = 10.6 Hz, 1H), 7.09 (d, J = 12.2 Hz, 1H), 6.61 
(d, J = 3.7 Hz, 1H), 6.27 (d, J = 3.3 Hz, 1H), 6.12 (dd, J = 12.2, 2.4 Hz, 1H), 5.90 (dd, 
J = 10.6, 2.4 Hz, 1H), 2.40 (s, 3H); 13C NMR (151 MHz, CDCl3) δ 187.6, 134.0, 132.7, 
130.1, 130.0, 123.9, 117.8, 114.9, 112.7, 13.1; IR (thin film) νmax (cm-1): 3108, 3031, 
2980, 2923, 1640, 1610, 1495, 1396, 1347, 1261, 1139, 1027, 844, 763, 660; HRMS 
(m/z): (ESI) calcd. for C10H10ON [M+H]+: 160.0757, found160.0756. 

(Observed with decreased reaction times) 
TLC: Rf = 0.7 (40% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 13.64 (bs, 1H), 7.79 
(d, J = 12.3 Hz, 1H), 6.52 – 6.50 (m, 1H), 6.48 (d, J = 12.0 Hz, 1H), 6.02 (t, J = 3.1 Hz, 
1H), 5.62 (d, J = 12.0 Hz, 1H), 5.55 (d, J = 12.3 Hz, 1H), 2.96 (s, 3H), 1.95 (s, 3H); 
13C NMR (151 MHz, C6D6) δ 188.8, 162.6, 134.6, 133.7, 130.6, 121.0, 114.8, 111.0, 
107.3, 57.0, 13.4; IR (thin film) νmax (cm-1): 3260, 1651, 1584, 1529, 1497, 1435, 1406, 
1352, 1309, 1245, 1205, 1170, 1079, 1029, 831; HRMS (m/z): (ESI) calcd for 
C11H14O2N [M+H]+: 192.1019, found 192.1018. 
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Compound 72: The standard procedure was followed with dienone 71 (50 mg, 0.26 
mmol, 1.0 equiv.) and DBU (77.5 μL, 0.52 mmol, 2.0 equiv.) to afford compound 72 (30 
mg, 0.18 mmol, 72%) as a yellow solid. TLC: Rf = 0.30 (50% EtOAc in hexanes); 1H NMR 
(600 MHz, CDCl3) δ 7.41 (d, J = 10.3 Hz, 1H), 7.18 (dd, J = 2.9, 1.7 Hz, 1H), 6.78 (dd, J 
= 4.1, 1.6 Hz, 1H), 6.53 (dd, J = 3.9, 2.9 Hz, 1H), 6.31 (dd, J = 2.5, 1.2 Hz, 1H), 5.92 
(dd, J = 10.3, 2.4 Hz, 1H), 2.37 (d, J = 1.1 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 187.0, 
138.7, 134.3, 133.6, 128.1, 127.0, 116.5, 114.9, 112.4, 24.3; IR (thin film) νmax (cm-1): 
3105, 3055, 3015, 2983, 1643, 1593, 1576, 1530, 1471, 1374, 896, 764. HRMS (m/z): 
(ESI) calcd. for C10H10NO [M+H]+ m/z: 160.0757, found 160.0756.  

Compound 60: The standard procedure was followed with dienone 65 (50 mg, 0.22 
mmol, 1.0 equiv.) and DBU (65.7 μL, 0.44 mmol, 2.0 equiv.) to afford compound 60 (18.5 
mg, 94.7 μmol, 43%) as an orange solid. TLC: Rf = 0.55 (50% EtOAc in hexanes); 1H 
NMR (600 MHz, C6D6) δ 7.40 – 7.35 (m, 1H), 7.12 – 7.04 (m, 2H), 6.76 (dd, J = 9.3, 
4.9 Hz, 2H), 6.43 (d, J =12.4 Hz, 1H), 6.30 – 6.24 (m, 2H), 5.73 (dd, J = 10.5, 2.3 
Hz, 1H); 13C NMR (151 MHz, Acetone) δ 187.8, 138.3, 137.5, 131.6, 130.5, 129.3, 
128.6, 126.3, 124.4, 122.7, 113.5, 112.5, 111.7; IR (thin film) νmax (cm-1): 1634, 1595, 
1523, 1471, 1426, 1409, 1391, 1357, 1315, 878, 850, 781; HRMS (m/z): (ESI) calcd. 
for C13H10NO [M+H]+ m/z: 196.0757, found 196.0758. 
 

Compound 46: The standard procedure was followed with dienone 53 (50 mg, 0.20 
mmol, 1.0 equiv.) and DBU (58.9 μL, 0.40 mmol, 2.0 equiv.) to afford compound 46 (23 
mg, 126 μmol, 63%) as a yellow solid. TLC: Rf = 0.50 (45% EtOAc in hexanes); 1H NMR 
(600 MHz, C6D6) δ7.04 (dd, J = 5.2, 2.0 Hz, 3H), 6.95 (dt, J = 6.7, 2.2 Hz, 2H), 6.92 (d, 
J = 10.7 Hz, 1H), 6.49 (d, J = 12.2 Hz, 1H), 6.27 (dd, J = 12.3, 2.3 Hz, 1H), 6.19 (d, J = 
3.8 Hz, 1H), 6.14 (d, J = 3.8 Hz, 1H), 5.67 (dd, J = 10.7, 2.3 Hz, 1H); 13C NMR (151 MHz, 
C6D6) δ 186.8, 138.7, 133.8, 131.3, 130.0,129.8(2C), 129.4, 129.1(2C), 128.8, 126.0, 
117.8, 116.0, 113.1; IR (thin film) νmax (cm-1): 1637,1613, 1595, 1446, 1435, 1411, 1396, 
1346, 1322, 877, 849, 758, 702; HRMS (m/z): (ESI) calcd. for C15H12NO [M+H]+ m/z: 
222.0913, found 222.0916. 
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Compound 47: The standard procedure was followed with dienone 54 (50 mg, 0.18 
mmol, 1.0 equiv.) and DBU (55 μL, 0.36 mmol, 2.0 equiv.) to afford compound 47 (26 mg, 
108 μmol, 59%) as a yellow oil which slowly solidified. TLC: Rf = 0.50 (50% EtOAc 
in hexanes); 1H NMR (600 MHz, C6D6) δ 6.74 (d, J = 10.7 Hz, 1H), 6.66 (d, J = 6.9 Hz, 
4H), 6.49 (d, J = 12.3 Hz, 1H), 6.28 (dd, J = 12.3, 2.4 Hz, 1H), 6.17 (d, J = 3.8 Hz, 1H), 
6.04 (d, J = 3.8 Hz, 1H), 5.72 (dd, J = 10.7, 2.3 Hz, 1H); 13C NMR (151 MHz, C6D6) 
δ 186.7, 164.0, 162.4, 137.5, 133.7, 131.7, 131.6, 129.7, 129.3, 126.1, 117.7, 116.2, 
116.1, 116.0, 113.1; IR (thin film) νmax (cm-1): 1646, 1635, 1615, 1507, 1478, 1417, 
1271, 1227, 1159, 1099, 840, 814, 770; HRMS (m/z): (ESI) calcd. for C15H11NFO [M+H]+ 
m/z: 240.0819, found 240.0820. 
 

Compound 48: The standard procedure was followed with dienone 55 (50 mg, 0.18 
mmol, 1.0 equiv.) and DBU (52.7 μL, 0.36 mmol, 2.0 equiv.) to afford compound 48 (26 
mg, 103 μmol, 57%) as an orange oil which slowly solidified. TLC: Rf = 0.35 (50% EtOAc 
in hexanes); 1H NMR (600 MHz, C6D6) δ 7.00 (d, J = 10.7 Hz, 1H), 6.92 – 6.87 (m, 
2H), 6.69 – 6.63 (m, 2H), 6.53 (d, J = 12.3 Hz, 1H), 6.29 (dd, J = 12.3, 2.3 Hz, 1H), 6.23 
(d, J = 3.7 Hz, 1H), 6.16 (d, J = 3.8 Hz, 1H), 5.75 (dd, J = 10.7, 2.4 Hz, 1H), 3.26 (s, 
3H); 13C NMR (151 MHz, C6D6) δ 186.8,160.5, 138.8, 133.5, 131.2(2C), 130.1, 129.5, 
125.7, 123.4, 117.8, 115.8, 114.6(2C), 112.8, 54.9. IR (thin film) νmax (cm-1): 1645, 1634, 
1608, 1478, 1436, 1406, 1397, 1343, 1287, 1250, 1178, 1087, 877; HRMS (m/z): (ESI) 
calcd. for C16H14NO2 [M+H]+ m/z: 252.1019, found 252.1021. 

 

Compound 41: The standard procedure was followed with dienone 69 (50 mg, 0.28 
mmol, 1.0 equiv.) and DBU (83.3 μL, 0.56 mmol, 2.0 equiv.) to afford compound 41 (26 
mg, 0.18 mmol, 64%) as a yellow solid. TLC: Rf = 0.35 (50% EtOAc in hexanes); 1H NMR 
(600 MHz, CDCl3) δ 7.38 (dd, J = 10.4, 0.7 Hz, 1H), 7.21 – 7.16 (m, 2H), 6.73 (dd, J 
= 3.4, 1.4 Hz, 1H), 6.52 (dd, J = 3.8, 2.9 Hz, 1H), 6.24 (dd, J = 12.4, 2.4 Hz, 1H), 5.94 
(dd, J = 10.4, 2.4 Hz, 1H); 13C NMR (151 MHz, C6D6) δ 186.5, 132.7, 132.6, 128.8, 
126.3, 126.2, 118.2, 115.8, 111.9; IR (thin film) νmax (cm-1): 3111, 3091, 1640, 1611, 
1589, 1527, 1478, 1432, 1382, 1370, 1291, 868, 846, 749; HRMS (m/z): (ESI) calcd. for 
C9H8NO [M+H]+ m/z: 146.0600, found 146.0600. 

N
O

47F

N
O

48MeO

N
O

41

38



 

Compound 61: The standard procedure was followed with dienone 62 (50 mg, 0.22 
mmol, 1.0 equiv.) and DBU (65.7 μL, 0.44 mmol, 2.0 equiv.) to afford compound 61 (17.5 
mg, 88 μmol, 40%) as a yellow solid. TLC: Rf = 0.30 (50% EtOAc in hexanes); 1H NMR 
(600 MHz, C6D6) δ 6.52 (d, J = 12.2 Hz, 1H), 6.34 (dd, J = 12.2, 2.4 Hz, 1H), 6.28 (d, J 
= 10.5 Hz, 1H), 5.97 (s, 1H), 5.88 (dd, J = 10.5, 2.4 Hz, 1H), 2.24 – 2.19 (m, 2H), 1.73 
– 1.68 (m, 2H), 1.35 (p, J = 3.0 Hz, 4H); 13C NMR (151 MHz, C6D6) δ 186.7, 132.6, 
132.0, 128.8, 128.7, 125.1, 122.4, 117.1, 114.9, 23.0, 22.9, 22.6, 21.8; IR (thin film) 
νmax (cm-1): 2933, 2853, 1636, 1615, 1582, 1497, 1441, 1406, 1356, 1300, 850; HRMS 
(m/z): (ESI) calcd. for C13H14NO [M+H]+ m/z: 200.1070, found 200.1072. 
 

 
Compound 59: The standard procedure was followed with dienone 58 (50 mg, 0.19 
mmol, 1.0 equiv.) and DBU (56.9 μL, 0.38 mmol, 2.0 equiv.) to afford compound 58 (23 
mg, 97.8 μmol, 52%) as a yellow oil. TLC: Rf = 0.38 (50% EtOAc in hexanes); 1H NMR 
(600 MHz, C6D6) δ 7.09 – 7.01 (m, 3H), 6.87 – 6.83 (m, 2H), 6.82 (d, J = 10.7 Hz, 1H), 
6.54 (d, J = 12.2 Hz, 1H), 6.33 (dd, J = 12.2, 2.4 Hz, 1H), 6.07 (s, 1H), 5.67 (dd, J = 
10.7, 2.4 Hz, 1H), 1.80 (s, 3H); 13C NMR (151 MHz, C6D6) δ 186.7, 135.2, 132.5, 
130.9(2C), 130.5, 130.3, 129.1(2C), 128.9, 128.8, 126.1, 121.6, 119.4, 115.3, 11.5; IR 
(thin film) νmax (cm-1): 1636, 1616, 1589, 1480, 1433, 1422, 1302, 1193, 880, 763, 703; 
HRMS (m/z): (ESI) calcd. for C16H14NO [M+H]+ m/z: 236.1070, found 236.1072. 
 

Methyl 2-(2-methyl-1H-pyrrol-1-yl)propanoate: A dry 100 mL round bottom flask was 
charged NaH (984 mg (60% dispersion in mineral oil), 24.6 mmol, 2.0 equiv.) and 
evacuated and backfilled with nitrogen three times. Hexanes (10.0 mL) was added and 
the suspension was swirled. Upon settling of the suspension, the hexane was carefully 
removed via syringe under nitrogen. The flask containing the rinsed NaH was then 
charged with DMF (20.0 mL) and cooled to 0 °C, wherein 2-methyl pyrrole (1.06 mL, 12.3 
mmol, 1.0 equiv.) was added, and the resulting mixture was stirred for 30 min at 0 °C. 
Methyl 2-bromopropionate (2.7 mL, 24.6 mmol, 2.0 equiv.) was added dropwise, and 
upon completion of the addition, the mixture was warmed to room temperature. Upon 
completion of the reaction, as indicated by TLC, the reaction was cooled to 0 °C and 
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quenched with saturated aq. NH4Cl (100 mL). The mixture was extracted with Et2O (3 
x 100 mL). The combined organic layers were washed with brine (200 mL), dried 
over Na2SO4, filtered, and concentrated in vacuo. The brown colored crude material was 
purified by column chromatography (0% EtOAc in hexanes → 15% EtOAc in hexanes) 
to afford methyl 2-(2-methyl-1H-pyrrol-1-yl)propanoate (1.64 g, 9.8 mmol, 80%) as a 
yellow oil. TLC: Rf = 0.4 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.68 (dd, 
J = 3.0, 1.8 Hz, 1H), 6.28 (t, J = 3.2 Hz, 1H), 6.03 (m, 1H), 4.34 (q, J = 7.2 Hz, 1H), 
3.16 (s, 3H), 2.01 (s, 3H), 1.31 (d, J = 7.2 Hz, 3H); 13C NMR (151 MHz, C6D6) δ 171.4, 
128.4, 117.4, 108.4, 107.9, 53.6, 51.8, 17.9, 12.1; IR (thin film) νmax (cm-1): 2989, 2950, 
1742, 1420, 1296, 1204, 1086, 773, 700; HRMS (m/z): (ESI) calcd. for C9H14O2N 
[M+H]+: 168.1019, found 168.1013. 
 
 

 
Pyrrole Aldehyde 76: To a 500 mL round bottom flask was added PhMe (250 mL) and 
methyl 2-(2-methyl-1H-pyrrol-1-yl)propanoate (7.0 g, 41.9 mmol, 1.0 equiv.). The 
mixture was cooled to –78 °C, and DIBAL (1.0 M in hexanes, 46.1 mL, 46.1 mmol, 1.1 
equiv.) was added dropwise over 15 min. Upon completion of the reaction as indicated 
by TLC, the reaction mixture was quenched with saturated aq. Rochelle’s salt (50 mL) 
and warmed to room temperature by removing the vessel from the cooling bath. The 
resulting biphasic suspension was stirred until the cloudiness dissipated (~2 hours). The 
mixture was then poured into a separatory funnel and extracted with Et2O (3 x 300 mL), 
the combined organics were washed with brine (100 mL), dried over Na2SO4, filtered, 
and concentrated in vacuo. The resulting crude residue was purified by column 
chromatography (10% Et2O in hexanes → 50% Et2O in hexanes) to afford aldehyde 76 
(5.47 g, 40.1 mmol, 95%) as a colorless oil. TLC: Rf = 0.4 (40% Et2O in hexanes); 1H 
NMR (600 MHz, C6D6) δ 9.03 (d, J = 0.7 Hz, 1H), 6.28 (dd, J = 11.3, 5.2 Hz, 2H), 6.04 
(m, 1H), 3.77(q, J = 7.2 Hz, 1H), 1.81 (s, 3H), 1.02 (d, J = 7.2, 3H); 13C NMR (151 
MHz, C6D6) δ 197.9, 128.0, 117.4, 109.0, 108.6, 59.8, 14.9, 12.0; IR (thin film) νmax 
(cm-1): 2982, 2936, 2826, 1734,1448, 1231, 703; HRMS (m/z): (ESI) calcd. for 
C8H12ON [M+H]+: 138.0913, found 138.0913. 
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Alcohol 74: To a 100 mL round bottom flask containing t-BuOAc (450 mg, 3.88 mmol, 
1.0 equiv.) was added THF (30 mL). The mixture was cooled to –78 °C before LiHMDS 
(1.0 M in THF, 4.3 mL, 4.3 mmol, 1.1 equiv.) was added dropwise. The resulting mixture 
was stirred for 30 min before aldehyde 76 (591 mg, 4.3 mmol, 1.1 equiv.) in THF (5 mL) 
was added. Upon consumption of the starting material as indicated by TLC, the reaction 
mixture was quenched with saturated aq. NH4Cl solution (20 mL) and extracted with 
EtOAc (3 x 30 mL). The combined organic layers were washed with brine (30 mL), dried 
over Na2SO4, filtered, and concentrated in vacuo. The resulting crude product was 
purified by column chromatography (0% EtOAc in hexanes → 20% EtOAc in hexanes) 
to afford an inseparable mixture of alcohol epimers 74 (809 mg, 3.18 mmol, 82% yield, 
6:1 dr) as a yellow oil. TLC: Rf = 0.4 (50% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) 
δ 6.83 (dd, J = 3.0, 1.8 Hz, 0.15H), 6.45 (dd, J = 2.9, 1.8 Hz, 0.85H), 6.30 (t, J = 3.1 
Hz, 0.15H), 6.26 (t, J = 3.2 Hz, 0.85H), 6.03 (ddd, J = 3.6, 1.9,1.0 Hz, 0.15H), 5.99 
(ddd, J = 3.7, 1.8, 0.9 Hz, 0.85H), 3.96 (ddd, J = 9.0, 7.7, 3.2 Hz, 0.85H), 3.91 (ddd, J 
= 8.8, 5.0, 3.7 Hz, 0.15H), 3.82 (p, J = 7.0 Hz, 0.85H), 3.74 – 3.68 (m, 0.15H), 3.31(s, 
0.85H), 2.96 (s, 0.15H), 2.13 – 2.01 (m, 2H), 2.00 (s, 0.45H), 1.98 (s, 2.55H), 1.30 (d, J 
= 6.8 Hz, 2.55H), 1.28 (s, 0.45H), 1.24 (s, 2.55H), 1.15 (d, J = 7.0 Hz, 0.45H); 13C NMR 
(151 MHz, C6D6) δ 172.5, 172.1, 127.8(2C), 117.6, 116.4, 108.5, 108.1, 107.3, 107.1, 
81.0, 80.8, 72.5, 71.7, 54.9, 54.4, 39.2, 39.0, 28.0(3C), 27.9(3C), 17.9, 17.6, 12.5, 12.4; 
IR (thin film) νmax (cm-1): 3454, 2978, 2934, 1723, 1486, 1417, 1368, 1287, 1155, 1080, 
842, 768, 704; HRMS (m/z): (ESI) calcd. for C14H24NO3 [M+H]+: 254.1751, found 
254.1751. 

 
Alcohol 75: To a 20 mL round bottom flask containing alcohol 74 (90 mg, 0.36 mmol, 1.0 
equiv.) was added PhMe (5 mL). The resulting mixture was cooled to –78 °C before 
DIBAL (1.0 M in hexanes, 1.78 mL, 1.78 mmol, 5.0 equiv.) was added dropwise. Upon 
consumption of the starting material as indicated by TLC, the reaction mixture was 
quenched with saturated aq. Rochelle’s salt (5 mL) and extracted with EtOAc (3 x 5 mL). 
The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered, 
and concentrated in vacuo. The resulting crude product was dissolved in DCM (5 mL) 
followed by the addition of SiO2 (100 mg). Upon consumption of the starting material as 
indicated by TLC, the reaction mixture was filtered and concentrated in vacuo. The 
resulting crude product was purified by column chromatography (0% EtOAc in hexanes 
→ 30% EtOAc in hexanes) to afford alcohol 75 (25 mg, 0.16 mmol, 50% yield) as a 
yellow oil. TLC: Rf = 0.4 (50% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.33 
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(d, J = 9.6 Hz, 1H), 6.15 (d, J = 3.4 Hz, 1H), 6.00 (d, J = 3.3 Hz, 1H), 5.42 (dd, J = 9.6, 
5.9 Hz, 1H), 4.04 (q, J = 6.9 Hz, 1H), 3.73 (t, J = 6.6 Hz, 1H), 1.97 (s, 3H), 1.22 (d, J = 
8.3 Hz, 1H), 0.72 (d, J = 6.9 Hz, 3H); 13C NMR (151 MHz, C6D6) δ 130.4, 126.1, 122.7, 
116.0, 108.2, 108.1, 68.4, 54.6, 18.6, 11.2; IR (thin film) νmax (cm-1): 3358, 2923, 2852, 
1658, 1631, 1464, 1421, 1060, 764; HRMS (m/z): (ESI) calcd. for C10H14NO [M+H]+: 
164.1070, found 164.1071. 

 
3,5-dimethyl-indolizine: To a 10 mL reaction tube containing (–)-curvulamine (1) (2.0 
mg, 6.2 µmol, 1.0 equiv.) and alcohol 17 (2.0 mg, 12.4 µmol, 2.0 equiv.) was added DCM 
(1 mL). PPTS (1.6 mg, 0.62 µmol, 0.1 equiv.) was added dropwise. The resulting mixture 
was warmed to 25°C. Upon consumption of the starting material as indicated by TLC, 
the reaction mixture was quenched with saturated aq. NaHCO3 (2 mL) and extracted with 
DCM (3 x 3 mL). The combined organic layers were washed with brine (5 mL), dried 
over Na2SO4, filtered, and concentrated in vacuo. The resulting crude product was 
purified by preparative TLC (10% EtOAc in hexanes) to afford 3,5-dimethyl-indolizine (0.6 
mg, 3.9 µmol, 63% yield) as a yellow oil. TLC: Rf = 0.7 (10% EtOAc in hexanes); 1H NMR 
(600 MHz, C6D6) δ 7.13 (d, J = 8.9 Hz, 1H), 6.49 (d, J = 3.8 Hz, 1H), 6.46 (d, J = 3.8 
Hz, 1H), 6.30 (dd, J = 8.9, 6.4 Hz, 1H), 5.81 (dt, J = 6.5, 1.2 Hz, 1H), 2.41 (s, 3H), 2.19 
(s, 3H); 13C NMR (151 MHz, C6D6) δ 135.6, 134.6, 122.0, 118.4, 115.8, 115.8, 111.4, 
99.3,1.1, 16.8; IR (thin film) νmax (cm-1): 2961, 2922, 1588, 1538, 1456, 1290, 1154, 
750; HRMS (m/z): (ESI) calcd. for C10H12N [M+H]+: 146.0964, found 146.0964. 
 

Procuramine 72: To a 20 mL reaction tube containing alcohol 124 (80 mg, 0.32 mmol, 
1.0 equiv.) was added DCM (4 mL). The resulting mixture was cooled to 0 °C and TMSOTf 
(64 µL, 0.35 mmol, 1.1 equiv.) was added dropwise. The resulting mixture was warmed 
to 25°C. Upon consumption of the starting material as indicated by TLC, the reaction 
mixture was quenched with saturated aq. NaHCO3 (5 mL) and extracted with DCM (3 x 5 
mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, 
filtered, and concentrated in vacuo. The resulting crude product was purified by column 
chromatography (0% EtOAc in hexanes →80% EtOAc in hexanes) to afford procuramine 
72 (28 mg, 0.16 mmol, 50% yield) as a yellow oil. TLC: Rf = 0.1 (50% EtOAc in hexanes); 
1H NMR (600 MHz, CDCl3) δ 7.01 (d, J = 4.0 Hz, 1H), 6.08 (d, J = 4.0 Hz, 1H), 4.40 (qd, 
J = 6.8, 1.9 Hz, 1H), 4.35 (s, 1H), 2.87 (dd, J = 18.0, 3.2 Hz, 1H), 2.79 (s, 1H), 2.64 (dd, 
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J = 18.0, 2.7 Hz, 1H), 2.32 (s, 3H), 1.36 (d, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl3) 
δ 183.7, 135.8, 128.3, 115.1, 111.2, 70.5, 53.6, 39.4, 19.3, 12.0; IR (thin film) νmax 
(cm-1): 3452, 2923, 1739, 1626, 1492, 1462, 1347, 1256, 1177, 1033, 776, 642; HRMS 
(m/z): (ESI) calcd. for C10H14NO2 [M+H]+: 180.1019, found 180.1018. 
 

Enone 73: To a 10 mL reaction tube containing ketone 72 (10.0 mg, 0.056 mmol, 1.0 
equiv.) was added DCM (30 mL). The resulting mixture was cooled to 0 °C, Et3N (23.0 
µL, 0.17 mmol, 3.0 equiv.) and MsCl (5.1 µL, 0.067 mmol, 1.2 equiv.) were added 
dropwise sequentially. The resulting mixture was warmed to room temperature. Upon 
consumption of the starting material as indicated by TLC, the reaction mixture was 
quenched with saturated aq. NaHCO3 (5 mL) and extracted with EtOAc (3 x 5 mL). The 
combined organic layers were washed with brine (5 mL), dried over Na2SO4, filtered, and 
concentrated in vacuo. The resulting crude product was purified by preparative TLC (50% 
EtOAc in hexanes) to afford enone 73 (3.9 mg, 0.024 mmol, 43% yield) as a yellow oil. 
TLC: Rf = 0.4 (50% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 7.33 (d, J = 3.9 
Hz, 1H), 6.19 (dd, J = 10.3, 1.6 Hz, 1H), 5.94 (dd, J = 3.9, 0.8 Hz, 1H), 5.80 (dd, J = 10.4, 
4.0 Hz, 1H), 3.67 (tdd, J = 6.7, 5.4, 3.4 Hz, 1H), 1.70 (s, 3H), 0.64 (d, J = 6.8 Hz, 3H); 
13C NMR (151 MHz, C6D6) δ 175.3, 143.1, 133.3, 129.7, 127.7, 112.9, 110.8, 49.3, 
21.7, 12.0; IR (thin film) νmax (cm-1): 2950, 1733, 1685, 1462, 1342, 1033, 766, 651; HRMS 
(m/z): (ESI) calcd. for C10H12NO [M+H]+: 162.0913, found 162.0913. 

 
Iodide 77: To a 100 mL round bottom flask containing enone 24 (1.10 g, 2.80 mmol, 1.0 
equiv.) was added acetone (30 mL). The resulting mixture was cooled to 0 °C and a 
solution of NIS (0.63 g, 29.4 mmol, 1.05 equiv.) in acetone (10 mL) was added 
dropwise. Upon consumption of the starting material as indicated by TLC, the reaction 
mixture was quenched with saturated aq. NH4Cl solution (30 mL) and extracted with 
EtOAc (3 x 40 mL). The combined organic layers were washed with brine (30 mL), dried 
over Na2SO4, filtered, and concentrated in vacuo. The resulting crude product was 
purified by column chromatography (0% EtOAc in hexanes → 10% EtOAc in hexanes) 
to afford iodide 77 (1.28 g, 2.46 mmol, 88% yield) as a yellow oil. TLC: Rf = 0.6 (20% 
EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ6.28 (dd, J = 12.1, 0.8 Hz, 1H), 6.16 
(d, J = 3.7 Hz, 1H), 6.04 (s, 1H), 5.82 (dd, J = 3.8, 0.9 Hz, 1H), 5.69 (d, J = 12.1 Hz, 
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1H), 4.50 (q, J = 6.8 Hz, 1H), 4.40 (d, J = 3.6 Hz, 1H), 3.32 (dd, J =, 1.8 Hz, 1H), 1.94 
(s, 3H), 1.89 (s, 3H), 1.07 (d, J = 6.8 Hz, 3H), 0.03 (s, 9H); 13C NMR(151 MHz, C6D6) 
δ 193.6, 137.9, 132.4, 131.0, 128.6, 128.5, 120.6, 120.4, 120.1, 114.2, 110.9, 73.0, 
64.7, 61.6, 60.9, 47.5, 18.4, 13.8, 13.2, 0.8(3C); IR (thin film) νmax (cm-1): 2954, 2921, 
1654, 1620, 1483, 1422, 1255, 1161, 1068, 851, 765; HRMS (m/z): (ESI) 
calcd. for C22H27IN3O2Si [M+H]+: 520.0912, found 520.0920. 

 
Iodide 79: To a 20 mL reaction tube containing ethyl vinyl ether (0.20 mL, 2.1 mmol, 5.5 
equiv.) was added THF (2 mL). The mixture was cooled to –78 °C and t-BuLi (1.6 M in 
pentane, 1.2 mL, 2.0 mmol, 5.0 equiv.) was added dropwise. Upon completion of 
the addition, the mixture was warmed to 0 °C and stirred for 30 min followed by the 
addition of CeCl3 (0.49 g, 2.0 mmol, 5.0 equiv). The mixture was stirred for 1 h at 25 °C. 
To a 20 mL reaction tube containing iodide 77 (200 mg, 0.39 mmol, 1.0 equiv.) was added 
THF (5 mL). The mixture was –78 °C and a solution of fresh cerium reagent was added 
dropwise. The mixture was stirred for 1 h before the addition of TMSCl (0.25 mL, 2.0 
mmol, 5.0 equiv.). The resulting mixture was stirred for 30 min before it was quenched 
with saturated aq. NaHCO3 (5 mL) and extracted with EtOAc (3 x 5 mL). The combined 
organic layers were washed with brine (5 mL), dried over Na2SO4, filtered, and 
concentrated in vacuo. The resulting crude product was purified by column 
chromatography (0% EtOAc in hexanes → 10% EtOAc in hexanes) to afford iodide 
79 (171 mg, 0.30 mmol, 79% yield) as a yellow oil. TLC: Rf = 0.7 (10% EtOAc in hexanes); 
1H NMR (600 MHz, C6D6) δ 6.21 (dd, J = 11.5, 0.7 Hz, 1H), 6.09 (d, J = 3.5 Hz, 1H), 6.01 
(s, 1H), 5.90 (d, J = 3.5 Hz, 1H), 5.59 (d, J = 11.4 Hz, 1H), 4.56 (d, J = 1.5 Hz, 1H), 4.24 
(s, 1H), 4.00 (q, J = 6.3 Hz, 1H), 3.81 (s, 1H), 3.78 (d, J = 1.4 Hz, 1H), 3.36 – 3.30 (m, 
1H), 3.23 (ddt, J = 9.0, 7.6, 6.6 Hz, 1H), 2.03 (s, 3H), 1.88 (s, 3H), 1.48 (d, J = 6.3 Hz, 
3H), 1.04 (t, J = 7.0 Hz, 3H), 0.10 (s, 9H); 13C NMR (151 MHz, C6D6) δ 164.2, 135.2, 
132.3, 130.8, 128.6, 124.3, 123.9, 114.8, 112.1, 111.4, 108.6, 86.7, 80.8, 65.0, 63.6, 
63.1, 62.7, 46.1, 14.6(2C), 14.5, 13.1, 1.7(3C); IR (thin film) νmax (cm-1): 3269, 2977, 
1640, 1491, 1414, 1311, 1250, 1079, 908, 844, 764; HRMS (m/z): (ESI) calcd. for 
C25H34IN2O3Si [M+H]+: 565.1378, found 565.1377. 
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Ester: To a 100 mL round bottom flask containing t-BuOAc (1.00 g, 8.62 mmol, 1.0 equiv.) 
was added THF (30 mL). The resulting mixture was cooled to –78 °C before LiHMDS 
(1.0 M in THF, 9.5 mL, 9.48 mmol, 1.1 equiv.) was added dropwise. The resulting mixture 
was stirred for 30 min before ester SI-11 (1.58 g, 9.48 mmol, 1.0 equiv.) in THF (10 mL) 
was added. The mixture was warmed to 25 °C. Upon consumption of the starting material 
as indicated by TLC, the reaction mixture was quenched with saturated aq. NH4Cl 
solution (20 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers 
were washed with brine (30 mL), dried over Na2SO4, filtered, and concentrated in 
vacuo. The resulting crude product was purified by column chromatography (0% EtOAc 
in hexanes → 20% EtOAc in hexanes) to afford ester (1.95 g, 7.76 mmol, 90% yield) as 
a yellow oil. TLC: Rf = 0.6 (50% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 12.95 
(s, 0.24H), 6.57 (dd, J = 3.0, 1.8 Hz, 0.24H), 6.28 (dd, J = 3.0, 1.8 Hz, 0.76H), 6.24 (t, 
J = 3.2 Hz, 0.24H), 6.20 (t, J = 3.2 Hz, 0.76H), 6.00 – 5.98 (m, 0.24H), 5.97 (ddd, J = 
3.5, 1.8, 0.9 Hz, 0.76H), 4.58 (d, J = 0.9 Hz, 0.24H), 4.41 – 4.34 (m,0.24H), 4.30 (q, J 
= 7.1 Hz, 0.76H), 2.89 (d, J = 16.2 Hz, 0.76H), 2.84 (d, J = 16.2 Hz, 0.76H),1.90 (s, 
0.72H), 1.89 (d, J = 0.8 Hz, 2.28H), 1.35 (d, J = 7.2 Hz, 0.72H), 1.30 (s, 6.84H), 1.25 
(s,.16H), 1.22 (d, J = 7.1 Hz, 2.28H); 13C NMR (151 MHz, C6D6) δ 201.2, 178.4, 173.6, 
166.4,128.6, 128.3, 117.6, 117.0, 109.3, 108.8, 108.3, 108.0, 89.3, 81.4, 81.3, 
59.9, 53.6, 45.8, 28.1(3C), 27.9(3C), 17.9, 16.2, 11.9(2C); IR (thin film) νmax (cm-1): 
2980, 2935, 1742, 1719,1649, 1325, 1294, 1247, 1153, 1054, 814, 703; HRMS (m/z): 
(ESI) calcd. for C14H21NNaO3 [M+Na]+: 274.1414, found 274.1414. 
 

 
Triflate 80: To a 50 mL round bottom flask containing ester (1.00 g, 3.98 mmol, 1.0 
equiv.) was added DCM (20 mL). The resulting mixture was cooled to –78 °C, then 
Et3N (1.6 mL, 11.94 mmol, 3.0 equiv.) and Tf2O (0.74 mL, 4.38 mmol, 1.1 equiv.) was 
added dropwise. The resulting mixture was warmed to 0 °C. Upon consumption of 
the starting material as indicated by TLC, the). The combined organic layers were 
washed with brine (30 mL), dried over Na2SO4, filtered reaction mixture was quenched 
with saturated aq. NaHCO3 (20 mL) and extracted with DCM (3 x 30 mL and concentrated 
in vacuo. The resulting crude product was purified by column chromatography (0% 
EtOAc in hexanes → 10% EtOAc in hexanes) to afford triflate 80 (1.34 g, 3.51 mmol, 88% 
yield) as a yellow oil. TLC: Rf = 0.5 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) 
δ 6.30 (dd, J = 3.0, 1.7 Hz, 1H), 6.18 (t, J = 3.2 Hz, 1H), 5.97 – 5.92 (m,1H), 5.01 (d, J = 
1.5 Hz, 1H), 4.52 (qd, J = 7.1, 1.5 Hz, 1H), 1.92 (s, 3H), 1.25 (s, 9H), 1.10 (d, J = 7.1 
Hz, 3H); 13C NMR (151 MHz, C6D6) δ 161.6, 157.7, 128.9, 128.5, 116.1, 113.5, 
109.3,109.0, 82.6, 52.8, 27.7(3C), 17.1, 11.4; IR (thin film) νmax (cm-1): 2982, 2936, 1725, 
1673, 1431, 1297, 1209, 1153, 1020, 915, 792, 700, 595; HRMS (m/z): (ESI) calcd. 
for C15H21F3NO5S [M+H]+: 384.1087, found 384.1092. 

OTf
t-BuO2C

Me

N

Me

80

N

MeMe
tert-butyl 4-(2-methyl-1H-

pyrrol-1-yl)-3-
oxopentanoate

O
t-BuO2C

DCM
–78 °C→0 °C

88%

Tf2O, Et3N

45



 

Negishi coupling of 79 & (±)-80: To a 20 mL reaction tube containing iodide 79 (130 mg, 
0.23 mmol, 1.0 equiv.) was added THF (5 mL) at –78 °C. t-BuLi (1.6 M in pentane, 0.36 
mL, 0.58 mmol, 2.5 equiv) was added and the resulting mixture was stirred for 30 min. 
Then a solution of ZnCl2 (94 mg, 0.69 mmol, 3.0 equiv.) in THF (1 mL) was added 
dropwise. The resulting mixture was stirred for 1 h at –78 °C. Then a solution of triflate 
(±)-80 (176 mg, 0.46 mmol, 2.0 equiv.) and Pd(PPh3)4 (8.0 mg, 0.0069 mmol, 3 mol%.) in 
THF (3 mL) was added dropwise at –78 °C. The resulting was warmed to 25 °C and 
stirred for 6 h. Upon completion of the reaction as indicated by TLC, the reaction mixture 
was quenched with saturated aq. NH4Cl solution (5 mL) and extracted with Et2O (3 x 10 
mL). The combined organic layers were washed with brine (5 mL), dried over Na2SO4, 
filtered, and concentrated in vacuo. The resulting crude product was purified by column 
chromatography (0% EtOAc in hexanes → 10% EtOAc in hexanes) to afford 81 (61 mg, 
0.092 mmol, 40% yield), 82 (64 mg, 0.092 mmol, 40% yield) and 110 (10 mg, 0.023 
mmol, 10% yield) as yellow oils. 

TLC: Rf = 0.4 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.71 (dd, J = 3.0, 1.8 
Hz, 1H), 6.34 (t, J = 3.1 Hz, 1H), 6.27 (d, J = 11.5 Hz, 1H), 6.15 – 6.13 (m, 1H), 6.13 (d, 
J = 3.7 Hz,1H), 5.93 (d, J = 3.4 Hz, 1H), 5.72 (s, 1H), 5.70 (d, J = 11.5 Hz, 1H), 5.46 
(d, J = 1.1 Hz, 1H), 4.68 (q, J = 6.9 Hz, 1H), 4.61 (d, J = 1.9 Hz, 1H), 4.39 (s, 1H), 4.13 
(q, J = 6.3 Hz, 1H), 3.96 (s, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.48 (dq, J = 9.4, 7.0 Hz, 1H), 
3.40 (dq, J = 9.4, 7.1 Hz, 1H), 2.14 (s, 3H), 2.06 (s, 3H), 1.89 (s, 3H), 1.61 (d, J = 6.3 Hz, 
3H), 1.30 (d, J = 7.1 Hz, 3H), 1.25 (s, 9H), 1.13 (t, J = 7.0 Hz, 3H), 0.13 (s, 9H); 13C 
NMR (151 MHz, C6D6) δ 165.9, 164.2, 152.2, 135.2, 130.9, 129.9, 128.5, 126.0, 124.4, 
124.1, 118.7, 118.5, 117.1, 114.8, 111.5, 108.6, 108.2, 107.6, 104.5, 86.9, 81.1, 78.9, 
65.3, 63.1, 61.9, 57.6, 46.2, 28.2(3C), 19.4, 14.7(2C), 13.0(2C), 12.4, 1.7(3C); IR (thin 
film) νmax (cm-1): 2977, 2929, 1718, 1699, 1640, 1419, 1307, 1253, 1164, 1143,1080, 
910, 845, 764, 698; HRMS (m/z): (ESI) calcd. for C39H53N3NaO5Si [M+Na]+: 
694.3647,found 694.3643. 
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TLC: Rf = 0.3 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.48 (dd, J = 2.9, 1.8 
Hz, 1H), 6.30 – 6.23 (m, 2H), 6.13 (d, J = 3.6 Hz, 1H), 6.09 – 6.07 (m, 1H), 5.96 – 
5.94 (m, 1H), 5.72 – 5.67 (m, 2H), 5.62 (s, 1H), 4.62 (d, J = 1.8 Hz, 1H), 4.56 (q, J = 7.1 
Hz, 1H), 4.39 (s, 1H), 4.05 (q, J = 6.3 Hz, 1H), 3.96 (s, 1H), 3.86 (d, J = 1.8 Hz, 1H), 
3.41 (dq, J = 9.6, 7.0 Hz, 1H), 3.31 (dq, J = 9.5, 7.0 Hz, 1H), 2.10 (s, 3H), 1.90 (s, 3H), 
1.81 (s, 3H), 1.53 (d, J = 6.3 Hz, 3H), 1.32 (d, J = 7.1 Hz, 3H), 1.20 (s, 9H), 1.11 (t, J = 
7.0 Hz, 3H), 0.15 (s, 9H); 13C NMR (151 MHz, C6D6) δ 165.6, 164.5, 152.6, 135.2, 130.8, 
129.4, 128.5, 125.9, 124.3, 124.0, 120.2, 117.4, 116.8, 114.7, 111.6, 108.5, 107.8, 107.1, 
104.8, 86.9, 80.6, 79.0, 65.2, 63.0, 61.7, 58.4, 46.0, 28.1(3C), 19.2, 14.8, 14.6, 13.0, 
12.4, 11.8, 1.7(3C); IR (thin film) νmax (cm-1): 2977, 2926, 1699, 1641, 1419,  1307,  
1253,  1163,  1081,  910,  845,  763,  698;  HRMS  (m/z):  (ESI)  calcd.  for 
C39H53N3NaO5Si [M+Na]+: 694.3647, found 694.3640.  

 
TLC: Rf = 0.6 (10% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.26 (d, J = 11.5 
Hz, 1H), 6.11 (d, J = 3.6 Hz, 1H), 5.98 (dd, J = 3.3, 1.0 Hz, 1H), 5.90 (dd, J = 3.6, 0.9 
Hz, 1H), 5.86 (d, J = 3.3 Hz, 1H), 5.68 (d, J = 11.5 Hz, 1H), 4.64 (d, J = 1.7 Hz, 1H), 
4.35 (s, 1H), 4.12 (q, J = 6.3 Hz, 1H), 4.00 (s, 1H), 3.84 (d, J = 1.7 Hz, 1H), 3.39 (dq, J 
= 9.3, 7.0 Hz, 1H), 3.29 (dq, J = 9.3, 7.0 Hz, 1H), 2.07 (s, 3H), 1.82 (s, 3H), 1.61 (d, J = 
6.3 Hz, 3H), 1.09 (t, J = 7.0 Hz, 3H), 0.14 (s, 9H); 13C NMR (151 MHz, C6D6) δ 164.7, 
135.3, 130.9, 130.4, 127.1, 124.3, 124.2, 114.6, 111.7, 108.4, 108.4, 104.7, 86.9, 80.6, 
65.5, 63.0, 61.7, 46.4, 14.8, 14.6, 14.2, 13.0, 1.8(3C); IR (thin film) νmax (cm-1): 2977, 
2958, 1641, 1416, 1309, 1251, 1080, 909, 845, 762; HRMS (m/z): (ESI) calcd. for 
C25H35N2O3Si [M+H]+: 439.2411, found 439.2411. 
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Lactol 83: Ester 82 (100 mg, 0.15 mmol, 1.0 equiv.) was dissolved in THF (9 mL) and 
MeOH (1 mL) at 0 °C, then the solution was degassed by sparging with argon for 5 min. 
SmI2 (0.1 M in THF, 3.0 mL, 0.30 mmol, 2.0 equiv) was added and the resulting mixture 
was stirred for 30 min. The mixture was warmed to 25 °C and then TBAF (1.0 M in 
THF, 0.3 mL, 0.30 mmol, 2.0 equiv.) was added. Upon completion of the reaction as 
indicated by TLC, the reaction mixture was quenched with saturated aq. NH4Cl solution 
(5 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed 
with brine (10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The resulting 
crude product was purified by column chromatography (0% EtOAc in hexanes → 10% 
EtOAc in hexanes) to afford lactol 83 (71.6 mg, 0.12 mmol, 80% yield) as a brown foam. 
TLC: Rf = 0.5 (20% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.40 (dd, J = 2.9, 
1.8 Hz, 1H), 6.29 (t, J = 3.2 Hz, 1H), 6.27 (d, J = 11.6 Hz, 1H), 6.14 (d, J = 3.6 Hz, 1H), 
6.08 (ddd, J = 3.6, 1.8, 0.9 Hz, 1H), 5.92 (dd, J = 3.6, 0.9 Hz, 1H), 5.77 (d, J = 11.5 Hz, 
1H), 5.65 (s, 1H), 4.66 (d, J = 1.9 Hz, 1H), 4.31 (d, J = 0.9 Hz, 1H), 4.18 – 4.12 (m, 1H), 
4.10 (q, J = 6.3 Hz, 1H), 3.83 (s, 1H), 3.80 (d, J = 1.9 Hz, 1H), 3.43 – 3.35 (m, 2H), 3.29 
(dq, J = 9.4, 7.0 Hz, 1H), 2.67 (s, 1H), 2.47 (dd, J = 14.9, 9.2 Hz, 1H), 2.40 (dd, J = 
14.9, 6.3 Hz, 1H), 2.24 (s, 2H), 1.81 (s, 3H), 1.80 (s, 3H), 1.61 (d, J = 6.2 Hz, 3H), 1.21 
(d, J = 6.6 Hz, 3H), 1.20 (s, 9H), 1.12 (t, J = 7.0 Hz, 3H); 13C NMR (151 MHz, C6D6) δ 
171.6, 164.4, 134.9, 130.3, 129.1, 127.5, 125.9, 125.7, 122.9, 118.5, 116.8, 114.5, 109.4, 
109.2, 107.5, 107.0, 103.5, 85.9, 80.7, 79.5, 64.6, 63.0, 59.5, 55.2, 45.6, 40.6, 39.5, 
28.0(3C), 17.9, 15.2, 14.6, 12.9, 12.5, 11.0; IR (thin film) νmax (cm-1): 2977, 2924, 2361, 
1726, 1643, 1424, 1300, 1144, 1081, 951, 767, 702; HRMS (m/z): (ESI) calcd. for 
C36H47N3NaO5 [M+Na]+: 624.3408, found 624.3408. 
 

Epimerization of 106: In a nitrogen-filled glovebox, a reaction tube containing lactol 
83 (730 mg, 1.21 mmol, 1.0 equiv.) was charged with NaOMe (328 mg, 6.07 mmol, 
5.0 equiv.). The reaction tube was sealed, removed from the glovebox, and placed 
under an atmosphere of nitrogen. Anhydrous MeOH (30 mL) was then added, the 
N2 balloon was removed, and the sealed reaction vessel was heated at 90 °C for 1 h. 
The reaction mixture was then cooled to room temperature and quenched with 
saturated aq. NH4Cl solution (30 mL). The solution was extracted with EtOAc (3 x 
40 mL) and the combined organic layers were washed with brine (40 mL), dried over 
Na2SO4, filtered and concentrated in vacuo. The resulting crude residue was purified 
by column chromatography (0% EtOAc in hexanes → 10% EtOAc in hexanes) to afford 
lactol epimers 106 (416 mg, 0.69 mmol, 57%, 80% BRSM) and 83 (211 mg, 0.35 mmol, 
29%) as brown foams. TLC: Rf = 0.4 (20% EtOAc in hexanes); 1H NMR (600 MHz, C6D6) 
δ 6.65 (t, J = 2.2 Hz, 1H), 6.37 (t, J = 3.1 Hz, 1H), 6.28 (d, J = 11.5 Hz, 1H), 6.16 (d, J 
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= 3.6 Hz, 1H), 6.10 (dd, J = 3.4, 1.7 Hz, 1H), 5.94 (d, J = 3.5 Hz, 1H), 5.78 (d, J = 11.5 
Hz, 1H), 5.68 (s, 1H), 4.57 (s, 1H), 4.45 (d, J = 1.7 Hz, 1H), 4.16 (q, J = 6.4 Hz, 1H), 
3.99 (dq, J = 9.1, 6.8 Hz, 1H), 3.85 (s, 1H), 3.58 (d, J = 1.8 Hz, 1H), 3.42 – 3.34 (m, 
2H), 3.29 (dq, J = 9.3, 7.1 Hz, 1H), 2.68 (s, 1H), 2.37 (dd, J = 14.8, 10.6 Hz, 1H), 2.26 
(dd, J = 14.8, 4.8 Hz, 1H), 2.18 (s, 3H), 1.93 (s, 3H), 1.88 (s, 3H), 1.30 (d, J = 6.5 Hz, 
3H), 1.20 (d, J = 6.7 Hz, 3H), 1.18 (s, 9H), 1.12 (t, J = 7.0 Hz, 3H); 13C NMR (151 
MHz, C6D6) δ 171.6, 163.9, 135.0, 130.6, 128.6, 127.6, 125.1, 125.0, 122.8, 120.2, 
116.2, 114.6, 110.3, 109.1, 108.4, 107.0, 103.0, 87.1, 79.4, 79.1, 62.9, 60.5, 60.3, 
56.0, 46.4, 41.6, 39.7, 28.0(3C), 19.8, 19.3, 14.7, 13.3, 12.5, 10.2; IR (thin film) νmax 
(cm-1): 2973, 2925, 2853, 2363, 2336, 1727, 1489, 1283, 1192, 1162, 1027, 767; 
HRMS (m/z): (ESI) calcd. for C36H47N3NaO5 [M+Na]+: 624.3408, found 624.3412. 

 
Thiocarbonate 107: Lactol 106 (500 mg, 0.83 mmol, 1.0 equiv.) was azeotropically 
dried with benzene (3x) and then dissolved in THF (50 mL) under an inert atmosphere. 
The solution was cooled to –78 °C and KHMDS (1.0 M in THF, 1.0 mL, 0.99 mmol, 1.2 
equiv.) was added dropwise down the side of the reaction vessel. The reaction was 
stirred for 30 min and added a solution of DMAP (195 mg, 1.6 mmol, 2.0 equiv.) in THF 
(5 mL) and followed by O-phenyl chlorothionoformate (75 µL, 1.6 mmol, 2.0 equiv.). 
The mixture was stirred for 1 h at –78 °C and then quenched by the addition of 
saturated aq. NaHCO3 (10 mL). The solution was extracted with EtOAc (3 x 30 mL) and 
the combined organics were washed with brine (20 mL), dried over Na2SO4, filtered and 
concentrated in vacuo. The resulting crude residue was purified by column 
chromatography (0% EtOAc in hexanes → 10% EtOAc in hexanes) to afford 
thiocarbonate 107 (509 mg, 0.69 mmol, 83%), as a yellow oil. TLC: Rf = 0.5 (20% 
EtOAc in hexanes); 1H NMR (600 MHz, C6D6) δ 6.92 – 6.85 (m, 2H), 6.82 – 6.77 (m, 
1H), 6.68 (dd, J = 2.9, 1.8 Hz, 1H), 6.64 – 6.60 (m, 2H), 6.37 (t, J = 3.1 Hz, 1H), 6.32 
(d, J = 11.6 Hz, 1H), 6.19 (d, J = 3.6 Hz, 1H), 6.14 – 6.07 (m, 1H), 6.00 – 5.94 (m, 2H), 
5.72 (t, J = 5.7 Hz, 2H), 4.95 (d, J = 1.0 Hz, 1H), 4.69 (d, J = 2.0 Hz, 1H), 4.00 (dq, J 
= 9.8, 6.7 Hz, 1H), 3.94 (s, 1H), 3.59 (d, J = 2.0 Hz, 1H), 3.43 (td, J = 10.2, 4.6 Hz, 
1H), 3.34 (dq, J = 9.4, 7.0 Hz, 1H), 3.28 (dq, J = 9.3, 7.1 Hz, 1H), 2.40 (dd, J = 14.9, 
10.5 Hz, 1H), 2.29 (dd, J = 14.9, 4.7 Hz, 1H), 2.19 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 
1.47 (d, J = 6.5 Hz, 3H), 1.21 (d, J = 6.9 Hz, 3H), 1.20 (s, 9H), 1.12 (t, J = 7.0 Hz, 3H); 
13C NMR (151 MHz, C6D6) δ 190.3, 171.6, 163.2, 153.6, 135.3, 130.5,129.6, 128.4, 
127.6, 126.5, 125.4, 124.3, 122.6, 122.2, 120.7, 116.1, 115.6, 115.3, 109.1, 108.5, 
107.1, 103.2, 91.1, 80.2, 79.2, 63.0, 61.7, 57.6, 56.0, 45.4, 41.5, 39.7, 28.0(3C), 19.9, 
18.7, 14.7, 13.6, 12.5, 10.4; IR (thin film) νmax (cm-1): 2977, 2928, 2361, 1726, 1489, 
1300, 1277,1197, 1161, 1077, 1003, 768; HRMS (m/z): (ESI) calcd. for 
C43H51N3NaO6S [M+Na]+: 760.3391, found 760.3392. 
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Ketone 108: Thiocarbonate 107 (70 mg, 0.095 mmol, 1.0 equiv.) was dissolved in 
THF (5 mL) and the solution degassed by sparging with argon for 5 min at 45 oC. 
Tributyltin hydride (51 µL, 0.19 mmol, 2.0 equiv.) and BEt3 (1.0 M in hexanes, 95 
µL, 0.095 mmol, 1.0 equiv.) were then added to the mixture. A syringe containing 3 
mL of air was placed into the reaction solution, and air was bubbled into the mixture at 
a rate of approximately 1mL/hr. Upon completion of the reaction as indicated by TLC, 
the mixture was cooled to 0 °C and 1M aq. HCl (1 mL) was added dropwise. The 
resulting solution was vigorously stirred for 30 min, and was quenched with saturated 
aq. NaHCO3 (5 mL). The solution was extracted with EtOAc (3 x 10 mL) and the 
combined organic layers were washed with brine (10 mL), dried over Na2SO4, 
filtered and concentrated in vacuo. The resulting crude residue was purified by 
preparative TLC (10% Et2O in DCM) to afford ketone 108 (21.7 mg, 0.039 mmol, 41%) 
as a white solid. TLC: Rf = 0.6 (10% Et2O in DCM); 1H NMR (600 MHz, C6D6) δ 6.57 
(dd, J = 3.0, 1.8 Hz, 1H), 6.31 (t, J = 3.1 Hz, 1H), 6.28 (d, J = 11.5 Hz, 1H), 6.17 (d, 
J = 3.6 Hz, 1H), 6.09 – 6.05 (m, 1H), 5.95 (dd, J = 3.7, 0.9 Hz, 1H), 5.63 (d, J = 11.4 
Hz, 1H), 5.61 (s, 1H), 4.48 (s, 1H), 4.16 – 4.13 (m, 1H), 4.11 (q, J = 7.2 Hz, 1H), 3.75 
(s, 1H), 3.72 (qd, J = 6.7, 2.2 Hz, 1H), 3.44 – 3.36 (m, 1H), 2.35 – 2.25 (m, 2H), 2.19 
(s, 3H), 1.75 (s, 3H), 1.74 (s, 3H), 1.70 (s, 3H), 1.25 (d, J = 6.8 Hz, 3H), 1.17 (s, 9H), 
0.78 (d, J = 6.6 Hz, 3H); 13C NMR (151 MHz, C6D6) δ 209.3, 171.5, 132.8, 130.6, 127.6, 
127.3, 125.7, 124.2, 121.4, 120.1, 116.6, 114.7, 109.1, 107.8, 107.2, 104.8, 94.4, 90.3, 
79.2, 60.1, 56.7, 55.0, 46.0, 41.1, 40.0, 28.0(3C), 26.8, 19.3, 18.3, 13.4, 12.5, 9.6; IR 
(thin film) νmax (cm-1): 3481, 2925, 2854, 2364, 1725, 1644, 1449, 1391, 1282, 1165, 
1067, 770, 750,702; HRMS (m/z): (ESI) calcd. for C34H43N3NaO4 [M+Na]+: 580.3146, 
found 580.3140. 

 

CBS reduction of 108: In a N2 filled glovebox, a reaction tube was charged with (R)-
(+)-2-methyl-CBS-oxazaborolidine (2.0 mg, 9.0 µmol, 1.0 equiv.). The reaction tube was 
sealed and brought out of the glovebox under inert atmosphere. DCM (0.2 mL) was 
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D 

added followed by BH3•DMS (1.1 µL, 18.0 µmol, 2.0 equiv.) and the mixture stirred for 
15 min. Methyl ketone 108 (5.0 mg, 9.0 µmol, 1.0 equiv.) was dissolved in DCM (0.2 mL) 
and added dropwise to the reaction mixture. Additional DCM (0.1 mL) was used to render 
the transfer quantitative. Upon completion of the reaction as indicated by TLC, the 
reaction mixture was quenched with saturated aq. NH4Cl solution (1 mL) and the 
mixture stirred for 5 min. The solution was extracted with DCM (3 x 3 mL). The 
combined organic layers were washed with brine (5 mL), dried over Na2SO4, filtered, 
and concentrated in vacuo. The resulting crude residue was purified by preparative 
TLC (10% Et2O in DCM) to afford (–)-109 (2.2 mg, 3.8 µmol, 42%) and (+)-84 (2.1 mg, 
3.8 µmol, 42%) both as white solids. 

 

TLC: Rf = 0.7 (10% Et2O in DCM); 1H NMR (600 MHz, C6D6) δ 6.54 (t, J = 2.3 Hz, 1H), 
6.48 (d, J = 11.7 Hz, 1H), 6.30 (t, J = 3.2 Hz, 1H), 6.23 (d, J = 3.3 Hz, 1H), 6.08 (s, 
1H), 5.99 (d, J = 3.4 Hz, 1H), 5.92 (d, J = 11.7 Hz, 1H), 5.47 (s, 1H), 4.54 (s, 1H), 4.17 
(p, J = 6.9 Hz, 1H), 3.99 (d, J = 1.4 Hz, 1H), 3.70 (s, 1H), 3.63 – 3.56 (m, 1H), 3.46 (q, 
J = 7.5 Hz, 1H), 2.86 (d, J = 6.8 Hz, 1H), 2.44 – 2.35 (m, 2H), 2.21 (s, 3H), 1.78 (s, 
3H), 1.71 (s, 3H), 1.44 (d, J = 6.5 Hz, 3H), 1.25 (d, J = 6.8 Hz, 3H), 1.22 (s, 9H), 0.74 
(d, J = 6.6 Hz, 3H); 13C NMR (151 MHz, C6D6) δ 171.5, 132.2, 131.2, 129.1, 128.0, 
126.2, 124.3, 120.8, 119.1, 116.7, 113.7, 108.9, 107.5, 107.1, 103.3, 89.8, 88.8, 79.5, 
70.7, 60.6, 57.3, 54.7, 45.3, 40.5, 39.4, 28.0(3C), 19.4, 17.8, 17.7, 13.5, 12.5, 9.6; IR 
(thin film) νmax (cm-1): 3592, 3004, 1709, 1420, 1358, 1220, 1092, 902, 529; HRMS 
(m/z): (ESI) calcd. for C34H45N3NaO4 [M+Na]+: 582.3302, found 582.3295; [α]25 = –
15°(c = 0.01, MeOH).  

TLC: Rf = 0.4 (10% Et2O in DCM); 1H NMR (600 MHz, C6D6) δ 6.53 (dd, J = 3.0, 1.8 
Hz, 1H), 6.43 (d, J = 11.8 Hz, 1H), 6.34 (t, J = 3.1 Hz, 1H), 6.21 (d, J = 3.6 Hz, 1H), 
6.09 (d, J = 2.8 Hz, 1H), 6.04 (d, J = 11.7 Hz, 1H), 5.98 (dd, J = 3.5, 0.9 Hz, 1H), 5.52 
(s, 1H), 4.52 (s, 1H), 4.14 (p, J = 7.0 Hz, 1H), 4.02 – 3.99 (m, 1H), 3.61 (qd, J = 6.6, 2.1 
Hz, 1H), 3.48 – 3.42 (m, 1H), 3.32 (s, 1H), 2.91 (q, J = 6.6 Hz, 1H), 2.44 – 2.33 (m, 
2H), 2.24 (s, 3H), 2.13 (s, 1H), 1.79 (s, 3H), 1.77 (s, 3H), 1.21 (s, 9H), 1.21 (d, J = 6.6 
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Hz, 3H), 1.19 (d, J = 7.0 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H); 13C NMR (151 MHz, C6D6)
δ 171.5, 132.3, 131.1, 128.5, 127.7, 125.9, 124.6, 119.8, 118.9, 116.4, 113.9, 108.9, 
107.9, 107.2, 104.2, 91.1, 88.9, 79.4, 72.3, 61.2, 57.6, 55.0, 43.9, 40.8, 39.8, 28.0(3C), 
19.3, 18.0, 17.3, 13.5, 12.5, 9.7; IR (thin film) νmax (cm-1): 3360, 2922, 2852, 1727,
1646,  1465,  1425,  1280,  1159,  1080,  950,  786,  701;  HRMS  (m/z):  (ESI)
calcd.  for C34H45N3NaO4 [M+Na]+: 582.3302, found 582.3296; [α]25 = +12° (c = 0.01,
MeOH). 

(+)-Curindolizine (2): To a 10 mL reaction tube containing alcohol 84 (1.7 mg, 3.0 µmol,
1.0 equiv.) was added DCM (0.5 mL). The resulting solution was cooled to –78 °C and 
DIBAL (1.0 M in hexanes, 15.0 µL, 15.0 µmol, 5.0 equiv) was added dropwise. Upon 
completion of the reaction as indicated by TLC, the reaction mixture was quenched 
with saturated aq. Rochelle’s salt (1 mL). The solution was extracted with EtOAc (3 x 5 
mL) and the combined organics were washed with brine (5 mL), dried over Na2SO4, 
filtered and concentrated in vacuo. The resulting crude residue was purified by 
preparative TLC (10% Et2O in DCM) to afford (+)-curindolizine (2) (1.0 mg, 2.1 µmol,
70%) as a white solid. TLC: Rf = 0.8 (10% Et2O in DCM); 1H NMR (600 MHz, CDCl3)
δ 6.51 (d, J = 9.6 Hz, 1H), 6.34 (d, J = 11.7 Hz, 1H), 6.03 (d, J = 3.5 Hz, 1H), 5.95 (d, 
J = 3.4 Hz, 1H), 5.87 (d, J = 3.5 Hz, 1H), 5.83 (d, J = 3.3 Hz, 1H), 5.69 (dd, J = 9.6, 6.3
Hz, 1H), 5.59 (d, J = 11.7 Hz, 1H), 5.25 (s, 1H), 4.86 (s, 1H), 4.40 (dd, J = 2.1, 1.1 Hz, 
1H), 4.11 (qd, J = 6.7, 2.3 Hz, 1H), 4.02 (q, J = 6.7 Hz, 1H), 3.69 (s, 1H), 3.39 (d, J = 
6.3 Hz, 1H), 2.26 (s, 3H), 2.20 (s, 3H), 2.11 (s, 2H), 1.44 (d, J = 6.7 Hz, 3H), 1.33 (d, J 
= 6.7 Hz, 3H), 1.12 (d, J = 6.4 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 132.2, 130.4,
128.9, 128.2, 127.4, 124.0, 122.7, 122.5, 120.0, 119.7, 119.3, 113.2, 108.4, 106.5, 
105.4, 103.6, 89.7, 88.9, 69.8, 60.0, 57.3, 54.2, 44.7, 38.3, 20.6, 19.6, 17.7, 13.8, 
11.2, 10.3; IR (thin film) νmax (cm-1): 3359, 2921, 2852, 1658, 1633, 1465, 720; HRMS 
(m/z): (ESI) calcd. for C30H35N3NaO2 [M+Na]+: 492.2621, found 492.2620; [α]25 = +314°
(c = 0.01, MeOH).  
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Procuramine 1H spectra comparison: 

10 

procuramine 

Position 
1H NMR (δ) 

Natural Sample 
(500 MHz, CDCl3)9 

1H NMR (δ) 
Synthetic Sample 

(600 MHz, CDCl3) 
1 1.37 (d, 7.0) 1.36 (d, 6.9) 
2 4.40(qd, 7.0, 2.0) 4.40(qd, 6.8, 1.9) 
3 4.36 (dt, 3.2, 2.0) 4.35 (br s) 
4 2.89 (dd, 18.0, 3.2) 

2.67 (dd, 18.0, 2.0) 
2.87 (dd, 18.0, 3.2) 
2.64 (dd, 18.0, 2.7) 

5 
6 
7 7.01 (br d, 4.0) 7.01 (d, 4.0) 
8 6.08 (br d, 4.0) 6.08 (d, 4.0) 
9 

10 2.32 (br s) 2.32 (s) 
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Procuramine 13C spectra comparison: 

10 

procuramine 

*Revised shi) by 13C NMR of the isola4on paper

Position 
13C NMR (δ) 

Natural Sample 
(125 MHz, CDCl3)9 

13C NMR (δ) 
Synthetic Sample 

(151 MHz, CDCl3) 
1 19.3 19.3 
2 53.7 53.6 
3 70.5 70.5 
4 39.5 39.4 
5 183.5 183.7 
6 128.3 128.3 
7 115.1 115.1 
8 111.2 111.2 
9 135.7* 135.8 
10 12.0 12.0 

54



(+)-Curindolizine 1H spectra comparison: 
 
 
 
 
 
 
 
 
 
 
 
 

 
Position 

1H NMR (δ) 
Natural Sample 

(400 MHz, CDCl3)9 

1H NMR (δ) 
Synthetic Sample 

(600 MHz, CDCl3) 
1 1.44 (d, 6.8) 1.44 (d, 6.7) 
2 4.11(qd, 6.8, 2.0) 4.11(qd, 6.7, 2.3) 
3 4.41 (br s) 4.40 (dd, 2.1, 1.1) 
4 4.87 (br s) 4.86 (s) 
5 3.70 (br s) 3.69 (s) 
6   

7 5.25 (br s) 5.25 (s) 
8   
9   

10 2.26 (br s) 2.26 (s) 
11 1.13 (d, 6.4) 1.12 (d, 6.4) 
12 2.19 (q, 6.4) 2.20 (s) 
13   

14 5.60 (d, 11.6) 5.59 (d, 11.7) 
15 6.35 (d, 11.6) 6.34 (d, 11.7) 
16   
17 6.06 (d, 3.2) 6.03 (d, 3.5) 
18 5.88 (d, 3.2) 5.87 (d, 3.5) 
19   

20 2.21(br s) 2.20(s) 
21 1.33 (d, 6.4) 1.33 (d, 6.7) 
22 4.02 (q, 6.8) 4.02 (q, 6.7) 
23 3.40 (br d, 6.0) 3.39 (d, 6.3) 
24 5.69 (dd, 9.6, 6.4) 5.69 (dd, 9.6, 6.3) 
25 6.51 (d, 9.6) 6.51 (d, 9.6) 
26   

27 5.96 (d, 3.2) 5.95 (d, 3.4) 
28 5.83 (d, 3.2) 5.83 (d, 3.3) 
29   
30 2.12 (br s) 2.11 (s) 
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(+)-Curindolizine 13C spectra comparison: 
 
 
 
 
 
 
 
 
 
 
 
 

 
Position 

13C NMR (δ) 
Natural Sample 

(101 MHz, CDCl3)9 

13C NMR (δ) 
Synthetic Sample 

(151 MHz, CDCl3) 
1 19.6 19.6 
2 57.3 57.3 
3 88.9 88.9 
4 59.9 60.0 
5 44.6 44.7 
6 128.2 128.2 
7 103.5 103.6 
8 127.4 127.4 
9 122.7 122.7 
10 10.2 10.3 
11 17.6 17.7 
12 69.8 69.8 
13 89.7 89.7 
14 119.7 119.7 
15 124.0 124.0 
16 130.4 130.4 
17 113.2 113.2 
18 108.4 108.4 
19 132.2 132.2 
20 13.7 13.8 
21 20.6 20.6 
22 54.2 54.2 
23 38.2 38.3 
24 119.3 119.3 
25 119.9 120.0 
26 122.4 122.5 
27 105.4 105.4 
28 106.5 106.5 
29 128.2 128.2 
30 11.2 11.2 
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Chapter 3 
 

The Syntheses of Bipolamines D, E, G, and 
I 
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3.1 Introduction 
 

This chapter chronicles our chemical investigations of bispyrrole metabolites derived 
from Bipolaris maydis. A total of 9 pyrrole-containing secondary metabolites were 
identified in 2020 from this source.1 Apart from simpler bipolamine A (3) and bipolamine 
(4), the other congeners are differentially oxidized variants of curvulamine (1) (Figure 
3.1).2,3 In the case of bipolamine C (5), the vinyl pyrrole has undergone oxidation at C-18 
and C-19 to yield a hydroxypyrrolone structure. Bipolamines D (6) and E (7) are C-14 
epimers wherein a hydroxyl group at C-14 replaces the Δ14-15 olefin, and in bipolamine G 
(9) further oxidation of the alkene to a monomethylatated trans diol has occurred.  
Bipolamine H (10) and bipolamine F (8) contain oxidation at C-5, in the form of a hydroxyl 
group in 10 and a THF ring in the case of 8. Lastly, bipolamine I (11) is structurally distinct  
with its congeners in that is the only isolated metabolite with an ether bridge between C-
14  and C-3. Driven to further explore the chemical reactivity of these pyrrole-containing 
natural products and investigate the superior reported bioactivity of certain bipolamines 
relative to curvulamine (1) (see Chapter 1), we aimed to develop a unifying strategy 
toward these novel bispyrrole alkaloids from a common intermediate.4,5  

 
3.2  Pierce’s Total Synthesis of Bipolamine I 

 
In 2022, the Pierce group at North Carolina State University reported the synthesis of 

bipolamine I (11) from mono-ethyl malonate and 2-methylpyrrole.6 Their 15-step 
synthesis of 11 featured a two-component ruthenium-catalyzed transfer hydrogenative 
coupling that yielded most of the carbon skeleton of 11 (Figure 3.2).7 One of the 
components, alkyne 85 was made in a few steps from mono-ethyl malonate. First, 
activation of levulinic acid by CDI, followed by Claisen reaction of the malonte and the 
levulinic-CDI complex with concomitant decarboxylation proceed to give ester 86 
(Mg(OEt)2, CDI). A subsequent Paal-Knorr pyrrole synthesis using propargyl amine then 
gave 87 in 84% yield (AcOH, PhMe, Δ). DIBAL-mediated reduction of the ethyl ester 87 

Figure 3.1 Curvulamine-type alkaloids isolated from Curvularia sp. and Bipolaris maydis. 
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to the corresponding aldehyde followed by 1,2 addition of vinyl Grignard to the aldehyde 
intermediate gave a secondary alcohol that was  immediately protected with TBSCl to 
afford 85 (Figure 3.2A). The other pyrrole-containing component 88 was made from 
methyl pyrrole in two steps: intermolecular substitution reaction between 2-methyl pyrrole 
and 29 (NaH, DMF) followed by LiAlH4 reduction to alcohol 88. Base mediated 
isomerization of alkyne 85 (t-BuOK, t-BuOH) and subsequent ruthenium-catalyzed 
transfer hydrogenative coupling with alcohol 88 gave bispyrrole 89 in a 3.7:1 mixture of 
diastereomers with a combined 68% yield (HClRu(CO)(PPh3)3, dippf, 1M dioxane). This 
intermediate was transformed into 90 after a ring closing metathesis event (Grubbs II, 
PhMe) and TBAF deprotection sequence. In an unexpected event, exposure of 90 to 
A. Preparation of the Two Pyrrole Components
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MnO2 not only resulted in oxidation of the allylic alcohol to an enone that reacted with the 
neighboring pyrrole, but also resulted in the formation of the ether bridge between C-14 
and C-3 ultimately yielding 91. An aldol reaction between the kinetic enolate of 91 
(LiHMDS, THF) and acetaldehyde gave a secondary alcohol which was protected 
(TBSCl, imidazole, DMAP) to generate ketone 92. Exposure of 92 to reductive conditions 
gave hemiacetal 93 in 95% yield (SmI2, THF). Finally, 93 was converted to a 
thiocarbonate (KHMDS, ClCOSPh), which underwent smooth radical deoxygenation 
(BEt3, n-Bu3SnH) and TBAF mediated deprotection completing the synthesis of 
bipolamine I (11).   
 
3.3  Unifying Strategy Toward the Synthesis of the Bipolamine Alkaloids  

 
During our synthetic planning, we aimed to develop an approach that targets all the 

bipolamines from a common intermediate (Figure 3.3).  While this strategy might sound 
routine within a family of natural products,8 we anticipated significant challenges due to 
the notorious sensitivity of these pyrrole-containing compounds to acidic and oxidative 
conditions.9 As discussed in previous chapters, these properties of electron-rich pyrrole 
units, such as the ones found in the bipolamine alkaloids, greatly limits the chemical 
reactions  that can be used with these natural products, especially in an oxidative 
context.10,11  
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In our strategy, we anticipated that bipolamines D (6) and E (7) could be obtained from 
curvulamine (1) after hydroboration and oxidation.12 Previously prepared methyl ketone 
35 could be elaborated into bipolamine G (9) in two steps: an electrophilic epoxidation 
(m-CPBA) followed by an epoxide ring opening reaction with methanol.13,14 Recognizing 
that bipolamine C (5) has an oxidized pyrrole unit, we envisioned a series of oxidation 
reactions could furnish this congener. Starting from 5, m-CPBA mediated oxidation of the 
western pyrrole followed by hydrolysis of the newly formed epoxide ring, could produce 
allylic alcohol intermediate 94. A chemoselective oxidation of 94 with MnO2 and 
subsequent base-mediated elimination of the hydroxyl group at C-14 could produce 
bipolamine C (5).15 To elaborate bipolamine E (7), we proposed a regioselective α-
hydroxylation of 24 to make 95 followed by an analogous sequence of reactions as the 
one used to make 1.16  We anticipate that bipolamine F (8) could be obtained from 
bipolamine E (7) after an acid-catalyzed cyclization. Lastly, we designed a strategy to 
synthesize bipolamine I (11) from methyl ketone 35 in 3 steps: samarium diiodide 
mediated reduction of 35, then a base-catalyzed intramolecular conjugate addition, and 
finally a stereodivergent reduction of ketone 96.17 Our proposal employs methyl ketone 
(35) as a key common synthetic intermediate thus we first investigated  synthetic routes 
to produce large quantities of 35.18,19  

 
3.4  Scalable Synthetic Plan to Access Intermediate 35 
 

During our campaigns toward curvulamine (1) and curindolizine (2),19 we observed 
inconsistent results in the Barton-McCombie deoxygenation step. We noticed that the 
yield of the radical deoxygenation oscillated between 40% to 10% depending on the 
scale. Presumably, the substrate or the reaction conditions are very sensitive to the 
amount of oxygen used during the radical initiation step (O2, Et3B), which is hard to control 
accurately.15 While one could have assumed that this accuracy problem could have been 
less chronic in larger scales, the issue still persisted. These results prompt us to look for 
a more robust and scalable strategy to access methyl ketone 35 from pentacycle 31.  

Beginning with pentacycle 31, thermodynamic isomerization of the C-2 stereocenter 
proceeded to give an inseparable mixture of diastereomers 31 and 32 (NaOMe, MeOH). 
This diasteoromeric mixture was acetylated (Ac2O, Et3N, 4-DMAP) to yield 97 and the 
corresponding C-2 epimer. These diastereomers could be easily separated and heating 
2-epi-97 in sodium methoxide afforded a mixture containing 31 and 32. Global reduction 
(LiAlH4, THF) of pure 97 gave diol 98 in 85% yield. Additionally, we found that this 
transformation could be carried out in gram scale without any decrease in yield. 
Mesylation (MsCl, DMAP, Et3N) of the more accessible secondary alcohol gave 99, and 
intramolecular displacement of the activated alcohol by the tertiary alcohol in 99 (DBU, 
PhMe, Δ) followed by hydrolysis of the ethyl vinyl ether during the acidic work-up afforded 
methyl ketone 35. Even though, this new synthetic route to 35 is one step longer 
compared to the previous Barton-McCombie deoxygenation sequence, we were able to 
more than double the overall yield and more easily obtain large quantities of 35 in a short 
amount of time. In addition, as we will discuss later, some of the lessons learned during 
this optimization campaign proved critical in the synthesis of bipolamine I (11). 
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3.5  The Total Syntheses of Bipolamines D and E 
 

Having secured a scalable procedure to access methyl ketone 35 we then set our 
sights on the synthesis of bipolamine D (6) and bipolamine E (7). Stereodivergent 
reduction of 35 under previously discussed conditions ((R)-CBS, BH3·THF) proceed to 
give 1 and 12-epi-1 in a combined 90% yield.18 Brown hydroboration-oxidation of 1 
(BH3•DMS then NaOH, H2O2) generated 5 and 6 in almost equimolar quantities. To 
rationalize the regioselectivity of this reaction, we analyzed the Muliken charge 
distribution of 35 (Chapter 2, section 1.4), but these data did not provide evidence of an 
electronic basis for the selectivity.20,21 Perturbations of hydroboration regioselectivity and 
stereoselectivity by oxygen-containing substituents are well reported in the literature, 
however, and a mechanism that involves the hydroxyl group at C-12 directing the reaction 
could be operating, which would explain the observed regioselectivity.22,23 

 
3.6  The Total Synthesis of Bipolamine G  

 
During our synthetic planning to access bipolamine G (9) (Figure 3.3), we proposed 

to transform 35 into 9 via an electrophilic epoxidation of the Δ14-15 alkene followed by 
opening of the oxirane ring with MeOH.15 When we subjected 35 to m-CPBA at –35° C, 
we observed formation of methyl ether compound 100, likely via a mechanism that 
involves oxidation of the eastern pyrrole (101). This formal benzylic oxidation product was 
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unexpected because during previous studies on 35 and its derivatives, we only observed 
reactivity at the western pyrrole unit.18,19 For instance, during our synthetic studies of 
curindolizine (2), treatment of 35 with NIS in methanol at low temperatures gave 76 as 
the only product. While trying to further investigate the unexpected oxidation of 35, we 
quickly recognized that 76 could be elaborated into bipolamine G (9) via solvolysis of the 
iodide atom at C-14. Methyl ether 76 was treated with silver (I) salts in a nitromethane-
water mixture, which we hoped would generate a carbocation that could be intercepted 
by water.24 Under these conditions however, instead of forming bipolamine G (9), we 
observed exclusive formation of aldehyde 102, presumably formed via a semi pinacol-
type rearrangement aided by the neighboring pyrrole. We then evaluated a one-electron 
approach to this transformation, but subjecting 76 to radical conditions (Bu3SnH, O2, 
AIBN) only afforded the reduction product. In a revised approach, dihydroxylation of 35 
(OsO4, NMO) was found to be productive, albeit with poor conversion due to 
decomposition upon prolongation of reaction time. Diol 103 proceeded to give substitution 
product 104 in 85% yield (MeOH, HCl), possibly via the initial formation of an 
azafulvenium ion, which is then trapped by methanol.25 DIBAL reduction of 104 yielded 
nearly identical quantities of bipolamine G (9) and its C-12 epimer. Notably, during the 
synthesis of curvulamine (1), when compound 35 is treated to the same reduction 
conditions (DIBAL, DCM), primarily the C-12 epimer of the corresponding product is 
obtained.18 
 

Figure 3.5 Synthesis of bipolamine G. 3.5A. Initial strategy toward 9 3.5B Second 
generation route toward 9 3.5C Successful synthesis of 9 
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3.7  The Total Synthesis of Bipolamine I  
 
After completing the synthesis of 9, we directed our efforts toward bipolamine I (11), 

a topologically distinct molecule relative to its congeners. We rationalized that 11 could 
be elaborated from enone 105 via an intramolecular Michael addition and ketone 
reduction sequence. Enone intermediate 105 could be prepared from methyl ketone 35 
via a reductive ring cleavage (Figure 3.6).17  

Exposing 35 to reductive conditions (SmI2, THF) proceeded to smoothly cleave the C-
O bond, but upon work-up, the extended samarium enolate yielded a 10:1 mixture of 
alkene 106 and hemiacetal 107 instead of the desired enone 105. Different conditions 
were explored to isomerize the double bond into conjugation with the carbonyl group to 
obtain 105. Ketone 106 was heated with t-BuOK in THF and at temperatures below 60 

Figure 3.6 Bipolamine I retrosynthetic analysis.  
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°C, only unreacted starting material was recovered (entry 1) while decomposition 
products were observed at elevated temperatures (entry 2). Heating 106 in the presence 
of DBU at refluxing temperatures resulted in isomers 106 and 107 (3:1 ratio). This result 
indicated that deprotonation is possible, but isomerization is unfavorable. Attempts to 
perform a metal-catalyzed isomerization with RhCl3•6H2O or PdCl2(MeCN)2 resulted in 
mixture of decomposition products (entry 4 and entry 5).26-28 DFT calculations of the 
ground state energies of the optimized structures of 105 and 106 at the B3LYP/6-31 G 
(d,p)  level of theory, informed us that alkene 106 is 5.98 kcal/mol lower in energy 
compared to enone 105, supporting our results at attempting to carry out a 
thermodynamic isomerization.  

Recognizing the smooth hydroboration of the Δ14-15 olefin during the synthesis of 5 
and 6, a revised strategy was devised (Figure 3.8). Starting from 98, regioselective 
mesylation (MsCl, Et3N, DMAP) with concomitant acidic hydrolysis of the enol ether 
afforded ketone 108. Subsequent SmI2 mediated single-electron reduction of 108 
furnished the corresponding ketone product which was equilibrated to a single 
diastereomer (109) after addition of DBU. Methyl ketone 109 was transformed into 
bipolamine I (11) in three steps. First, 109 was reduced (NaBH4, MeOH) to a separable 
mixture of C-12 epimers in a 1:1 ratio. Second, regioselective hydroboration oxidation 
(BH3•THF then NaBO3) of the Δ14-15 alkene yielded the desired isomer in good yields. 
Finally, DBU mediated intramolecular SN2 at elevated temperatures proceeded to give 
bipolamine I (11).  

 
3.8  Future Directions  

 
Through our investigations, we have established efficient synthetic routes to several 

curvulamine type alkaloids. We are currently still investigating the synthesis of the  
syntheses of bipolamines C, E and F (Figure 3.3). So far, during our studies on the 
synthesis of bipolamine C (5) and E (7) we haven’t observed oxidation of curvulamine (1) 
at C-5 or C-18/19 π-bond and selective oxidation at these positions is required for the 
synthesis of the remaining bipolamine congeners. Recently, we discovery conditions to 
selectively oxidize 24 at C-5, and we are investigating conditions to transform this 
intermediate into bipolamines E and F. We are concurrently investigating different 
strategies to synthesize bipolamine C from methyl ketone 35. 
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3.9  Conclusion  
 
This chapter has chronicled the chemistry of the electron-rich pyrrole natural products 
observed while investigating the synthesis of several curvulamine derivatives. Several 
novel bipolamine alkaloids have been synthesized, including 9 the most potent antibiotic 
in the family. This work lays the foundation for future mechanism of action studies of these 
molecules. 
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3.12 Experimental Procedures and Characterization Data 
 
3.12.1 General Procedures 
 
All reactions were performed in flame- or oven-dried glassware under a positive pressure 
of nitrogen or argon, unless otherwise noted. Air-and moisture-sensitive liquids were 
transferred via syringe. When indicated, solvents or reagents were degassed by 
sparging with argon for 10 min in an ultrasound bath at 25 °C. Volatile solvents were 
removed under reduced pressure rotary evaporation below 35 °C. Analytical and 
preparative thin-layer chromatography (TLC) were performed using glass plates pre-
coated with silica gel (0.25-mm, 60-Å pore size, Merck TLC Silicagel 60 F254) impregnated 
with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to 
ultraviolet light (UV) and then were stained by submersion in an ethanolic anisaldehyde 
solution or ceric ammonium molybdate solution, followed by brief heating on a hot 
plate. Flash column chromatography was performed with silica gel purchased from 
Silicycle (SiliaFlash®, 60 Å, 230-400 mesh, 40-63 μm). Ethyl vinyl ether and 2- 
bromopropanic acid methyl ester were distilled over calcium hydride prior to use. 
NaHMDS solutions were purchased from Sigma. All other reagents were used as 
received from commercial sources, unless stated otherwise. Anhydrous tetrahydrofuran 
(THF), dichloromethane (DCM), methanol (MeOH), dimethylformamide (DMF), and 
toluene (PhMe) were obtained by passing these previously degassed solvents through 
activated alumina columns. Proton nuclear magnetic resonance (1H NMR) spectra and 
carbon nuclear magnetic resonance (13C NMR) spectra were recorded on Bruker AV-600 
spectrometer at 23 °C. Proton chemical shifts are expressed as parts per million (ppm, δ 
scale) and are referenced to residual solvent (CDCl3: δ 7.26, C6D6: δ 7.16), unless stated 
otherwise. Carbon chemical shifts are expressed as parts per million (ppm, δ scale) and 
are referenced to the solvent (CDCl3: δ 77.16, C6D6: δ 128.06), unless stated otherwise. 
Data is represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = 
doublet of doublets, ddd, doublet of doublet of doublet, dt = triplet of doublets, t = triplet, 
q = quartet, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. 
Infrared (IR) spectra were recorded on a Bruker Alpha FT- IR spectrometer as thin films 
and are reported in frequency of absorption (cm-1). Only selected resonances are 
reported. High-resolution mass spectra (HRMS) were obtained by the mass 
spectrometry facility at the University of California, Berkeley using a Finnigan LTQFT 
mass spectrometer (Thermo Electron Corporation). X-ray diffraction data was collected 
at the Small Molecule X-ray Crystallography Facility (CheXray) at University of California, 
Berkeley using a Rigaku XtaLAB P200 equipped with a MicroMax 007HF rotating anode 
and Pilatus3 R 200K-A hybrid pixel array detector. Data were collected using CuKα 
radiation (λ = 1.5418 Å). 
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3.12.2 Experimental Procedures and Tabulated Characterization Data 
 

 
Tetracyclic diol 13: To a 100 mL round bottom flask containing pentacyclic bispyrrole 
31 and 32 (1.5 g, 4.10 mmol, 1.0 equiv.) was added CH2Cl2 (30 mL). To the stirring 
solution was added Ac2O (577 µL , 6.15 mmol, 1.5 equiv.), DMAP (500 mg, 4.10 mmol, 
1.0 equiv.) and Et3N (1.71 ml, 12.3 mmol, 3.0 equiv.). Upon consumption of the starting 
material as indicated by TLC, the reaction mixture was quenched with saturated aq. 
NaHCO3 (50 mL) and extracted with CH2Cl2 (3 x 50 mL). The combined organic layers 
were washed with brine (20 mL), dried over Na2SO4, and concentrated in vacuo. The 
resulting crude residue was purified by column chromatography (5% EtOAc in hexanes) 
to afford 97 (1.12 g, 2.73 mmol) and 2-epi-97 (477 mg,1.17 mmol). 

To a reaction tube containing 2-epi-12 (477 mg, 1.17 mmol, 1.0 equiv.) was added 
NaOMe (317 mg, 5.85 mmol, 5.0 equiv.). The reaction tube was sealed and anhydrous 
MeOH (20 mL) was then added, the sealed reaction vessel was heated at 90 °C for 4 
hours. The reaction mixture was then cooled to room temperature quenched with 
saturated. aq. NH4Cl solution (50 mL). The solution was extracted with EtOAc (3 x 30 mL) 
and the combined organic layers were washed with brine (50 mL), dried over Na2SO4, 
filtered, and concentrated in vacuo. The resulting crude residue was purified by column 
chromatography (0% EtOAc in hexanes → 20% EtOAc in hexanes) to afford an 
inseparable mixture of pentacyclic bispyrrole 11 and 2-epi-11 (2.3:1 ratio) (367 mg, 0.99 
mmol, 85%) as a brown foam. To a 100 mL round bottom flask containing 97 (1.12 g, 
2.73 mmol, 1.0 equiv.) was added THF (30 mL). To the vigorously stirring solution was 
added LiAlH4 (1.0 M in THF, 8.19 mL, 8.19 mmol, 3.0 equiv.) dropwise. Upon 
consumption of the starting material as indicated by TLC, the reaction mixture was cooled 
to 0 °C and quenched with saturated aq. Rochelle salt (30 mL) and extracted with EtOAc 
(3 x 50 mL). The combined organic layers were washed with brine (20 mL), dried over 
Na2SO4, and concentrated in vacuo. The resulting crude residue was purified by column 
chromatography (10% EtOAc in hexanes) to afford tetracyclic diol 98 (854 mg, 2.32 mmol, 
85%) as a yellow oil. 
TLC: Rf = 0.5 (30% EtOAc in hexanes).1H NMR (600 MHz, Benzene-d6) δ 6.34 ( d, J 
= 12.5 Hz, 1H), 6.15 (d, J = 3.5 Hz, 1H), 6.03 –5.99 (m, 2H), 5.93 (dd, J = 3.5, 0.9 Hz, 
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1H), 5.51 (d, J = 12.4 Hz, 1H), 5.44 (ddd, J = 11.4, 6.1, 3.5 Hz, 1H), 4.85 (dd, J = 11.4, 
3.8 Hz, 1H), 4.69 (d, J = 3.7 Hz, 1H), 4.45 (d, J = 2.4 Hz, 1H), 4.36 (p, J = 6.4 Hz, 1H), 
3.95 (d, J = 2.4 Hz, 1H), 3.48 – 3.37 (m, 2H), 2.00 (s, 3H), 1.97 (s, 3H),1.70 (s, 1H), 1.64 
(d, J = 2.5 Hz, 1H), 1.21 (d, J = 6.5 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H) 13C NMR (151 MHz, 
C6D6) δ 167.1, 134.8, 129.4, 128.4, 126.2, 124.9, 120.5, 112.9, 108.4, 108.2, 106.8, 
81.4, 79.9, 64.9, 63.8, 55.8, 54.0, 45.4, 15.4, 14.3, 13.6, 12.3. IR (thin film) νmax (cm-1): 
3451, 2977, 2924, 1710, 1616, 1415, 1239, 1016, 871, 773. 748. HRMS (m/z): (ESI) 
calcd. for C22H29N2O3 [M+H]+ m/z: 369.2173, found 369.2174. 

 
Mesylate 99: To a 100 mL round bottom flask containing tetracyclic diol 98 (500 mg, 1.36 
mmol, 1.0 equiv.) was added CH2Cl2 (30 mL). The resulting mixture was cooled to 0 °C, 
Et3N (567 μL,4.08 mmol, 3.0 equiv.), MsCl (116 μL, 1.5 mmol, 1.1 equiv.) and DMAP (166 
mg, 1.36 mmol,1.0 equiv.) were added dropwise sequentially. The resulting mixture was 
warmed to room temperature. Upon consumption of the starting material as indicated by 
TLC, the reaction mixture was quenched with saturated aq. NaHCO3 (30 mL) and 
extracted with EtOAc (3 x 30mL). The combined organic layers were washed with brine 
(20 mL), dried over Na2SO4, and concentrated in vacuo. The resulting crude product was 
purified by column chromatography (10% EtOAc in hexanes) to afford mesylate 99 (443 
mg, 0.95 mmol, 70%) as a white solid.  
TLC: Rf = 0.6 (30% EtOAc in hexanes). 1H NMR (600 MHz, Chloroform-d) δ 6.30 (d J = 
12.5 Hz, 1H), 6.17 (dd, J = 11.8, 6.3 Hz, 1H), 6.09 (d, J = 3.6 Hz, 1H), 5.94 (d, J = 3.5 Hz, 
1H), 5.89 (d, J = 3.4 Hz, 1H), 5.70 (d, J = 3.4 Hz, 1H), 5.26 (d, J = 12.4 Hz, 1H), 5.04 (dd, 
J = 11.8, 3.7 Hz, 1H), 4.82 (p, J = 6.5 Hz, 1H), 4.44 (d, J = 3.7 Hz, 1H), 4.19 (d, J = 2.8 
Hz, 1H), 4.01 (d, J = 2.8 Hz, 1H), 3.84 – 3.70 (m, 2H), 2.44 (s, 3H), 2.29 (s, 3H), 2.28 (s, 
3H), 1.51 (s, 1H), 1.50 (d, J = 6.9 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H). 13C NMR (151 MHz, 
CDCl3) δ 165.9, 134.8, 129.1, 128.8, 125.1, 124.4, 120.0, 113.0, 108.5, 108.2, 106.7, 
81.4, 79.7, 74.5, 63.8, 53.4, 53.0, 44.2, 36.6, 16.6, 14.5, 13.7, 12.6. IR (thin film) νmax (cm-

1): 3441, 2924, 2854, 1665, 1607, 1362, 1299, 1179, 885, 758, 406. HRMS (m/z): (ESI) 
calcd. for C23H31N2O5S [M+H]+ m/z: 447.1948, found 447.1947. 

 
Ketone 35: To a reaction tube containing mesylate 99 (300 mg, 0.67 mmol, 1.0 equiv.) 
was added PhMe (20 mL) and DBU (100 μL, 0.67 mmol, 1.0 equiv.). The resulting mixture 
was heated up to 120 °C. Upon consumption of the starting material as indicated by TLC, 
the reaction mixture was cooled to 25 °C followed by the addition of aq. 1 M HCl (5 mL). 
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Upon consumption of the starting material as indicated by TLC, the reaction mixture was 
quenched with saturated aq. NH4Cl (10 mL) and extracted with EtOAc (3 x 20 mL). The 
combined organic layers were washed with brine (20 mL), dried over Na2SO4, and 
concentrated in vacuo. The resulting crude residue was purified by column 
chromatography (20% EtOAc in hexanes) to afford ketone 35 (186 mg, 0.57 mmol, 86%) 
as a white solid. TLC: Rf = 0.5 (40% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) 
δ 6.28 (d J = 11.5 Hz, 1H), 6.15 (d, J = 3.6 Hz, 1H), 5.94 (dd, J = 3.5, 0.9 Hz, 1H), 5.87 
(dd, J = 3.4, 1.0 Hz, 1H), 5.77 (d, J = 3.4 Hz, 1H), 5.74 (d, J = 11.5 Hz, 1H), 4.46 (br s, 
1H), 4.14 (br s, 1H), 3.72 (br s, 1H), 3.69 (dq, J = 6.7, 2.1 Hz, 1H), 1.83 (d, J = 0.9 Hz, 
3H), 1.73 (s, 3H), 1.53 (s, 3H), 0.73 (d, J = 6.7 Hz, 3H). 13C NMR (150.9 MHz, C6D6) δ 
209.7, 132.8, 130.6, 128.6, 127.4, 124.0. 121.6, 114.5, 109.0. 108.9, 106.3, 94.0, 90.5, 
60.0, 56.7, 46.1, 25.2, 19.1, 13.4, 12.3. IR (thin film) νmax (cm-1): 2972, 2932, 1741, 1682, 
1640, 1456, 1378, 1214, 1071, 786, 734. HRMS (m/z): (ESI) calcd. for C20H23O2N2 
[M+H]+: 323.1754, found 323.1756. 
 

 
Curvulamine (1): In a N2 filled glovebox, a reaction tube was charged with (R)-(+)-2-
methyl-CBS-oxazaborolidine (86 mg, 0.31 mmol, 1.0 equiv.). The reaction tube was 
sealed and brought out of the glovebox under inert atmosphere. CH2Cl2 (2.0 mL) was 
added followed by BH3•DMS (60 μL, 0.62 mmol, 2.0 equiv.) and the mixture stirred for 15 
minutes. Ketone 35 (100 mg, 0.31 mmol, 1.0 equiv.) was dissolved in CH2Cl2 (2.0 mL) 
and added dropwise to the reaction mixture. Additional CH2Cl2 (1.5 mL) was used to 
render the transfer quantitative. Upon completion of the reaction as indicated by TLC, 
saturated aq. NH4Cl solution (5 mL) was added, and the mixture stirred for 5 minutes. 
The biphasic mixture was poured into a separatory funnel and the organic layer was 
extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine 
(10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The resulting crude 
residue was purified by preparative TLC (50% Et2O in hexanes) to afford curvulamine 1 
(46 mg, 0.14 mmol, 45%) and 12-epi-1 (44 mg, 0.14 mmol, 45%) both as white solids. 
 
curvulamine (1): 
TLC: Rf = 0.4 (40% EtOAc in hexanes). 1H NMR (600 MHz, CDCl3) δ 6.45 (d, J =11.6 Hz, 
1H), 6.13 (d, J = 3.6 Hz, 1H), 5.94 (br d, J = 3.6 Hz, 1H), 5.93 (d, J = 3.4 Hz, 1H), 5.92 (d, 
J = 3.4 Hz, 1H), 5.72 (d, J = 11.6 Hz, 1H), 4.94 (br, s, 1H), 4.50 (br, s, 1H), 4.21 (qd, J = 
6.7, 1.9 Hz, 1H), 3.95 (br, s, 1H), 2.67 (br s, 1H), 2.31 (br s, 3H), 2.29 (br s, 3H), 1.51 (d, 
J = 6.7 Hz, 3H), 1.24 (d, J = 6.4 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 132.4,129.8, 
128.5, 124.2, 119.7, 113.4, 108.5 103.5, 89.4, 89.0, 70.2, 60.3, 57.4, 44.9, 19.5, 17.3, 
13.8, 12.8. IR (thin film) νmax (cm-1): 3466, 2972, 2925, 3852, 1643, 1425, 1393, 1322, 
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1301, 1044, 1011, 763. HRMS (m/z): (ESI) calcd. for C20H24O2N2Na [M+Na]+: 347.1730, 
found 347.1731. 
 
12-epi-1： 
TLC: Rf = 0.2 (40% EtOAc in hexanes). 1H NMR (600 MHz, CDCl3) δ 6.41(d, J =11.7 Hz, 
1H), 6.10 (d, J = 3.6 Hz, 1H), 5.91 (dd, J = 3.6, 0.9 Hz, 1H), 5.86 (dd, J = 3.4, 1.0 Hz, 1H), 
5.79 (d, J = 3.4 Hz, 1H), 5.75 (d, J = 11.7 Hz 1H), 4.90 (br, s, 1H), 4.56 (br, s, 1H), 4.23 
(qd, J = 6.7, 2.1 Hz, 1H), 3.71 (br, s, 1H), 2.71 (q, J = 6.3 Hz, 1H), 2.27 (br s, 3H), 2.26 
(br s, 3H), 2.05 (d, J = 2.2 Hz, 3H), 1.48 (d, J = 6.7 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H). 13C 
NMR (151 MHz, CDCl3) δ 132.6; 130.3, 128.4, 128.0, 124.1, 118.9, 113.5, 108.5, 107.2, 
105.0, 90.6, 89.4, 89.1, 72.0, 61.0, 57.6, 43.7, 19.4, 16.9, 13.8, 12.8. IR (thin film) νmax 
(cm-1): 3468, 2925, 1644, 1415, 1299, 1077, 776, 670. HRMS (m/z): (ESI) calcd. for 
C20H24O2N2Na [M+Na]+: 347.1730, found 347.1731. 

 
Bipolamine D (6) and bipolamine E (7): To a reaction tube containing curvulamine (1) 
(5.0 mg, 0.015 mmol, 1.0 equiv.) and THF (0.8 mL) was added BH3•DMS (10.0 μL, 0.020 
mmol, 1.3 equiv.) at 25 °C. The resulting mixture was stirred at 25 °C for 3 hours and then 
cooled down to 0 °C. At this point, aq. 1 M NaOH ( 23.1 μL, 0.023 mmol, 1.5 equiv.) and 
50% H2O2 (4.4 μL, 0.077 mmol, 5 equiv.) were added to the reaction mixture. Upon 
consumption of the starting material as indicated by TLC, the reaction mixture was 
quenched with saturated aq. NaHCO3 (3 mL) and extracted with CH2Cl2 (3 x 5 mL). The 
combined organic layers were washed with brine (5 mL), dried over Na2SO4, and 
concentrated in vacuo. The resulting crude residue was purified by preparative TLC (50% 
EtOAc in hexanes) to afford bipolamine D (6) (2.1 mg, 0.0061 mmol, 40%) as a white 
solid and bipolamine E (7) (1.8 mg, 0.0053 mmol, 34%) as a white solid. 
 
Bipolamine D: 
TLC: Rf = 0.35 (50% EtOAc in hexanes). 1H NMR (600 MHz, Acetone-d6) δ 5.82 (d J = 
3.3 Hz, 1H), 5.75 (br d, J = 3.3 Hz, 1H), 5.70 (br d, J = 3.3 Hz, 1H), 5.67 (br d, J = 3.3 Hz, 
1H), 4.84 (s, 1H), 4.38 (s, 1H), 4.36 (s, 1H) , 4.32 (qd, J = 6.6, 2.3 Hz, 1H), 4.04 (d, J = 
4.3 Hz, 1H), 3.91 (s, 1H), 3.73 (d, J = 1.9 Hz, 1H), 3.09 (d, J = 15.6 Hz, 1H), 2.93 (qd, J 
= 6.4, 4.5 Hz, 1H), 2.87 (dd, J = 15.6, 5.0 Hz, 1H), 2.24 (s, 3H), 2.21 (s, 3H), 1.48 (d, J = 
6.6 Hz, 3H), 1.12 (d, J = 6.4 Hz, 3H). 13C NMR (151 MHz, Acetone) δ 131.5, 128.8, 128.6, 
128.3, 108.8, 107.8, 107.0, 105.5, 91.8, 85.6, 72.3, 68.3, 59.6, 59.0, 43.7, 31.4, 19.2, 
18.8, 13.5, 12.8. IR (thin film) νmax (cm-1): 3520, 2925, 2855, 2150, 1465, 1298, 1022, 
755, 619, 429. HRMS (m/z): (ESI) calcd. for C20H27N2O3 [M+H]+ m/z: 343.2016, found 
343.2016. 
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Bipolamine E: 
TLC: Rf = 0.32 (50% EtOAc in hexanes). 1H NMR (600 MHz, Acetone-d6) δ 5.92 (d, J = 
3.4 Hz, 1H), 5.78 (d, J = 3.4 Hz, 1H), 5.74 (d, J = 3.3 Hz, 1H), 5.67 (d, J = 3.3 Hz, 1H), 
4.91 (s, 1H), 4.35 – 4.32 (m, 1H), 4.30 (br s, 1H), 4.30 – 4.29 (m, 1H), 4.22 (br s, 1H), 
3.07 (d, J = 15.7 Hz, 1H), 3.03 (d, J = 4.2 Hz, 1H), 2.95 (d, J = 9.8 Hz, 1H), 2.82 (d, J = 
4.0 Hz, 1H), 2.53 (q, J = 6.5 Hz, 1H), 2.26 (s, 3H), 2.26 (s, 3H), 1.55 (d, J = 6.7 Hz, 3H), 
1.08 (d, J = 6.5 Hz, 3H). 13C NMR (151 MHz Acetone) δ 131.4, 128.7, 128.6, 128.2, 108.7, 
107.7, 107.0, 105.5, 91.7, 85.5, 72.2, 68.2, 59.5, 59.0, 43.6, 31.3, 19.1, 18.7, 13.4, 12.8. 
(IR thin film) νmax (cm-1): 3575, 2925, 2854, 2106, 1445, 1296, 1048, 802, 760, 621, 429. 
HRMS (m/z): (ESI) calcd. for C20H27N2O3 [M+H]+ m/z: 343.2016, found 343.2015. 

 
Formal benzylic oxidation product 100: To a reaction tube containing ketone 35 (5.0 
mg, 0.016 mmol, 1.0 equiv.) was added CH2Cl2/MeOH (1:1, 1 mL). The resulting mixture 
was cooled to –35 °C followed by the addition of m-CPBA (purified1, 2.8 mg, 0.016 mmol, 
1.0 equiv.). Upon consumption of the starting material as indicated by TLC, the reaction 
mixture was quenched with saturated aq. Na2SO3 (2 mL) and extracted with EtOAc (3 x 
3 mL). The combined organic layers were washed with brine (3 mL), dried over Na2SO4, 
and concentrated in vacuo. The resulting crude residue was purified by column 
chromatography (30% EtOAc in hexanes) to afford ketone formal benzylic oxidation 
product 100 (3.0 mg, 0.0088 mmol, 55%) as a yellow oil. 
TLC: Rf = 0.3 (40% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.28 (d J = 
11.5 Hz, 1H), 6.15 (d, J = 3.6 Hz, 1H), 6.03 (d, J = 3.5 Hz, 1H), 5.92 (dd, J = 3.6, 0.9 Hz, 
1H), 5.77 (d, J = 3.5 Hz, 1H), 5.71 (d, J = 11.5 Hz, 1H), 4.48 (s, 1H), 4.23 (qd, J = 6.7, 2.0 
Hz, 1H), 4.18 (d, J = 12.8 Hz, 1H), 4.16 (dd, J = 2.0, 1.1 Hz, 1H), 3.95 (d, J = 12.8 Hz, 
1H), 3.72 (s, 1H), 3.01 (s, 3H), 1.69 (s, 3H), 1.62 (s, 3H), 0.99 (d, J = 6.7 Hz, 3H). 13C 
NMR (151 MHz, C6D6) δ 209.9, 132.9, 130.7, 130.5, 128.3, 124.1, 121.5, 114.5, 112.5, 
109.0, 106.2, 94.2, 90.6, 66.4, 59.9, 57.6, 56.7, 46.1, 25.6, 19.2, 13.4. IR (thin film) νmax 
(cm-1): 3495, 3286, 2953, 2870, 1702, 1471, 1169, 901, 726. HRMS (m/z): (ESI) calcd. 
for C21H25N2O3 [M+H]+ m/z: 353.1860, found 353.1861. 

 
Iodohydrin 76: To a reaction tube containing ketone 35 (10.0 mg, 0.032 mmol, 1.0 equiv.) 
was added MeOH (2 mL). The resulting mixture was cooled to 0 °C followed by the slow 
addition of NIS (7.2 mg, 0.032 mmol, 1.0 equiv.) in THF (0.5 mL). Upon consumption of 
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the starting material as indicated by TLC, the reaction mixture was quenched with 
saturated aq. NaHCO3 (3 mL) and extracted with EtOAc (3 x 5 mL). The combined organic 
layers were washed with brine (3 mL), dried over Na2SO4, and concentrated in vacuo. 
The resulting crude residue was purified by column chromatography (10% EtOAc in 
hexanes) to afford iodohydrin 76 (12.5 mg, 0.026 mmol, 81%) as a yellow oil. 
TLC: Rf = 0.6 (40% EtOAc in hexanes). 1H NMR (700 MHz, Benzene-d6) δ 6.18 (d, J = 
3.4 Hz, 1H), 6.00 (d, J = 3.3 Hz, 1H), 5.80 (t, J = 3.3 Hz, 3H), 5.24 (s, 1H), 4.66 (d, J = 
2.3 Hz, 1H), 4.44 (s, 1H), 3.76 (s, 1H), 3.65 (q, J = 6.9 Hz, 1H), 2.93 (s, 3H), 1.78 (s, 3H), 
1.73 (s, 3H), 1.58 (s, 3H), 0.67 (d, J = 6.7 Hz, 3H). 13C NMR (151 MHz, C6D6) δ 209.5*, 
131.2, 127.4, 127.1, 125.5, 114.4, 109.3, 108.2, 107.1, 96.0, 88.2, 83.8, 59.9, 56.1, 55.4, 
44.5, 38.2, 24.9, 18.8, 13.4, 12.2. *see HSQC IR (thin film) νmax (cm-1): 3444, 2922, 2851, 
1713, 1414, 1351, 1301, 1219, 1040, 765, 597. HRMS (m/z): (ESI) calcd. for 
C21H25N2O3INa [M+Na]+ m/z: 503.0802, found 503.0803. 
 

 
 
Aldehyde 102: To a reaction tube containing iodohydrin 76 (10.0 mg, 0.021 mmol, 1.0 
equiv.) was added MeNO2 (2 mL). The resulting mixture was cooled to 0 °C followed by 
the addition of H2O (3.8 μL, 0.21 mmol, 10 equiv.) and AgTFA (7.0 mg, 0.032 mmol, 1.5 
equiv.). Silver iodide began to precipitate immediately. Upon consumption of the starting 
material as indicated by TLC, the reaction mixture was quenched with saturated aq. 
NaHCO3 (3 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were 
washed with brine (3 mL), dried over Na2SO4, and concentrated in vacuo. The resulting 
crude residue was purified by column chromatography (30% EtOAc in hexanes) to afford 
aldehyde 102 (5.5 mg, 0.016 mmol, 77%) as a yellow solid. 
TLC: Rf = 0.3 (40% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 9.52 (s, 1H), 
6.04 – 6.01 (m, 2H), 5.87 (dd, J = 3.4, 1.0 Hz, 1H), 5.80 (d, J = 3.5 Hz, 1H), 4.50 (s, 1H), 
4.04 (d, J = 1.4 Hz, 1H), 3.64 (qd, J = 6.7, 2.6 Hz, 1H), 3.51 (d, J = 2.7 Hz, 1H), 2.87 (s, 
1H), 1.87 (s, 3H), 1.81 (d, J = 0.9 Hz, 3H), 1.72 (s, 3H), 0.59 (d, J = 6.7 Hz, 3H). 13C NMR 
(151 MHz, C6D6) δ 208.9, 197.1, 127.4, 126.0, 125.1, 120.7, 108.6, 108.0, 106.6, 106.5, 
92.4, 86.2, 56.4, 54.6, 53.4, 45.7, 26.3, 18.3, 11.9, 11.5. IR (thin film) νmax (cm-1): 3479, 
2924, 2159, 1725, 1635, 1222, 773, 558, 512. HRMS (m/z): (ESI) calcd. for C20H23N2O3 
[M+H]+ m/z: 339.1703, found 339.1708. 

 

N
H

Me
O

Me

H

H

Me

O
14

N

Me

N
H

Me
O

Me

H

H

Me

O

N

Me

MeO
I

Ag(I)
H2O

MeNO2
77%

76

O
H
H

102

N
H

Me
O

Me

H

H

Me

O

N

Me
35

N
H

Me
O

Me

H

H

Me

O

N

Me

HO
OH

OsO4
NMO

acetone
H2O, 30%

103

191



Diol 103: To a reaction tube containing ketone 35 (30.0 mg, 0.093 mmol, 1.0 equiv.) and 
H2O/acetone (1/4, 5 mL) was added OsO4 (2.5 wt% in t-BuOH, 95.2 mg, 0.0093 mmol, 
10 mol%) and NMO (50 wt% in H2O, 22.0 mg, 0.093 mmol, 1.0 equiv.). The resulting 
mixture was stirred at 25 °C for 4 hours and quenched with saturated aq. Na2SO3 (3 mL) 
and extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with 
brine (5 mL), dried over Na2SO4 and concentrated in vacuo. The resulting crude product 
was purified by column chromatography (100% EtOAc in hexanes) to afford ketone 35 
(16.0 mg, 0.050 mmol) as a white solid and diol 103 (10.1 mg, 0.028 mmol, 30% yield, 
65% brsm) as a yellow oil.  
TLC: Rf = 0.2 (100% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.30 (d, J = 
3.5 Hz, 1H), 5.93 (dd, J = 3.4, 0.9 Hz, 1H), 5.84 (dd, J = 3.4, 1.0 Hz, 1H), 5.67 (d, J = 3.5 
Hz, 1H), 4.84 (dd, J = 8.8, 3.9 Hz, 1H), 4.34 (s, 1H), 4.26 (dt, J = 8.7, 3.4 Hz, 1H), 3.75 
(q, J = 5.8, 5.2 Hz, 1H), 3.67 (s, 1H), 3.46 (d, J = 9.7 Hz, 1H), 3.26 (d, J = 9.2 Hz, 1H), 
2.81 (s, 1H), 1.82 (s, 3H), 1.79 (s, 3H), 1.65 (s, 3H), 0.72 (d, J = 6.6 Hz, 3H). 13C NMR 
(151 MHz, C6D6) δ 205.3*, 130.5, 129.7, 127.6, 127.4, 113.1, 108.6, 107.9, 106.6, 101.1, 
85.8, 73.4, 70.2, 58.2, 56.2, 46.5, 26.7, 18.6, 13.2, 12.3. *see HSQC IR (thin film) νmax 
(cm-1): 3667, 3146, 2889, 2474, 1728, 1437, 1275, 1047, 950, 920, 868. HRMS (m/z): 
(ESI) calcd. for C20H24N2O4Na [M+Na]+ m/z: 379.1628, found 379.1626. 

 
Ketone 104: To a reaction tube containing diol 103 (10.0 mg, 0.028 mmol, 1.0 equiv.) 
was added MeOH (1.5 mL). The resulting mixture was cooled to 0 °C followed by the 
addition of aq. 1 M HCl (56.0 μL, 0.056 mmol, 2.0 equiv.). The resulting mixture was 
stirred for 10 minutes and quenched with saturated aq. NaHCO3 (3 mL) and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were washed with brine (5 mL), dried 
over Na2SO4, and concentrated in vacuo. The resulting crude product was purified by 
preparative TLC (50% EtOAc in hexanes) to afford ketone 104 (8.9 mg, 0.024 mmol, 85% 
yield) as a yellow oil. 
TLC: Rf = 0.4 (50% EtOAc in hexanes).1H NMR (600 MHz, Chloroform-d) δ 6.16 (d, J = 
3.4 Hz, 1H), 5.94 (dd, J = 3.4, 1.0 Hz, 1H), 5.82 (dd, J = 3.5, 1.0 Hz, 1H), 5.71 (d, J = 3.4 
Hz, 1H), 4.88 (s, 1H), 4.51 (s, 0H), 4.49 (td, J = 6.7, 2.1 Hz, 1H), 4.41 (dd, J = 2.2, 1.0 
Hz, 1H), 4.37 (dd, J = 8.5, 4.8 Hz, 1H), 4.28 (d, J = 4.7 Hz, 1H), 3.34 (s, 3H), 2.87 (d, J = 
8.5 Hz, 1H), 2.27 (d, J = 0.9 Hz, 3H), 2.23 (d, J = 0.9 Hz, 3H), 1.69 (s, 3H), 1.56 (s, 3H), 
1.55 (d, J = 6.8 Hz, 3H).13C NMR (151 MHz, CDCl3) δ 209.0, 131.2, 128.1, 127.0, 126.5, 
112.6, 108.5, 107.9, 106.5, 96.6, 87.6, 80.4, 74. 5, 59.4, 57.4, 56.2, 43.9, 26.3, 19.4, 13.6, 
12.7. IR (thin film) νmax (cm-1): 3536, 3253, 2953, 2616, 2396, 1721, 1234, 945, 713. 
HRMS (m/z): (ESI) calcd. for C20H24N2O4Na [M+Na]+ m/z: 393.1785, found 393.1783. 
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Bipolamine G (9): To a reaction tube containing ketone 104 (8.0 mg, 0.022 mmol, 1.0 
equiv.) was added CH2Cl2 (1.5 mL). The resulting mixture was cooled to –78 °C followed 
by the addition of DIBAL (1.0 M in hexanes, 44.0 μL 0.044 mmol, 2.0 equiv.). Upon 
consumption of the starting material as indicated by TLC, the reaction mixture was 
quenched with saturated aq. Rochelle salt (3 mL) and extracted with EtOAc (3 x 5 mL). 
The combined organic layers were washed with brine (20 mL), dried over Na2SO4, and 
concentrated in vacuo. The resulting crude residue was purified by preparative TLC (50% 
EtOAc in hexanes) to afford bipolamine G (9) (3.0 mg, 0.0080 mmol, 36%) and 12-epi-9 
(3.1 mg, 0.0084 mmol, 38%) both as white solids. 
 
Bipolamine G (9): 
TLC: Rf = 0.4 (50% EtOAc in hexanes).1H NMR (600 MHz, Acetone-d6) δ 6.04 (d, J = 3.4 
Hz, 1H), 5.91 (d, J = 3.3 Hz, 1H), 5.84 (dd, J = 3.3, 1.0 Hz, 1H), 5.78 (dd, J = 3.4, 1.0 Hz, 
1H), 4.89 (d, J = 1.0 Hz, 1H), 4.86 (s, 1H), 4.36 (dd, J = 10.0, 3.6 Hz, 1H), 4.32 (qd, J = 
6.7, 1.9 Hz, 1H), 4.29 (br s, 1H), 4.13 (d, J = 3.6 Hz, 1H), 3.16 (s, 3H), 3.02 (d, J = 10.0 
Hz, 1H), 2.92 (s, 1H), 2.47 (td, J = 6.6, 4.4 Hz, 1H), 2.31 (d, J = 0.9 Hz, 3H), 2.26 (d, J = 
0.9 Hz, 3H), 1.56 (d, J = 6.7 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H). 13C NMR (151 MHz Acetone) 
δ 131.5, 130.9, 128.4, 127.4, 114.1, 108.2, 108.1, 105.2, 91.5, 87.5, 81.4, 70.4, 69.2, 
60.8, 57.6, 55.8, 42.6, 19.5, 18.7, 13.7, 12.8. IR (thin film) νmax (cm-1): 3480, 3108, 3071, 
3041, 2507, 2105, 1431, 1148. HRMS (m/z): (ESI) calcd. for C21H28N2O4Na [M+Na]+ m/z: 
395.1941, found 395.1939. 
 
12-epi-9: 
TLC: Rf = 0.2 (50% EtOAc in hexanes). 1H NMR (600 MHz, Acetone-d6) δ 6.04 (d, J = 
3.3 Hz, 1H), 5.84 (dd, J = 3.4, 1.0 Hz, 1H), 5.75 (dd, J = 3.4, 1.0 Hz, 1H), 5.72 (d, J = 3.4 
Hz, 1H), 4.84 (d, J = 1.0 Hz, 1H), 4.55 (s, 1H), 4.36 (qd, J = 6.7, 2.0 Hz, 1H), 4.31 (t, J = 
1.5 Hz, 1H), 4.28 (d, J = 3.7 Hz, 1H), 4.15 (d, J = 3.7 Hz, 1H), 3.45 (s, 1H), 3.18 (s, 3H), 
2.71 (q, J = 6.3 Hz, 1H), 2.30 (d, J = 0.9 Hz, 3H), 2.25 (d, J = 0.8 Hz, 3H), 1.54 (d, J = 6.7 
Hz, 3H), 1.05 (d, J = 6.3 Hz, 3H). 13C NMR (151 MHz Acetone ) δ 131.5, 129.7, 128.2, 
127.4, 114.0, 108.0, 107.8, 106.0, 92.1, 87.3, 80.7, 73.9, 71.0, 61.3, 57.6, 56.0, 42.3, 
19.4, 18.9, 13.7, 12.8. IR (thin film) νmax (cm-1): 3285, 3192, 2706, 2415, 1487, 1328, 
1191, 1021, 811. HRMS (m/z): (ESI) calcd. for C21H28N2O4Na [M+Na]+ m/z: 395.1941, 
found 395.1937. 
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Ketone 106 and hemiacetal 107: To a reaction tube containing ketone 35 (20.0 mg, 
0.062 mmol, 1.0 equiv.) was added THF (3 mL). The resulting mixture was cooled to 0 
°C, SmI2 (0.1 M in THF, 0.930 mL, 0.093 mmol, 1.5 equiv.) was added dropwise. The 
resulting mixture was warmed to room temperature. Upon consumption of the starting 
material as indicated by TLC, the reaction mixture was quenched with saturated aq. 
NH4Cl (5 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were 
washed with brine (5 mL), dried over Na2SO4, and concentrated in vacuo. The resulting 
crude product was purified by preparative TLC (20% 
EtOAc in hexanes) to afford ketone 106 (17.2 mg, 0.053 mmol, 86%) and hemiacetal 107 
(2.0 mg, 0.006 mmol, 9%) as light yellow oils. 
 
Ketone 106: 
TLC: Rf = 0.5 (40% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.19 (dd J = 
11.7, 1.8 Hz, 1H), 6.11 (d, J = 3.5 Hz, 1H), 6.01 (td, J = 2.9, 2.5, 1.6 Hz, 2H), 5.97 (d, J = 
3.4 Hz, 1H), 5.14 (dd, J = 11.7, 5.1 Hz, 1H), 4.68 (dd, J = 6.6, 2.3 Hz, 1H), 4.65 (t, J = 7.2 
Hz, 1H), 3.99 (ddd, J = 7.4, 5.1, 1.7 Hz, 1H), 3.95 (qd, J = 6.9, 1.8 Hz, 1H), 3.47 (dt, J = 
4.3, 2.0 Hz, 1H), 1.95 (s, 3H), 1.89 (d, J = 4.6 Hz, 1H), 1.83 (s, 3H), 1.73 (s, 3H), 0.78 (d, 
J = 6.9 Hz, 3H). 13C NMR (151 MHz, C6D6) δ 206.8, 131.7, 131.5, 130.4, 127.6, 122.6, 
119.5, 112.6, 109.5, 108.2, 105.2, 75.7, 60.2, 55.0, 54.6, 37.2, 29.5, 19.9, 13.3, 12.0. IR 
(thin film) νmax (cm-1): 3345, 2853, 2409, 1725, 1377, 1301, 1221, 1042, 940, 758. HRMS 
(m/z): (ESI) calcd. for C20H25N2O2 [M+H]+ m/z: 325.1911, found 325.1910. 
 
Hemiacetal 107: 
TLC: Rf = 0.4 (40% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.33 (d, J = 
11.7 Hz, 1H), 6.23 (d, J = 3.6 Hz, 1H), 6.07 (dd, J = 3.6, 1.0 Hz, 1H), 5.98 (dd, J = 3.5, 
1.0 Hz, 1H), 5.82 (d, J = 3.4 Hz, 1H), 5.26 (dd, J = 11.7, 8.4 Hz, 1H), 4.40 – 4.32 (m, 2H), 
3.88 (d, J = 1.5 Hz, 1H), 3.47 (q, J = 2.4 Hz, 1H), 2.53 (dd, J = 8.4, 2.3 Hz, 1H), 2.03 (s, 
1H), 1.93 (d, J = 0.9 Hz, 3H), 1.83 (s, 3H), 1.48 (s, 3H), 0.85 (d, J = 6.9 Hz, 3H). 13C NMR 
(151 MHz, C6D6) 132.8, 132.1, 131.3, 127.3, 122.4, 120.1, 112.7, 109.1, 108.9, 104.2, 
98.2, 77.0, 55.8, 51.1, 49.2, 32.9, 29.6, 20.5, 13.9, 12.4. IR (thin film) νmax (cm-1): 3455, 
2925, 2162, 2143, 1429, 1377, 1042, 940, 780, 668. HRMS (m/z): (ESI) calcd. for 
C20H25N2O2 [M+H]+ m/z: 325.1911, found 325.1912. 
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Ketone 108: To a reaction tube containing diol 98 (30.0 mg, 0.081 mmol, 1.0 equiv.) was 
added CH2Cl2 (5 mL). The resulting mixture was cooled to 0 °C, Et3N (33.7 μL, 0.24 mmol, 
3.0 equiv.), MsCl (6.9 μL, 0.089 mmol, 1.1 equiv.) and DMAP (9.9 mg, 0.081 mmol, 1.0 
equiv.) were added dropwise sequentially. The resulting mixture was warmed to room 
temperature. Upon consumption of the starting material as indicated by TLC, the reaction 
mixture was cooled to 0 °C followed by the addition of aq. 1 M HCl (2 mL). Upon 
consumption of the starting material as indicated by TLC, the reaction mixture was 
quenched with saturated aq. NaHCO3 (3 mL) and extracted with EtOAc (3 x 5 mL). The 
combined organic layers were washed with brine (20 mL), dried over Na2SO4, and 
concentrated in vacuo. The resulting crude product was purified by preparative TLC (10% 
EtOAc in hexanes) to afford ketone 108 (23.5 mg, 0.056 mmol, 69% yield) as a white 
solid. 
TLC: Rf = 0.4 (30% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.36 (dd, J = 
11.8, 6.3 Hz, 1H), 6.02 (d, J = 12.2 Hz, 1H), 5.93 (d, J = 3.6 Hz, 1H), 5.88 (d, J = 3.3 Hz, 
1H), 5.80 (d, J = 3.6 Hz, 1H), 5.54 (d, J = 3.5 Hz, 1H), 4.86 (dd, J = 11.9, 3.8 Hz, 1H), 
4.82 (p, J = 6.5 Hz, 1H), 4.77 (d, J = 12.1 Hz, 1H), 4.03 (d, J = 3.8 Hz, 1H), 3.70 (s, 1H), 
2.00 (s, 3H), 1.96 (s, 3H), 1.80 (s, 3H), 1.80 (s, 3H), 1.23 (d, J = 6.6 Hz, 3H). 13C NMR 
(151 MHz, C6D6) δ 206.0, 135.8, 129.1, 128.7, 124.4, 122.7, 120.0, 114.5, 109.1, 108.5, 
105.5, 84.5, 75.0, 53.9, 53.6, 44.0, 36.2, 23.6, 16.7, 13.3, 12.2. IR (thin film) νmax (cm-1): 
3430, 2926, 2855, 1715, 1360, 1179, 1003, 972, 635, 465. HRMS (m/z): (ESI) calcd. for 
C21H27N2O5S [M+H]+ m/z: 419.1635, found 419.1635. 
 
 
 

 
Ketone 109: To a reaction tube containing ketone 108 (20.0 mg, 0.048 mmol, 1.0 equiv.) 
was added THF (4 mL). The resulting mixture was cooled to 0 °C, SmI2 (0.1 M in THF, 
0.72 mL, 0.072 mmol, 1.5 equiv.) were added dropwise. The resulting mixture was 
warmed to room temperature. Upon consumption of the starting material as indicated by 
TLC, the reaction mixture was quenched with air followed by the addition of DBU (36.0 
μL, 0.24 mmol, 5.0 equiv.). Upon consumption of the starting material as indicated by 
TLC, the reaction mixture was quenched with saturated aq. NH4Cl (3 mL) and extracted 
with EtOAc (3 x 5 mL). The combined organic layers were washed with brine (5 mL), dried 
over Na2SO4, and concentrated in vacuo. The resulting crude product was purified by 
preparative TLC (20% EtOAc in hexanes) to afford ketone 109 (17.6 mg, 0.044 mmol, 
91% yield) as a white solid. 
TLC: Rf = 0.5 (30% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.02 (d, J = 
3.5, 1.0 Hz, 1H), 6.01 (d, J = 10.7 Hz, 1H), 5.85 (dd, J = 3.5, 1.2 Hz, 1H), 5.74 (d, J = 3.5 
Hz, 1H), 5.66 (dd, J = 3.5, 0.9 Hz, 1H), 5.53 (dd, J = 10.4, 8.7 Hz, 1H), 5.14 (dd, J = 11.3, 
5.2 Hz, 1H), 5.06 (dd, J = 9.9, 3.3 Hz, 1H), 4.72 (dd, J = 11.3, 9.8 Hz, 1H), 4.60 (qd, J = 
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6.6, 5.1 Hz, 1H), 3.08 (dd, J = 8.7, 3.3 Hz, 1H), 2.02 (s, 3H), 1.91 (s, 3H), 1.83 (s, 3H), 
1.63 (s, 3H), 1.10 (d, J = 6.7 Hz, 3H). 13C NMR (151 MHz, C6D6) δ 205.4, 134.7, 129.7, 
126.7, 126.2, 125.0, 124.9, 111.3, 108.4, 108.0, 104.6, 80.2, 57.3, 51.4, 51.0, 42.4, 37.0, 
27.7, 15.3, 12.9, 11.2. IR (thin film) νmax (cm-1): 3381, 2924, 2853, 1707, 1358, 1290, 
1176, 969, 872, 772. HRMS (m/z): (ESI) calcd. for C21H26N2O4SNa [M+Na]+ m/z: 
425.1506, found 425.1509. 
 

 
Alcohol 110 and 111: To a reaction tube containing ketone 109 (10.0 mg, 0.025 mmol, 
1.0 equiv.) and MeOH (2 mL) was added NaBH4 (1.0 mg, 0.025 mmol, 1.0 equiv.). The 
resulting mixture was stirred at 25 °C. Upon consumption of the starting material as 
indicated by TLC, the reaction mixture was cooled to 0 °C and quenched with saturated 
aq. NH4Cl (3 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were 
washed with brine (5 mL), dried over Na2SO4, and concentrated in vacuo. The resulting 
crude residue was purified by preparative TLC (50% EtOAc in hexanes) to afford alcohol 
110 (4.8 mg, 0.012 mmol, 47%) and alcohol 111 (4.7 mg, 0.012 mmol, 47%) as white 
solids. 
 
Alcohol 110 (desired): 
TLC: Rf = 0.5 (50% EtOAc in hexanes).1H NMR (600 MHz, Benzene-d6) δ 6.18 (d, J = 
11.9 Hz, 1H), 5.98 – 5.92 (m, 2H), 5.87 (d, J = 3.5 Hz, 1H), 5.78 (d, J = 3.4 Hz, 1H), 5.60 
(dd, J = 11.5, 5.9 Hz, 1H), 5.14 (dd, J = 12.0, 6.0 Hz,1H), 4.72 – 4.64 (m, 2H), 3.90 (t, J 
= 5.9 Hz, 1H), 3.86 (s, 1H), 2.29 (q, J = 5.9 Hz, 1H), 2.03 (s, 3H), 1.84 (s, 3H), 1.82 (s, 
3H), 1.17 (d, J = 6.5 Hz, 3H), 1.05 (s, 1H) 0.94 (d, J = 6.4 Hz, 3H). 13C NMR (151 MHz, 
C6D6) δ 133.4, 131.1, 130.1, 128.0, 123.8, 121.6, 111.6, 109.1, 108.3, 105.6, 76.1, 68.7, 
54.0, 52.8, 52.5, 41.9, 37.3, 21.8, 16.1, 12.7, 11.8. IR (thin film) νmax (cm-1): 3435, 2926, 
2857, 1660, 1557, 1359, 1177, 972, 959, 744, 483. HRMS (m/z): (ESI) calcd. for 
C21H29N2O4S [M+H]+ m/z: 405.1843, found 405.1844. 
 
Alcohol 111: 
TLC: Rf = 0.3 (50% EtOAc in hexanes). 1H NMR (600 MHz, Benzene-d6) δ 6.14 (d, J = 
11.3 Hz, 1H), 6.05 (dd, J = 3.4, 1.0 Hz, 1H), 6.02 (dd, J = 3.4, 0.9 Hz, 1H), 5.81 (d, J = 
3.5 Hz, 1H), 5.75 (dd, J = 3.4, 0.9 Hz, 1H), 5.60 (dd, J = 11.5, 5.6 Hz, 1H), 5.55 (dd, J = 
11.3, 7.6 Hz, 1H), 4.72 – 4.63 (m, 2H), 4.33 (dd, J = 8.1, 3.9 Hz, 1H), 3.43 (dt, J = 12.1, 
6.1 Hz, 1H), 2.47 (td, J = 8.0, 3.9 Hz, 1H), 2.01 (s, 3H), 1.95 (s, 3H), 1.84 (s, 3H), 1.17 (d, 
J = 6.5 Hz, 3H), 0.86 (d, J = 6.1 Hz, 3H), 0.61 (s, 1H). 13C NMR (151 MHz, C6D6) δ 133.4, 
131.1, 129.8, 126.5, 126.3, 123.3, 110.7, 108.9, 107.9, 105.6, 77.8, 68.4, 55.1, 51.9, 51.8, 
41.4, 37.3, 22.1, 15.8, 12.8, 11.5. IR (thin film) νmax (cm-1): 3687, 2929, 2178, 1602, 1357, 
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1177, 962, 611, 407. HRMS (m/z): (ESI) calcd. for C21H29N2O4S [M+H]+ m/z: 405.1843, 
found 405.1844. 
 

 
Diol 112 To a reaction tube containing alcohol 110 (10.0 mg, 0.025 mmol, 1.0 equiv.) and 
THF (1.5 mL) was added BH3·THF (6.4 mg, 0.075 mmol, 3.0 equiv.). The resulting mixture 
was stirred at 50 °C. Upon consumption of the starting material as indicated by TLC, the 
reaction mixture was cooled to 0 °C followed by the addition of NaBO3·4H2O (38.5 mg, 
0.25 mmol, 10 equiv.). The reaction mixture was quenched with saturated aq. NH4Cl (5 
mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed 
with brine (5 mL), dried over Na2SO4, and concentrated in vacuo. The resulting crude 
residue was purified by preparative TLC (100% EtOAc in hexanes) to afford diol 112 (4.7 
mg, 0.011 mmol, 45%) as a white solid. 
TLC: Rf = 0.3 (100% EtOAc in hexanes). 1H NMR (600 MHz, Chloroform-d) δ 6.17 (dd, J 
= 3.6, 1.4 Hz, 1H), 5.93 (dd, J = 3.5, 1.0 Hz, 1H), 5.86 (d, J = 3.4 Hz, 1H), 5.78 (d, J = 3.1 
Hz, 1H), 4.95 (dd, J = 10.5, 4.9 Hz, 1H), 4.69 (t, J = 11.0 Hz, 1H), 4.60 (qd, J = 6.8, 4.8 
Hz, 1H), 4.10 (s, 1H), 4.02 (dd, J = 11.5, 2.8 Hz, 1H), 3.08 (dd, J = 14.2, 5.7 Hz, 1H), 2.62 
(dd, J = 14.2, 11.0 Hz, 1H), 2.56 (dd, J = 9.3, 3.8 Hz, 1H), 2.41 – 2.32 (m, 2H), 2.26 (s, 
3H), 2.26 (s, 3H), 2.24 (s, 3H), 1.43 (d, J = 6.8 Hz, 3H), 1.38 (s, 1H), 1.18 (d, J = 6.2 Hz, 
3H). 13C NMR (151 MHz, CDCl3) δ 129.6, 127.7, 126.8, 126.5, 108.3, 107.7, 107.6, 105.5, 
82.8, 72.0, 68.3, 54.9, 50.5, 50.2, 35.7, 34.0, 33.8, 23.1, 14.4, 12.7, 11.7. IR (thin film) 
νmax (cm-1): 3394, 2925, 2853, 1634, 1401, 1360, 1299, 1177, 1080, 970, 770, 649. HRMS 
(m/z): (ESI) calcd. for C21H31N2O5S [M+H]+ m/z: 423.1948, found 423.1950. 
 
 

 
 
Bipolamine I (11): To a reaction tube containing diol 112 (2.4 mg, 0.0056 mmol, 1.0 
equiv.) and PhMe (1 mL) was added DBU (8.5 μL, 0.056 mmol, 10.0 equiv.). The resulting 
mixture was heated up to 120 °C. Upon consumption of the starting material as indicated 
by TLC, the reaction mixture was cooled to 25 °C. The organic layers were concentrated 
in vacuo. The resulting crude residue was purified by column chromatography (40% 
EtOAc in hexanes) to afford bipolamine I (11) (1.5 mg, 0.0046 mmol, 82%) as a white 
solid. 
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TLC: Rf = 0.4 (50% EtOAc in hexanes). 1H NMR (600 MHz, Acetone-d6) δ 5.76 (dd, J = 
3.4, 1.0 Hz, 1H), 5.75 (dd, J = 3.4, 1.0 Hz, 1H), 5.65 (br d, J = 3.1 Hz, 1H), 5.60 (d, J = 
3.4 Hz, 1H), 4.56 (br d, J = 3.6 Hz, 1H), 4.40 – 4.33 (m, 3H), 3.52 (dd, J = 17.3, 4.8 Hz, 
1H), 3.26 (dq, J = 11.1, 5.5 Hz, 1H), 3.13 (br d, J = 17.3 Hz, 1H), 2.97 (br t, J = 1.8 Hz, 
1H), 2.22 (br d, J = 0.9 Hz, 3H), 2.19 (s, 3H), 2.16 (br dd, J = 11.0, 7.1 Hz, 1H), 1.42 (d, 
J = 6.6 Hz, 3H), 1.21 (d, J = 6.0 Hz, 3H). 13C NMR (151 MHz, Acetone) δ 134.9, 128.8, 
126.3 (2C), 108.1, 108.0, 105.2, 102.4, 76.9, 71.2, 68.2, 56.5, 55.7, 49.6, 36.4, 31.2, 22.7, 
19.1, 12.3, 12.2. IR (thin film) νmax (cm-1): 3558, 2922, 2164, 1726, 1588, 1446, 1304, 
1067, 562. HRMS (m/z): (ESI) calcd. for C20H27N2O2 [M+H]+ m/z: 327.2067, found 
327.206.
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Natural Product Spectral Comparisons 

Bipolamine D (6) 1H spectra comparison: 
 

 
 

Position 
1H NMR δ) 

Natural Sample 
(500 MHz, CDCl3)2 

1H NMR δ) 
Synthetic Sample 
(600 MHz, CDCl3) 

1 1.49 (d, 6.3) 1.48 (d, 6.6) 
2 4.32 (qd, 6.3, 2.1) 4.32 (qd, 6.6, 2.3) 
3 4.35 (br s) 4.36 (s) 
4 4.85 (br s) 4.84 (s) 
5 3.92 (br s) 3.91 (s) 
6   
7 5.83 (d, 3.0) 5.82 (d, 3.3) 
8 5.76 (br d, 3.0) 5.75 (br d, 3.3) 
9   
10 2.25 (br s) 2.24 (s) 
11 1.13 (d, 6.6) 1.12 (d, 6.4) 
12 2.93 (q, 6.6) 2.93 (qd, 6.4, 4.5) 
13   
14 4.38 (br s) 4.38 (s) 
15 3.11 (br d, 15.6), 

2.88 (dd, 15.6, 5.1) 
3.09 (d, 15.6), 

2.87 (dd, 15.6, 5.0) 
16   
17 5.71 (s) 5.70 (br d, 3.3) 
18 5.69 (br s) 5.67 (br d, 3.3) 
19   
20 2.22 (br s) 2.21 (s) 

6 
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Bipolamine D (6) 13C spectra comparison: 
 

 
 

Position 
13C NMR δ) 

Natural Sample 
(125 MHz, CDCl3)2 

13C NMR δ) 
Synthetic Sample 
(151 MHz, CDCl3) 

1 19.2 19.2 
2 59.0 59.0 
3 85.6 85.6 
4 59.6 59.6 
5 43.7 43.7 
6 131.5 131.5 
7 105.5 105.5 
8 107.8 107.8 
9 128.2 128.3 
10 12.8 12.8 
11 18.7 18.8 
12 72.3 72.3 
13 91.8 91.8 
14 68.3 68.3 
15 31.4 31.4 
16 128.6 128.6 
17 108.8 108.8 
18 107.0 107.0 
19 128.8 128.8 
20 13.5 13.5 

6 
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Bipolamine E (7) 1H spectra comparison: 
 

7) 
 

 
Position 

1H NMR δ) 
Natural Sample 

(500 MHz, CDCl3)2 

1H NMR δ) 
Synthetic Sample 
(600 MHz, CDCl3) 

1 1.54 (d, 6.5) 1.55 (d, 6.7) 
2 4.32 (qd, 6.5, 1.6) 4.32 (m) 
3 4.26 (br s) 4.29 (m) 
4 4.89 (br s) 4.91 (s) 
5 4.21 (br s) 4.22 (br s) 
6   
7 5.92 (d, 3.0) 5.92 (d, 3.4) 
8 5.78 (br d, 3.0) 5.78 (d, 3.4) 
9   
10 2.25 (br s) 2.26 (s) 
11 1.08 (d, 6.5) 1.08 (d, 6.5) 
12 2.53 (q, 6.5) 2.53 (q, 6.5) 
13   
14 4.29 (br s) 4.30 (br s) 
15 3.06 

2.81 (dd, 15.5, 4.0) 
3.07 

2.82 (dd, 15.7, 4.0) 
16   
17 5.68 (br d, 2.8) 5.67 (d, 3.3) 
18 5.75 (br d, 2.8) 5.74 (d, 3.3) 
19   
20 2.26 (br s) 2.26 (s) 
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Bipolamine E (7) 13C spectra comparison: 
 

7) 
 

 
Position 

13C NMR δ) 
Natural Sample 

(125 MHz, CDCl3)2 

13C NMR δ) 
Synthetic Sample 
(151 MHz, CDCl3) 

1 19.4 19.3 
2 57.5 57.5 
3 87.4 87.4 
4 61.0 61.0 
5 44.1 44.0 
6 130.5 130.5 
7 105.3 105.2 
8 108.0 108.0 
9 128.3 128.3 
10 12.7 12.7 
11 18.5 18.5 
12 70.2 70.3 
13 92.0 91.9 
14 67.3 67.3 
15 34.3 34.3 
16 128.9 128.8 
17 108.7 108.7 
18 107.8 107.8 
19 128.8 128.7 
20 13.5 13.5 
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Bipolamine G (9) 1H spectra comparison: 
 
 

 9) 
 

 
Position 

1H NMR δ) 
Natural Sample 

(500 MHz, Acetone-d6)2 

1H NMR δ) 
Synthetic Sample 

(600 MHz, Acetone-d6) 
1 1.55 (d, 7.0) 1.56 (d, 6.7) 
2 4.31 (qd, 7.0, 2.0) 4.32 (qd, 6.7, 1.9) 
3 4.26 (br s) 4.29 (br s) 
4 4.88 (br s) 4.89 (d, 1.0) 
5 4.85 (br s) 4.86 (d, 1.0) 
6   
7 5.92 (br d, 3.0) 5.91 (d, 3.3) 
8 5.79 (br d, 3.0) 5.78 (dd, 3.4, 1.0) 
9   
10 2.26 (br s) 2.26 (d, 0.9) 
11 1.08 (d, 7.0) 1.07 (d, 6.6) 
12 2.47 (q, 7.0) 2.47 (td, 6.6, 4.4) 
13   
14 4.36 (d, 3.5) 4.36 (dd, 10.0, 3.6) 
15 4.15 (d, 3.5) 4.13 (d, 3.6) 
16   
17 6.07 (br d, 3.0) 6.05 (d, 3.4) 
18 5.86 (br d, 3.0) 5.84 (d, 3.3) 
19   
20 2.31 (br s) 2.31 (d, 0.9) 

15-OMe 3.17 (s) 3.16 (s) 
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Bipolamine G (9) 13C spectra comparison: 
 
 

9) 
 

 
Position 

13C NMR δ) 
Natural Sample 

(125 MHz, Acetone-d6)2 

13C NMR δ) 
Synthetic Sample 

(151 MHz, Acetone-d6) 
1 19.5 19.4 
2 57.5 57.5 
3 87.4 87.4 
4 60.7 60.7 
5 42.6 42.5 
6 130.7 130.8 
7 105.2 105.1 
8 108.1 108.1 
9 128.3 128.3 
10 12.8 12.8 
11 18.6 18.6 
12 70.2 70.3 
13 91.4 91.4 
14 69.1 69.1 
15 81.3 81.3 
16 127.3 127.3 
17 114.1 114.1 
18 108.0 108.0 
19 131.5 131.4 
20 13.6 13.6 

15-OMe 55.8 55.8 
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Bipolamine I (11) 1H spectra comparison: 
 

10) 
 
 

 
Position 

1H NMR δ) 
Natural Sample 

(500 MHz, Acetone-d6)2 

1H NMR δ) 
Synthetic Sample 

(600 MHz, Acetone-d6) 
1 1.42 (d, 6.6) 1.42 (d, 6.6) 
2 4.37 (overlapped) 4.37 (overlapped) 
3 4.36 ( overlapped ) 4.36 (overlapped) 
4 4.56 (br d, 3.6) 4.56 (br d, 3.6) 
5 2.97 (br t, 1.8) 2.97 (br t, 1.8) 
6   
7 5.61 (d, 3.4) 5.60 (d, 3.4) 
8 5.77 (dd, 3.4, 0.8) 5.76 (dd, 3.4, 1.0) 
9   
10 2.23 (br d, 0.8) 2.22 (br d, 0.9) 
11 1.22 (d, 6.0) 1.21 (d, 6.0) 
12 3.26 (dq, 11.5, 6.0) 3.26 (dq, 11.1, 5.5) 
13 2.16 (br dd, 11.5, 8.0) 2.16 ( br dd, 11.0, 7.1) 
14 4.39 (dd, 8.0, 4.8) 4.38 (overlapped) 
15 3.52 (dd, 17.0, 4.8) 

3.14 (br d, 17.0) 
3.52 (dd, 17.3, 4.8) 

3.13 (br d, 17.3) 
16   
17 5.65 (br d, 3.3) 5.65 (br d, 3.1) 
18 no data 5.75 (dd, 3.4, 1.0) 
19   
20 no data 2.19 (s) 
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Bipolamine I (11) 13C spectra comparison: 
 

11) 
 

 
Position 

13C NMR δ) 
Natural Sample 

(125 MHz, Acetone-d6)2 

13C NMR δ) 
Synthetic Sample 

(151 MHz, Acetone-d6) 
1 19.1 19.1 
2 56.5 56.5 
3 76.9 76.9 
4 49.6 49.6 
5 36.4 36.4 
6 134.9 134.9 
7 102.4 102.4 
8 108.1 108.1 
9 126.4 126.3 
10 12.1 12.2 
11 22.6 22.7 
12 68.1 68.2 
13 55.7 55.7 
14 71.2 71.2 
15 31.2 31.2 
16 128.8 128.8 
17 105.2 105.2 
18 108.0 from 13C NMR 108.0 
19 126.3 from 13C NMR 126.3 
20 12.3 from 13C NMR 12.3 
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