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A 4TH-ORDER PARTICLE-IN-CELL METHOD WITH
PHASE-SPACE REMAPPING FOR THE VLASOV-POISSON

EQUATION ∗

A. MYERS ‡§† , P. COLELLA ‡ , AND B. VAN STRAALEN ‡

Abstract. Numerical solutions to the Vlasov-Poisson system of equations have important ap-
plications to both plasma physics and cosmology. In this paper, we present a new Particle-in-Cell
(PIC) method for solving this system that is 4th-order accurate in both space and time. Our method
is a high-order extension of one presented previously [B. Wang, G. Miller, and P. Colella, SIAM J.
Sci. Comput., 33 (2011), pp. 3509–3537]. It treats all of the stages of the standard PIC update -
charge deposition, force interpolation, the field solve, and the particle push - with 4th-order accu-
racy, and includes a 6th-order accurate phase-space remapping step for controlling particle noise. We
demonstrate the convergence of our method on a series of one- and two- dimensional electrostatic
plasma test problems, comparing its accuracy to that of a 2nd-order method. As expected, the 4th-
order method can achieve comparable accuracy to the 2nd-order method with many fewer resolution
elements.

Key words. Particle-in-Cell (PIC) methods, Higher Order, Phase-space remapping, Numerical
noise, Vlasov–Poisson equation

AMS subject classifications. 35, 65, 76

1. Introduction. In this paper, we present a method for solving the Vlasov-
Poisson system of equations, which in non-dimensional form is given by:

∂f

∂t
+ v · ∂f

∂x
−E · ∂f

∂v
= 0 (1.1)

and

∇2φ = −ρ. (1.2)

Here, f(x , v , t) is the phase space distribution function defined on (x , v) ∈ RD ×
RD, where D = 1, 2, or 3 is the number of spatial dimensions under consideration,
E(x , t) = −∇φ is the electric field, φ(x , t) is the potential, and ρ(x , t) is the charge
density. For simplicity, we assume that the our system contains a single, negatively
charged species, and that the ions form a fixed, neutralizing background, so that the
charge density can be defined as:

ρ(x , t) = 1−
∫
RD

f(x , v , t)dv . (1.3)

Equations (1.1) and (1.2) describe the phase space evolution of a collisionless fluid
under the influence of electrostatic forces. They are important for plasma physics,
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where they are used, for example, to model space plasmas, particle accelerators, and
for controlled thermonuclear fusion. In a slightly different form, Equations (1.1) and
(1.2) can also be applied to cosmology, where they are used to model the gravitational
evolution of dark matter in an expanding universe. For simplicity, we have specialized
to the plasma version of the Vlasov-Poisson system in this paper, but the methods
presented here can be easily applied to the self-gravitating case as well.

The Vlasov Equation (1.1) is a nonlinear advection equation in phase space and
can in principle be solved with a variety of grid-based methods [6, 7], including high-
order methods [8, e.g.]. However, particle discretizations, which reduce the Vlasov-
Poisson system to a set of coupled ordinary differential equations, have been more
common in practice. The Particle-in-Cell (PIC) method [9], in which the forces are
computed on an intermediate grid and then interpolated back to the particle positions,
is a particularly simple approach that has been widely used in both cosmology [10,
e.g.] and plasma physics [11, e.g.].

Traditional PIC methods, however, suffer from a few downsides. The first is that
they are usually limited to 2nd-order accuracy. While 4th-order PIC methods have
been developed in the context of fluid simulation [12], and high-order field solves and
time integrators have been used in the plasma context [13, e.g.], to our knowledge,
ours is the first PIC method for Vlasov-Poisson that treats every stage of the PIC
update with fourth-order accuracy.

The second downside concerns the stability of PIC methods over long time evolu-
tions. The convergence theory for electrostatic PIC [14] shows that the stability error
for the electric field contains a term that grows exponentially with time. While the
growth rate of this term is problem-dependent, given enough time it can eventually
degrade the accuracy of the solution, a problem often described as “particle noise.”
The PIC method presented in [14], however, circumvents this problem by periodically
restarting the calculation with a new set of particles that represent the same under-
lying distribution function. Such remapping or remeshing techniques have also been
applied successfully in the context of fluid dynamics to vortex methods [15] and to
smoothed particle hydrodynamics [16]. With remapping, PIC methods can obtain
accurate numerical solutions to the Vlasov-Poisson problem for long time integrations
in both the plasma [14, 17] and the cosmological [18] context.

However, the PIC method in [14] and [17] was only 2nd-order accurate. For ob-
taining accurate numerical solutions with a feasible number of resolution elements,
higher-order methods are greatly desirable. This is particularly true given current
trends in high-performance computing. As computer architectures evolve, the lim-
iting factor affecting application performance is increasingly not the rate at which
the processor can perform computations, but rather than rate at which data can
be streamed to the processor from DRAM. In light of this, the Arithmetic Intensity
(AI) - the number of arithmetic operations per byte of DRAM accessed - of a given
numerical algorithm is considered to be a critical factor in achieving the theoreti-
cal maximum performance on current and next-generation supercomputing platforms
[19]. 2nd-order PIC algorithms have peak arithmetic intensities of around 1 Flop/byte,
putting them in the streaming-limited regime of current and planned supercomputing
architectures and making it impossible to achieve maximum performance. High-order
methods, however, which allow for more operations per byte, can potentially achieve
peak performance on these machines.

In this paper, we extend the PIC algorithm of [14] and [17] to be 4th-order
accurate in both space and time. The heart of our method is the use of the high-order
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interpolating functions derived in [20] for charge deposition and force interpolation.
We have implemented this algorithm in Chombo [21] and used it to solve a suite of
test problems, demonstrating its fourth-order convergence rates. The outline of the
paper is as follows. We begin by giving a review of PIC methods in Section 2.1. We
then describe our 4th-order PIC method, as well as a 2nd-order PIC method that
we use for comparison, in Sections 2.2 and 2.3. We present our numerical results on
set of one- and two-dimensional test problems in Section 3. Finally, in Section 4, we
present our conclusions and discuss future research directions.

2. Numerical Methods.

2.1. An overview of PIC methods. To solve equations (1.1) and (1.2) with
PIC, the initial distribution function must be sampled by a set of Lagrangian particles,
P. In this paper, we generate this initial particle distribution using the approach
outlined in [14]. The particles are initially laid out at the cell centers of a Cartesian
grid in phase space with mesh spacings hx and hv in position and velocity space,
respectively. For a given initial distribution function, f(x , v , t = 0), the initial particle
representation is computed by assigning each particle p ∈ P a charge qp:

qp = f(x i
p, v

i
p, t = 0)hDx h

D
v . (2.1)

where x i
p and v i

p are the initial position and velocity of particle p. For computa-
tional efficiency, we discard particles with charges less than some problem-dependent
threshold value. The initial distribution function can then be approximated as:

f(x , v , t = 0) ≈
∑
p∈P

qpδ
(
x − x i

p

)
δ
(
v − v i

p

)
. (2.2)

Once the particles have been generated, the equations of motion for their tra-
jectories (x p(t), vp(t)) can be obtained by substituting Equation (2.2) into Equation
(1.1). The result is the following system of ODEs:

dqp
dt

= 0

dx p

dt
= vp

dvp

dt
= −Ep, (2.3)

where Ep is the acceleration on particle p induced by the surrounding charge distri-
bution.

Equation 2.3, when coupled with a procedure for computing the electric field at
the particle positions, can then be used to numerically advance Equations (1.1) and
(1.2) in time. In PIC methods, this time advance is computed in a number of stages,
as follows. First, the charge density is computed on a grid via a deposition step, in
which each particle distributes its charge into a number of cells using some interpo-
lating function. These functions are commonly taken to be one of the B-splines, e.g.
the “Cloud-In-Cell” (CIC) and “Triangle-Shaped Cloud” (TSC) functions. However,
while higher-order B-splines have increasing degrees of smoothness, they are limited
to interpolating with at most 2nd-order accuracy [22]. Next, Poisson’s equation for
the potential is solved on the grid using a finite difference method along with some
kind of fast Poisson solver, such as fast Fourier Transforms or multigrid methods.
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Next, the electric field is computed on the grid using a finite difference approximation
to the gradient. Once the field is known at the grid points, it can be interpolated back
to the particle positions. It is important that this be done using the same interpolat-
ing function as in the deposition step, in order to avoid spurious self-forces. Finally,
once the electric field at the particle positions is known, the particles can be advanced
in time using some numerical ODE solver. If this solver contains multiple stages, such
as with Runge-Kutta methods, this entire procedure will need to be completed several
times per time step.

The final ingredient needed for accurate PIC calculations, as discussed in [14] and
[17], is a particle remapping procedure. During the remap, the current set of particles
is replaced by a new set that encodes the same underlying distribution function.
This process is similar to the particle initialization procedure described above, except
that instead of generating the particles from a given initial distribution function, we
generate them by depositing the known particle distribution onto a high-dimensional,
Cartesian grid in phase space and sampling the resulting distribution at each cell
center. It is important to note that, unlike with pure grid methods, this process does
not require storing the entire high-dimensional grid in phase space at once; rather,
because each particle only contributes charge to nearby positions, it can be done on
purely local chunks in phase space. It is also important to note that this process does
not need to be done every time step. Once the new particles have been generated, the
calculation can continue. This procedure prevents errors in the particle trajectories
from compounding to the point that they significantly degrade the solution.

They key factors affecting the accuracy of PIC methods are thus 1) the accuracy
of the interpolating function used for charge deposition and force interpolation, 2) the
accuracy of the finite difference stencils used for the field solve, 3) the accuracy of
the time integration scheme, and 4) the accuracy of the interpolating function used
for the remap. In what follows, we first review a basic PIC method that is 2nd-order
accurate (very similar to the one from [14]), and then we describe a new PIC method
that extends the first scheme to 4th-order accuracy.

2.2. A 2nd-order PIC method. The stages of the 2nd-order PIC algorithm
proceed as follows.

• Particle Deposition The charge density is defined on a Cartesian mesh
x i = (i + 1/2) ∆x , where i ∈ ZD are the cell indices and ∆x is the cell
spacing. At second order, we can use the following deposition step:

ρi =
∑
p

(
qp
Vi

)
W 2

(
x i − x p

∆x

)
. (2.4)

Here, Vi = ∆xD is the volume of cell i and W 2(x ) is a D-dimensional,
“Cloud-in-Cell” interpolating function, given by:

W 2 (x ) =

D∏
d=1

W2 (xd) , (2.5)

W2(x) =

{
1− |x|, 0 ≤ |x| ≤ 1,
0 otherwise.

(2.6)

Note that in general, we do not use the same mesh spacing for the particle
discretization and the Poisson mesh, i.e. ∆x 6= hx.
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• Field Solve The next step is to solve the Poisson equation for the potential
at the same grid points on which the density is defined. At 2nd order, we
discretize the Laplacian operator using the standard 2D+1 point centered
difference approximation:

−
D∑

d=1

φi+ed − 2φi + φi−ed

∆x2
= −ρi . (2.7)

We solve the resulting linear system with geometric multigrid, using Gauss-
Seidel with Red-Black ordering as the smoother. Through this paper, we
use periodic boundary conditions and set the solver tolerance to 10−9. After
iterating to convergence, the electric field components can be computed on
the mesh as

Ed
i = −φi+ed − φi−ed

2∆x
. (2.8)

• Force Interpolation Next, we interpolate the field back to the particle
positions using the same interpolating function as in the deposition step:

Ep =
∑
i

E iViW 2

(
x i − x p

∆x

)
. (2.9)

• Particle Push The final stage is the update of the particle positions. To
numerically integrate Equation (2.3), we use the following 2nd-order accurate
Runge-Kutta (RK2) method:

xn+1 = xn +
1

2
k1∆t2

vn+1 = vn +
1

2
(k1 + k2) ∆t, (2.10)

where

k1 = E(xn)

k2 = E(xn + vn∆t). (2.11)

For each stage of the RK2 time step, we must generate a right-hand side
for the Poisson equation corresponding to the appropriate particle positions
by performing particle deposition, the field solve, and the force interpolation
steps.

• Remapping The remapping step involves replacing the current set of parti-
cles with a new set that is laid out on a Cartesian grid in phase space. As in
particle initialization, the cell spacings of this mesh are hx and hv in position
and velocity space, and we only keep particles with weights that exceed some
problem-dependent threshold value. The charges of the new particles q∗p are
then calculated as

q∗p =
∑
p

qpW 3

(
x i − x p

hx

)
W 3

(
v j − vp

hv

)
, (2.12)
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where W 3(x ) is the 3rd-order interpolating function from [14] and [17], given
by

W 3 (x ) =

D∏
d=1

W3 (xd) , (2.13)

and

W3(x) =


1− 5

2 |x|
2 + 3

2 |x|
3, 0 ≤ |x| ≤ 1,

1
2 (2− |x|)2 (1− |x|) , 1 ≤ |x| ≤ 2,
0 otherwise.

(2.14)

A 3rd-order interpolant is necessary here in order for the overall scheme to
be 2nd-order accurate, since one order of accuracy is lost in the remap step
[14].

2.3. A 4th-order PIC method. We now describe our new, 4th-order method.
This time, the PIC update proceeds as follows:

• Particle Deposition At fourth order, we can no longer use a B-spline to
interpolate from the particle positions to the mesh cells. Instead, we use the
following deposition step:

ρi =
∑
p

(
qp
Vi

)
W 4

(
x i − x p

∆x

)
, (2.15)

where W 4(x ) is the D-dimensional, 4th-order accurate interpolating function
from [20], given by:

W 4 (x ) =

D∏
d=1

W4 (xd) , (2.16)

W4(x) =


1− |x|2 − |x|

2
+ |x|3

2 , 0 ≤ |x| ≤ 1,

1− 11|x|
6 + |x|2 − |x|

3

6 , 1 ≤ |x| ≤ 2,
0 otherwise.

• Field Solve As before, we solve the Poisson equation for the electrostatic
potential at the same grid points on which the density is defined. This time,
we discretize the Laplacian operator using a 4th-order centered-difference
approximation:

−
D∑

d=1

−φi+2ed + 16φi+ed − 30φi + 16φi−ed − φi+2ed

12∆x2
= ρi , (2.17)

which we solve using geometric multigrid, as before. The electric field can
also be computed using 4th-order centered differences as:

Ed
i = −−φi+2ed + 8φi+ed − 8φi−ed + φi+2ed

12∆x
. (2.18)
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• Force Interpolation The force is computed at the particle positions as:

Ep =
∑
i

E iViW 4

(
x i − x p

∆x

)
. (2.19)

• Particle Push Instead of RK2, we use a 4th-order accurate Runge-Kutta
(RK4) method. This method assumes the special case of a velocity indepen-
dent force, and thus has only 3 stages instead of the usual four [23]:

xn+1 = xn + vn∆t+
1

6
(k1 + 2k2) ∆t2

vn+1 = vn +
1

6
(k1 + 4k2 + k3) ∆t, (2.20)

where

k1 = E(xn)

k2 = E(xn +
1

2
vn∆t+

1

8
k1∆t2)

k3 = E(xn + vn∆t+
1

2
k2∆t2). (2.21)

As before, for each of the three stages of the RK4 time step, we must generate
a right-hand side for the Poisson equation corresponding to the appropriate
particle positions by performing the particle deposition, field solve, and force
interpolation steps.

• Remapping
As before, in order to preserve the overall accuracy of the method, the remap-
ping step must use a spatial interpolation method that is at least one order
higher than the desired order of the method as a whole. Thus, to apply
remapping in our 4th-order PIC method, we use the following 6th-order in-
terpolation function from [20] to perform the remap:

W 6 (x ) =

D∏
d=1

W6 (xd) , (2.22)

W6(x) =


1− |x|3 −

5|x|2
4 + 5|x|3

12 + |x|4
4 −

|x|5
12 , 0 ≤ |x| ≤ 1,

1− 13|x|
12 −

5|x|2
8 + 25|x|3

24 − 3|x|4
8 + |x|5

24 , 1 ≤ |x| ≤ 2,

1− 137|x|
60 + 15|x|2

8 − 17|x|3
24 + |x|4

8 −
|x|5
120 , 2 ≤ |x| ≤ 3,

0 otherwise.

The new particle charges are then

q∗p =
∑
p

qpW 6

(
x i − x p

hx

)
W 6

(
v j − vp

hv

)
, (2.23)

7



2.4. Positivity Preservation. We display all of the various interpolating func-
tions we use in this work in Figure 2.1. It is important to note that, unlike 2nd-order
interpolants, higher-order interpolating functions are not strictly positivity preserving,
in that a single particle with negative charge will not produce a uniformly negative
charge density when deposited onto a grid. This can happen during the remap stage of
the 2nd-order method, and during both the charge deposition and remap stages of the
4th-order method. One way to account for this is to apply a mass-redistribution algo-
rithm to the distribution function during the remap step, following [14]. That is, once
we have generated the distribution function on a phase-space patch, we redistribute
the undershoot in cell i ,

δfi = min(0, fni ) (2.24)

to its neighbors i + l in proportion to their capacity ξ,

ξi+l = max(0, fni+l ) (2.25)

so that

fn+1
i+l = fni+l +

ξi+l∑neighbors
k 6=0 ξi+k

δfi . (2.26)

Here, n and n + 1 refer to the value before and after redistribution. In general, this
procedure might need to be repeated for several iterations before the distribution
function is strictly positive. In the problems we consider in this paper, we find that 2
or 3 iterations is sufficient.

We perform this redistribution procedure during the remapping phase on all the
runs presented in Section 3. However, we find that turning this off makes only a neg-
ligible difference on the test problems considered below. Because this may not be true
for all problems, however, particularly those with large gradients in the distribution
function, we include the positivity preservation algorithm here for completeness.

3 2 1 0 1 2 3

x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

W
(x

)

W2 (x)

W3 (x)

3 2 1 0 1 2 3

x

W4 (x)

W6 (x)

Fig. 2.1. The interpolating kernels used in the various deposition / interpolation operations in
this paper. Left panel - the kernels used by the 2nd-order method. Right panel - the kernels used by
the 4th-order method.
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2.5. Implementation. We have implemented both of the above algorithms us-
ing the Chombo [21] software framework for solving partial differential equations,
which includes tools for doing parallel particle simulations that were originally devel-
oped in [24]. The parallelization uses standard message passing with block-structured
domain decomposition in physical space. This code, as well as our data analysis
scripts, is available online 1. Our one-dimensional results presented in this paper were
generated on a Macbook Pro, while the two-dimensional results were run on NERSC’s
Edison machine using up to 256 MPI processes.

3. Numerical Results. In this section, we compare the performance of the
2nd- and 4th-order PIC methods on a set of standard test problems. We begin by
considering two one-dimensional test problems, and then move on to perform similar
tests in two spatial dimensions. In these numerical tests, we have fixed the ratio of
∆x/hx to be 2. To compute convergence rates, we have used Richardson extrapolation
to compute our error estimates. That is, if Eh is the electric field computed at a given
spatial resolution and time step, and E2h is the electric field computed with all the
discrete elements of the problem (∆x, hx, hv, and ∆t) coarsened by a factor of 2,
then the solution error is defined as

eh = |Eh −E2h|, (3.1)

and the order of the method q is computed as

q = log2

(
||e2h||
||eh||

)
. (3.2)

When spatial interpolation is required to compare the electric field between runs with
different resolutions, we have used cubic spline interpolation (as implemented in SciPy
[2]), so as not to mask the 4th-order convergence results.

3.1. 1D Linear Landau Damping. The first test problem we consider is Lin-
ear Landau Damping - the damped propagation of a small-amplitude plasma wave.
To begin, we perform the calculation in one spatial dimension. We take the initial
distribution function to be

f(x, v, t = 0) =
1√
2π

exp
(
−v2/2

)
(1 + α cos (kx))

(x, v) = [0, L = 2π/k]× [−vmax, vmax] , (3.3)

where the amplitude of the perturbation α is 0.01, its wavenumber k is 0.5, and
vmax = 10. This problem uses periodic boundary conditions on the physical space
domain x ∈ (0, L). During particle initialization and during each remap, we have
discarded particles with weights less than 10−16.

This problem has been used extensively as a test for plasma PIC codes. According
to the analytic theory, the electric field is supposed to oscillate with a frequency
ω = 1.416, and the amplitude is supposed to be exponentially damped at a rate
γ = 0.1533. We compare the results of our 2nd and 4th order PIC methods, both with
and without remapping, to the analytic theory in Figure 3.1. The numerical solutions
used Ncells = 64 cells for the Poisson solve, Nx = 128 and Nv = 256 for the initial
particle grid, and a PIC time step of dt = 1/32. In the runs that used remapping, we

1https://bitbucket.org/atmyers/4thOrderPIC
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applied the remap every 5 time steps. All of the runs track the expected damping rate
well at early times. As in [14], however, the runs without remapping become noisy
and fail to track the exact damping rate at late times. For both the 2nd-order and the
4th-order PIC methods, remapping appears to be necessary for long time evolutions.

Next, we compare the accuracy of the 4th-order and 2nd-order PIC methods on
this problem. We conduct a resolution study starting at Ncells = 32, Nx = 64, Nv =
128 and dt = 1/16. We do four runs total, doubling the resolution and halving the
time step with each successive calculation. We plot the max norm of the error in the
electric field versus time in Figure 3.2, where we have used Richardson extrapolation
to the estimate the error between each consecutive pair of resolutions. As expected,
the 4th-order method is much more accurate than the 2nd-order method when run at
the same resolution, by as much as two orders of magnitude for the highest resolution
studied. Alternatively, the lowest resolution 4th-order runs are about as accurate as
the highest resolution 2nd-order runs on this test problem.

The question of how often to apply the remapping procedure is an important con-
sideration, and in general the answer will be problem dependent. In this test, we are
concerned with demonstrating the 4th-order accuracy of our method. It is therefore
crucial that the particle trajectory errors addressed by the remap be kept small com-
pared to all the other sources of numerical error, so that 4th-order convergence can be
observed. Experimentation suggests that, in order for this to happen, the remap needs
to be applied every 5-10 time steps, which translates to remapping 100-200 times on
the Ncells = 256 version of this test. However, for practical applications, it may not
be necessary to keep the trajectory errors so small. Indeed, we find that remapping
the particle distribution as few as 9 times over the course of the calculation greatly
improves the situation, allowing us to track the expected damping rate all the way to
t = 30 (see Figure 3.3).

We have enforced positivity preservation on all of our runs for this test problem;
however, in this case, we find that turning it off makes no difference to the electric
field to within machine precision.

3.2. 1D Two-Stream Instability. Next, we study the two-stream instability,
again working in one spatial dimension. In this problem, there is a counter-streaming
plasma flow in velocity space, along with a small initial density perturbation. The
initial distribution function for this test is:

f(x, v, t = 0) =
1√
2π
v2 exp

(
−v2/2

)
(1 + α cos (kx))

(x, v) = [0, L = 2π/k]× [−vmax, vmax] , (3.4)

where we take α = 0.01, k = 0.5. We have again adopted periodic boundary
conditions in physical space and discarded particles with weights less than 10−16.

To begin, we conduct a 4th-order run with Ncells = 256, Nx = 512, Nv = 1024,
and dt = 1/128. The time evolution of the phase-space distribution function is shown
in Figure 3.4. To construct the distribution function, we have used Equation (2.23)
to deposit the particles onto a 512 by 1024 mesh in phase space. We again apply
the particle remap every 5 PIC time steps; however, as in Section 3.1, we find that
applying the remap as few as 9 times over the simulation greatly reduces the degree
of particle noise visible in the solution (Figure 3.5).

Next, we conduct a resolution study as in Section 3.1. We start at Ncells = 32,
Nx = 64, Nv = 128, and dt = 1/16, and once again conduct four runs, doubling

10



10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
-F

ie
ld

 A
m

p
lit

u
d
e

2nd Order, without remap 2nd Order, with remap

0 5 10 15 20 25 30

t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
-F

ie
ld

 A
m

p
lit

u
d
e

4th Order, without remap

0 5 10 15 20 25 30

t

4th Order, with remap

Fig. 3.1. Amplitude of the electric field as a function of time for the one-dimensional linear
Landau damping problem. The black solid line shows the numerical solution, while the red dotted
line shows the theoretical damping rate. Top left - 2nd-order method, without remapping. Top
Right - 2nd-order method, with remapping. Bottom Left - 4th-order method, without remapping.
Bottom Right - 4th-order method, with remapping. All numerical calculations were performed with
Ncells = 64, Nx = 128, and Nv = 256, and dt = 1/32.

the resolution and decreasing the time step with each run. The resulting Richardson
errors are shown in Figure 3.6. As in the Landau damping example, at early times
the 4th-order method is much more accurate than the 2nd-order method, by as much
as two orders of magnitude at the resolutions we investigate. In the two-stream test,
however, the errors grow significantly with time in both the 2nd-order and the 4th-
order cases. This is due to the formation of thin, filamentary structures in phase space,
as visible in the bottom right panel of Figure 3.4. These features are not well-resolved
at the resolutions we use in our convergence study, and hence reduce the accuracy of
the simulation from the expected order, such that, at very late times, the errors made
by the two methods are comparable. However, the 4th-order method delays this loss
of accuracy due to filamentation considerably. As late as time 20, for instance, the
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Fig. 3.2. Max norm of the error in the electric field as a function of time for the one-
dimensional linear Landau damping problem. Left - 2nd order method. Right - 4th order method.
In both plots, the solid colored lines refer to the Richardson errors associated with consecutive pairs
of resolutions, progressing from low (blue), to middle (green), to high (red). The dotted colored lines
show how the initial errors should decrease if the methods performed at exactly 2nd (left) and 4th
(right) orders.
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Fig. 3.3. Amplitude of the electric field as a function of time for the one-dimensional linear
Landau damping problem. The black solid line shows the numerical solution, while the red dotted
line shows the theoretical damping rate. Left - 4th-order method, without remapping. Right - 4th-
order method, remapping 9 times over the course of the simulation. All numerical calculations were
performed with Ncells = 64, Nx = 128, and Nv = 256, and dt = 1/32.

4th order method is still around 2 orders more accurate than the 2nd-order method.

As before, we have included positivity preservation during the remap step on this
test problem. Unlike with the linear Landau damping test, however, the change in
the electric field is significantly higher than machine precision (as high as ∼ 10−6 at
late times) on this problem, particularly at late times when filamentation gives rise
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to large gradients in the distribution function. This difference is still small, however,
compared to the other numerical errors (Figure 3.6), and therefore running without
positivity preservation does not affect the 4th-order convergence rates on this problem.
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Fig. 3.4. Phase-space distribution function at four selected times for the one-dimensional, two-
stream instability problem. The data for this figure comes from the Ncells = 256, 4th-order run. For
details of how this figure was generated, see Section 3.2

3.3. 2D Linear Landau Damping. The previous test problems both used one
spatial dimension and one velocity dimension. Since certain numerical instabilities
may only occur in higher-dimensional problems, it is also important to also check our
algorithm on two-dimensional problems. To do so, we first repeat the linear Landau
damping problem, this time performing the calculation in two-dimensional space. We
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Fig. 3.5. Phase-space distribution functions for the one-dimensional, two-stream instability
problem. Left - 4th-order method, without remapping. Right - 4th-order method, remapping 9 times
over the course of the simulation.
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Fig. 3.6. Max norm of the error in the electric field as a function of time for the one-
dimensional, two-stream instability problem. Left - 2nd order method. Right - 4th order method.
The line styles and colors have the same meaning as in Figure 3.2.

take the initial distribution function to be

f(x, y, vx, vy, t = 0) =
1

2π
exp

(
−(v2x + v2y)/2

)
(1 + α cos (kxx) cos (kyy))

(x, y) = [0, L = 2π/kx]× [0, L = 2π/ky]

(vx, vy) = [−vmax, vmax]× [−vmax, vmax] , (3.5)

where we set α = 0.05, kx = ky = 0.5, vmax = 6.0, and use periodic boundary
conditions in physical space.

As before, this problem has an analytic solution for the damping rate of the
electric field amplitude, which for these parameter choices should be γ = −0.394.
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To compare against this theory, we set Ncells = 32, Nx = 64, and Nv = 128, and
dt = 1/16, and evolve the initial distribution out to time t = 30.0. We again apply
remapping every 5 PIC time steps and discard particles with weights less than 10−12.
The simulation electric field amplitude is compared against the theoretical expectation
in Figure 3.7. Even at this relatively low resolution, we find that the numerical result
track the expected damping rate well out to time t ≈ 28.
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Fig. 3.7. The amplitude of the electric field versus time for the 2D linear Landau damping
problem. The black solid line shows the numerical result for the electric field, while the red-dotted
line shows the expected damping rate of γ = −0.394.

3.4. 2D Two-Stream Instability. Finally, we perform the two-dimensional
version of the two-stream instability problem.The initial distribution function is

f(x, y, vx, vy, t = 0) =
1

12π
exp

(
−(v2x + v2y)/2

)
(1 + α cos (kxx))

(
1 + 5v2x

)
(x, y) = [0, L = 2π/kx]× [0, L = 2π/ky]

(vx, vy) = [−vmax, vmax]× [−vmax, vmax] , (3.6)

where α = 0.05, kx = ky = 0.5, vmax = 9.0, and we again use periodic boundary
conditions in physical space.

We set Ncells = 64, Nx = 128, and Nv = 256, and dt = 1/32, and evolve the
initial conditions out to time t = 30.0. As before, we apply remapping every 5 PIC
time steps and discard particles with weights less than 10−12. The time evolution of a
two-dimensional slice through the phase-space distribution function is shown in Figure
3.8. The generate the 2D version of the distribution in (x, vx) space, we deposit the
particles using Equation (2.23) onto a 2D mesh with 128 by 256 grid points. That is,
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we compute

fi,j =
∑
p

( qp
∆x∆v

)
W6

(
xi − xp

∆x

)
W6

(
vx,i − vx,p

∆v

)
. (3.7)

This is equivalent to depositing the particles onto a 4D mesh and integrating over
y and vy. As before, when remapping is employed, our 4th-order method tracks the
evolution of the distribution function without visible particle noise.

Finally, we perform another convergence study, this time on the 2-dimensional
setup. As before, we conduct 4 runs in total, starting at Ncells = 8, Nx = 16, and
Nv = 32, and dt = 1/4, and increasing the resolution by a factor of 2 with each run.
The resulting errors are shown as functions of time in Figure 3.9. As in the one-
dimensional version of this problem, our method achieves 4th-order accuracy until
late times, when under-resolved filaments reduce the accuracy of the solution to 2nd-
order. Figure 3.9 also compares these errors to those made by the 2nd-order method
on the same problem setup. As in the one-dimensional case, the 4th-order method is
significantly more accurate, particularly at early times. Overall, our method does not
appear to suffer from unexpected numerical instabilities when operating in greater
than one spatial dimension.

4. Conclusions and Future Research. We have presented a 4th-order accu-
rate Particle-in-Cell algorithm for solving the Vlasov-Poisson equation in the context
of electrostatic plasmas, including a remapping step that controls particle noise by
periodically re-initializing the particle distribution on a Cartesian grid in phase space.
We have demonstrated the accuracy of our method by comparing its performance to
that of a 2nd-order method on a set of one-dimensional test problems. We have also
gauged our method’s performance on a set of two-dimensional test problems, finding
that the 4th-order convergence of our method is maintained.

In future work, we will explore extending the current method to 3 spatial and 3
velocity dimensions. While algorithmically straightforward, working in six total di-
mensions is computationally challenging, particularly during the particle remapping
step, which presently involves working with high-dimensional grids. We will address
this issue in two ways. First, we will explore phase-space aware parallelization strate-
gies that more naturally map to the work distribution of warm plasma calculations.
In contrast, our current parallelization strategy is based on domain decomposition
in physical space only, such that the work per process grows more rapidly than the
number of parallel domains as the problem size increases. This clearly limits the
degree to which our implementation can scale to the high process counts that will
be critical in six phase-space dimensions. Second, we will explore grid-free methods
of performing the remap step. This will prevent us from needing to allocate tempo-
rary six-dimensional grids, which will greatly reduce the memory requirements and
communication costs associated with the remap step.
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