Title
Correction to “The Surface Structure of Co3O4(111) under Reactive Gas-Phase Environments”

Permalink
https://escholarship.org/uc/item/2tw2q2t3

Journal
ACS Catalysis, 9(10)

ISSN
2155-5435

Authors
Yan, George
Sautet, Philippe

Publication Date
2019-10-04

DOI
10.1021/acscatal.9b03445

Peer reviewed
Correction to: “The Surface Structure of Co₃O₄(111) under Reactive Gas Phase Environments”

George Yan¹, Philippe Sautet¹, ²,*

¹ Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
² Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States

A factor of two was mistakenly multiplied when calculating pressure magnitudes on the $P_{H₂}$ and $P_{H₂O}$ axes in Figures 3, 4, 5, 8, 12, S9, and S10 from chemical potentials (detailed below, corrections in bold). This mistake does not change our conclusion, which is that the Co₃O₄(111) surface is hydroxylated under most water-containing reactive environments. An unrelated error in the temperature axis of Figures S3 (bottom) has also been corrected.

Pressures referenced in the abstract should read:

“At 423 K, hydroxylation readily occurs on both the O-rich and Co-rich surfaces even at water pressure as low as 10^{-8} bar, and non-dissociated water molecules appear on the O-rich surface when water pressure is above $\sim 10^{-6}$ bar.”

The paragraph in Section 3.1, page 6383 when interpreting the stability diagram should read:

“Although many possible terminations of this surface exist in theory, not all terminations can be accessed under realistic pressure and temperature. At 423 K (Figure 4, top), only a fraction of the hydroxylated regions (structures 5b, 8b, 9a,b, and 11a,b) can be visited at equilibrium; however, clear separations among isolated OH, triaqua complexes, and hydroxyl networks can still be observed when $P_{H₂O}$ is increased. When the O_2 pressure is between 1 bar and 10^{-4} bar and the $H₂$ pressure is above 10^{-4} bar, the surface is predicted to be heavily hydroxylated, with a triaqua complex incorporated into the OH/H₂O chain (9b). Triaqua complexes are predicted to be separated from the chain below 10^{-4} bar (8b, 9a), and only isolated hydroxyls (5b) are stable below 10^{-7} bar. Overall, at 423 K, the surface stability diagram is dominated by triaqua complex regions with various amounts of additional $H₂O/OH$ groups. On the other hand, if the temperature is increased to 873 K (Figure 4, bottom), isolated hydroxyls will be exposed under 10^{-2} bar. We note that, for the surface Co concentration to increase to above 3.56 Co/nm², $P_{O₂}$ needs to be reduced to below 10^{-11} bar while $P_{H₂O}$ is kept below 10^{-5} bar, i.e. in UHV conditions.”
Diagrams containing correct P_{H_2O} and P_{H_2} axes are as follows:

Figure 3. Surface stability diagram showing the most stable surface structure as a function of O_2 and H_2O chemical potential and equivalent oxygen/water pressure at 423 K and 873 K. Regions are classified in three ways. (I) By surface Co concentration: blue/grey/white: 3.56 Co/nm2; green: 5.33 Co/nm2, and red/brown: 7.11 Co/nm2. (II) By general appearance of surface hydroxylation: the bottom bold line separates non-hydroxylated regions and hydroxylated regions, the middle bold line (only the segment running through the blue regions, or when $\Delta \mu_O > -1.5$ eV) separates isolated hydroxyls and Co(H$_2$O)$_3$ (hereby referred to as “triaqua”) surface complexes (with eventually additional OH groups), and the top bold line separates isolated triaqua surface complexes and large OH/H$_2$O structures. (III) By specific numbered structure (see Table 1 for descriptions, Figure 2 and Table 2 for representative geometries, and Table S10 for all geometries).
Figure 4. Portions of Figure 3 showing the H$_2$O/O$_2$ surface stability diagram under realistic pressures at (top) 423 K and (bottom) 873 K. Regions are numbered and colored the same way as Figure 3. Only hydroxylated regions can be accessed at 423 K. Higher surface Co concentration can be reached under low P$_{O_2}$.
Figure 5. Surface stability diagram showing the most stable surface structure as a function of H₂ and H₂O chemical potential and H₂/H₂O pressure at 423 K. The color scheme and numbering are the same as that in Figure 3. Regions are again classified in the same three ways as those in Figure 3. (I) By surface Co concentration: blue: 3.56 Co/nm²; green: 5.33 Co/nm², and red/brown: 7.11 Co/nm². (II) By general appearance of surface hydroxylation: bottom bold line separates non-hydroxylated regions and hydroxylated regions and top bold line separates OH-only regions and molecular H₂O-containing structures. (III) By specific numbered structure (see Table 1 for descriptions, Table 2 for representative geometries, and Table S11 for all geometries).
Figure 8. Gas phase environmental conditions during vibrational characterization by Busca et al. represented as a dashed line on the H₂O/H₂ surface stability diagram (Figure 5), as H₂O chemical potential is not well-defined. The corresponding termination should contain 7.11 Co/nm² and 7.11 OH/nm² (structure 7a, brown) because an unrealistic high pressure of H₂O must be applied to generate a mixed OH/H₂O layer (structure 12c, red).
Figure 12. Surface stability diagram as a function of H_2 and H_2O chemical potential and hydrogen/water pressure at 423 K. Conditions in NO reduction with H_2 found in the literature are marked on the diagram as yellow circles.
Figure S3 Reduction of (CoTd)₅ through H₂ chemisorption at oxygen rich conditions, Δµ₀ = 0 eV. Surface energy of is plotted as (top) \(γ(ΔµH₂) \) and (bottom) \(γ(T, P_{H₂}=10^{-5} \text{ bar}) \).
Figure S9. O\textsubscript{2}/H\textsubscript{2}O surface stability diagram with all regions labeled.
Figure S10. Fully labeled H_2/H$_2$O surface stability diagram