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Electronic health records (EHR) give rise to complicated data structures, due in part to

outcome-driven patient and physician decisions that impact the number and spacing of clin-

ical observations, length of time under treatment, and reason for treatment termination.

When dependencies exist between patient observations, outcomes, and treatment termina-

tion and are ignored in analyses, it can lead to biased parameter estimates and spurious

conclusions. Additional complications exist in data obtained from EHR, where informative

details, such as reasons for termination of care, frequently go unnoted or remain contained

in nonsystematic forms. The objective of this dissertation is to discuss standard difficulties

associated with longitudinal analyses using data arising from EHR and to present potential

solutions to such challenges using methods appropriate for applied, clinical researchers.

Shared random effects models are a practical and effective method of modeling dependen-

cies between observation times, outcomes, and terminal events. Three-part shared random

effects models typically make use of a frailty model for the intensity of observation times of
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a medical-related event (“informative observation times”), a general mixed effects model for

the longitudinal outcome (“repeated measures”) that allows for flexibility in the temporal

specification of the overall trajectory, and a Cox proportional hazards model for the timing

of termination of care (“dependent terminal event”). This model formulation is typically

applied when the dependent terminal event, for example death, is directly observed and

distinguishable from independent censoring events. However, termination from care is a ter-

minal event for which the exact date is often unobserved and may be indistinguishable from

independent censoring based solely on EHR data, which makes direct application of shared

random effects models infeasible.

I propose the use of an inverse cumulative hazard function to estimate individual-level

survival times between patients’ last-recorded and their next-hypothetical observation, and

use these estimates to help classify dependent and independent termination. In a simulation

study I illustrate the effectiveness of this method in producing minimally-biased estimates

based on the three-part shared random effects model. I apply the same method to model de-

pression symptom trajectories over time using EHR data from Behavioral Health Associates

(BHA), a UCLA Health primary and behavioral health collaborative care system.

Further, I examine the utility of a cure model in handling zero-inflated recurrent events

data and in an alternate, probabilistic approach to unobserved terminal events we propose

an extension of an adaptable cure frailty model that represents the probability that a subject

will become unsusceptible to future recurrent events after any given event. I change the ter-

minology from “cure” to “treatment termination” such that I model the probability a patient

will terminate treatment after each clinical observation. An added benefit of this approach

is the cure model’s ability to simultaneously account for the zero-inflatedness common in

EHR data (e.g. the overrepresentation of subjects with zero recurrent events).

I describe common issues inherent in EHR data and demonstrate a series of statistical

methods that offer practical solutions to these challenges. I provide analytical tools for

applied researchers to easily implement such methods in existing statistical software.
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CHAPTER 1

Introduction

1.1 Electronic Health Records Data

As of 2017, 85.9% of office-based physicians in the United States used some form of electronic

health or medical records [2]. As the adoption of electronic health record (EHR) systems

becomes more prevalent, we expect that research relying on EHR data will continue to

expand. However, EHR systems were originally implemented and intended to support billing

and delivery of care, making their more-recent use in research a secondary purpose [3]. This

evolution of use means that the format of data from EHR is often incompatible with simple

analytic techniques.

EHR data are also structurally complicated, and issues with representativeness have

raised questions about its suitability for use in research [4]. Many of these concerns stem

from the fundamental differences between EHR data generated from naturalistic observa-

tions and longitudinal data that would be collected in a structured research study. In the

latter, assessment times are pre-established, often evenly spaced, and chosen based on rele-

vance to the outcomes being measured. Outcomes are collected in a systematic way, typically

by individuals blinded to or removed from delivering treatment, and data quality is closely

monitored. As such, attempts are usually made to collect information or final outcome

measurements from persons who have discontinued treatment. EHR data, particularly when

generated in the context of emergent-care or in response to patients’ symptoms, may contain

redundancies and data collection is often driven by procedural requirements around collec-
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tion. The data may be incomplete or tell only a fraction of a patient’s story, is often coded

for use other than research, and may contain important information in non-systematic forms,

such as clinical notes.

As is common in many naturalistic medical settings, outcome-driven patient and physi-

cian decisions often impact the number and spacing of patient observations, and hence the

timeframe over which observations occur. These decisions include patients’ tendencies to seek

treatment when feeling unwell and physicians’ decisions to schedule and update treatment

recommendations based on patients’ response to treatment. For example, among patients

with chronic pain, those who reported greater pain-related disability were more frequent

visitors to primary care [5], while a subsequent review of chronic pain management interven-

tions identified pain severity as associated with treatment dropout [6]. Intensity of health

care utilization also varies across follow-up time, evidenced by a greater frequency of visits

to health care providers during the disease index year among patients with lupus, and a

significant reduction in visits in following years [7].

1.2 Electronic Health Records Data in Behavioral Health

Help-seeking patterns also apply to EHR data in behavioral health interventions, which en-

compass care and maintenance supporting mental health and resilience, and treatment for

substance use disorders [8]. Among patients receiving psychotherapy at a community mental

health clinic, those with a depressive disorder were less likely to exhibit treatment attrition

and had a higher average number of treatment sessions than those without a depressive

disorder, and patients demonstrating long-term symptom improvement were more likely to

drop out of behavioral health treatment compared to the baseline termination rate [9]. Addi-

tionally, PTSD, depression, and substance use disorders were all individually associated with

increased mental health care utilization among veterans enrolled in Veterans Administration

primary care [10]. These trends may contribute to the highly irregular observation times
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with notable inter- and intra-patient variability present in behavioral health EHR data, con-

tingent upon symptomatology. Indeed, inter-observation times varied dramatically within

and across patients receiving care through UCLA’s Behavioral Health Associates (BHA), a

UCLA Health primary- and behavioral-health collaborative care program (to be described in

greater detail in Chapter 2), as depicted in Figure 1.1 for a random subsample of 10 patients.

Figure 1.1: Clinical observation times from a random sample of 10 patients under treatment
in BHA over their first 548 days of follow-up.

In addition to indicating help-seeking behaviors in response to patients’ physical or men-

tal health symptoms, both the intensity and timeframe of clinical observations represent

patients’ exposure to treatment. In some instances, details of a treatment or therapy might

be recorded in the medical record, but in EHR those details may be difficult to access or

entirely nonexistent for any given patient record. Behavioral health treatment offers an addi-

3



tional complication in that therapy sessions do not inherently include a quantifiable measure

or dose of treatment [11]. In such instances, clinical observations themselves act as indica-

tors of treatment exposure and their intensity is assumed associated with patients’ symptom

trajectories insofar as it is assumed that treatment dose impacts a patient’s symptoms.

1.3 Informative Observation Times and Dependent Termination

As a result of the help-seeking and outcome-driven care decisions described above, EHR

naturally give rise to recurrent event and repeated measures data, often accompanied by a

terminal event that precludes further observations [12, 13]. Recurrent events can be generally

defined as an ordered set of observations or events, of the same type, at intervals of time

for the same individual and include seizure episodes, strokes, and heart attacks, as well as

hospitalizations and, as is the case in this paper, clinical observations (e.g. clinical office

visits). Repeated measures are defined as quantifiable outcome measurements, again of

the same type, observed repeatedly over time and include blood pressure readings, CD4 cell

counts, and psychometric measures scores. We often find that the timing of recurrent events,

and the presence and timing of a terminal event, are correlated with and carry information

about each other in addition to repeated measures, and as such are referred to as “informative

observation times” and “dependent termination”, respectively [14, 15].

In longitudinal observational data, such as that generated from EHR, we often find that

recurrent events, and by association repeated measures, occur at informative observation

times. That is, recurrent event times can frequently depend on, or carry information about,

the repeated measures themselves, and unobserved confounders or correlations between re-

current event times and repeated measures may remain even after conditioning on covari-

ates [14, 16,17]. Examples include patients with severe disease symptoms who attend more

frequent clinical visits than patients with milder disease symptoms, or physicians recom-

mending more frequent appointments for patients who exhibit worse symptomatology. In
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fact, evaluation of EHR data suggests that records with more data points are likely repre-

sentative of sicker patients [18], resulting in an underrepresentation of healthier patients with

more typical observation patterns and moderate repeated measures values.

Simultaneously, it is important to consider that informative observation times and re-

peated measures may also be accompanied by a terminal event that depends on the obser-

vational and/or outcomes processes [13]. When the presence and timing of a terminal event

is correlated with recurrent event times or repeated measures, it is often referred to as “de-

pendent termination” and has a non-trivial impact on observations [15]. This terminal event

can be directly observed, like death, but as is often the case in medical records data it can

also be unobserved but assumed, like treatment termination, withdrawal, or drop-out.

Associations between patient observations, repeated measures, and termination might

look like multiple small coronary episodes that ultimately result in a fatal heart attack, or

patients attending fewer clinical visits as their symptoms subside, which may positively asso-

ciate with time-to-termination from treatment. However, the direction of these associations

is situation-specific; we can imagine a scenario where patients with severe symptoms at-

tend fewer clinical visits as their disease impedes their ability to travel, ultimately hastening

time-to-termination from treatment. In all instances, help-seeking and outcome-related clin-

ical observations in response to emergent medical conditions make standalone longitudinal

evaluations of outcomes näıve and prone to bias [13].

Methods of handling these data, particularly when the focus is on understanding longitu-

dinal repeated measure trajectories, depend on properties that relate the observation times,

repeated measures, and terminating event processes. In some instances, such as randomized

controlled trials where patient observation times are predetermined with little interpersonal

variation, simplifying assumptions such as ignoring dependence between recurrent events and

repeated measurements are sufficient solutions and traditional analytic techniques may be

applied. However, such assumptions are not universally appropriate and may rarely apply

when considering EHR data. Even existing methods accounting for terminating processes
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rely on observed, recorded terminal event times, but this too is often inapplicable to EHR

data where irregularities in patients’ observations, including termination of care, can be for

a variety of reasons and the timing and/or cause frequently goes unnoted in the medical

record.

Shared random effects models have emerged as a practical approach for relating informa-

tive observation times, repeated measures, and terminating events. They can be fit using a

variety of programmatic approaches and give results that are broadly interpretable. Within

this model framework, it is often assumed that each process is independent of the other two,

conditional upon the shared random effects [16]. This assumption allows flexibility in the

functional specification of each individual process, including the longitudinal time scale. A

shared frailty model is commonly used to relate recurrent event times and a terminal event,

while the longitudinal component is often fit using a generalized linear mixed model which

allows flexible forms for the trajectory, including linear, piecewise, and nonlinear, as well as

the specification of within- and between-subject correlation.

An added benefit of shared random effects models is the ability to simultaneously account

for another common characteristic of EHR data: zero-inflated recurrent events. Medical

records tend to have an overabundance of patients with a singular instance of a health-related

event, with no follow-up events or observations. This leads to an excess of “zeros” in the

dataset, or those patients with only a “baseline” event and zero “recurrent” events. Shared

random effects models can accomodate cure fractions, a logistic approach to describing a

sample where some proportion of patients experience some sort of “cure” after their baseline

event and are thus unsusceptible to future events.

1.4 Unobserved Treatment Termination

As mentioned above, when a terminal event that precludes further observation in the med-

ical record is associated with observation times and/or repeated outcomes measures, it is
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considered a dependent terminal event. The presence and timing of a dependent terminal

event can be the result of patient- or physician-driven care decisions, but in many naturalistic

observational settings the reason and timing of this terminal event may go unrecorded. For

example, studies assessing patient-reported reasons for terminating mental health treatment

found the majority of respondants endorsed “feeling better” [19] or perceived ineffectiveness

of treatment [20] as the prevailing reasons for termination of care. However, these reasons

were reported in a post hoc mental healthcare survey, rather than being reported in the

medical record.

While medical records can contain details and timing of observable dependent terminal

events, such as death, it is often the case that such information is absent from EHR. Partic-

ularly when we consider a terminal event such as treatment termination, it can be the case

that the last-recorded patient observation in the medical record is not known to be such. If an

outcome-driven decision to terminate treatment was made by either the physician or patient

during the visit at the last-recorded observation time, or during the interval between the last

and next-hypothetical observation, simply treating the patient as independently censored, or

assuming their observations process was inturrupted by an event (e.g. a data pull) entirely

unrelated to their observations and/or outcomes processes, leads to inaccurate estimation.

Based on patients’ individual observation processes and outcome values, we would like to be

able to make some assumptions about whether patients dependently terminated treatment

or were independently censored.

1.5 Dissertation Overview

This dissertation will explore multiple applications and extensions of shared random effects

models for use with EHR data. The first is an application of a three-part shared random

effects model to jointly model informative observation times, repeated measures, and de-

pendent termination. Within this model framework, I illustrate a method of classifying
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dependent and independent termination when the presence and timing of terminal events is

unobserved through use of an inverse cumulative hazard function. I demonstrate the efficacy

of this approach through a simulation study, and follow with an application to behavioral

health EHR data from UCLA Health’s Behavioral Health Associates. I also provide code and

guidelines for a SAS macro that implements the described methods while requiring minimal

user inputs as a practical tool for applied researchers.

The second application is the use of an adaptive cure frailty model, traditionally used to

model preclusion of future recurrent events due to disease “cure”, to model the probability

of general treatment disconnection when terminal events are unobserved. I also illustrate

how a simplified cure model can be used to handle the common occurrence of zero-inflated

recurrent events in EHR data in addition to informative observation times, repreated mea-

sures, and dependent termination. I present simulation studies to evaluate the efficacy of

these applications, and describe a future application to BHA data.

8



CHAPTER 2

Motivation

2.1 Behavioral Health and Integrated Care in the United States

As of 2017, 46.6 million adults in the US (almost 20%) had some form of mental illness

over the past year [21], and approximately 26% of adults had a diagnosable behavioral health

condition. Mental health disorders are responsible for 25% of health-related burden and

disability worldwide [22], yet regardless of the prevalence many health systems still struggle

with effective treatment strategies. Ineffective and underutilized treatment, and poor out-

comes, can be attributed to many factors but include systematic segmentation of primary

and behavioral health care as well as a general lack of access for many patients in immediate

need [23]. A 2009 study found that two-thirds of surveyed primary care providers (PCPs)

reported more difficulty in obtaining outpatient mental health treatment for their patients

than other commonly utilized services [24], with reasons ranging from patients’ health plans

to a lack of qualified mental health professionals.

Since the enactment of the Affordable Care Act [25], the US healthcare system has put

greater focus on the application and efficacy of integrated care in an attempt to address

consequences and complications of a dissociated care structure. The primary goal of many

integrated care systems is to coordinate primary and behavioral healthcare, thus providing

patients with improved access and treatment for both physical and mental health. In the

past, PCPs have often been responsible for providing basic mental health care to their

patients, with some PCPs reporting treating as many as 30% of their patients for behavioral
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health conditions [26]. Instead, integrated care models view the primary care setting as a

pragmatic and often effective screening environment for anxiety, depression, substance abuse,

and other mental health disorders with a referral process to a collaborating behavioral health

provider for more targeted and timely care. While there are other functional behavioral

health treatment models in practice, collaborative behavioral health care is generally more

effective in short- and medium-term improvements in primary outcomes, such as depression

and anxiety symptomatology, than care from a more segmented system [27].

The increase in integrated care practices suggests that behavioral health observations

will more frequently be present in EHR. Though the rate of electronic records adoption in

behavioral health lags behind some other specialties like general/family practice and internal

medicine, the growth rate of electronic medical records use in psychiatry was 294.2% between

2003 to 2010 [28], a notable trend that should likely continue with increased collaboration and

need for information sharing between behavioral health and primary care providers. As such,

it is necessary to examine the implications of behavioral health care represented in EHR and

specific analytical considerations associated data might require. This includes the fact that

behavioral health care can represent a response to an emergent medical condition, rather

than routine care like annual physical examinations by a primary care physician, as well

as the recognition that treatment can be administered in therapy and thus lack specifically

quantifiable dosages. This implies that evaluations of behavioral health treatment programs

might incorporate clinical visits as potential indicators of treatment exposure, among other

considerations unique to both EHR and behavioral health data.

2.2 Behavioral Health Associates (BHA)

The UCLA Health System, affiliated with the David Geffen School of Medicine at UCLA,

is an accountable care organization (ACO), a label given to health provider groups of hos-

pitals, doctors, and other specialists that share responsibility for providing coordinated care
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to patients in an effort to reduce unnecessary spending. As UCLA Health’s primary care

population expands, so does its efforts to effectively address patients’ behavioral health con-

cerns. Behavioral Health Associates (BHA), established in 2012, is an effort by UCLA Health

to provide wholly integrated primary and mental health care for both adults and children.

BHA evolved from a recognized need within the UCLA Health patient population, and itself

is a collaborative model alongside UCLA primary care services aimed at providing brief-

treatment to patients referred from a primary care provider [29]. BHA includes psychiatry,

individual and couples/family psychotherapy, and group psychotherapy in the presence of

therapists, psychologists, psychiatrists, social workers, and/or other professionals trained in

treating and supporting patients’ mental and emotional health and well-being. To support

ease-of-access, BHA clinics are co-located in primary care practices.

At the time of BHA’s launch in 2012, approximately 21% of patients in UCLA’s primary

care population had been diagnosed with a behavioral health condition, but UCLA Health

was only treating 4% with internal providers [29]. As of the 2016 review of BHA by Clarke et

al. [29], BHA had provided behavioral health care to almost 13% of patients with a behavioral

health condition and had nearly 190 new referrals, of both adults and children/adolescents,

per week.

BHA is intended for short-term behavioral health treatment, with a recommended sched-

ule of one visit every two weeks, up to a total of twelve visits or until six months in care

for those patients seeing a therapist. Treatment in BHA should be followed by a referral on

to longer-term care or more acute care services, a referral back to primary care for ongoing

management, or a resolution of symptoms, depending on a patient’s progress at the end of

follow-up. Patients’ symptoms are assessed via a set of rating scales administered at baseline,

and again at approximately three-month intervals. The web-based platform that contains

this behavioral health information collected from patients in BHA is called the Behavioral

Health Check-up (BHC). Rating scales for adult patients (≥ 18 years) include the Patient

Health Questionnaire-9 (PHQ-9) [30] to assess depression, the Generalized Anxiety Disorder-7
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(GAD-7) [31] to assess anxiety, the Primary Care PTSD Screen (PC-PTSD) [32] and the PTSD

Checklist (PCL) [33] to screen for and assess traumatic stress, and the Alcohol Use Disorders

Identification Test (AUDIT) [34] and Drug Abuse Screening Test-10 (DAST-10) [35] to screen

for and assess substance use. While clinicians were advised to collect data on these rating

scales from patients at least once during each 3-month interval while the patient was re-

ceiving treatment, numerous factors impacted the availability of the data including: patient

attendance at visits during the desired intervals, workload of the clinical staff required to

administer the BHC, and availability of equipment (e.g. tablets) for electronic data collec-

tion. However, overall evaluation of outcome measurements and patient information suggests

that missing BHC data may be due in large part to administrative challenges and is thus

considered to be missing by a mechanism independent of the outcomes process. Additional

details of BHA and a more thorough description of the measures used to evaluate patient

outcomes have been described elsewhere [1].

2.3 Standard Treatment Evaluations

Assessing the impact of behavioral health treatment programs, like BHA, often includes

evaluating change on outcome scores generated from psychometric scales such as those listed

above. In BHA, standard reports often include simplified visuals that illustrate the mean

outcome score at two time points. This often requires a post hoc decision on which follow-

up assessments to use since significant inter-patient variation can exist in the timing of

outcome measurements. For example, if we wished to illustrate an improvement in patients’

depression symptoms over the course of time under BHA treatment, we might compare an

average of patients’ baseline PHQ-9 scores to their PHQ-9 scores at the end of follow-up.

However, choosing that comparitive PHQ-9 score is challenging as the timing of end-of-

treatment varies by patient, and a patient may exit BHA without having been reassessed on

the PHQ-9 in many months. A solution might be to simply calculate an average of patients’
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last-available PHQ-9 score and compare this to an average of their baseline PHQ-9 score.

Similarly, primary analyses might focus on clinical benchmark improvements, like >50%

reduction on the PHQ-9 or a PHQ-9 score < 5, by a certain follow-up assessment. For

example, we might be interested in determining how many patients exhibited depression

symptom remission (PHQ-9 < 5) at least once in the first six months since their baseline

visit to BHA. These analyses can typically be accomplished via simple logistic regression

models where the outcome is a binary (yes/no) indicator of patients having reached the

threshold of interest. These approaches often assume non-informative observation times

and/or independent treatment termination, which simplify the assumed data structure and

allow for cross-sectional or simple longitudinal data analysis.

2.4 Challenges and Shortfalls of Standard Treatment Evaluations

These standard evaluations described above often ignore a substantial amount of information

that, when incorporated in the analyses, can both reduce bias in resultant parameter esti-

mates as well as illustrate more specifically the totality of the patient treatment experience.

For example, a comparison of scores between only two time points ignores the trajectoy of

patients’ symptoms over the course of follow-up. Likewise, this kind of comparison fails to

account for which patients are still in treatment at the time the follow-up score is calculated,

and consequently which patients have dropped out of treatment and thus do not contribute

to the comparative follow-up score calculation. This is meaningful because, when consider-

ing PHQ-9 scores, if patients with lower scores (and thus milder symptoms) or higher scores

(and thus more severe symptoms) have a greater tendency to terminate treatment, then the

two time point comparison could under- or overrepresent the average change in symptoms

over the course of treatment. Likewise, this kind of simplified analysis ignores patients who

have only a baseline assessment or who were reassessed on the outcome measure outside the

relevant window of time.
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Figure 2.1 illustrates mean PHQ-9 scores, among all PHQ-9 scores available, over months

since patients’ baseline visit, grouped by the total length of time patients were under treat-

ment in BHA. We would like to be able to comment on how the length of time under treat-

ment ultimately affects the overall trajectory of depression symptoms, and by controlling for

the general timing of treatment termination we suspect there are differences in depression

symptom trajectories based on length of follow-up. For example, we note that among those

patients who terminated treatment within the first six months, PHQ-9 scores decreased rel-

atively steadily, with the overall average reaching the clinical benchmark of PHQ-9 < 10 by

the third month and ultimately falling below this threshold by the sixth month. We contrast

this with patients who terminated treatment between 7-12 months, 13-18 months, and after

that year-and-a-half mark, where the average PHQ-9 score reached the clinical benchmark

of 10 progressively later (at 4, 5, and 9 months, respectively).

While this kind of subset is helpful in a preliminary visualization of longitudinal data, it

ultimately falls short in accuracy and interpretability. We might be concerned about how

many PHQ-9 scores contribute to the mean calculations each month or suspect that some

of the noise among those who terminated after 18 months is due to the relative sample size.

We would like to be able to obtain parameter estimates in a longitudinal analysis that not

only account for length of time under treatment but tell us something about the relationship

between depression symptoms and risk of treatment termination.

Additionally, outcome measurements may not be collected at every clinical observation,

either by design, clinican discretion, or other determination. Figure 2.2 provides a compar-

ison of total patient observations and total outcome measurements collected for a random

sample of 10 patients under treatment in BHA. Again, notice the significant inter-patient

variation in the timing and frequency of the outcome measurements, and the implications this

could have in the ability to comment on the impact of treatment on patients symptoms over

the course of follow-up. This figure also illustrates how much information (e.g. the patients’

observation times) is ignored in analyses that only focus on the outcome measurements.
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Figure 2.1: Mean PHQ-9 scores among all available at each month of follow-up, subset by
total length of follow-up.

Even if the timing of outcome measurements are predetermined, there are numerous

reasons why there still may be inconsistencies between patients. Deciding which outcome

measurements to use to assess change over time can introduce unforseen complications,

and can fail to accurately describe symptom trajectories over the course of follow-up. In

the example given in Section 2.3, using patients’ last-available PHQ-9 score might mean
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Figure 2.2: Observation times and PHQ-9 scores for a random sample of 10 patients under
treatment in BHA.
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averaging scores taken at meaningfully different follow-up times (as evidenced in Figure 2.2)

and our expectations of changes in depression symptoms vary depending on time spent in

treatment.

For a specific example, in a recent paper we used logistic regression to assess treatment re-

sponse and the presence of depression symptom remission in the first six months of treatment

in BHA [1]. The findings suggest important clinical realities, including the impact of comorbid

trauma symptoms and suicidal ideation among patients receiving treatment for depression.

However, the final analytical sample represents only a portion of patients present in BHA

at the time of analysis and uses only a fraction of the total information available for those

patients. Figure 2.3 illustrates the construction of the analytical dataset, with the flowchart

on the left describing the steps taken to get from the total sample of patients with a baseline

visit to the sample of patients with two PHQ-9 scores in the first six months. The chart on

the right is a depiction of the corresponding reduction in total available information used,

primarily due to ignoring clinical observation times that lacked an outcome measurement.

We note that we originally had 63,521 observations corresponding to 7,545 medical record

numbers (MRNs), and that we arrived at 7,953 observations corresponding to 615 MRNs

once we limited on date, symptomatology at baseline, and the requisite follow-up PHQ-9

score within the first 6 months. Our objective is to include as much of this available informa-

tion as possible in our analyses, with the ultimate goal of obtaining unbiased estimates that

accurately describe patients’ symptom trajectories that can be used to describe the totality

of patients’ treatment experience.
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CHAPTER 3

Three-Part Shared Random Effects Model for EHR

Data

3.1 Background

Preliminary efforts to assess longitudinal covariates while simultaneously evaluating their

effect on time-to-event outcomes led to the identification of joint models as a method of

accounting for informative censoring and established that considering a covariate over time

and concurrently relating it to disease risk reduced parameter estimate bias due in part to

informative censoring [36]. Subsequent work continued to demonstrate the potential biases

introduced by ignoring dependent terminal events in modeling longitudinal outcomes [37]. Al-

though much of the early literature relating repeated measures and survival assumed nonin-

formative observation times, joint models in the form of shared frailty models were identified

as an efficient means of simultaneously considering two correlated survival processes. This

allowed for the modeling of associations between recurrent events and terminal events, like

in the case of repeated hospitalizations and survival among dialysis patients, or HIV-positive

patients [13, 38].

As methods relating recurrent events, repeated measures, and/or censoring developed,

researchers began to adapt these methods for implementation in more readily available sta-

tistical software, like WinBUGS and SAS. While the use of WinBUGS may offer some

programmatic advantage over expectation-maximization (EM) programming [39], it still re-

quires a level of knowledge in Bayesian statistics that is not standard among clinical data
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analysts. By estimating unspecified baseline hazard functions using Weibull, exponential, or

other parametric functions including piecewise constant functions, resulting fully parametric

frailty or shared frailty models can be fit using Gaussian quadrature estimation methods and

thus statistical software like SAS and, in particular, SAS’s NLMIXED procedure [40]. Esti-

mates obtained through use of Gaussian quadrature methods using parametric model spec-

ifications were demonstrated to be comparable to nonparametric estimates using the Monte

Carlo EM (MCEM) method, while maintaining the advantage of being more accessible [13].

Whereas other platforms may rely on a depth of algorithmic and Bayesian programming

ability, implementation using the SAS NLMIXED procedure (Proc NLMIXED) provides

empirical Bayes estimates of random effects without requiring the user to possess more spe-

cialized knowledge. Additional benefits of Proc NLMIXED include familiar regression-based

parameter estimates and model output, and programmatic requirements that are compatible

with applied settings.

Utilizing Gaussian quadrature techniques, Liu et al. (2008) [16] proposed a three-part

shared random effects model relating informative observation times, repeated measures, and

dependent terminal events, applying the model to hospitalizations and medical cost-accrual

data in heart failure patients with disease-related mortality. They echoed previous work and

demonstrated via a simulation study that ignoring dependencies between these three pro-

cesses introduced biases in parameter estimates. Additional literature continued to illustrate

the practicality of parametric assumptions, particularly in instances where the longitudinal

repeated measures were of primary interest [41]. Alongside the adaptation of methods within

the framework of standard statistical software packages, some concurrent and subsequent

methods proposed the relaxation of certain distributional assumptions, like the Poisson dis-

tributional assumption for recurrent events, and instead advocated for the use of semipara-

metric specifications for greater flexibility [42–44]. However, the tradeoff for distributional

flexibility is again a reliance on MCEM methods, which can unnecessarily complicate imple-

mentation and create programmatic and computational barriers not conducive to answering
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clinical questions in an applied setting.

3.2 Defining a Three-Part Shared Random Effects Model

Motivated by the objective of developing a model suitable for EHR data in the applied

clinical setting, we demonstrate an extension of the three-part shared random effects model

proposed by Liu et al. (2008) [16] and apply it to observational EHR data. To differentiate

independent terminating events from terminating events that depend on patients’ previous

observation times and/or their repeated measures, we propose use of an inverse cumulative

hazard function estimated from a two-part shared random effects model relating informative

observation times and longitudinal repeated measures. We are able to predict whether

patients did or did not have sufficient time for another clinical observation prior to the end of

our follow-up window based on their individual visit intensities, and am then able to apply

the proportional hazards model often used for time-to-death to model time-to-treatment

cessation.

3.2.1 Model Notation

Borrowing notation used by Liu et al. (2008) [16], we let Tij denote the jth informative

observation time for patient i, where i = 1, ..., n and j = 1, ..., ni. We define Nij(t) =

I(Tij ≤ t), an indicator function for recurrent events (henceforth referred to as clinical

observations), such that Ni(t) = ΣjNij(t) denotes the total number of clinical observations

for patient i occurring at or before time t. Repeated measures, Yij, are only observed in the

presence of a clinical observation, namely when dNij(t) = 1, but are not observed at every

observation. Specifically, some proportion of potential repeated measures observations are

effectively hidden by a mechanism independent of the longitudinal process and are assumed

to be missing completely at random. Thus, we assume that conditional on the occurrence

of a clinical observation the probability of observing a repeated measure is independent of
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underlying patient outcomes process.

In the case of directly observed independent and dependent terminal events, follow-

up time for patient i is stopped at Xi = min(Ci, Di), the minimum of the independent

and dependent termination times, Ci and Di, respectively. To indicate the presence of a

dependent terminal event, we define ∆i = I(Di ≤ Ci), where I(·) is an indicator function.

Using this notation, we define a three-part shared random effects model as follows:

1. A frailty model for the clinical observations process, denoted by ri(t):

ri(t) = r0(t)exp(wR
i β + ui) (3.1)

2. A mixed effects model for the repeated measures process, denoted by yij:

yij|(dNij(t) = 1) = ziα + tijκ+ γ1ui + vi + eij (3.2)

3. A proportional hazards model for the terminal event process, denoted by λi(t):

λi(t) = λ0(t)exp(wC
i η + γ2ui + γ3vi) (3.3)

where {α, β, η} are unknown parameters and the coefficients associated with the covariate

vectors wR
i , zi, and wC

i , for informative observation times, repeated measures, and termi-

nation, respectively. Likewise, {κ} is an unknown parameter and represents the coefficients

associated with the longitudinal time vector tij , the contents of which depend on the tem-

poral specification. The baseline hazard function for clinical observations is given by r0(t),

and for dependent termination by λ0(t).

Two random effects, ui and vi, are included to account for associations between informa-

tive observation times, repeated measures, and dependent termination. Repeated measures

depend on clinical observation times via the random effect ui, while termination depends
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on observation times and repeated measures through both ui and vi. The unknown pa-

rameters {γ1, γ2, γ3} are the coefficients on the shared random effects between informative

observation times and repeated measures, informative observation times and termination,

and repeated measures and termination, respectively. Also of note, ui and vi are assumed

to be independent of each other, with ui ∼iid N(0, σ2
u) and vi ∼iid N(0, σ2

v). We also as-

sume eij ∼iid N(0, σ2
e), though this model structure can accommodate more complicated

within-subject dependencies and correlations between random effects.

Following previous assumptions [16, 40], we propose the use of piecewise constant baseline

hazard functions to estimate r0(t) and λ0(t). A piecewise constant baseline hazard function

with a sufficient number of nodes has been found to be a satisfactory approximation of

the true underlying baseline hazard [45] and the resulting parametric model can be fit using

Gaussian quadrature techniques and thus standard statistical software packages like SAS

Proc NLMIXED. Nodes can be selected a priori or based on the data itself, and can be

defined as evenly spaced intervals, quantiles, or other data-driven timepoints. For specific

notation, see Section 3.3. Expected convergence time in Proc NLMIXED depends on model

specifications including minimum number of iterations and accuracy of parameters’ starting

values, as well as size of the dataset.

3.2.2 Likelihood Functions

Specification of the joint likelihood function is of particular importance when implementing

a shared random effects model in Proc NLMIXED, as users can specify their own likelihood

functions, allowing for additional parametric distributional flexibility.

Under the assumption that the processes described in equations (1)-(3) are independent

given the random effects ui and vi, again following the notation of Liu et al. (2008) [16] the

joint likelihood for the ith patient is:
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Li =

∫ ∫
lAi l

B
i l

C
i p(ui) p(vi) dui dvi (3.4)

where p(ui) and p(vi) are the density functions for the random effects ui and vi, respec-

tively.

The likelihood contribution for clinical observations for patient i is

lAi =

ni∏
j=1

[exp(wR
i β + ui)r0(tij)]

δij×

exp[−
∫ xi

0

exp(wR
i β + ui)r0(t)dt]

(3.5)

where δij is an indicator of a clinical observation at time tij, and xi is the total observed

follow-up time for patient i.

The likelihood contribution for the repeated measures at associated observation times for

patient i is

lBi =
1

(
√

2πσe)ni
× exp[− 1

2σ2
e

ni∑
j=1

e2
ij] (3.6)

where eij = Yij − ziα− tijκ− γ1ui − vi.

The likelihood contribution for the terminal event for patient i is

lCi = [λ0(xi)exp(w
C
i η + γ2ui + γ3vi)]

∆i×

exp[−
∫ xi

0

exp(wC
i η + γ2ui + γ3vi)λ0(t)dt]

(3.7)
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where ∆i = I(Di ≤ Ci), an indicator for the presence of a dependent terminal event.

3.3 Piecewise Constant Baseline Hazard Functions

We divide the follow-up time for clinical observations in to M1 intervals, here defined by

every M th
1 quantile, and denoted by KR

1 , KR
2 , ...,KR

M1
, with KR

0 = 0 or the earliest observed

event time. We denote the piecewise constant baseline hazard by r̃0(t):

r̃0(t) =

M1∑
m=1

r0mI(KR
m−1 < t ≤ KR

m) (3.8)

with a cumulative baseline hazard of:

R̃0(t) =

M1∑
m=1

r0mmax(0,min(KR
m −KR

m−1, t−KR
m−1)) (3.9)

where r0m are a set of M1 unknown constants to be estimated.

Similarly, we divide the follow-up time for dependent terminal events into M2 intervals,

defined by every M th
2 quantile, and denoted by KC

1 , KC
2 , ...,KC

M2
, with KC

0 = 0 or the smallest

observed dependent terminal event time. We denote the piecewise constant baseline hazard

by λ̃0(t):

λ̃0(t) =

M2∑
m=1

λ0mI(KC
m−1 < t ≤ KC

m) (3.10)

with a cumulative baseline hazard of:
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Λ̃0(t) =

M2∑
m=1

λ0mmax(0,min(KC
m −KC

m−1, t−KC
m−1)) (3.11)

where λ0m are a set of M2 unknown constants to be estimated.

3.3.1 Gaussian Quadrature

As mentioned previously, the approximation of the baseline hazards using piecewise constant

hazard functions results in a parametric joint model that can be fit using Gaussian quadrature

techniques and thus Proc NLMIXED in SAS. Other parametric specifications for the baseline

hazard functions could be used, such as exponential or Weibull, but we find that piecewise

constant functions are a sensible distributional assumption for our eventual application to

BHA data.

Moreover, previous research with similar joint models has shown that a piecewise constant

baseline hazard function with a suitable number of nodes is a sufficient approximation of

the true underlying baseline hazard distribution. In shared random effects models that

focus on interpreting the impact of covariates, baseline hazards are something of nuisance

parameters so approximations are sufficient in the prioritization of ease of implementation

and generalizability.

Although we do not make it an explicit part of our simulation study results in the

following section, we will note that we simulated the data under an assumption of a Weibull

distribution for the baseline hazard functions for both observation and termination times.

We use piecewise constant hazard functions when we implement the shared random effects

models and we continue to see sufficiently low biases and high coverage probabilities for our

parameter estimates, corroborating the functional use of piecewise constant hazard functions

to estimate true underlying distributions in this model formulation.
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3.4 Simulation Study Using Inverse Cumulative Hazard to Esti-

mate Dependent and Independent Termination

A distinguishing factor between this and previous work is the lack of precisely observed ter-

minal events, a common occurrence in EHR data. Depending on the nature of treatment,

but particularly relevant in instances of treatment in response to emergent medical condi-

tions, we may be able to assume that many patients’ observations cease due to a dependent

terminal event, like a symptom-based referral or recovery/remission, but the corroborating

information often goes unnoted or exists only in non-systematic forms. However, even if they

are unobserved, incorporating dependent terminal events in a shared random effects model

remains important in accurately evaluating repeated measures trajectories.

We explored the use of a reduced two-part shared random effects model between in-

formative observation times and repeated measures to estimate the time between patients’

last-recorded and next-hypothetical clinical observations. We obtained parameter estimates

from this two-part model, including population-level estimates for r0(t) and coefficients for

the covariate vector wR
i , and individual-level empirical Bayes estimates for ui, to calculate

this inter-observation time using an inverse cumulative hazard function.

Use of the inverse cumulative hazard function in this way is essentially inverse transform

sampling, which is a method for generating a sample from a probability distribution through

knowledge of its cumulative distribution function. Using generic notation, to generate sur-

vival times using an inversion of the cumulative hazard function we first let X be a random

variable with a cumulative hazard fucntion FX(x) = 1− exp(−H(x)). Then:

1. Generate a random number u from U ∼ Unif(0, 1).

2. Find F−1
X (x).

(a) Using the cumulative hazard above, this yields F−1
X (x) = H−1(−log(1− x)).

3. Calculate X = F−1
X (u).
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(a) Using the equation in (a), this gives X = H−1(−log(1− u)).

Because −log(1− U) ∼ Exp(1), note that it is possible to apply the inverse cumulative

hazard function to an Exp(1) random variable.

Like the primary three-part shared random effects model, we made the distributional

assumption in this reduced two-part model formulation that the baseline hazard function

for observation times would be piecewise constant. Again using generic notation, inverting

a piecewise constant cumulative hazard function with two knots might look like:

h(t) =


f1, 0 ≤ t ≤ t1

f2, t1 < t ≤ t2

f3, t > t2

with a corresponding cumulative hazard function of:

H(t) =


f1t, 0 ≤ t ≤ t1

f1t1 + f2(t− t1), t1 < t ≤ t2

f1t1 + f2(t2 − t1) + f3(t− t2), t > t2

An inversion of this cumulative hazard function gives:

H−1(x) =


x
f1
, 0 ≤ x ≤ f1t1

t1 + x−f1t1
f2

, f1t1 < x ≤ f1t1 + f2(t2 − t1)

t2 + x−f1t1−f2(t2−t1)
f3

, x > f1t1 + f2(t2 − t1)
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where the f ’s represent a generic functional form. An extension with additional knots

follows the same form. Evaluation of this inverted cumulative hazard function yields survival

times we can use to estimate the time between patients’ last-recorded observation and their

next-hypothetical observation.

After predicting a next-hypothetical visit time for each patient, relative to their baseline

visit time, we compared this to a predetermined independent censoring time (e.g. a data

extraction time) to distinguish between patients who had sufficient time to return for another

clinical observation but did not, and were hence considered dependently terminated, and

patients who did not have sufficient time to return between their last-recorded observation

and the independent censoring time, who were hence considered independently terminated.

Assuming Tini
represents patient i’s last-recorded observation time and Ti(ni+1) their next

hypothetical observation time, we update the indicator function for a dependent terminal

event (defined in Section 3.1) such that ∆̂i=I(Ti(ni+1) ≤ Ci) and follow-up time such that

X̂i=∆̂i × Di + (1 − ∆̂i) × Ci. Users might make small adjustments to the Ci boundary to

adjust for certain dataset characteristics as well as some sampling uncertainty introduced

using this method. We will refer to this as the “inverse cumulative hazard method”.

To demonstrate the accuracy of this described method, we simulated G=200 dataset

replicates and predicted dependent and independent termination, then ran the proposed

three-part shared random effects model. We calculated average parameter estimates, as well

as percentage biases and coverage probabilities across all replicates. We compared these

results to those obtained using known terminal event types, as well as with results obtained

by treating all terminal events as independent, effectively setting γ2 = γ3 = 0.

As a näıve contrast, we predicted termination type by comparing each individual’s longest

interval between two consecutive observations to the amount of time between their last-

recorded observation and the independent termination time. Those whose longest time

between two observations exceeded the time between their last observation and the inde-

pendent termination time were considered independently terminated, while all others were
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considered dependently terminated. We will refer to this as the “longest visit gap method”.

As a reference, original notation changes to accomodate the longest visit gap method in

the following ways. Continuing to assume Tini
represents patient i’s last-recorded obser-

vation time and Ci the independent censoring time, the indicator for a dependent termi-

nal event is now ∆̂i=I(maxi(Ti2 − Ti1, ..., Tij − Tij−1, ..., Tini
− Tini−1) ≤ Ci − Tini

). With

this update to the notation for ∆̂i, we continue to determine patient i’s follow-up time by

X̂i=∆̂i × Di + (1 − ∆̂i) × Ci. Although we will focus on the method using the inverse cu-

mulative hazard function, we wished to provide the corresponding notation for the longest

visit gap method as there are scenarios in which this simpler approach may be sufficient or

even preferrable.

Referencing equations (1)-(3) in Section 3.1, we define zi, w
R
i , and wCi to be the same

fixed binary covariate at the individual level that can take values of 0 or 1 each with a

probability of 0.5. We set β=1, η=1, and α = (10, 1)T , while we set κ = 0.2. We set the

error term eij ∼ N(0, σ2
e) with σ2

e = 1. For each individual, a baseline repeated measure is

defined by yi0 at time ti0, and a repeated measure is observed at each subsequent observation

time. Repeated measures are not observed at either independent or dependent terminal event

times. The random effects ui ∼iid N(0, σ2
u) and vi ∼iid N(0, σ2

v) with σ2
u = 1 and σ2

v = 0.5,

and further assumed (γ1, γ2, γ3)T = (1.5,−0.5, 0.5)T .

We simulated both informative observation and dependent termination times under

Weibull distributional assumptions. For the baseline hazard for informative observation

times, we set the shape parameter to 1 and the scale parameter to 0.01, and for the base-

line hazard for the dependent terminal event we set the shape parameter to 2.25 and the

scale parameter to 0.00265. Lastly, we used 360 + Uniform(0,6) to simulate dataset-wide

independent termination times. These parameters were chosen to produce data on the same

general scale as the observed data in the following application in Chapter 4. The estima-

tion method in Proc NLMIXED assumes piecewise constant baseline hazard functions, but

this and prior work demonstrates the functionality of piecewise constant baseline hazard
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functions as an approximation of the true underlying distribution. We used 5 quantiles to

define the nodes of the baseline hazard function for informative observation times in the

2-part model used to obtain estimates for the inverse cumulative hazard, and 10 quantiles to

define the nodes of the baseline hazard functions for both the informative observation and

dependent termination times in the full 3-part model.

Across the 200 dataset replicates, use of both termination prediction methods produced

similar results in terms of classification accuracy, with an average of 85% of termination

types correctly classified using either method. A notable difference lies in which direction

each method tends to misclassify. Among individuals for whom the method of prediction

misclassified their termination type, the inverse cumulative hazard method favored classify-

ing individuals as dependently terminated when they were truly independently terminated,

and the longest visit gap favored classifying individuals as independently terminated when

they were truly dependently terminated. This particular finding may partially depend on

defined parameter values, which were chosen to loosely coincide with the observed data in our

following application. The average classification rates using the inverse cumulative hazard

method are depicted in Figure 3.1.

Results from the shared random effects models across the 200 dataset replicates using

the four terminal event scenarios are found in Table 3.1. Predicting termination type using

the inverse cumulative hazard method resulted in a percentage bias of 10.0% and a coverage

probability of 87.5% for γ2. This finding is not unreasonable, as the proposed method is an

estimation of terminal events that relies on results from a two-part model between informative

observation times and repeated measures, which was already argued to be potentially biasing

when used in place of a three-part model. However, the tradeoff between a marginal bias in γ2

and being able to incorporate the necessary information to use a proportional hazards model

for terminal events, and thus a three-part shared random effects model, favors the latter. Bias

is largely limited to γ2, and coverage probabilities of the remaining parameters, including the

covariate effects, are all larger than 90%. Predicting termination type using the longest visit
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Figure 3.1: The average termination classification rates using the inverse cumulative hazard
method across the 200 dataset replicates. Correct classification is denoted in green, and
incorrect classification is denoted in red.

gap method did result in additional, and somewhat larger, percentage biases, including 22.4%

for γ2, with a coverage probability of 85.5%, and 22.3% for γ3, with a coverage probability

of 86.0%. The percentage biases on the remaining parameters were also relatively small,

with the largest being 7.1% for η, although the accompanying coverage probability is 91.5%.

Treating all terminal events as independent resulted in the lowest coverage probabilities for

the associated parameters, including 78.0% for γ1, 81.5% for σ2
u, 78.5% for σ2

v , and 89.0% for

κ. Although not included here, ignoring terminal events altogether resulted in even greater

bias and reduced coverage probability for the associated parameters.

Predicting termination using the inverse cumulative hazard method is notably more pre-

cise, in terms of parameter estimates with minimal percentage bias and maximal coverage

probability, than treating all terminal events as independent, with performance approaching

that of the oracle scenario. It was also somewhat better than the alternative prediction sce-

nario presented, though even this more näıve method continued to be preferrable to treating

all terminal events as independent. There may be situaitons in which even a simple method

of independent/dependent termination discrimination, like the longest visit gap method pre-
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sented here, is a sufficient solution to unobserved terminal events. We present our application

using the inverse cumulative hazard method.

We wrote a SAS macro that can be used to implement the described model, and provide

a description and sample implementation in Chapter 7 and the macro code in the Appendix.
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CHAPTER 4

Application of Three-Part Shared Random Effects

Model to BHA Data

4.1 BHA Sample Description

To demonstrate performance of this shared random effects model on EHR data with pre-

diction of independent and dependent terminal events, we apply it to data obtained from

Behavioral Health Associates (BHA), a collaborative primary care and behavioral health

program part of the UCLA Health System. Patients enter BHA following a referral from

their UCLA Health primary care provider (PCP). Data include patients who initiated a new

treatment episode and had an associated baseline visit date between March 2013 and Octo-

ber 2019. We included all visits corresponding to each patient’s first new treatment episode

and excluded visits labeled for subsequent episodes. Patient data were obtained from two

sources: CareConnect, UCLA’s EHR system, and the Behavioral Health Check-up (BHC), a

web-based platform integrated within the EHR which consists of electronic behavioral health

data collected from UCLA patients who attended at least one visit to a BHA clinic. Infor-

mation from CareConnect and the BHC were linked via patients’ medical record numbers

(MRNs), a unique patient identifier, and only patients with a record in both databases were

included in the analytical sample.

The sample was limited to adult patients ≥ 18 years of age at the time of their first visit

to BHA for a new treatment episode after March 2013. We included only those patients

that had been seen at BHA with a visit labeled as “New”, which became their baseline visit,
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and excluded all patient encounters not listed as “completed” in the data. We aimed to

restrict the sample to a single treatment episode for each patient consisting of a patient’s

baseline visit and all follow-up visits that were a result of the same referral and for the same

behavioral health condition. To do so, we excluded any subsequent visits labeled as “New”

occurring more than 180 days after the patient’s previously-recorded visit to BHA. Since

this paper focuses on depression as the primary outcome, the sample includes those patients

with a PHQ-9 score ≥ 10 at baseline as a proxy for those receiving some degree of depression

treatment in BHA.

To allow for longitudinal evaluation of symptoms in all patients, the analytical sample

was further restricted to those with a baseline PHQ-9 score and at least one additional

PHQ-9 score during follow-up. This resulted in exclusion of a substantial number of patients

with only a baseline PHQ-9 score whom we assumed to be systematically different from the

target population of patients receiving treatment in BHA (this point is further addressed

in the discussion). It is also important to note that that our repeated measure, patients’

PHQ-9 scores, is not observed at every clinical observation. Specifically, some proportion of

our potential repeated measures are effectively hidden by a mechanism independent of the

longitudinal process and are assumed missing by design based on the considerations noted

in Section 5.1. Thus, we assume that conditional on the occurrence of a clinical observation

the probability of observing a repeated measure is independent of the underlying outcomes

process.

Lastly, because our primary clinical interest is in patients’ depression symptom trajec-

tories under treatment in BHA, we restricted our follow-up time to 1.5 years (or 548 days)

following a patient’s baseline visit. This decision addresses concerns regarding sparsity in

both clinical observations and repeated measures over timeframes extended beyond 1.5 years

and focuses our analyses on short- and moderate-term treatment effects more accurately re-

flecting the clinical intention of the BHA treatment program.

The resulting analytic dataset contained 949 patients and 10,590 observations with a
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median of 9.0 (IQR = 8.0) visits to BHA during the first year-and-a-half of treatment. The

median follow-up time from baseline to a terminal event was 339.0 days (IQR = 367.0).

Summary statistics of BHA visit information can be found in Table 4.1.

Table 4.1: Summary statistics of model-related components across patients’ first 548 days
under BHA treatment.

Mean (SD)1 Median IQR2

First-Available PHQ-9 Score 15.85 (4.53) 15.00 7.00
Last-Available PHQ-9 Score 10.48 (6.39) 10.00 10.00
Visits to BHA (Overall)3 11.16 (8.03) 9.00 8.00
Visits to BHA Physician 4.92 (3.90) 4.00 6.00
Visits to BHA Therapist 5.54 (7.61) 2.00 9.00
Time in Treatment 344.63 (176.14) 339.00 367.00

1 SD: standard deviation
2 IQR: interquartile range
3 Some BHA visits are missing a provier-type label

4.2 Model Specification for BHA Data

In the longitudinal model, we control for demographic variables age, marital status, gender,

and race/ethnicity, where the average age of our sample is 41.2 years (sd = 14.8) and 34.4%

are married. Our sample is also majority female (67.5%) and white/Caucasian (57.9%). Pre-

vious research suggests that baseline trauma symptoms and baseline suicidal ideation are

significantly associated with decreased odds of depression symptom remission over the first

6-months of depression treatment in BHA [1], so we include baseline behavioral health con-

dition indicators for suicidal ideation (positive endorsement on PHQ-9 Item 9) and trauma

symptoms (PCL > 50). Other covariates include an indicator for baseline anxiety (GAD-7

≥ 10), as well as an indicator for whether patients saw a physician, compared to a therapist,

for the majority (> 50%) of their visits to BHA.

Within our sample, 72.2% of patients had comorbid anxiety at baseline, 40.4% had some

suicidal ideation in the weeks prior to their baseline visit, and 28.8% had comorbid trauma
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symptoms, while 50.6% saw a physician for the majority of their visits. To test the hy-

pothesis of differential depression treatment response by comorbid trauma symptoms [1], we

also included interactions between trauma symptoms and our time variables to allow for

potentially divergent depression symptom trajectories. We include the indicator for whether

patients saw a physician for > 50% of their visits as a covariate in both the informative ob-

servation times and dependent treatment termination models, in addition to the longitudinal

outcomes model.

Figure 4.1: Raw depression symptom trajectories among patients under treatment in BHA.
LOESS curves are shown for patients with and without comorbid trauma symptoms at
baseline, and overall (purple curve). Vertical bars represent 90, 180, and 365 days since
baseline.

Upon consideration of the BHA treatment and assessment schedule, and examination of

unadjusted depression symptom trajectories over follow-up, we ultimately determined that
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a piecewise linear temporal specification for the time variable within the repeated measures

mixed effects model was most appropriate. As mentioned previously, the rating scales are

meant to be administered at baseline and again every three months, meaning that the pres-

ence of repeated measures should roughly correlate with 90 and 180 days post-baseline. Our

data also support the clinical experience that many patients stay in treatment longer than

the intended six months, so we added an additional knot at 365 days, with the increased

spacing reflecting longer-term stay but with some decrease in visit and repeated measure

intensities. Figure 4.1 provides a visual depiction of where these knots fall relative to de-

pression symptom trajectories over the course of follow-up, with the green and red loess

curves representing the trends among patients with and without comorbid baseline trauma

symptoms and the purple curve the overall trend. We used 5 quantiles to define the nodes of

the baseline hazard functions for both the informative observation and dependent terminal

event times based on inspection of both the intensity of clinical observations and dependent

terminal event times over the follow-up window.

We use the inverse cumulative hazard, calculated from estimates obtained by fitting a

two-part shared random effects model between informative observation times and repeated

measures, to predict dependent and independent termination in our sample. Restricting our

follow-up time to 1.5 years, we define C ′i = min(549, Ci) such that ∆̂i=I(Ti(ni+1) < C ′i).

Since exact termination time is not recorded, we use knowledge of the BHA program to

assign a termination time of one day after patients’ last recorded visit to BHA. We consider

this assumption equivalent to decisions made during a patient’s last visit, whether it be in

response to their symptomatology or other clinical observations, that resulted in some form

of termination of care in BHA. This suggests we update the definition of our follow-up time

to X̂i=∆̂i × (Tini
+ 1) + (1− ∆̂i)× C ′i.
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4.3 Results of Application to BHA Data

The parameter estimates from this application are shown in Table 4.2, while contrasts eval-

uating depression symptom trajectories can be found in Table 4.3. Overall, time under

treatment in BHA is significantly associated with a decrease in depression symptoms, rela-

tive to baseline, regardless of comorbid trauma status with significant improvement evident

in trajectories across both 1-year (p=0.003) and 1.5-year (p=0.002) follow-up windows. Pa-

tients with and without comorbid trauma symptoms had a significant improvement in de-

pression symptoms in the first 3 months of treatment, with patients with comorbid trauma

symptoms entering BHA with more severe depression (α5 = 2.935, p < 0.001) but also

demonstrating significantly greater improvement than those without comorbid trauma symp-

toms (p < 0.001). Both patient groups had a significant change in their trajectories at the

3-month changepoint (ps < 0.001) and a subsequent divergence in trajectories between 3

and 6 months (p = 0.005). Patients without comorbid trauma symptoms demonstrated a

significant leveling-off and no significant improvement between 3-6 months, while patients

with comorbid trauma symptoms displayed a temporary worsening of depression symptoms

(est. = 0.020, p=0.022). Patients with comorbid trauma symptoms had another significant

change in trajectory at the 6-month mark (p=0.020) and consequently maintained a gradual

improvement in depression symptoms for the remainder of follow-up.

Figure 4.2 illustrates the described temporal trends using estimated fixed effects means,

evaluated at sample averages listed in Section 4.2. We also note that by the 3-month follow-

up mark, the estimated PHQ-9 means regularly hover around 10, often considered a clinical

threshold for depression treatment “response”, among patients without comorbid trauma

symptoms. However, it takes roughly 1.5 years for the estimated means among patients

with comorbid trauma symptoms to reach a similar threshold.

Comorbid baseline behavioral health conditions and other patient characteristics were

also significantly associated with patients’ depression symptom trajectories. In addition to
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Figure 4.2: Estimated PHQ-9 means at 0, 90, 180, 365 and 548 days, evaluated using sample
averages of covariate values. Horizontal line at 10 represents clinical threshold for treatment
”response”, or ”mild” depression symptoms.

trauma, the presence of comorbid baseline anxiety (α6 = 2.160, p < 0.001) and suicidal

ideation (α7 = 2.440, p < 0.001) were both associated with higher PHQ-9 scores and thus

more severe depression symptoms. We did not find race/ethnicity, age, gender, or marital

status to be significantly associated with PHQ-9 scores, however this could be due in part

to the demographic homogeneity of our sample. We did find majority provider (physician

vs. therapist) to be significantly associated with all three processes. Patients who saw a

physician for the majority of their visits to BHA had significantly lower intensity of visits (β

= -0.904, p < 0.001), more severe depression symptoms (α8 = 0.564, p=0.030), and decreased

risk of dependent treatment termination (η = -0.569, p < 0.001) compared to those who saw

a therapist for the majority of their visits.

Further, we note that the coefficients on the shared random effects are all significant,
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supporting our use of this joint model. Estimates suggest that observation times are indeed

informative, and that patients with a greater intensity of visits to BHA tended to have

more severe depression symptoms (γ1 = 2.184, p < 0.001). Termination depended on both

the observation times and PHQ-9 scores, with results suggesting that patients with a greater

intensity of visits to BHA (γ2 = 0.591, p < 0.001) and/or patients with less-severe depression

symptoms (γ3 = -0.058, p=0.007) had a greater risk of dependent treatment termination.

Lastly, the variance components for each of the random effects suggests heterogeneity for

both the patient observation times (σ2
u = 0.101, p < 0.001) and the repeated PHQ-9 scores

(σ2
v = 7.473, p < 0.001).

For model checking, we used the ‘predict’ statement in Proc NLMIXED in calculation of

residuals including the empirical Bayes estimates for the random effects. Altogether, we did

not find any anomalies of note upon inspection of residuals. As an example, we provided

plots of repeated measures residuals by both time and predicted value in Figure 4.3. In the

ordered residual plot, we note bands at 0 and 90 days, common BHC assessment times, and

otherwise note no discernable patterns. Although we see a striated diamond shape in the

residuals vs. fitted plot, we assert this is largely due to the floor and ceiling of our repeated

measure, which only takes integer values between 0 and 27, and the common predicted values

falling towards the middle of this range as evidenced by the provided marginal histogram.

4.4 Discussion

We were able to demonstrate an adaptation and extension of a three-part shared random

effects model to better evaluate clinical outcomes in the presence of both informative obser-

vation times and dependent termination when data is obtained from EHR. The extension

included a method of estimating independent and dependent termination when such informa-

tion goes unrecorded in medical records using an inverse cumulative hazard function. Both

the three-part shared random effects model and the inverse cumulative hazard method can
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Figure 4.3: Ordered residual plot with LOESS fit to describe trend (left) and residual vs.
fitted plot with corresponding marginal histogram of predicted values (right).

be implemented in SAS with basic assumptions that do not impact the ability to accurately

interpret covariate effects on patients’ outcome trajectories.

The selected application provided a straightforward example of a range of different cus-

tomizations that can be incorporated into this model: approaches to account for unknown

termination type and time, piecewise linear modeling of the repeated measures trajectory,

piecewise constant baseline hazards, and incorporation of categorical and continuous co-

variates. The hope is for a wider-spread use of such models by applied researchers, with

knowledge that they are flexible enough to meet the unique needs of any given research

setting. As of 2017, 85.9% of office-based physicians in the United States used some form

of electronic health or medical records [2]. As the adoption of EHR increases and their use

becomes more systematic, it is expected that medical-based research will increasingly rely

on data from these electronic sources. Given the susceptibility of EHR data to structural

complexities, including issues of representativeness, considering and accounting for poten-

tial dependencies between patient observations and treatment termination when evaluating

medical outcomes should be commonplace.
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Analytical methods used to address these complexities should also focus on answering

clinical questions, as primary interests regarding medical outcomes in EHR data often in-

clude the ability to draw inference on covariates. This shared random effects model, as well

as use of the inverse cumulative hazard to predict independent and dependent termination,

both allow for situation-specific flexibility in the specification of many model components

including time scale, baseline hazard functions, functional forms of the trajectory, and lon-

gitudinal correlation structures, and the model output emphasizes evaluation of covariate

effects. Moreover, the three-part shared random effects model has been shown to perform

just as well as a reduced model (e.g. a model excluding informative observation times) when

the reduced model is a valid fit to the data [41]. As such, we maintain that shared random

effects models should be a standard analytical approach when considering EHR data as the

tradeoff between ensuring unbiased parameter estimates and the cost to degrees of freedom

typically favors the former in EHR data where sample size is often sufficiently large.

The presented application highlights the benefits of using this model to answer specific

clinical questions and offers a direct extension to a recent short-term evaluation of response

and remission from depression under BHA treatment [1]. Results offer a more holistic eval-

uation of the realized patient treatment experience in accounting for and understanding

dependencies between visits to BHA, time under BHA treatment, and patients’ depression

symptoms. Specifying piecewise linear time allowed for consideration of symptom trajectories

over clinically meaningful follow-up intervals that coincided with symptom reassessments.

The form of the model also makes subsequent treatment-related questions, such as differ-

ences in dosing effects, treatment sessions, and medication management between patients

with and without comorbid trauma, straightforward to evaluate.
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4.5 Limitations and Future Extensions

We acknowledge several limitations in the current model implementation and recognize room

for future work. In the application presented here, patients with only a baseline visit to BHA

were excluded from the final analytical sample. We believe these patients are systematically

different from those who did return for follow-up visits, but also believe that ultimately they

are integral to an accurate description of the entirety of the BHA patient experience. The

following chapter explores an extension of a joint model formulation, namely the inclusion

of a cure fraction, to handle zero-inflation in medical records data. We also did not model

the correlation structure for the longitudinal repeated measures. Future work using this

application may benefit from considering this patient-level correlation.

Use of the inverse cumulative hazard to discriminate between patients who were depen-

dently and independently terminated relies on estimating an inter-event time and using a

cutoff to distinguish the two termination types. While we believe this method is effective,

we are also interested in the comparative fit of a model that uses survival probabilities to

model treatment termination in order to introduce additional flexibility and uncertainty in

predicting dependent treatment termination. The following chapter, in addition to a cure

fraction for zero-inflated data, explores the application of an adaptive cure frailty model to

account for the probability of treatment termination after each successive visit rather than

explicitly predicting treatment termination following the last-recorded patient observation.

Additionally, we know that using the two-part model in predicting independent and de-

pendent termination has the potential for bias which could be addressed through an iterative

approach. Future work might also include changes to the likelihood function to accommo-

date interval censoring which could be a valid alternative to assuming termination occurred

one day after patients’ last-recorded visit, although there are likely tradeoffs in terms of ease

of computation.

Lastly, another extension involves the introduction of time-dependent covariates within
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the longitudinal repeated measures process. The model notation already allows for such

temporally dependent covariates, though implementation and interpretation would rely on

careful consideration of within- and between-subject covariance specifications. While the use

of baseline behavioral health conditions as fixed covariates does have clinical meaning, we

expect that over the course of treatment, particularly extended periods of follow-up, changes

in comorbid symptomatology will have a consequential impact on depression symptom tra-

jectories. We will discuss time-dependent covariates in greater detail in Chapter 6.
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Table 4.2: Parameter estimates from application of three-part shared random effects model
to BHA data using the inverse cumulative hazard method to predict dependent termination.

Parameter Estimate (SE)1 95% CI2 p-value

Informative Observation Times
> 50% visits to a physician -0.904 (0.031) (-0.965, -0.843) <0.001

Repeated Measures
intercept 11.777 (0.495) (10.805, 12.749) <0.001
Demographic Covariates
gender -0.499 (0.271) (-1.029, 0.032) 0.066
age 0.011 (0.009) (-0.007, 0.028) 0.230
marital status -0.450 (0.276) (-0.990, 0.091)) 0.103
race/ethnicity 0.338 (0.260) (-0.172, 0.847)) 0.193
Behavioral Health Covariates
PCL > 50 2.935 (0.375) (2.200, 3.670) <0.001
GAD-7 ≥ 10 2.160 (0.302) (1.567, 2.754) <0.001
suicidal ideation 2.440 (0.266) (1.917, 2.962) <0.001
> 50% visits to a physician 0.564 (0.260) (0.054, 1.074) 0.030
Temporal Covariates
time (days) -0.051 (0.004) (-0.058, -0.043) <0.001
PCL > 50 × time -0.025 (0.007) (-0.039, -0.011) 0.001
(time - 90) 0.042 (0.009) (0.025, 0.059) <0.001
PCL > 50 × (time - 90) 0.054 (0.016) (0.022, 0.087) 0.001
(time - 180) 0.011 (0.008) (-0.004, 0.026) 0.143
PCL > 50 × (time - 180) -0.041 (0.015) (-0.070, -0.012) 0.006
(time - 365) -0.008 (0.007) (-0.022, 0.006) 0.264
PCL > 50 × (time - 365) 0.009 (0.013) (-0.017, 0.035) 0.482

Termination
> 50% visits to a physician -0.569 (0.080) (-0.726, -0.412) <0.001

Model Associations
γ1 2.184 (0.604) (0.999, 3.368) <0.001
γ2 0.591 (0.173) (0.251, 0.931) <0.001
γ3 -0.058 (0.022) (-0.101, -0.016) 0.007

Variance/Covariance
σ2
u 0.101 (0.009) (0.082, 0.119) <0.001
σ2
v 7.473 (0.724) (6.053, 8.894) <0.001
σe 4.197 (0.075) (4.049, 4.344) <0.001

1 SE: standard error
2 CI: confidence interval
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CHAPTER 5

Cure Models for EHR Data

5.1 Background

Medical and health-related research often involves count variables as outcomes of interest.

Moreover, it is common in these applications for the proportion of zero-counts in the data to

be greater than would be expected, leading to heavily right-skewed count data, often referred

to as zero-inflated data. Many traditional analytic approaches rely on assuming data is

normally distributed, but excess zeros remain problematic even after standard normalizing

corrections like log-transformations, and nonparametric solutions, which often rely on ranks

applied to outcome values, have problems with disproportionate ties among the clustered zero

values [46]. Additionally, in many cases understanding and identifying covariates associated

with zero values, or otherwise distinguishing zero from positive values, might hold particular

clinical significance [47].

Zero-inflation does not only apply to standard count data, like defects in manufactur-

ing [48], or continuous-value data, like medical costs associated with treatment for heart fail-

ure [49]. It also applies to survival and failure time data, where recurrent events are of interest,

but a proportion of the study sample never experiences the recurrent event. In medical ap-

plications, the absence of any recurrent events could suggest a “cured” status, and only those

patients who remain “non-cured” after that first event are at risk for future events. An ex-

ample includes patients who receive surgery to remove a tumor, where tumor recurrence is

the recurrent event and long-term follow-up without a tumor recurrence is the “cure”.When

49



a significant proportion of patients are cured after some initial treatment, and thus no longer

at risk for any future events, the population is then composed of a mixture of both cured

and non-cured patients representing different disease or event susceptibilities. This mixture

makes many survival analysis techniques, like Cox proportional hazards models, inapplicable

as they tend to rely on an assumption of equal susceptibility across all persons and that with

infinite follow-up time everyone will eventually experience the event of interest [50].

More generally, zero recurrent events can decompose into structural zeros and random

zeros. A structural zero is otherwise termed a “cured” or an “unsusceptible”, which means

that even with an infinite wait time the event of interest will never occur, while a random

zero, or a “non-cured” or “susceptible”, means that the event of interest will eventually

occur given a long enough wait time [51]. However, depending on the maximum follow-up

time allotted, events among the non-cured may not be observed, with some subjects being

censored before it is possible to determine whether they are truly cured or non-cured.

Cure models can estimate the probability of “cure” among a sample of patients and

can help identify covariates associated with the probability of experiencing no recurrent

events, sometimes referred to as long-term survival. Liu et al. (2016) [51] and Kim (2021) [52]

demonstrate use of a logistic model that can be used to decribe the probability of cure

alongside a joint model relating recurrent and terminal events among the non-cured. In

these cases, the cure can occur after the baseline event, but non-cured individuals cannot

transition into the cured group at a later time as there is no probability of a cure after

subsequent recurrent events. Alternatively, Rondeau et al. (2013) [50] proposed a cure model

capable of considering dependencies between the cure probability and the distribution of

event times among the non-cured. They described a cure frailty model that uses random

effects, much like the three-part shared random effects model described in Chapters 3 and 4,

to account for within-cluster correlation among the “cured” and “non-cured”, and a shared

random effect between the cure probability and the frailty for event observation times such

that patients have some probability of “cure” following each recurrent event.Thus, the cure
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probability definition changes slightly to represent the probability of developing no future

recurrent events after each given event, and I will refer to this formulation as an “adaptive

cure frailty model”. However, neither of these previous methods accounted for dependencies

with a repeated measure, and each relied on explicitly observed cure events, distinguishable

from dependent terminal events when applicable.

5.2 Defining a Cure Frailty Model for EHR Data

We propose both an extension and an application of a cure model: the addition of a cure

fraction to the existing three-part shared random effects model to account for zero-inflated

recurrent events data [51], and use of an adaptable cure frailty model [50] to account for un-

observed treatment termination, essentially replacing the Cox proportional hazards model

previously used for dependent terminal events. While existing literature does use cure frail-

ties in shared random effects models, focus centers on evaluating survival and covariates

associated with disease relapse and long-term cure. While this use is still relevant in appli-

cations to EHR data, there is the an additional interest in evaluating patient outcomes over

time. It is easy to envision many clinical scenarios in which a cure fraction might depend

not only on the intensity of recurrent event times, but also on some longitudinal patient out-

come. Conversely, it is possible to imagine research interests that center around evaluation

of patient outcome trajectories accounting for a cure probability. Cure models have been

used to jointly evaluate survival times and longitudinal measurements [53, 54]. However, our

interest extends beyond single survival times to multiple recurrent event times, a distinct

extension of these previous works.

Objectives in applying a cure frailty model to EHR data are twofold. First, a cure frailty

model is a candidate solution to the issue of unobserved terminal events. Our initial solution

involved estimating survival times between patients’ last-recorded and next-hypothetical

observation time and using this result classify dependent and independent termination. This
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prediction method was an efficient means of modifying EHR data to fit a three-part shared

random effects model with a Cox proportional hazards model for time spent under treatment.

Benefits include the prediction of independent and dependent termination based on the

intensity of previously recorded clinical observations through use of a two-part shared random

effects model between observation times and repeated measures, and the ease of integration of

the inverse cumulative hazard calculations into the three-part shared random effects model

code. Moreover, we found the 85% correct classification rate in the simulation study to

be satisfactory. However, this method has some notable limitations, foremost being its

reliance on a two-part shared random effects model to obtain parameter estimates needed

to calculate the survival times, even though it is already established that reduced models

can yield biased estimates. An adaptive cure frailty model could offer an improvement in

not relying on estimates from this two-part model, in addition to being an iterative and

probabilistic approach.

The second objective in using a cure frailty model is its potential to address the zero-

inflatedness of EHR data. It is possible to use a cure fraction in the existing three-part

shared random effects model to account for the over-abundance of patients with zero re-

current events, and the adaptive cure frailty offers the possibility of accounting for both

zero-inflatedness and treatment termination using the same model formulation. We will

offer model notation for both a cure fraction for zero-inflated data, applied to the shared

random effects model presented in Chapter 3, as well as an adaptive cure frailty model that

allows for the possibility of “cure” after each successive recurrent event observation. We

currently present the notation for the zero-inflated cure model and the adaptive cure model

separately because of ongoing simulation studies and examination of convergence and stabil-

ity within each model individually, but our ultimate goal is to combine notation into a single

model that is flexible enough to handle a non-adaptive and/or an adaptive cure probability.
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5.2.1 Model Notation for Zero-Inflated Recurrent Events

Using notation from Section 3.2 [16] and borrowing additional notation [50, 51] we let Tij denote

the jth informative observation time for patient i, measured from their first observation (e.g.

total time scale), where i = 1, ..., n and j = 1, ..., ni. We let Xi correspond to the total

follow-up time and Ci represent the censoring time for patient i, measured from a baseline

time Ti0 = 0. We define δij as a binary indicator for the observation of recurrent events such

that δij = 1 if Tij is observed and δij = 0 otherwise. More specifically, δij = I(Tij < Ci), where

I(·) is an indicator function. We continue to let wR
i , zi, and wC

i be vectors of covariates

for observation times, repeated measures, and dependent termination, respectively, and let

wP
i be vectors of covariates for the “cure” probability. While we present them as fixed-

time covariates, it is possible to incorporate time-dependent covariates into this joint model

formulation.

We continue to denote repeated measures by Yij. Repeated measures are observed in

the presence of recurrent events but are not observed at every recurrent event. We also

continue to assume that the absence of a repeated measure at a given recurrent event is

independent of the longitudinal process itself such that conditional on the presence of a

recurrent event the probability of observing a repeated measure is independent of Yij. In

both of the following model formulations, we define two random effects, ui and vi. Both are

assumed to be normally distributed and independent of each other, with ui ∼iid N(0, σ2
u)

and vi ∼iid N(0, σ2
v). We also assume eij ∼iid N(0, σ2

e).

To denote the “cure” status of patients we define another indicator Ai such that Ai = 1

if a patient is still “susceptible” (“non-cured”) and will experience future recurrent events

and Ai = 0 if the patient is no longer susceptible (“cured”) or will not experience any more

events. Thus we let pi = P(Ai = 0) be the probability of “cure” for patient i and 1-pi the

probability of remaining “non-cured”.

Cure models are often used with what is called a mixture population, or a population
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comprised of both susceptible and non-susceptible persons, and the marginal survival func-

tion takes the general form of a mixture model:

St = p+ (1− p)S(t|A = 1) (5.1)

We continue to use the frailty:

ri(t) = r0(t)exp(wR
i β + ui) (5.2)

to model the intensity of observation times (i.e. the timing of the recurrent events). The

baseline hazard function for observation times is given by r0(t), and the cumulative baseline

hazard by R0. When using a cure model to account for zero-inflated recurrent events, we still

allow for dependent terminal events, such as death or treatment termination, so we continue

to use the proportional hazards model:

λi(t) = λ0(t)exp(wC
i η + γ2ui + γ3vi) (5.3)

to model the risk of dependent termination, where λ0 represents the baseline hazard

function, and Λ0 the cumulative baseline hazard function, for depedent terminal events.

Similarly, the notation for repeated measures remains consistent with that presented in

Chapter 3:

yij = ziα + tijκ+ γ1ui + vi + eij (5.4)

Using the form of the general survival function above, we denote an overall survival

function by:

S(tij|ui) = pi + (1− pi)× exp(−R0(tij|Ai = 1)exp(wR
i β + ui)) (5.5)
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where the “cure” probability, pi, is defined as:

pi = P (Ai = 0) =
exp(wP

i φ)

1 + exp(wP
i φ)

(5.6)

We have {α, β, η, φ} as unknown parameters and the coefficients associated with the

covariate vectors zi, wR
i , wC

i , and wP
i , respectively, and {κ} is an unknown parameter

and represents the coefficients associated with the longitudinal time vector tij , the contents

of which depend on the temporal specification. We continue to have unknown parameters

{γ1, γ2, γ3} as the coefficients on the shared random effects between informative observation

times and repeated measures, informative observation times and termination, and repeated

measures and termination, respectively.

The cure probability pi(·) represents the probability that patient i will never experience

a recurrent event (after some baseline event), and only survival times until the first recurrent

event are used in estimating the cure fraction. In a zero-inflated model, it is also important

to note two assumptions that apply to “cured” individuals: they cannot experience any

recurrent events and they cannot experience a dependent terminal event. This means that

there remain four possible scenarios [51] the model must account for, as depicted by Figure

5.1. Note that the scenario in blue, which includes patients with no recurrent events and no

dependent terminal event, is the only that includes “cured” patients as well as “non-cured”

patients. The other three, denoted in green, include only “non-cured” patients.

We represent the relative likelihood contribution of each scenario as l1Ai , l2Ai , l3Ai , l4Ai ,

respectively, and the likelihood contribution of repeated measures as lBi , such that the con-

ditional likelihood is:

Li = (l1Ai )I(ni>1,∆i=1) × (l2Ai )I(ni>1,∆i=0)×

(l3Ai )I(ni=1,∆i=1) × (l4Ai )I(ni=1,∆i=0) × lBi
(5.7)
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Figure 5.1: The four possible recurrent event and dependent terminal event scenarios to be
accounted for in a zero-inflated cure model. The labels, l1Ai , l2Ai , l3Ai , and l4Ai correspond to
the likelihood contributions in Equation 5.7.

where I(·) is an indicator function and ∆i = I(Di ≤ Ci), and the marginal likelihood is:

L =
∏
i=1

∫
Li f(ui) f(vi) dui dvi (5.8)

where f(ui) and f(vi) are the density functions for the random effects ui and vi, respec-

tively.

For ease of notation in defining the likelihood functions, I denote the survival function

for recurrent events among the non-cured as:

SR(tij|ui, Ai = 1) = exp(−R0(tij)exp(w
R
i β + ui)) (5.9)

Similary, we denote the survival function for dependent terminal events among the non-

cured as:

SD(xi|ui, vi, Ai = 1) = exp(−Λ0(tij)exp(w
C
i η + γ2ui + γ3vi)) (5.10)
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Using this notation, the likelihood functions for the four recurrent/terminal event sce-

narios described above are as follows:

1. Patient i with recurrent events and a dependent terminal event:

l1Ai = (1− pi)× SRi (tij|ui, Ai = 1)×
ni∏
j=1

ri(tij|vi, Ai = 1)×

λi(xi|vi, Ai = 1)∆i × SDi (xi|ui, vi, Ai = 1)

(5.11)

where ∆i = I(Di ≤ Ci), an indicator for the presence of a dependent terminal event.

2. Patient i with recurrent events and no dependent terminal event:

l2Ai = (1− pi)× SRi (tij|ui, Ai = 1)×
ni∏
j=1

ri(tij|vi, Ai = 1)× SDi (xi|ui, vi, Ai = 1)
(5.12)

3. Patient i with no recurrent events and a dependent terminal event:

l3Ai = (1− pi)× SRi (tij|ui, Ai = 1)×

λi(xi|vi, Ai = 1)∆i × SDi (xi|ui, vi, Ai = 1)
(5.13)

4. Patient i with no recurrent events and no dependent terminal event:

l4Ai = pi + (1− pi)× SRi (tij|ui, Ai = 1)× SDi (xi|ui, vi, Ai = 1) (5.14)

The likelihood contribution for repeated measures for patient i is:

lBi =
1

(
√

2πσe)ni
× exp[− 1

2σ2
e

ni∑
j=1

e2
ij] (5.15)

where eij = Yij − ziα− tijκ− γ1ui − vi.
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Note that while there are random effects shared between observation times, repeated

measures, and terminal events, there is no random effect in the cure probability in this

zero-inflated recurrent event formulation of the cure model.

5.2.2 Model Notation for Adaptive Cure Frailty

To model an adaptive cure frailty, or allow for the probability of a “cure” after each successive

observation, we leave much of the notation the same as the above but ammend the definition

of the cure status indicator such that Aij = 0 if patient i is no longer susceptible (“cured”)

after the jth informative observation time, and Aij = 1 if patient i remains susceptible

(“non-cured”) after the jth informative observation time. The cure probability notation also

changes such that: pij = P(Aij = 0) equals the probability of experiencing no more events

after each successive event. Under this definition, the probability of a “cure” can change

with time, and patients with recurrent events can still be a part of the “cured” subset. Note

that we now include a random effect in the cure probability, and this random effect is shared

with the recurrent event observation times frailty. We also continue to include a shared

random effect between observation times and repeated measures, and could include another

between repeated measures and the cure probability, but it is the shared effect between the

cure probability and the observations process that allow for the adaptive cure model.

Using this notation, we now define the overall survival function, S(tij|ui, vi), as:

S(tij|ui, vi) = pij + (1− pij)× exp(−R0(tij|Aij = 1)exp(wR
i β + ui)) (5.16)

The repeated measures process, denoted by yij, remains the same:

yij|(dNij(t) = 1) = ziα + tijκ+ γ1ui + vi + eij (5.17)
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and the “cure” probability, denoted by pij, is now defined as:

pij = P (Aij = 0) =
exp(wP

i φ+ γ2ui)

1 + exp(wP
i φ+ γ2ui)

(5.18)

where {α, β, φ} are unknown parameters and the coefficients associated with the covariate

vectors zi,w
R
i , and wP

i , respectively, and {κ} is an unknown parameter and represents the

coefficients associated with the longitudinal time vector tij , the contents of which depend

on the temporal specification.

In the above cure frailty model, γ1 is the coefficient on the shared random effect between

observation times and repeated measures and γ2 the coefficient on the shared random effect

between observation times and the “cure” probability.

The marginal likelihood function for the ith patient is:

Li =

∫ ∫
lAi l

B
i f(ui) f(vi) dui dvi (5.19)

where f(ui) and f(vi) are the density functions for the random effects ui and vi, respec-

tively.

The likelihood contribution for clinical observations for patient i is

lAi =

∫ xi

0

ni∏
j=1

[(1− pij)[r0(tij|Aij = 1)exp(wR
i β + ui)]×

[exp(−R0(tij|Aij = 1)(exp(wR
i β + ui))]]

δij×
ni∏
j=1

[pij + (1− pij)[exp(−R0(tij|Aij = 1)(exp(wR
i β + ui))]]

(1−δij)dt

(5.20)

where δij is an indicator of a clinical observation at time tij, and xi is the total observed

follow-up time for patient i. This likelihood function looks similar to the likelihood for

observation times presented in Chapter 3, with the addition of the cure fraction notation.
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The observation times now rely on some probability of remaining non-cured and continuing

to be susceptible to future recurrent events.

The likelihood contribution for the repeated measures at associated observation times for

patient i continues to be

lBi =
1

(
√

2πσe)ni
× exp[− 1

2σ2
e

ni∑
j=1

e2
ij] (5.21)

where eij = Yij − ziα− tijκ− γ1ui − vi.

During estimation, it may be necessary to adopt a zero-tail constraint [50]. The zero-tail

constraint assumes that the survival function is “null” after the final observation, meaning

that S0(t|A = 1) = 0. This can improve the stability of maximum likelihood estimates when

considering a cure fraction.

In this application, this “cure” probability represents all dependent termination. With

this use, it is no longer necessary to explicitly generate termination “type” and “time”

because the Cox proportional hazards model is effectively removed from the shared random

effects model. However, in situations where it is possible to distinguish treatment termination

for reasons related to symptom worsening from treatment termination for reasons related to

symptom remission, it would be possible to use this adaptive cure frailty model and the Cox

proportional hazards model simultaneously.

5.3 Simulation Study with Repeated Measures in the Presence

of Zero-Inflated Recurrent Events, Informative Observation

Times and Dependent Termination

The primary focus continues to be evaluating longitudinal clinical outcomes, so my first

simulation study using a cure model is an extension of the zero-inflated model proposed
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by Liu et al. (2016) [51]. We want to account for an overabundance of patients with a

baseline observation only, while continuing to relate informative observation times, repeated

measures, and dependent terminal events. We ran this simulation because existing literature

using a cure fraction tends not to include repeated measures, so we wanted to confirm

performance with the introduction of repeated measures and an additional shared random

effect.

Referencing the model notation in Section 5.2.1 and borrowing some parameter spec-

ifications [51], we define zi, w
R
i , wCi , and wPi to be the same fixed binary covariate at the

individual level that can take values of 0 or 1 each with a probability of 0.5. We set β=1,

η=1, φ = (−0.5, 1)T , and α = (1, 0.5)T , while we set κ = 0.5. We set the error term

eij ∼ N(0, σ2
e) with σ2

e = 1, and random effects ui ∼iid N(0, σ2
u) and vi ∼iid N(0, σ2

v) with σ2
u

= 1 and σ2
v = 1.0. We assumed (γ1, γ2, γ3)T = (1.0, 1.0, 1.0)T .

We used 2 + Uniform(0,6) to simulate an independent termination time (Ci) for each

individual, and we simulated the informative observation times and dependent termination

time (Di) under a Weibull distribution. We defined the overall follow-up time for patient

i as Xi = min(Di, Ci), and the termination status as eventi = 2 if Xi = Di and eventi

= 1 if Xi = Ci. For the baseline hazard function for observation times, we set the shape

parameter to 1.25 and the scale parameter to 0.25, and for the baseline hazard function

for dependent termination we set the shape parameter to 1.25 and the scale parameter to

0.10. In fitting the model in Proc NLMIXED, we used 5 quantiles to define the nodes of the

piecewise constant baseline hazard functions for both observation times and terminal events.

For each individual, there is a baseline observation at time ti0, and a repeated measure yi0

at time ti0. We then compared the value of individual i’s cure probability to a Uniform(0,1)

random variable. Those whose cure probability exceeded the sampled uniform random vari-

able were considered cured after their baseline observation and were deemed censored at Ci

with eventi = 1. For those individuals whose cure probability was less than the sampled

uniform random variable, we went on to generate a series of observation times until tij >
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Xi, at which point we set termination time to Xi and termination status to eventi.

We simulated G=200 dataset replicates and results from fitting a zero-inflated three-

part shared random effects model are found in Table 5.1. We note that including repeated

measures with an additional shared random effect in a joint frailty model with a cure fraction

for zero-inflated recurrent events data and a dependent terminal event maintains acceptible

bias and coverage probabilities. Across the dataset replicates, the biases of the average

recovered parameter estimates are 5.20% or less, while the coverage probabilities are all

higher than 90%. We also acknowledge that we chose to use five quantiles to define the

knots for the piecewise constant baseline hazard functions for informative observation and

dependent termination times. We may have been able to decrease the biases and increase

the coverage probabilities by a marginal amount if we used ten quantiles, but we determined

that five was sufficient for this demonstration.

As a contrast, we attempted to fit a three-part shared random effects model ignoring the

cure fraction to the same dataset replicates simulated under zero-inflated recurrent events

conditions. The fit was so poor that Proc NLMIXED had difficulties converging.
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Table 5.1: Simulation results from implementation of a three-part shared random effects
model with use of a cure fraction to account for zero-inflated recurrent events data.

Zero-Inflated Cure Model

Parameter Estimate1 % Bias2 CP3

Informative Observation Times
β = 1 0.998 0.20 95.50

Repeated Measures
α0 = 1 0.969 3.10 97.00
α1 = 0.5 0.487 2.60 96.00
κ = 0.5 0.496 2.60 95.50
σe = 1 0.998 0.20 94.00

Termination
η = 1 0.978 3.10 95.50

Cure Probability
φ0 = -0.5 -0.508 1.60 95.50
φ1 = 1 1.008 0.80 96.00

Model Association
γ1 = 1 0.995 0.50 94.50
γ2 = 1 0.948 5.20 93.00
γ3 = 1 0.985 1.50 95.00

Variance/Covariance
σ2
u = 1 0.971 2.90 94.00
σ2
v = 1 0.953 4.70 91.50

1 Average parameter estimates across G=200 dataset replicates.
2 Calculated as: abs((true parameter value - estimated parameter value) / true pa-

rameter value) x 100
3 CP: coverage probability; calculated as: the percentage of 95% confidence intervals

that contained the true parameter value.
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CHAPTER 6

Application of Cure Model to BHA Data and Other

Future Work

The work outlined in this dissertation builds upon previous uses of shared random effects

models and offers extensions for use with EHR data, including approaches to handling specific

complications inherent in data obtained from electronic records. It also provide a framework

for both ongoing and future research applications.

6.1 Application of the Cure Model

6.1.1 Zero-Inflated Cure Model

In Chapter 4, we fit a three-part shared random effects model to EHR data obtained from

BHA and found γ1, γ2, and γ3, the coefficients on the shared random effects between the

observation times, repeated measures, and terminal events processes respectively, to be sta-

tistically significant. This supports the hypothesis of both informative observation times and

dependent termination in evaluating depression symptoms across follow-up among adult pa-

tients undergoing treatment in BHA.

However, one notable limitation in the construction of the data used for this application

was the exclusion of patients who had only a baseline observation and no follow-up observa-

tions. We made the decision to exclude these patients because their inclusion in the analytical

dataset caused model convergence problems and because it is ultimately believed patients
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with only a baseline observation fundamentally differ from those patients with follow-up ob-

servations. Figure 6.1 illustrates the distribution of the total number of observations across

adult patients (≥ 18 years of age at the time of their first visit) under treatment in BHA

who have a baseline visit after March 2013. We make the same restrictions to this sample as

detailed in Chapter 4, with the distinct exception of excluding patients with only a baseline

visit.

Figure 6.1: Total number of visits to a BHA clinic over the first 548 days of follow-up among
patients with elevated PHQ-9 scores at baseline.

Note that 20.6% of patients have only one observation, which correlates with only a

baseline visit and thus no recurrent events, as recurrent events are defined as follow-up visits

to BHA. The total visit count distribution provides further evidence of the zero-inflatedness

of the application data.

We also examined patient characteristics that are associated with having only a base-

line observation in the sample. Among patients with an elevated PHQ-9 score at baseline,

65



preliminary two-sample tests between patients with and without follow-up visits to BHA

suggest that provider type at baseline visit (physician vs. therapist; p < 0.0001), elevated

trauma symptoms (PCL > 50; p = 0.0079), and the number of comorbid behavioral health

coniditions at baseline (p = 0.0189) were associated with having only a baseline visit.

While we successfully completed a simulation study for a cure model applied to zero-

inflated recurrent event data (described in Chapter 5), application of this model to EHR

data from BHA has been met with some challenges. We believe the most substantial barrier

surrounds the unobserved terminal events. One limitation of the inverse cumulative hazard

method (described in Chapters 3 and 4) in estimating independent and dependent termina-

tion in the application data from BHA is its lack of variation in the classification and timing

of termination for patients with only a baseline visit. Under the definition of dependent

termination used for the application to BHA data, and using the inverse cumulative hazard

method, the vast majority (> 98%) of patients with only a baseline visit were labeled as

dependently terminated with a termination time of 1 day (i.e. 1 day after their last-recorded

observation).

In fitting a zero-inflated cure model, this result is challenging for a few reasons. The

most prominent is the assumptions made in defining and constructing the likelihood func-

tions, namely that those who were “cured” could not experience the dependent terminal

event. Assuming that the N=627 patients with only a baseline visit represent a mixture

of structural and random zeros, and thus a mixture of “cured” and “non-cured”, a classi-

fication of dependently terminated is acceptible for the non-cured but violates the model

assumptions among the cured. This leads to a discrepancy between the realized data and

how the likelihood functions have been constructed to account for the overabundance of zero

recurrent events.

We are actively working on an approach to handling unobserved treatment termination

among those patients with only a baseline visit, particularly a method of differentiating be-

tween independent and dependent termination among this subset. We may ultimately arrive
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at a solution that requires a sensitivity analysis to better understand how general we can

make assumptions about treatment termination among the zero recurrent event group and

still achieve model convergence, albeit with possibly conservative parameter estimates. In

this particular application we have also considered expanding the analytical dataset further

to include those patients without elevated PHQ-9 scores at baseline, though this change

would require careful thought about the clinical implications of the results. The benefit

of unrestricting the baseline sample would be the ability to better utilize number or sever-

ity of behavioral health conditions at baseline as a reference for distinguishing actual cure

(e.g. no elevated symptoms on any behaivoral health measure) at baseline from dependent

and independent treatment termination, unlike the application of the adaptive cure frailty

model where the “cure” probability represents the probability of all dependent treatment

termination.

6.1.2 Adaptive Cure Frailty Model

We believe that an application of an adaptive cure frailty model [50] could simultaneously

account for zero-inflated recurrent event data while introducing a probabilistic approach to

modeling treatment termination. In this setting, “cure” would refer to patients who had no

more clinical visits and would effectively take the place of the proportional hazards model

for treatment termination in the original analysis. Like the previous three-part model, it

is not possible to distinguish between treatment termination for “positive” (e.g. treatment

response, symptom remission) or “negative” (e.g. treatment non-compliance, referral to

acute care) reasons.

We are continuing to work on a simulation study of the adaptive cure frailty model in the

presence of informative observation times and repeated measures, using the cure probability

to effectively model the probability of treatment termination after each successive visit.

While we have confidence in the notation provided in Chapter 5, we have encountered some

model convergence problems and parameter estimate instability when we attempt to apply
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the model to the simulated data in Proc NLMIXED. Notably, we are able to recover the true

parameter values for the covariate effects in the observation times and repeated measures

processes, as well as the adaptive probability, with relative accuracy and acceptably high

coverage probabilities. Overall, the coverage probabilities for all parameters range from

76%-92%, but we believe we can improve upon this estimation. The instability seems to

be concentrated around the coefficients and variances of the shared random effects. We are

working to determine the source of the instability, whether it be in the data simulation or

in the model implementation, with our next step the application of the adaptive cure frailty

model to the EHR data from BHA.

6.2 Additional Future Work

6.2.1 Shared Random Effects Model Diagnostics

We recognize the need for diagnostics methods for shared random effects models, and we

intend to address this need in future work. Current literature, including work presented in

this dissertation, makes use of existing diagnostics techniques used for hazards models or

mixed effects linear models. While not inherently wrong, these methods were not developed

for, and thus do not necessarily address, questions specific to shared random effects models.

Typically, diagnostic tools use some form of residuals calculated from fitted models, and

much of the work on diagnostic tools for event and frailty models thus far involves martingale

processes and residuals. Martingale residuals are often used as diagnostics tools for counting

processes, relevant to the informative observation times process used in the three-part shared

random effects models. Martingale residuals can be interpreted generally as “excess” events,

or the difference between the observed and the expected number of events, given the model,

over some time [0, t] [55]. While there may exist more appropriate methods for any single

diagnostic objective (e.g. assessing leverage compared to estimating a functional form),

readily calculable residuals may be the key to accessible diagnostics techniques.
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Martingale residuals have been used in applied research as part of diagnostics procedures

for frailty models. Martingale residuals originally formed the basis of a goodness-of-fit test

for Cox proportional hazards models, with a score test for the random effect in the hazard

function [56]. The null hypothesis is that the variance of the random effect ui in:

ri(t) = r0(t)exp(wR
i β + ui) (6.1)

is equal to zero, compared to the alternative hypothesis that the variance is greater than

0. In fact, we do evaluate the significance of the variances of the random effects included in

the three-part models. For example, in Table 4.2, note that σ2
u and σ2

v are both statistically

significant with p < 0.001 and 95% confidence intervals of (0.082, 0.119) and (6.053, 8.894),

respectively.

Assuming Ni(t) represents a counting process for the total number of events observed

for patient i, with a standard-form cumulative intensity denoted by Γi(t), this means Ni(t)

= Γi(t) + Mi(t), where Mi(t) is the martingale process associated with the relevant events

process. Under this specification, and using standardized martingale residuals defined as:

M∗
i (t) =

M̂i(t)√
ˆvar{Ni(t)}

(6.2)

a plot of standardized martingale residuals over time t should be a flat line around a

value of one as evidence of correct model specification [57]. While this method is a helpful

visual tool, it is arguably best used as an informal graphical check due to strong associations

between these estimated martingale residuals. Moreover, it only addresses model specifi-

cation as far as marginally representing recurrent event observation times through use of

an intensity process. Another graphical diagnostic technique relies on martingale residuals

having uncorrelated increments, such that:

cov[Mi(t0),Mi(t)] = var{Mi(t0)} (6.3)
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for some 0 ≤ t0 < t. It is possible to make use of this equality for testing specific

model fit for continuous longitudinal data [58]. The left-hand side of the equality above,

cov[Mi(t0),Mi(t)], can be evaluated at each measurement time and a plot of cov[Mi(t0),Mi(t)]

against t should be a straight line with a slope of zero. Diggle et al. [58] also proposed a test

statistic to accompany this covariance plot, but their specification of their response process

and assumptions on their random effects differ slightly from the three-part shared random

effects mode used in this dissertation.

As an extension of these graphical diagnostics methods, researchers focusing on recurrent

event and longitudinal data proposed using empirical standard deviations of standardized

martingale residual processes (SMRP) in plots against time, supplemented by plots of esti-

mated martingale covariances:

Ĉ(t) = n−1
∑
i

(M̂i(t0)M̂t(t)) (6.4)

with fit evidenced by no discernible trend over time [59].The authors note that the co-

variance procedure is robust to some of the issues frequently noted with using the SMRP

procedure, but it still may not be possible to determine the type of misspecification and

rather that these two graphical tools be used as something of an omnibus tool.

In addition to current diagnostics techniques only addressing parts of shared random

effects models, many of them are not readily available in statistical software packages or

rely heavily on user-defined code [60], as well as simulations or bootstrapping procedures.

This, as with semi- or non-parametric formulations of shared random effects models, is a

barrier to widespread use in standard practice, particularly among applied researchers. Our

objective would be to continue to expand on this work by integrating diagnostics tools into

a prepared code package requiring minimal input from the user (SAS would be preferrable

for continuity with the model macro but we acknowledge R may be necessary), as well as

developing methods to simultaneously assess each individual process and the overall fit of
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the three-part shared random effects model.

6.2.2 Time-Dependent Covariates

Time-dependent covariates are generally defined as variables that change over a follow-up

period and can be particularly applicable in medical applications where health-related mea-

surements or comorbid medical conditions are repeatedly measured alongside survival, time-

to-event, or a longitudinal outcome. Time-dependent covariates are often incorporated in

survival and other time-to-event models, but less so in longitudinal conditional models, like

the mixed effects model used for the repeated measures in the three-part shared random

effects model. We are interested in exploring the inclusion of time-dependent covariates not

only in the informative observation and dependent terminal events processes, but also the

repeated measures process.

When time-dependent covariates are included in a mixed effects model, the model is

typically adjusted to allow for both “within” and “between” effects resultant from these

covariates [61]. This is to say that if a time-dependent covariate has variation within-subjects

as well as between-subjects, the model formulation changes to allow for two distinct effects,

which for a coefficient β and covariate xit (e.g. covariate value for patient i at time t)

decomposes as follows:

βxit → βW (xit − xi.) + βBxi. (6.5)

where βW represents the within-subject effect of the time-dependent covariate and βB

denotes the population-averaged effect of time-dependent covariate between subjects [62].

We presented shared random effects models using time-independent covariates, including

comorbid baseline behavioral health conditions like elevated trauma symptoms and anxiety,

as well as a series of demographic characteristics. While baseline behavioral health condi-

tions do convey clinically important information, it is possible to imagine how behavioral
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health treatment in BHA could simultaneously affect patients’ depression and trauma symp-

toms, and how changes in those trauma symptoms could then have a differential impact

on depression symptoms. There is also a variable that represents patients’ provider type

at each observation, with notably different treatments administered by therapists compared

to physicians. We currently rely on a summary of provider information, majority provider

(e.g. > 50% of visits to a physician), to represent and control for treatment type, but would

consider a time-dependent indicator a more accurate covariate.

Difficulties in implementing time-dependent covariates in a longitudinal mixed effects

model include identification of the exogeneity or endogeneity of the variables of interest. A

time-dependent covariate is considered exogenous if it cannot be explained by other variables

in the study (e.g. a “random” variable influenced by factors outside the system under study)

and endogenous if it can be explained by other variables in the study, including the primary

response variable in which the response and time-dependent covariate create somewhat of a

feedback association [62]. It is also important to establish the level of exogeneity, generally

divided in to four types, to ensure accurate model specification and interpretation [63, 64], as

well as consideration of within- and between-subject covariances.

6.2.3 Visit Pattern Identification

Ancillary to the proposed shared random effects models, we are interested in developing

an event-time clustering algorithm to help identify patterns among patients’ observation

times. As evidenced in the application using data from BHA, there is significant inter- and

intra-patient variation in clinical observation times, regardless of recommended treatment

schedules. Additionally, there is some belief among clinicians that different observation

patterns may differentially impact the effectiveness of behavioral health treatment. For

example, more frequent clinical visits clustered towards the beginning of a patient’s follow-

up time with a gradual decrease in frequency after 3 months is thought to be more effective

than the opposite or a patient with more sporadic visits but over a greater period of time. It
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is also of interest to identify frequent and infrequent “users” of treatment, and what health-

related variables affect this classification. There is also the possibility of using this kind of

pattern identification, in addition to results obtained from the shared random effects model,

in dynamic predictions. It would be of great clinical interest to be able to take a patient’s

baseline information, and information surrounding their first few visits, and predict what

will happen to them over their stay in BHA treatment.

This is different from the way we have accounted for informative observation times

through a shared random effects model. Results suggest that observation times are informa-

tive, associated with both the repeated outcome measure as well as the risk of dependent

treatment termination. However, one distinct limitation of this model formulation is the

assumption that within-subject random effects do not vary with time. For an example using

the application to BHA, a patient’s high concentration of visits to BHA in their first month

of treatment would not affect their PHQ-9 score in the second month any differently than

that same patient’s sparse visits in their fifth month would affect their PHQ-9 scores in

the sixth month. Essentially, this is because we have assumed that the association between

repeated measures and observation times is constant across a patient’s follow-up.

There are changes to the current three-part shared random effects model that could,

at least partially, help mitigate this limitation, like further exploration of a random slope

in the mixed linear effects model used for repeated measures, shared with the observation

and/or termination time processes. While we did have success in simulation including a

random slope effect shared between the repeated measures and termination processes, in

the application work the addition of a random slope caused some model fit and convergence

problems, perhaps due to overspecification of the model form given the realized data. We

believe that pattern identification in visit times could supplement model results and provide

tangible clinical feedback regarding treatment efficacy as reflected in patients’ EHR.
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CHAPTER 7

Conclusions, Implications, and Guidance

7.1 Summary and Conclusions

In this dissertation, I built upon previous work using shared random effects models and

demonstrated methods required to apply such models to electronic health records data. Al-

though EHR data is prone to the informative observation times and dependent terminal

events these particular shared random effects models were developed to address, direct ap-

plication of such models can be difficult, if not impossible, due to specific challenges not

encountered in data from other sources, such as clinical trials or randomized controlled tri-

als. I outlined methodologies and options for handling complications found in EHR data and

provided tools for applied researchers to reasonably use these methods in clinical settings.

A particular structural complication, motivated by data obtained from UCLA Health’s

Behavioral Health Associates, was that of unobserved terminal events and unknown termina-

tion times. The available BHA data did not contain accessible information regarding referrals

out to acute care, completion of treatment, or referrals back to primary care monitoring, nor

notes pertaining to patients’ perception of treatment. In considering patients’ last-recorded

observations in BHA there were no indications whether, if given infinite follow-up time, they

would return for another visit or not, and if not then why not. While I was motivated by

this specific application, it is a common occurrence in EHR for such informative details to

go unnoted or remain contained in nonsystematic or inaccessible forms.

I considered the general idea of inverse transform sampling and proposed use of an inverse
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cumulative hazard function, calculated from estimates obtained via fitting a two-part shared

random effects model between informative observation times and repeated measures, to

estimate survival times between patients’ last-recorded and next-hypothetical observations. I

made an assumption that if a patient’s next-hypothetical visit time fell after the independent

censoring time the patient was independently terminated, otherwise they were considered

dependently terminated, but the method allows for situation-specific modifications of this

assumption. This approach has multiple benefits, formost being patients’ individual visit

intensity and individual-level variation contributing to the time estimates, while accounting

for dependencies with their outcome values. Moreover, the method fits seamlessly into the

data structure and code needed to implement the primary three-part shared random effects

model. Estimation of a specific survival time provides a hypothetical interval and allows for

a sensitivity analysis based on choice of termination time within that interval.

I evaluated the performance of this proposed method through a simulation study in which

I examined the bias and relative accuracy of parameter estimates recovered from fitting the

three-part shared random effects model after using the proposed method to predict indepen-

dent and dependent termination. I compared percentage biases and coverage probabilities to

estimates obtained using known termination, those obtained via a naive prediction method,

as well as those resultant from the often-used assumption that all termination is indepen-

dent. I found that prediction of termination type using the proposed inverse cumulative

hazard method produced estimates with minimal bias and high coverage probabilities when

compared to results using known termination, with an average of 85% of termination types

correctly classified based on simulated data designed to mimic the application. Compared

to the naive prediction method, use of the inverse cumulative hazard favored misclassify-

ing individuals as dependently terminatiod when they were truly independently terminated,

which favorably produces more conservative results. Moreover, the proposed method re-

sulted in notably more accurate estimates than treating all termination as independent, or

ignoring termination altogether. After demonstrating this method’s performance through
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a simulation study, I applied it to EHR data from BHA and followed with an application

of the three-part shared random effects model, where I further illustrated flexibility of the

model formulation by considering a piecewise linear mixed effects model for patients’ de-

pression symptoms. Results included parameter estimates for evaluation of covariate effects

on depression symptom trajectories over treatment follow-up as well as covariate effects on

intensity of clinical observations and risk of dependent treatment termination. Estimates

of coefficients on the shared random effects terms allowed for assessment of dependencies

between clinical observation times, patients’ PHQ-9 scores, and treatment termination, in

which it was found that patients with a greater intensity of visits to BHA tended to have

more severe depression symptoms, while patients with a greater intensity of visits to BHA

and/or patients with less-severe depression symptoms had a greater risk of dependent treat-

ment termination. Standard output from implementation in SAS Proc NLMIXED is in

a recognizable form and incluses t-tests and p-values for significance tests on all param-

eter estimates, including the random effect variance parameters, the latter of which can

help understand the fit and choice of the overall model. The application demonstrated the

functionality of a customizable, practical, and effective solution to a common problem in

naturalistic observational EHR data.

I then considered further extensions of shared random effects models through the ex-

amination of cure models. In addition to informative observation times and dependent

termination, EHR is prone to zero-inflated recurrent events. In medical settings, there is

often an overrepresentation of individuals with only a baseline event or clinical observation

where a “cure” precludes future recurrent events. I expanded on previous use of cure models,

which focused on joint time-to-event and survival data, to include repeated measures and

emphasize understanding how different processes continue to affect an outcome measurement

over time. I performed a simulation study with zero-inflated recurrent events data and fit

a three-part shared random effects model with a cure fraction at baseline, and have set the

framework for applying the same model to EHR data from BHA. I addressed additional
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complexity in the use of a cure fraction at baseline with unobserved terminal events and

offered possible solutions. I also explored the possibility of a cure model offering a probabal-

istic approach to unobserved treatment termination, and how an adaptive cure frailty model

has the ability to simultaneously address zero-inflatedness and the probability of treatment

termination. Preliminary simulation studies using an adaptive cure frailty model with in-

formative observation times and repeated measures resulted in low percentage biases and

acceptable coverage probabilities for some parameter estimates, but I believe I can improve

upon the stability and convergence of the model. Ultimately, I intend to combine notation

from the zero-inflated cure model and the adaptive cure frailty model such that a singular

shared random effects model, with use of appropriate indicator functions, could account for

“cure” after baseline and/or “cure” after each recurrent event, or neither (i.e. the original

three-part model).

Another primary objective was to make the three-part shared random effects model easily

implementable by applied researchers. The proposed methods focus on providing analytical

solutions to realized data with the goal of addressing clinical questions, so it was important to

develop methodologies with the smallest-possible barriers to practical use in clinical settings.

Publicly available code and instructions on implementation of shared random effects models

were either not available or inaccessible to an applied researcher. Even within the literature

that used SAS, there lacked sufficient guidance on data setup requirements or explanation

of the crucial inputs necessary to successfully run the model in Proc NLMIXED. The user-

specified loglikelihod functions require nonintuitive data preparation, and Proc NLMIXED

offers many options and possible inputs although only a subset are relevant. In developing the

macro, I am able to provide a complete tool for researchers evaluating a longitudinal outcome

in the presence of informative observation times and/or dependent termination. Importantly,

the macro is also designed to accommodate data where existence of a dependent terminal

event is unknown, a common feature in EHR data applications. By detailing which inputs

the user must supply and including the detailed data preparation within the macro, I have
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provided a tangible tool for applied researchers.

7.2 Using EHR Data for Research

Many of the challenges addressed in this dissertation, both methodologically and in preparing

the application dataset for use, emphasize some of the ways EHR data is not optimized for

use in research. The inherent value of EHR data is substantial, and while there have been

improvements in data structure and quality since their inception, it remains that electronic

health records were developed to expedite billing and insurance claims and support clinical

care. Research is a secondary, albeit increasingly consequential, use.

For example, both the inverse cumulative hazard method for estimating dependent and

independent treatment termination, and the application of an adaptive cure frailty model

for a probabilistic approach to dependent treatment termination, are proposed solutions to

rectify the lack, or inaccessibility, of particular information from EHR. With the increasing

reliance on electronic records in medical systems, and the promise of harnessing EHR to

provide more effective patient care, these methods are necessary to efficiently using EHR

data.

Streamlined methods of linking different electronic databases, whether within the same

health system and/or between health systems, would make it possible to ascertain engage-

ment in healthcare before and after a given health-related event of interest. Additionally,

including systematic fields in EHR that queried patient referral information would improve

the determination of end-of-care for a given medical episode. Taken together, researchers

would be able to draw inferences between treatment termination and subsequent engagement

in medical care. Similarly, systematic fields establishing treatment recommendations would

make it possible for researchers to determine deviations from intended care. “Systematic

fields” is an important component of many recommendations for improvement. It is possible

that some of the abovementioned information is contained somewhere in EHR, but if it is
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generally inaccessible, like embedded in clinical notes, its use becomes impractical in most

applied research environments.

Ideally, researchers and clinicians alike want to be able to evaluate data from EHR

and assess treatment effectiveness. Certain structural complications, such as informative

observation times and dependent terminal events, are unavoidable, which is why practical

analytical tools that make it simpler to account for such factors are crucial to effective use of

EHR data in clinical and applied research settings. Small, efficient changes to the way EHR

data is collected, such as a wider breadth of systematic fields, and referral and treatment

recommendations, could circumvent any additional methods developed only to correct for

the lack of information.

7.3 Implementing a Shared Random Effects Model in SAS

7.3.1 Example Execution of SAS Macro

We wrote a SAS macro that not only implements the three-part shared random effects

model but also the two-part model followed by inverse transform sampling for estimating

dependent/independent termination described in Section 3.4. This was a crucial part of our

effort to demonstrate the functionality of this model in an applied setting. We wanted to

provide an analytical tool that required minimal input from the user to encourage wider use,

particularly in clinical environments featuring EHR data. The full macro code can be found

in the Appendix.

The execution of the SHARED3 RANEFF macro below applies the methods detailed in

this paper to simulated data contained within a SAS dataset named SIMDAT 1. Through

specification of mandatory arguments below, SAS will fit a model where repeated measures

of the continuous outcome are contained within Y, visit date is contained within DAY, PID

is used to uniquely identify individuals, and Z is a dichotomous covariate included in all

three model components. Y, DAY, PID, and Z are all variables present in the SIMDAT 1
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SAS dataset. The user must also supply another variable from the referenced SAS dataset

which contains a date for each individual. The date provided will be taken to be the assumed

termination date if a dependent terminal event is determined for the individual based on

the inverse cumulative hazards approach. For example, in the BHA application this vari-

able would consist of the date one day after the patient’s last visit date for each patient in

the dataset. In SIMDAT 1, this variable is named TERM. The execution below assumes

10 pieces for the piecewise baseline hazard functions for both informative observation times

and dependent terminal event times and enforces censoring at 360.64 days after each indi-

vidual’s baseline visit. Other arguments are used to specify starting values and a minimum

number of iterations, both of which are fed to both the NLMIXED procedures in sequence

(corresponding to the two- and three-part models). The example below does not assume any

splines but the SHARED3 RANEFF does have the flexibility to specify a spline model.

Table 7.1: An excerpt from the SIMDAT 1 csv file, used in the example execution of the
SAS macro SHARED3 RANEFF.

PID Z DAY Y TERM
1 0 0 6.631677 280.3032
1 0 181.266 46.07549 280.3032
2 0 0 10.73156 884.8686
2 0 20.76064 13.24052 884.8686
2 0 106.6951 29.92867 884.8686
2 0 244.3545 58.32861 884.8686
2 0 245.4267 58.85101 884.8686
2 0 253.2158 58.6007 884.8686
3 0 0 8.133787 178.9796
4 1 0 9.361513 126.3453
4 1 62.73256 21.10914 126.3453
4 1 89.0846 26.41639 126.3453

The excerpt from the SIMDAT 1 example dataset demonstrates the general format re-

quired to call the SAS macro (Table 7.1). Importantly, note that the data is in a “long”

format; there is a separate row in the dataset for each time an individual is observed (each

observation time), starting with a baseline observation.
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Figure 7.1: Example execution of the SHARED3 RANEFF macro.

%SHARED3_RANEFF(DAT=SIMDAT_1, Y=Y, TIME=DAY,

UNIQ_ID=PID, TIME_END=360.64, TIME_TERM=TERM,

COV_LONG = Z,

COV_RECR = Z,

COV_TERM = Z,

NUMB_RECR = 10,

NUMB_TERM = 10,

DURATION_END = 360.64,

MINITER = 250,

SV_RECR = 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01,

SV_TERM = 0.001 0.001 0.002 0.003 0.003 0.004 0.006 0.004 0.008 0.0012,

SV_INTERCEPT = 10,

SV_TIME = 0.2,

SV_COV_LONG = 1,

SV_BETA = 1,

SV_ETA = 1,

SV_GAMMA = 1.5 -0.5 1,

SV_VAR = 1 0.5 1);

81



Figure 7.1 displays the example call of the SAS macro. In addition to the variables

detailed in the previous paragraphs, there are some other values that a user must provide.

MINITER is the minimum number of iterations the NLMIXED procedure will attempt, and

choice of this value depends on a few factors. In this example call, it is set at 250 iterations,

which was sufficient for application to simulated data where realistic starting values could

be easily specified due to the known parameter values. However, there were instances when

using the application data from BHA that I required far more iterations, sometimes upwards

of 1000, to ensure that the resulting parameter estimates were accurate, and the model

convergence was stable. This number might vary based on the user’s confidence in their

starting values for their model parameters, the size of the dataset, and the model convergence

information provided by Proc NLMIXED.

The remaining values, represented by the last nine lines of the SHARED3 RANEFF

macro call, are starting values for model parameters. Starting values are ultimately very

important to the fit and convergence of the NLMIXED procedure and can influence the

model convergence time as well as whether Proc NLMIXED encounters any warnings or

errors during its run.

7.3.2 Selecting Starting Values for Model Parameters

An important component of implementing this model in Proc NLMIXED is the selection and

specification of starting values for all unknown parameters. This includes the piecewise con-

stant baseline hazard functions for informative observation times (SV RECR) and dependent

terminal event times (SV TERM), the intercept term (SV INTERCEPT), time variables

(SV TIME), and other covariates (SV COV LONG) in the repeated measures model, the

covariates for the informative observation times (SV BETA) and terminal events (SV ETA)

processes, and finally the coefficients on the shared random effects terms (SV GAMMA) as

well as the variances of the shared random effects and individual error term (SV VAR). If

no starting value is specified, the SAS default is to assign a value of 1, which can be a very
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poor choice for many parameters. In fact, depending on the convergence criteria used and

the distance this default value is from the true value of the estimate, poorly defined starting

values can cause the model to fail to converge.

The most straightforward approach to determining starting values is to run simple mod-

els that disregard the shared random effects. For example, this would mean using SAS Proc

MIXED to run a longitudinal mixed effects model for repeated measures (ignoring informa-

tive observation times and dependent terminal events), including all relevant covariates, and

using the resultant parameter estimates as starting values in SV INTERCEPT, SV TIME,

and SV COV LONG. The same applies to implementing individual models for informative

observation times and terminal events. At the very least, these parameter estimates can be

combined with a higher number of iterations of Proc NLMIXED that may slow the initial

runtime of the model but will yield values for most parameters that can be utilized in further

model implementations. This is the general approach I followed in the application of the

three-part shared random effects model to BHA data.

Other helpful information, including common warnings and errors produced by Proc

NLMIXED, along with potential solutions, were detailed by Kiernan, Tao, & Gibbs (2012) [65].

Many of their proposed approaches were helpful for troubleshooting in the early stages of my

adaptation of a shared random effects model for EHR data, particularly in understanding

the importance of supplying starting values.

7.4 Benefits of Shared Random Effects Models

Given that informative observation times and dependent terminal events are inherent to EHR

data, regardless of potential changes to EHR to make it more optimal for use in research, it is

important to have practical and usable analytical solutions. There are multiple reasons why

a three-part shared random effects model is an ideal candidate for EHR data, particularly in

clinical settings. Though mentioned throughout this dissertation, the following bullet points
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summarize the primary benefits of using a shared random effects model:

• A parametric specification allows for implementation in SAS Proc NLMIXED:

– NLMIXED is an existing procedure within SAS with a relatively low program-

matic barrier. It allows for user-specification of loglikelihood functions, which

increases the distributional flexibility of models it can accommodate. The output

is also in a recognizable form, and includes parameter estimates, standard errors,

95% confidence intervals, and p-values for statistical significance. A SAS macro,

requiring minimal user inputs and implementing the described three-part shared

random effects model using an inverse cumulative hazard function to estimate

termination, is included in the Appendix.

• The model formulation puts an emphasis on interpretation of covariates:

– Covariates can be included in the repeated measures, informative observation

times, and dependent terminal event processes. In a linear mixed effects model for

the repeated measures, interpretation follows the recognizable form: “A . . . unit

change in x is associated with a . . . unit change in y”, which makes application of

the results relatively straightforward. Because the focus is on the interpretation

of covariates, it is advantageous to treat the baseline hazard functions as nuisance

parameters, because approximation of the true underlying distribution (e.g. using

piecewise constant baseline hazard functions) is sufficient.

• The mixed effects model for repeated measures allows for flexibility of the

time specification:

– The model formulation can accommodate linear, quadratic, piecewise linear (as

was demonstrated in this dissertation in the application to BHA data) temporal

specifications. There is also the possibility to include correlation structures, such
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as autoregressive or compound symmetry, that might be useful for longitudinal

modeling.

• With adequate sample size (as is usually the case in research involving

EHR), assuming dependencies between observation times, outcomes, and

terminal events is a conservative approach:

– An assumption of dependencies, even if there are none, will at worst result in

non-significant estimates of coefficients on the shared random effects terms, and

a loss of some degrees of freedom, but there is nothing inherently biasing about

using a three-part shared random effects model when a reduced model would have

been sufficient.

For these reasons, a shared random effects model is a practical approach for use in clinical

settings where the primary interest is understanding outcome trajectories while considering

covariate effects. Because of the tendency of EHR data to contain structural complexities,

like informative observation times and dependent terminal events, use of a three-part shared

random effects model as described in this dissertation should be more commonplace.
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APPENDIX A

Macro to Implement Shared Random Effects Model

/∗∗ MANDATORY ARGUMENTS ∗∗/

∗DAT = DATASET NAME;

∗Y = COLUMN NAME IN DAT CORRESPONDING TO THE OUTCOME THAT WILL BE

MODELED LONGITUDINALLY;

∗TIME = COLUMN NAME IN DAT CORRESPONDING TO TIME;

∗UNIQ ID = COLUMN NAME IN DAT CORRESPONDING TO UNIQUE ID FOR EACH

INDIVIDUAL ;

∗TIME END = VALUE CORRESPONDING TO THE TIME ALL RECORDS WOULD HAVE

BEEN CENSORED (DATA EXTRACTIION DATE/TIME) ;

∗TIME TERM = VALUE CORRESPONDING TO THE ASSUMED TERMINAL EVENT

TIME FOR AN INDIVIDUAL IF A TERMINAL EVENT IS DETERMINED TO

HAVE HAPPENED;

/∗∗ OPTIONAL ARGUMENTS ∗∗/

∗KNTS SPLINE = LIST CONTAINING THE LOCATION OF THE SPLINE KNOTS (

IF EMPTY, ASSUMES NO KNOTS) . LOCATION SHOULD BE IN TERMS OF

LENGTH OF TIME SINCE FIRST RECORD FOR EACH INDIVIDUAL ;

∗COV LONG = LIST OF COLUMN NAMES IN DAT CORRESPONDING TO THE
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COVARIATES THAT WILL BE INCLUDED AS INTERCEPT TERMS IN THE

LONGITUDINAL COMPONENT OF THE MODEL ( IF EMPTY, ASSUMES NO

COVARIATES) ;

∗COV LONG TIME = LIST OF COLUMN NAMES IN DAT CORRESPONDING TO THE

COVARIATES THAT WILL BE INCLUDED AS SLOPE TERMS IN THE

LONGITUDINAL COMPONENT OF THE MODEL ( IF EMPTY, ASSUMES NO

COVARIATES) ;

∗COV RECR = LIST OF COLUMN NAMES IN DAT CORRESPONDING TO THE

COVARIATES THAT WILL BE INCLUDED IN THE RECURRENT EVENTS

COMPONENT OF THE MODEL ( IF EMPTY, ASSUMES NO COVARIATES) ;

∗COV TERM = LIST OF COLUMN NAMES IN DAT CORRESPONDING TO THE

COVARIATES THAT WILL BE INCLUDED IN THE TERMINAL EVENTS

COMPONENT OF THE MODEL ( IF EMPTY, ASSUMES NO COVARIATES) ;

∗NUMB RECR = NUMBER OF PIECES FOR THE PIECEWISE BASELINE HAZARD IN

THE RECURRENT EVENTS COMPONENT OF THE MODEL (DEFAULTS TO 5) ;

∗NUMBTERM = NUMBER OF PIECES FOR THE PIECEWISE BASELINE HAZARD IN

THE TERMINAL EVENTS COMPONENT OF THE MODEL (DEFAULTS TO 5) ;

∗DURATION END = VALUE CORRESPONDING TO THE DURATION OF TIME AFTER

WHICH CENSORING IS ASSUMED (DEFAULTS TO 365) ;

∗MINITER = MINIMUM NUMBER OF ITERATIONS TO BE SPECIFIED FOR THE

NLMIXED PROCEDURES (DEFAULTS TO 250) ;

∗SEED = ENSURES REPLICABILITY (DEFAULTS TO 202401) ;

/∗∗ STARTING VALUE ARGUMENTS (MANDATORY DEPENDING ON MODEL

SPECIFICATIONS) ∗∗/

∗SV RECR = LIST OF STARTING VALUES FOR THE PIECEWISE BASELINE
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HAZARD IN THE RECURRENT EVENTS COMPONENT OF THE MODEL (LENGTH

SHOULD EQUAL NUMB RECR) ;

∗SV TERM = LIST OF STARTING VALUES FOR THE PIECEWISE BASELINE

HAZARD IN THE TERMINAL EVENTS COMPONENT OF THE MODEL (LENGTH

SHOULD EQUAL NUMBTERM) ;

∗SV INTERCEPT = STARTING VALUE FOR THE INTERCEPT IN THE

LONGITUDINAL COMPONENT OF THE MODEL (LENGTH SHOULD EQUAL 1) ;

∗SV TIME = LIST OF STARTING VALUES FOR THE LONGITUDINAL COMPONENT

OF THE MODEL CORRESPONDING TO TIME (FIRST IN LIST) AND SPLINE

KNOTS IN THE ORDER SPECIFIED IN KNTS SPLINE (LENGTH SHOULD

EQUAL LENGTH OF KNTS SPLINE PLUS 1) ;

∗SV COV LONG = LIST OF STARTING VALUES FOR THE LONGITUDINAL

COMPONENT OF THE MODEL CORRESPONDING TO COVARIATES LISTED IN

COV LONG (LENGTH SHOULD EQUAL LENGTH OF COV LONG) ;

∗SV COV LONG TIME = LIST OF STARTING VALUES FOR THE LONGITUDINAL

COMPONENT OF THE MODEL CORRESPONDING TO TIME AND COVARIATES

LISTED IN COV LONG TIME (LENGTH SHOULD EQUAL LENGTH OF

COV LONG TIME TIMES (LENGTH OF KNTS SPLINE PLUS 1) ) ;

∗SV BETA = LIST OF STARTING VALUES FOR THE RECURRENT EVENTS

COMPONENT OF THE MODEL CORRESPONDING TO COVARIATES LISTED IN

COV RECR (LENGTH SHOULD EQUAL LENGTH OF COV RECR) ;

∗SV ETA = LIST OF STARTING VALUES FOR THE TERMINAL EVENTS

COMPONENT OF THE MODEL CORRESPONDING TO COVARIATES LISTED IN

COV TERM (LENGTH SHOULD EQUAL LENGTH OF COV TERM) ;

∗SV GAMMA = LIST OF STARTING VALUES FOR GAMMA1, GAMMA2, AND GAMMA3

( IN THAT ORDER) ;

∗SV VAR = LIST OF STARTING VALUES FOR VARIANCE(U) , VARIANCE(V) ,
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AND VARIANCE(E) ( IN THAT ORDER) ;

%MACRO SHARED3 RANEFF(DAT, Y, TIME, UNIQ ID , TIME END, TIME TERM,

KNTS SPLINE=, COV LONG=, COV LONG TIME=, COV RECR=, COV TERM=,

NUMB RECR=5, NUMBTERM=5, DURATION END=365 , MINITER=250 , SEED

=202401 ,

SV RECR=, SV TERM=, SV INTERCEPT=, SV TIME=,

SV COV LONG=, SV COV LONG TIME=, SV BETA

=, SV ETA=, SV GAMMA=, SV VAR=) ;

%LET NUMB KNTS = %SYSFUNC(COUNTW(%STR(&KNTS SPLINE) ) ) ;

%LET NUMB COV LONG = %SYSFUNC(COUNTW(%STR(&COV LONG) ) ) ;

%LET NUMB COV RECR = %SYSFUNC(COUNTW(%STR(&COV RECR) ) ) ;

%LET NUMB COV TERM = %SYSFUNC(COUNTW(%STR(&COV TERM) ) ) ;

%LET NUMB COV LONG TIME = %SYSFUNC(COUNTW(%STR(&COV LONG TIME) ) ) ;

PROC SORT DATA=&DAT; BY &UNIQ ID . &TIME; RUN;

DATA DAT1;

SET &DAT;

RETAIN FIRST TIME CTIME TTIME;

BY &UNIQ ID ;

IF FIRST.&UNIQ ID THEN DO;

FIRST TIME = &TIME;

CTIME = &TIME END − &TIME;

TTIME = &TIME TERM − &TIME;

T = 0 ;

89



END;

ELSE T = &TIME − FIRST TIME ;

IF T <= &DURATION END;

DROP FIRST TIME ;

RUN;

PROC SORT DATA=DAT1; BY &UNIQ ID DESCENDING &TIME; RUN;

DATA DAT1;

SET DAT1;

RETAIN LAST TIME;

BY &UNIQ ID ;

LAST = 0 ;

IF FIRST.&UNIQ ID THEN DO;

LAST TIME = T;

LAST = 1 ;

END;

DI = TTIME;

CI = MIN(&DURATION END,CTIME) ;

IF T <= &DURATION END;

DROP LAST TIME CTIME;

RUN;

PROC SORT DATA=DAT1; BY &UNIQ ID &TIME; RUN;

%IF (&NUMB KNTS NE 0) %THEN %DO;

DATA LONG;

SET DAT1;

ARRAY TIME SPLINE {&NUMB KNTS} ;
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%DO I=1 %TO &NUMB KNTS;

VAL = %SCAN(&KNTS SPLINE,& I ) ;

IF T <= VAL THEN TIME SPLINE {&I } = 0 ;

ELSE IF T > VAL THEN TIME SPLINE {&I } = (T − VAL) ;

%END;

IF Y NE . ;

DROP VAL;

RUN;

%END;

%ELSE %DO;

DATA LONG;

SET DAT1;

IF Y NE . ;

RUN;

%END;

DATA RECR;

SET DAT1 (WHERE=(T > 0) ) ;

RUN;

%IF %SYSFUNC(MOD(100 ,&NUMB RECR) )= 0 %THEN %DO;

%LET INCREMENT RECR = %EVAL(100/&NUMB RECR) ;

%END;

%ELSE %DO;

%LET INCREMENT RECR = %EVAL((100/&NUMB RECR)+ 1) ;

%END;
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%IF %SYSFUNC(MOD(100 ,&NUMBTERM) )= 0 %THEN %DO;

%LET INCREMENT TERM = %EVAL(100/&NUMBTERM) ;

%END;

%ELSE %DO;

%LET INCREMENT TERM = %EVAL((100/&NUMBTERM)+ 1) ;

%END;

PROC UNIVARIATE DATA=RECR NOPRINT;

VAR T;

OUTPUT PCTLPRE=R PCTLPTS=0 TO 99 BY &INCREMENT RECR,100 OUT=

PCTL RECR;

RUN;

/∗∗∗ FITTING THE TWO−PART MODEL ∗∗∗/

DATA DAT2;

IF N = 1 THEN SET PCTL RECR;

SET DAT1;

ARRAY QUANT R {∗} R : ;

ARRAY DUR R {&NUMB RECR} ;

ARRAY EVENT R {&NUMB RECR} ;

DO I=1 TO &NUMB RECR;

DUR R{ I } = 0 ;

EVENT R{ I } = 0 ;

END;
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IF LAST=0 THEN DO;

DO I=2 TO (&NUMB RECR + 1) ;

IF T <= QUANT R{ I } THEN DO;

EVENT R{ I−1} = 1 ;

I = (&NUMB RECR + 1) ;

END;

END;

END;

ELSE DO;

DO I=2 TO (&NUMB RECR + 1) ;

IF T <= QUANT R{ I } THEN DO;

DUR R{ I−1} = MAX(T−QUANT R{ I−1} ,0) ;

EVENT R{ I−1}=1;

I = (&NUMB RECR + 1) ;

END;

ELSE DUR R{ I−1} = QUANT R{ I}−QUANT R{ I−1};

END;

END;

DROP I ;

RUN;

DATA NLMIXED TWO;

SET LONG (IN=IND1)

DAT2 ( IN=IND2) ;

IF IND1 THEN DO;
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OUTC = Y;

OUTC TYPE = 1 ;

END;

ELSE IF IND2 THEN DO;

OUTC = T;

OUTC TYPE = 2 ;

END;

RUN;

PROC SORT DATA=NLMIXED TWO;

BY &UNIQ ID OUTC TYPE T;

RUN;

%LET PARMS = ALPHA0=&SV INTERCEPT;

%DO I=1 %TO &NUMB RECR;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR BHR = R&I ∗ EVENT R&I ;

%LET OUTSTR CBHR = R&I ∗ DUR R&I ;

%LET OUTSTR R = R&I ;

%LET PARMS = &PARMS R&I=%SCAN(&SV RECR,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR BHR = &OUTSTR BHR + R&I ∗ EVENT R&I ;

%LET OUTSTR CBHR = &OUTSTR CBHR + R&I ∗ DUR R&I ;

%LET OUTSTR R = &OUTSTR R R&I ;

%LET PARMS = &PARMS R&I=%SCAN(&SV RECR,&I , ’ ’ ) ;
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%END;

%END;

%IF (&NUMB COV RECR = 0) %THEN %DO;

%LET OUTSTR MU1 = U;

%END;

%ELSE %DO;

%DO I=1 %TO &NUMB COV RECR;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR MU1 = BETA&I ∗ %SCAN(&COV RECR,& I ) ;

%LET PARMS = &PARMS BETA&I=%SCAN(&SV BETA,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR MU1 = &OUTSTR MU1 + BETA&I ∗ %SCAN(&COV RECR,& I ) ;

%LET PARMS = &PARMS BETA&I=%SCAN(&SV BETA,&I , ’ ’ ) ;

%END;

%IF (&I = &NUMB COV RECR) %THEN %DO;

%LET OUTSTR MU1 = &OUTSTR MU1 + U;

%END;

%END;

%END;

%IF (&NUMB COV LONG = 0) %THEN %DO;

%LET OUTSTR MU3 = ALPHA0 + ALPHA1∗T;

%LET PARMS = &PARMS ALPHA1=%SCAN(&SV TIME, 1 , ’ ’ ) ;

%DO K=1 %TO &NUMB KNTS;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S0 &K ∗ TIME SPLINE &K ;
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%LET PARMS = &PARMS ALPHA S0 &K=%SCAN(&SV TIME,&K+1 , ’ ’ ) ;

%END;

%END;

%ELSE %DO;

%DO I=1 %TO &NUMB COV LONG;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR MU3 = ALPHA0 + ALPHA1∗T;

%LET PARMS = &PARMS ALPHA1=%SCAN(&SV TIME, 1 , ’ ’ ) ;

%DO K=1 %TO &NUMB KNTS;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S0 &K ∗ TIME SPLINE &K ;

%LET PARMS = &PARMS ALPHA S0 &K=%SCAN(&SV TIME,&K+1 , ’ ’ ) ;

%END;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA I&I ∗ %SCAN(&COV LONG,& I )

;

%LET PARMS = &PARMS ALPHA I&I=%SCAN(&SV COV LONG,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA I&I ∗ %SCAN(&COV LONG,& I )

;

%LET PARMS = &PARMS ALPHA I&I=%SCAN(&SV COV LONG,&I , ’ ’ ) ;

%END;

%END;

%END;

%IF (&NUMB COV LONG TIME NE 0) %THEN %DO;

%DO J=1 %TO &NUMB COV LONG TIME;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S&J ∗ T ∗ %SCAN(&
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COV LONG TIME,&J ) ;

%LET PARMS = &PARMS ALPHA S&J=%SCAN(&SV COV LONG TIME, 1 , ’ ’ ) ;

%DO K=1 %TO &NUMB KNTS;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S&J . &K ∗ TIME SPLINE &K

∗ %SCAN(&COV LONG TIME,&J ) ;

%LET PARMS = &PARMS ALPHA S&J . &K=%SCAN(&SV COV LONG TIME,&K

+1 , ’ ’ ) ;

%END;

%END;

%END;

%LET PARMS = &PARMS GAMMA1=%SCAN(&SV GAMMA, 1 , ’ ’ ) ;

%LET PARMS = &PARMS VARU=%SCAN(&SV VAR, 1 , ’ ’ ) VARV=%SCAN(&SV VAR

, 2 , ’ ’ ) VARE=%SCAN(&SV VAR, 3 , ’ ’ ) ;

%LET OUTSTR MU3 = &OUTSTR MU3 + GAMMA1 ∗ U + V;

PROC NLMIXED DATA=NLMIXED TWO QPOINTS=5 MINITER=&MINITER;

PARMS &PARMS;

BOUNDS &OUTSTR R VARU VARV VARE >= 0 ;

IF OUTC TYPE = 1 THEN DO;

MU3 = &OUTSTR MU3;

LOGLIK = −.5∗(Y − MU3) ∗∗2/(VARE)−.5∗LOG(2∗3 .14159∗VARE) ;

END;

ELSE IF OUTC TYPE = 2 THEN DO;

BASE HAZ R = &OUTSTR BHR;
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CUM BASE HAZ R = &OUTSTR CBHR;

MU1 = &OUTSTR MU1;

LOGLIK1 = −EXP(MU1)∗CUM BASE HAZ R;

IF LAST = 0 THEN LOGLIK = LOG(BASE HAZ R) + MU1;

ELSE IF LAST = 1 THEN LOGLIK = LOG(BASE HAZ R) + MU1 + LOGLIK1 ;

END;

MODEL OUTC ˜ GENERAL(LOGLIK) ;

RANDOM U V ˜ NORMAL( [ 0 , 0 ] , [VARU, 0 ,VARV] ) SUBJECT=&UNIQ ID OUT=

EM BAYES EST;

ODS OUTPUT PARAMETERESTIMATES=PE;

PREDICT BASE HAZ R∗EXP(MU1) OUT=FULL HAZARD;

RUN;

/∗∗∗ USING THE TWO−PART MODEL OUTPUT TO DETERMINE INDEPENDENT/

DEPENDENT TERMINATION ∗∗∗/

DATA DAT LAST;

SET DAT1;

IF LAST=1 THEN OUTPUT;

RUN;

DATA EM BAYES NEW;
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SET EM BAYES EST;

WHERE EFFECT=’U’ ;

U BAYES EST = ESTIMATE;

U BAYES PRED STD = STDERRPRED;

U LOWER = LOWER;

U UPPER = UPPER;

DROP ESTIMATE STDERRPRED LOWER UPPER DF TVALUE PROBT ALPHA;

RUN;

PROC SORT DATA=EM BAYES NEW; BY &UNIQ ID ; RUN;

PROC SORT DATA=DAT LAST; BY &UNIQ ID ; RUN;

DATA DAT PRED;

MERGE DAT LAST ( IN=A) EM BAYES NEW (IN=B) ;

BY &UNIQ ID ;

IF A=1;

RUN;

DATA DAT PRED;

RETAIN R : ;

IF N = 1 THEN SET PCTL RECR;

SET DAT PRED;

AA=1;

RUN;

PROC TRANSPOSE DATA=PE OUT=PE TRANS;

ID PARAMETER;

VAR ESTIMATE;

RUN;

DATA PE TRANS; SET PE TRANS; AA=1; RUN;

DATA DAT PRED (DROP=AA NAME ) ;
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MERGE DAT PRED PE TRANS;

BY AA;

RUN;

%MACRO RANDEXP(SIGMA) ;

((&SIGMA)∗RAND(” Exponent ia l ”) )

%MEND;

%LET NUMB COV RECR = %SYSFUNC(COUNTW(%STR(&COV RECR) ) ) ;

%IF (&NUMB COV RECR = 0) %THEN %DO;

%LET OUTSTR MU1 = U BAYES EST;

%END;

%ELSE %DO;

%DO I=1 %TO &NUMB COV RECR;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR MU1 = BETA&I ∗ %SCAN(&COV RECR,& I ) ;

%END;

%ELSE %DO;

%LET OUTSTR MU1 = &OUTSTR MU1 + BETA&I ∗ %SCAN(&COV RECR,& I ) ;

%END;

%IF (&I = &NUMB COV RECR) %THEN %DO;

%LET OUTSTR MU1 = &OUTSTR MU1 + U BAYES EST;

%END;

%END;

%END;

DATA DAT PRED2;
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RETAIN R : ;

SET DAT PRED;

ARRAY QUANT R {∗} R : ;

ARRAY R{&NUMB RECR} ;

ARRAY HAZARD {&NUMB RECR} ;

DO I=1 TO &NUMB RECR;

IF QUANT R{ I } < T <= QUANT R{ I+1} THEN HAZARD INTERVAL = I ;

HAZARD{ I } = R{ I }∗EXP(&OUTSTR MU1) ;

END;

DROP I ;

RUN;

DATA DAT PRED3;

RETAIN R : ;

SET DAT PRED2;

ARRAY QUANT R {∗} R : ;

ARRAY S{&NUMB RECR} ;

ARRAY F{&NUMB RECR} ;

ARRAY LIM{&NUMB RECR} ;

ARRAY HAZARD {&NUMB RECR} ;

CALL STREAMINIT(&SEED) ;

X=%RANDEXP(1) ;

DO I=1 TO &NUMB RECR;

IF HAZARD INTERVAL = I THEN DO;

DO J=1 TO &NUMB RECR;
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IF ( I+J−1) <= &NUMB RECR THEN DO;

S{J} = QUANT R{ I+J}−T;

F{J} = HAZARD{ I+J−1};

END;

ELSE DO;

S{J} = 0 ;

F{J} = 0 ;

END;

END;

END;

END;

DO I=1 TO &NUMB RECR;

LIM{ I } = 0 ;

IF I > 1 THEN DO;

DO J=1 TO ( I−1) ;

IF J=1 THEN LIM{ I } = LIM{ I } + F{J}∗S{J } ;

ELSE IF J > 1 THEN LIM{ I } = LIM{ I } +F{J}∗(S{J}−S{J−1}) ;

END;

END;

END;

DROP I J ;

RUN;

DATA DAT PRED4;

SET DAT PRED3;

ARRAY S{&NUMB RECR} ;

ARRAY F{&NUMB RECR} ;
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ARRAY LIM{&NUMB RECR} ;

DO I=1 TO &NUMB RECR;

IF HAZARD INTERVAL = I THEN DO;

DO J=1 TO (&NUMB RECR−I +1) ;

IF J = 1 & J NE (&NUMB RECR−I +1) THEN DO;

IF LIM{J} <= X <= LIM{J+1} THEN EXPECTED TIME = (X−LIM{J

}) /F{J } ;

END;

ELSE IF J = 1 & J = (&NUMB RECR−I +1) THEN DO;

IF LIM{J} <= X THEN EXPECTED TIME = (X−LIM{J}) /F{J } ;

END;

ELSE IF J NE (&NUMB RECR−I +1) THEN DO;

IF LIM{J} < X <= LIM{J+1} THEN EXPECTED TIME = S{J−1} + (

X−LIM{J}) /F{J } ;

END;

ELSE DO;

IF LIM{J} < X THEN EXPECTED TIME = S{J−1} + (X−LIM{J}) /F{

J } ;

END;

END;

END;

END;

EXPECTED NEXT VISIT TIME = SUM(OF EXPECTED TIME T) ;

EXPECTED NEXT VISIT DATE = SUM(OF EXPECTED TIME &TIME) ;
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DROP I J ;

RUN;

PROC SORT DATA=DAT1; BY &UNIQ ID T; RUN;

PROC SORT DATA=DAT PRED4; BY &UNIQ ID ; RUN;

DATA DAT NEXT;

FORMAT EXPECTED NEXT VISIT DATE MMDDYY10. ;

MERGE DAT1 ( IN=IND1)

DAT PRED4 ( IN=IND2 KEEP=&UNIQ ID

EXPECTED NEXT VISIT TIME

EXPECTED NEXT VISIT DATE) ;

IF EXPECTED NEXT VISIT TIME GE CI THEN DELTAI = 0 ; ELSE DELTAI =

1 ;

BY &UNIQ ID ;

IF IND1=1;

IF LAST NE 1 THEN CENS = 0 ;

ELSE IF LAST = 1 & DELTAI = 1 THEN CENS = 2 ;

ELSE IF LAST = 1 & DELTAI = 0 THEN CENS = 1 ;

RUN;

/∗∗∗ FITTING THE THREE−PART MODEL ∗∗∗/

DATA TERM;

SET DAT NEXT;

IF CENS = 2 ;

RUN;

PROC UNIVARIATE DATA=TERM NOPRINT;
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VAR DI ;

OUTPUT PCTLPRE=T PCTLPTS=0 TO 99 BY &INCREMENT TERM,100 OUT=

PCTL TERM;

RUN;

DATA PCTL;

MERGE PCTL RECR PCTL TERM;

RUN;

DATA DAT NEXT1;

SET LONG (IN=IND1)

DAT NEXT (IN=IND2)

DAT NEXT (WHERE=(LAST=1) IN=IND3) ;

IF IND1 THEN DO;

OUTC = Y;

OUTC TYPE = 1 ;

END;

ELSE IF IND2 THEN DO;

OUTC = T;

OUTC TYPE = 2 ;

CENS = 0 ;

END;

ELSE IF IND3 THEN DO;

IF DELTAI = 1 THEN OUTC = DI ;

ELSE IF DELTAI = 0 THEN OUTC = CI ;

OUTC TYPE = 2 ;

END;

IF OUTC NE 0 ;
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RUN;

DATA NLMIXED DAT;

IF N = 1 THEN SET PCTL;

SET DAT NEXT1;

ARRAY QUANT R {∗} R : ;

ARRAY QUANT T {∗} T : ;

ARRAY DUR R {&NUMB RECR} ;

ARRAY DUR T {&NUMBTERM} ;

ARRAY EVENT R {&NUMB RECR} ;

ARRAY EVENT T {&NUMBTERM} ;

DO I=1 TO &NUMB RECR;

DUR R{ I } = 0 ;

EVENT R{ I } = 0 ;

END;

DO I=1 TO &NUMBTERM;

DUR T{ I } = 0 ;

EVENT T{ I } = 0 ;

END;

IF OUTC TYPE = 2 & CENS = 0 THEN DO;

DO I=2 TO (&NUMB RECR + 1) ;
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IF OUTC <= QUANT R{ I } THEN DO;

EVENT R{ I−1} = 1 ;

I = (&NUMB RECR + 1) ;

END;

END;

END;

ELSE IF OUTC TYPE = 2 THEN DO;

DO I=2 TO (&NUMB RECR + 1) ;

IF OUTC <= QUANT R{ I } THEN DO;

DUR R{ I−1} = MAX(OUTC−QUANT R{ I−1} ,0) ;

I = (&NUMB RECR + 1) ;

END;

ELSE DUR R{ I−1} = QUANT R{ I}−QUANT R{ I−1};

END;

DO I=2 TO (&NUMBTERM + 1) ;

IF OUTC <= QUANT T{ I } THEN DO;

EVENT T{ I−1}= (CENS=2) ;

DUR T{ I−1} = MAX(OUTC−QUANT T{ I−1} ,0) ;

I = (&NUMBTERM + 1) ;

END;

ELSE DUR T{ I−1} = QUANT T{ I}−QUANT T{ I−1};

END;

END;

DROP I ;
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RUN;

PROC SORT DATA=NLMIXED DAT; BY &UNIQ ID OUTC TYPE T; RUN;

%LET PARMS = ALPHA0=&SV INTERCEPT;

%DO I=1 %TO &NUMB RECR;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR BHR = R&I ∗ EVENT R&I ;

%LET OUTSTR CBHR = R&I ∗ DUR R&I ;

%LET OUTSTR R = R&I ;

%LET PARMS = &PARMS R&I=%SCAN(&SV RECR,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR BHR = &OUTSTR BHR + R&I ∗ EVENT R&I ;

%LET OUTSTR CBHR = &OUTSTR CBHR + R&I ∗ DUR R&I ;

%LET OUTSTR R = &OUTSTR R R&I ;

%LET PARMS = &PARMS R&I=%SCAN(&SV RECR,&I , ’ ’ ) ;

%END;

%END;

%DO I=1 %TO &NUMBTERM;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR BHT = T&I ∗ EVENT T&I ;

%LET OUTSTR CBHT = T&I ∗ DUR T&I ;

%LET OUTSTR T = T&I ;

%LET PARMS = &PARMS T&I=%SCAN(&SV TERM,&I , ’ ’ ) ;
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%END;

%ELSE %DO;

%LET OUTSTR BHT = &OUTSTR BHT + T&I ∗ EVENT T&I ;

%LET OUTSTR CBHT = &OUTSTR CBHT + T&I ∗ DUR T&I ;

%LET OUTSTR T = &OUTSTR T T&I ;

%LET PARMS = &PARMS T&I=%SCAN(&SV TERM,&I , ’ ’ ) ;

%END;

%END;

%IF (&NUMB COV RECR = 0) %THEN %DO;

%LET OUTSTR MU1 = U;

%END;

%ELSE %DO;

%DO I=1 %TO &NUMB COV RECR;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR MU1 = BETA&I ∗ %SCAN(&COV RECR,& I ) ;

%LET PARMS = &PARMS BETA&I=%SCAN(&SV BETA,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR MU1 = &OUTSTR MU1 + BETA&I ∗ %SCAN(&COV RECR,& I ) ;

%LET PARMS = &PARMS BETA&I=%SCAN(&SV BETA,&I , ’ ’ ) ;

%END;

%IF (&I = &NUMB COV RECR) %THEN %DO;

%LET OUTSTR MU1 = &OUTSTR MU1 + U;

%END;

%END;

%END;
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%IF (&NUMB COV TERM = 0) %THEN %DO;

OUTSTR MU2 = GAMMA2 ∗ U + GAMMA3 ∗ V;

%END;

%ELSE %DO;

%DO I=1 %TO &NUMB COV TERM;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR MU2 = ETA&I ∗ %SCAN(&COV TERM,& I ) ;

%LET PARMS = &PARMS ETA&I=%SCAN(&SV ETA,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR MU2 = &OUTSTR MU2 + ETA&I ∗ %SCAN(&COV TERM,& I ) ;

%LET PARMS = &PARMS ETA&I=%SCAN(&SV ETA,&I , ’ ’ ) ;

%END;

%IF (&I = &NUMB COV TERM) %THEN %DO;

%LET OUTSTR MU2 = &OUTSTR MU2 + GAMMA2 ∗ U + GAMMA3 ∗ V;

%END;

%END;

%END;

%IF (&NUMB COV LONG = 0) %THEN %DO;

%LET OUTSTR MU3 = ALPHA0 + ALPHA1∗T;

%LET PARMS = &PARMS ALPHA1=%SCAN(&SV TIME, 1 , ’ ’ ) ;

%DO K=1 %TO &NUMB KNTS;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S0 &K ∗ TIME SPLINE &K ;

%LET PARMS = &PARMS ALPHA S0 &K=%SCAN(&SV TIME,&K+1 , ’ ’ ) ;

%END;
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%END;

%ELSE %DO;

%DO I=1 %TO &NUMB COV LONG;

%IF (&I = 1) %THEN %DO;

%LET OUTSTR MU3 = ALPHA0 + ALPHA1∗T;

%LET PARMS = &PARMS ALPHA1=%SCAN(&SV TIME, 1 , ’ ’ ) ;

%DO K=1 %TO &NUMB KNTS;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S0 &K ∗ TIME SPLINE &K ;

%LET PARMS = &PARMS ALPHA S0 &K=%SCAN(&SV TIME,&K+1 , ’ ’ ) ;

%END;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA I&I ∗ %SCAN(&COV LONG,& I )

;

%LET PARMS = &PARMS ALPHA I&I=%SCAN(&SV COV LONG,&I , ’ ’ ) ;

%END;

%ELSE %DO;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA I&I ∗ %SCAN(&COV LONG,& I )

;

%LET PARMS = &PARMS ALPHA I&I=%SCAN(&SV COV LONG,&I , ’ ’ ) ;

%END;

%END;

%END;

%IF (&NUMB COV LONG TIME NE 0) %THEN %DO;

%DO J=1 %TO &NUMB COV LONG TIME;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S&J ∗ T ∗ %SCAN(&

COV LONG TIME,&J ) ;

%LET PARMS = &PARMS ALPHA S&J=%SCAN(&SV COV LONG TIME, 1 , ’ ’ ) ;
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%DO K=1 %TO &NUMB KNTS;

%LET OUTSTR MU3 = &OUTSTR MU3 + ALPHA S&J . &K ∗ TIME SPLINE &K

∗ %SCAN(&COV LONG TIME,&J ) ;

%LET PARMS = &PARMS ALPHA S&J . &K=%SCAN(&SV COV LONG TIME,&K

+1 , ’ ’ ) ;

%END;

%END;

%END;

%LET PARMS = &PARMS GAMMA1=%SCAN(&SV GAMMA, 1 , ’ ’ ) GAMMA2=%SCAN(&

SV GAMMA, 2 , ’ ’ ) GAMMA3=%SCAN(&SV GAMMA, 1 , ’ ’ ) ;

%LET PARMS = &PARMS VARU=%SCAN(&SV VAR, 1 , ’ ’ ) VARV=%SCAN(&SV VAR

, 2 , ’ ’ ) VARE=%SCAN(&SV VAR, 3 , ’ ’ ) ;

%LET OUTSTR MU3 = &OUTSTR MU3 + GAMMA1 ∗ U + V;

PROC NLMIXED DATA=NLMIXED DAT QPOINTS=5 MINITER=&MINITER;

PARMS &PARMS;

BOUNDS &OUTSTR R &OUTSTR T VARU VARV VARE >= 0 ;

IF OUTC TYPE = 1 THEN DO;

MU3 = &OUTSTR MU3;

LOGLIK = −.5∗(Y − MU3) ∗∗2/(VARE)−.5∗LOG(2∗3 .14159∗VARE) ;

END;

ELSE IF OUTC TYPE = 2 THEN DO;

BASE HAZ R = &OUTSTR BHR;

CUM BASE HAZ R = &OUTSTR CBHR;
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BASE HAZ T = &OUTSTR BHT;

CUM BASE HAZ T = &OUTSTR CBHT;

MU1 = &OUTSTR MU1;

MU2 = &OUTSTR MU2;

LOGLIK1 = −EXP(MU1)∗CUM BASE HAZ R;

LOGLIK2 = −EXP(MU2)∗CUM BASE HAZ T;

IF CENS = 0 THEN LOGLIK = LOG(BASE HAZ R) + MU1;

ELSE IF CENS = 2 THEN LOGLIK = LOGLIK1 + LOGLIK2 + LOG(

BASE HAZ T) + MU2;

ELSE IF CENS = 1 THEN LOGLIK = LOGLIK1 + LOGLIK2 ;

END;

MODEL OUTC ˜ GENERAL(LOGLIK) ;

RANDOM U V ˜ NORMAL( [ 0 , 0 ] , [VARU, 0 ,VARV] ) SUBJECT=&UNIQ ID OUT=

EM BAYES EST FINAL ;

ODS OUTPUT PARAMETERESTIMATES=PE FINAL ;

RUN;

%PUT LONGITUDINAL PARAMETER FUNCTION: &OUTSTR MU3;

%PUT RECURRENT EVENT PARAMETER FUNCTION: &OUTSTR MU1;

%PUT TERMINAL EVENT PARAMETER FUNCTION: &OUTSTR MU2;

%PUT BASELINE HAZARD FOR RECURRENT EVENTS: &OUTSTR BHR;
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%PUT CUMULATIVE BASELINE HAZARD FOR RECURRENT EVENTS: &OUTSTR CBHR

;

%PUT BASELINE HAZARD FOR TERMINAL EVENTS: &OUTSTR BHR;

%PUT CUMULATIVE BASELINE HAZARD FOR TERMINAL EVENTS: &OUTSTR CBHR;

%MEND;

/∗∗∗∗ EXAMPLE OF IMPLEMENTING THE MACRO ON SIMULATED DATA ∗∗∗/

∗%SHARED3 RANEFF(DAT=SIMDAT 1 , Y=Y, TIME=DAY, UNIQ ID=PID ,

TIME END=360.64 , TIME TERM=TERM,

COV LONG = Z ,

COV RECR = Z ,

COV TERM = Z ,

NUMB RECR = 10 ,

NUMBTERM = 10 ,

DURATION END = 360 .64 ,

MINITER=250 ,

SV RECR = 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01

0 .01 0 . 01 ,

SV TERM = 0.001 0 .001 0 .002 0 .003 0 .003 0 .004

0 .006 0 .004 0 .008 0 .012 ,

SV INTERCEPT = 10 ,

SV TIME = 0 . 2 ,

SV COV LONG = 1 ,

SV BETA = 1 ,

SV ETA = 1 ,
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SV GAMMA = 1.5 −0.5 1 ,

SV VAR = 1 0 .5 1) ;

/∗∗ PARAMETER ESTIMATES CONTAINED WITHIN DATA SET WORK. PE FINAL

∗∗/

/∗∗ INDIVIDUAL−LEVEL EMPIRICAL BAYES ESTIMATES FOR UI CONTAINED

WITHIN WORK.EM BAYES EST FINAL ∗∗/

/∗∗ MACRO WILL ALSO OUTPUT PARAMETER FUNCTION SPECIFICATIONS TO

THE LOG AFTER THE FINAL PROC NLMIXED TO ASSIST WITH

INTERPRETATION OF PARAMETER ESTIMATE NAMES ∗∗/

/∗∗ INTERPRETATION OF PARAMETERS ∗∗/

∗ALPHA0 = INTERCEPT;

∗R . . = BASELINE HAZARD ESTIMATES FOR THE RECURRECT EVENTS

COMPONENT OF THE MODEL (NUMBER OF ESTIMATES = NUMB RECR) ;

∗T . . = BASELINE HAZARD ESTIMATES FOR THE TERMINAL EVENTS COMPONENT

OF THE MODEL (NUMBER OF ESTIMATES = NUMBTERM) ;

∗BETA. . = COEFFICIENTS ASSOCIATED WITH COVARIATES INCLUDED IN THE

RECURRENT EVENTS COMPONENT OF THE MODEL (NUMBER OF ESTIMATES =

LENGTH OF COV RECR) ;

∗ETA. . = COEFFICIENTS ASSOCIATED WITH COVARIATES INCLUDED IN THE

TERMINANL EVENTS COMPONENT OF THE MODEL (NUMBER OF ESTIMATES =

LENGTH OF COV TERM) ;

∗ALPHA1 = COEFFICIENT ASSOCIATED WITH TIME IN THE LONGITUDINAL

COMPONENT OF THE MODEL;
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∗ALPHA S0 . . = COEFFICIENTS ASSOCIATED WITH EACH OF THE SPLINE

KNOTS (NUMBER OF ESTIMATES = LENGTH OF KNTS SPLINE) ;

∗ALPHA S . . = COEFFICIENTS ASSOCIATED WITH SLOPE TERMS (INTERACTED

WITH TIME) IN THE LONGITUDINAL COMPONENT OF THE MODEL (NUMBER

OF ESTIMATES = LENGTH OF COV LONG TIME) ;

∗ALPHA S . . . . = COEFFICIENTS ASSOCIATED WITH SLOPE TERMS (

INTERACTED WITH EACH OF THE SPLINE KNOTS) IN THE LONGITUDINAL

COMPONENT OF THE MODEL (NUMBER OF ESTIMATES = LENGTH OF

COV LONG TIME MULTIPLIED BY LENGTH OF KNTS SPLINE) ;

∗ALPHA I . . = COEFFICIENTS ASSOCIATED WITH COVARIATES INCLUDED IN

THE LONGITUDINAL COMPONENT OF THE MODEL (NUMBER OF ESTIMATES =

LENGTH OF COV LONG) ;

∗GAMMA1 = COEFFICIENT ON THE RANDOM EFFECT UI IN THE LONGITUDINAL

COMPONENT OF THE MODEL;

∗GAMMA2 = COEFFICIENT ON THE RANDOM EFFECT UI IN THE TERMINAL

EVENTS COMPONENT OF THE MODEL;

∗GAMMA3 = COEFFICIENT ON THE RANDOM EFFECT VI IN THE TERMINAL

EVENTS COMPONENT OF THE MODEL;

∗VARU = VARIANCE OF THE RANDOM EFFECT UI SHARED ACROSS ALL THREE

COMPONENTS OF THE MODEL;

∗VARV = VARIANCE OF THE RANDOM EFFECT VI SHARED ACROSS THE

LONGITUINAL AND TERMINAL EVENTS COMPONENTS OF THE MODEL;

∗VARE = VARIANCE OF THE RANDOM EFFECT EIJ PRESENT IN THE

LONGITUDINAL COMPONENT OF THE MODEL;

116



REFERENCES

[1] J. Jeffrey, A. Klomhaus, H. Aralis, W. Barrera, S. Rosenberg, M. Grossman, and
P. Lester. Factors associated with response and remission from depression at 6-months
of treatment in a retrospective cohort treated within an integrated care program. BMC
Health Services Research, 21(703), 2021.

[2] K.L. Myrick and D.F. Ogburn. Percentage of office-based physicians using any elec-
tronic health record (EHR)/electronic medical record (EMR) system and physicians
that have a certified EHR/EMR system, by selected characteristics: National Elec-
tronic Health Records Survey, 2017. National Center for Health Statistics, 2019. Re-
trieved from, https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_web_table_EHR_
Variation.pdf.

[3] E. Kim, S.M. Rubinstein, K.T. Nead, A.P. Wojcieszynski, P.E. Gabriel, and J.L.
Warner. The Evolving Use of Electronic Health Records (EHR) for Research. Sem-
inars in Radiation Oncology, 29:354–361, 2019.

[4] W.R. Hersh, M.G. Weiner, P.J. Embi, J.R. Logan, P.R.O. Payne, E.V. Bernstam, H.P.
Lehmann, G. Hripcsak, T.H. Hartzog, J.J. Cimino, and J.H. Saltz. Caveats for the Use
of Operational Electronic Health Record Data in Comparative Effectiveness Research.
Med Care, 51(8 Suppl 3):S30–S37, 2013.

[5] F.M. Blyth, L.M. March, A.J.M. Brnabic, and M.J. Cousins. Chronic pain and frequent
use of health care. Pain, 111(1-2):S30–S37, 2004.

[6] J. Oosterhaven, H. Wittink, J. Mollema, C. Kruitwagen, and W. Deville. Predictors of
dropout in interdisciplinary chronic chronic pain management programmes: a system-
atic review. J Rehabil Med, 51:2–10, 2019.

[7] J.G. Hanly, K. Thompson, and C. Skedgel. Utilization of Ambulatory Physician En-
counters, Emergency Room Visits, and Hospitalizations by Systematic Lupus Erythe-
matosus Patients: A 13-Year Population Health Study. Arthritis Care Res, 68(8):1128–
1134, 2016.

[8] US Department of Health and Human Services, Substance Abuse and Mental Health
Services Administration. Samhsa – behavioral health integration. Retrieved from,
https://www.samhsa.gov/.

[9] D.J. Roseborough, J.T. McLeod, and F.I. Wright. Attrition in Psychotherapy: A Sur-
vival Analysis. Res Soc Work Pract”, 26(7):803–815, 2016.

[10] K. Possemato, M. Wade, J. Andersen, and P. Ouimette. Impact of PTSD, Depression,
and Substance Use Disorders on Disease Burden and Health Care Utilization Among
OEF/OIF Veterans. Psychol Trauma, 2(3):218–223, 2010.

117

https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_web_table_EHR_Variation.pdf
https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_web_table_EHR_Variation.pdf
https://www.samhsa.gov/


[11] K.I. Howard, S.M. Kopta, M.S. Krause, and D.E. Orlinsky. The Dose-Effect Relation-
ship in Psychotherapy. American Psychologist, 41(2):159–164, 1986.

[12] R.J. Cook and J.F. Lawless. Analysis of repeated events. Statistical Methods in Medical
Research, 11:141–166, 2002.

[13] L. Liu, R.A. Wolfe, and X. Huang. Shared Frailty Models for Recurrent Events and a
Terminal Event. Biometrics, 60:747–756, 2004.

[14] B.A. Goldstein, M. Phelan, N.J. Pagidipati, and S.B. Peskoe. How and when infor-
mative visit processes can bias inference when using electronic health records data for
clinical research. J Am Med Inform Assoc, 26(12):1609–1617, 2019.

[15] L.-A. Lin, S. Luo, B.E. Chen, and B.R. Davis. Bayesian analysis of multi-type recurrent
events and dependent termination with nonparametric covariate functions. Stat Methods
Med Res, 26(6):2869–2884, 2017.

[16] L. Liu, X. Huang, and J. O’Quigley. Analysis of Longitudinal Data in the Presence
of Informative Observational Times and a Dependent Terminal Event. Biometrics,
64:750–758, 2008.

[17] Y. Liang, W. Lu, and Z. Ying. Joint Modeling and Analysis of Longitudinal Data with
Informative Observation Times. Biometrics, 65:377–384, 2009.

[18] N.G. Weiskopf, A. Rusanov, and C. Weng. Sick patients have more data: the non-
random completeness of electronic health records. AMIA Annu Symp Proc 2013, pages
1472–1477, November 16, 2013.

[19] R. Westmacott and J. Hunsley. Reasons for Terminating Psychotherapy: A General
Population Study. Journal of Clinical Psychology, 66(9):965–977, 2010.

[20] J. Wang. Mental Health Treatment Dropout and Its Correlates in a General Population
Sample. Medical Care, 45(3):224–229, 2007.

[21] Substance Abuse and Mental Health Services Administration. Key substance use and
mental health indicators in the United States: Results from the 2017 National Survey
on Drug Use and Health (HHS Publication No. SMA 18-5068, NSDUH Series H-53),
2018.

[22] T. Vos, R.M. Barber, B. Bell, A. Bertozzi-Villa, S. Biryukov, I. Bolliger, F. Charlson,
A. Davis, L. Degenhardt, D. Dicker, and L. Duan. Global, regional, and national
incidence, prevalence, and years lived with disability for 301 acute and chronic diseases
and injuries in 188 countries, 1990-2013. The Lancet, 386(9995):743–800, 2013.

[23] K. Kroenke and J. Unutzer. Closing the False Divide: Sustainable Approaches to
Integrating Mental Health Services into Primary Care. Journal of General Internal
Medicine, 32(4):404–410, 2017.

118



[24] P.J. Cunningham. Beyond Parity: Primary Care Physicians’ Perspectives On Access
To Mental Health Care. Health Affairs, 28(3):490–501, 2009.

[25] C.L. Barry and H.A. Huskamp. Moving beyond Parity - Mental Health and Addiction
Care under the ACA. The New England Journal of Medicine, 365(11):973–975, 2011.

[26] N.M.A. Faghri, C.M. Boisvert, and S. Faghri. Understanding the expanding role of pri-
mary care physicians (PCPs) to primary psychiatric care physicians (PPCPs): enhanc-
ing the assessment and treatment of psychiatric conditions. Mental Health in Family
Medicine, 7:17–25, 2010.

[27] J. Archer, P. Bower, S. Gilbody, K. Lovell, D. Richards, L. Gask, C. Dickens, and
P. Coventry. Collaborate care for depression and anxiety problems. Cochrane Database
of Systematic Reviews, 10, 2012.

[28] E.W.J. Kokkonen, S.A. Davis, H-C. Lin, T.S. Dabade, S.R. Feldman, and A.B. Fleis-
cher Jr. Use of electronic medical records differs by specialty and office settings. Journal
of the American Medical Informatics Association, 20:e33–e38, 2013.

[29] R.M.A. Clarke, J. Jeffrey, M. Grossman, T. Strouse, M. Gitlin, and S.A. Skootsky. De-
livering On Accountable Care: Lessons From A Behavioral Health Program To Improve
Access And Outcomes. Health Affairs, 35(8):1487–1493, 2016.

[30] K. Kroenke, R.L. Spitzer, and J.B.W. Williams. The PHQ–9. J Gen Intern Med,
16:606–613, 2001.

[31] R.L. Spitzer, K. Kroenke, J.B. Williams, and B. Löwe. A brief measure for assessing
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