Lawrence Berkeley National Laboratory
Recent Work

Title
Solution of KV Envelope Equations

Permalink
https://escholarship.org/uc/item/2tw7s48s

Author
Anderson, O.A.

Publication Date
1995-04-27
Solution of K-V Envelope Equations

O.A. Anderson

April 1995
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Solution of K-V Envelope Equations

O.A. Anderson

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

April 1995

This work was supported by the Director, Office of Energy Research, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the beam current, emittance, and peak focusing field, we find the envelopes $a(s)$ and $b(s)$ and obtain $\langle a \rangle$, a_{max}, σ, and σ_0. Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3 to 10^3 times better accuracy and are good to -1% at $\sigma_0 = 70^\circ$. Third order gives a factor of 10^{-30} improvement over the smooth approximation and derived quantities accurate to -1% at $\sigma_0 = 112^\circ$. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL.

I. K-V ENVELOPE EQUATIONS

A non-relativistic beam with a uniform density (K-V distribution) transported by a series of linear symmetric quadrupoles is described by the paraxial equations for the envelopes a and b:

$$a'' = -K(z)a + \frac{2Q}{a + b} \tag{1}$$
$$b'' = -K(z)b + \frac{2Q}{b + a} \tag{2}$$

where $K(z)$ represents the alternating quadrupole gradient and ϵ is the emittance (we assume $\epsilon_x = \epsilon_y$). Q is the normalized perveance, defined nonrelativistically by $Q = (4\pi \epsilon_0)_{-1}(m/2q)^{1/2}V^{-3/2}$, with I the beam current and qV the beam energy.

A. Review of Smooth Approximation Formulas

Before presenting our own results, we recollect the well known smooth approximation results \cite{1}, \cite{2}, \cite{3} and introduce more of our notation. Equations (31) and (37) in Ref. \cite{1} are

$$\frac{1}{2L} \int_0^{2L} K(z)p(z)dz = \frac{\sigma_0^2}{(2L)^2} \tag{3}$$

and

$$\frac{\sigma_0^2}{(2L)^2} = \frac{\epsilon^2}{A^4} + \frac{Q}{A^2},$$

where $K(z)$ is symmetric about $z = 0$, periodic over a cell length and antiperiodic over a half-cell length:

$$K(-z) = K(z),$$

$$K(2L) = K(z),$$

$$K(z - L) = -K(z).$$

It follows that: $h(L/2) = 0$, h is antisymmetric about $L/2$, $h(z)$ ranges between +1 and -1, and $\langle h(z) \rangle = 0$. In the following, we start all our integrations at $z = 0$, where $h = 1$.

A. Expansion about Mean Radius

We assume the beam is matched so that $(a) = (b) = A$ and expand about the mean radius: $a(z) = A + \bar{a}(z) = A(1 + p)$, where we define the ripple ratio

$$p(z) = \frac{\bar{a}(z)}{A}.$$
The assumption of quadrupole symmetry means that \(\tilde{b}(z) = -\tilde{a}(z) \), so that \(a = b = 2A \). (Actually, there is a correction term which we drop without affecting the results, as discussed below.) In any case, the coupling between Eqs. (1) and (2) is eliminated:

\[
a'' = -K(z) a + \frac{e^2}{a^3} + \frac{Q}{A}.
\]

(After solving for \(a \), the solution for \(b \) is obtained by changing the sign of terms containing odd powers of \(K \).) Substituting \(A(1+p) \) for \(a(z) \) in (9), expanding, and dividing by \(A \), we have

\[
\rho'' = -K(z) - K\rho + \frac{e^2}{A^4} (1 - 3p + 6p^2 + \ldots) + \frac{Q}{A^2}.
\]

(10) Averaging,

\[
0 = -K\langle \rho \rangle + \frac{e^2}{A^4} (1 + 6p^2 + \ldots) + \frac{Q}{A^2}.
\]

Subtracting,

\[
\rho'' = -K\langle \rho \rangle - \frac{3e^2}{A^4} (p - 2[p^2] + \ldots),
\]

(12) where the operator \(\{ \ldots \} \) gives just the oscillatory part of a function:

\[
\{ \phi \} = \phi - \langle \phi \rangle.
\]

If we assume that \(a \) never vanishes, then \(p < 1 \) and the above Taylor expansion converges; (11) and (12) taken together have exactly the same content as the original equation, (9). Reference [4] extends Eq. (10) through \(p^6 \).

B. Systematic Solution: Periodic Part

We follow Courant and Snyder in their treatment of the Hill equation [5]. They regard the focusing coefficient \(K(z) \) as "small in some sense," put \(K(s) = 1/2 \epsilon g(s) \), and expand their beta function \(-a^2 \) in powers of the "smallness parameter" \(\epsilon \). Our treatment differs in that we include space charge and must work with \(a = A(1+p) \) instead of their beta function:

\[
\rho(z) = \epsilon f_1(z) + \epsilon^2 f_2(z) + \epsilon^3 f_3(z) + \ldots
\]

(14)

In Ref. [4] we show how to feasibly include terms through \(\epsilon^7 f_7 \), but here we use only the three terms shown in (14).

As in [5], our basic small quantity is the focusing strength \(K \), and we write

\[
K = \epsilon k.
\]

(15)

From Eqs. (4) and (5), \(K^2 L^2 (\text{Const}) = \epsilon^2/A^4 + Q/A^2 \). The terms on the right can be no larger than \(e^2 K^2 L^2 \), so we give them \(e^2 \) ordering and define \(\alpha \) and \(q \) by:

\[
\frac{3e^2}{A^4} = e^2 \alpha,
\]

\[
\frac{Q}{A^2} = e^2 q.
\]

(16) (17)

(We assume that either of these terms could dominate, i.e., \(s \) is in the range \(0 < s < 0.0 \).)

We insert (14)–(17) into (12). Through \(e^3 \),

\[
e_3 f_1'' + e_3 f_2'' + e_3 f_3'' = -\epsilon k h(z) - e^2 k [h f_1] - e^3 k [h f_2] - e^3 \alpha f_1.
\]

Equating like powers of \(\epsilon \), \(f_1'' = -k h(z) \), \(f_2'' = -k [h f_1] \), \(f_3'' = -\alpha f_1 - k [h f_2] \). Integrating,

\[
f_1 = -k \int h,
\]

\[
f_2 = k^2 \int \{ h g \}
\]

\[
f_3 = +\alpha k \int [g - k^2 \int \{ h \delta \}],
\]

where

\[
g = \int h,
\]

(18)

and the small term

\[
\delta(z) = \int \{ h \delta \}
\]

(19)

has double the fundamental frequency of the focusing lattice. The operator \(\int \) gives just the oscillatory part of the repeated integral

\[
\int \int \psi = \left\{ \int \int \left[\psi(z') \right] dz' \right\}.
\]

Note: For an operand such as \(g(z) \) with the symmetries of Eq. (8),

\[
\int \int \psi = \left\{ \int \int \left[\psi (z') dz' \right] \psi(z') \right\}.
\]

(19)

For an operand such as \(\{ h g \} \) which lacks this symmetry, one could construct the appropriate lower limit, but more easily subtract the average as in (13).

A feature of our ordering is that \(f_1, f_3, \ldots \), etc., turn out to have only odd harmonics and odd powers of \(\alpha \), while \(f_2, \ldots \), etc., have only the even cases. Thus

\[
\rho = \frac{\tilde{a}(z)}{A} = -\epsilon k g + \epsilon^2 K^2 \delta + \epsilon^3 \alpha k \int g - e^3 k^3 \int \{ h \delta \} + \ldots ,
\]

\[
\rho = \frac{\tilde{b}(z)}{A} = +\epsilon k g + \epsilon^2 K^2 \delta + \epsilon^3 \alpha k \int g - e^3 k^3 \int \{ h \delta \} + \ldots \]

(20)

(20)

Defining the leading-order ripple,

\[
\rho_0(z) = -\epsilon k g = -K g = -K \int h
\]

(21)

and using (15) and (16), we have, finally

\[
\rho = \frac{\tilde{a}(z)}{A} = +\rho_0 + K^2 \delta(z) - \frac{3e^2}{A^4} \int \rho_0 - K^3 \int \{ h \delta \},
\]

(22)

\[
\frac{\tilde{b}(z)}{A} = -\rho_0 + K^2 \delta(z) - \frac{3e^2}{A^4} \int \rho_0 - K^3 \int \{ h \delta \}
\]

(23)
Note: For large focusing strengths, the double-frequency term \(K_2d\) becomes significant: e.g., if \(\sigma_0 = 120^\circ\), \(K_2^2d = 0.025\). Then, noting from (22) and (23) that \(a + b = 2\sigma(1 + K_2^2d)\), one might think it necessary to include the correction factor \((1 - K_2^2d)\) on the \(Q\) term in Eq. (9).

In Ref. [4] this done and shown to affect the results only in higher order: for \(\sigma_0\) as large as \(120^\circ\), the correction contributes at most 0.04\% to the maximum radius and nothing at all to the matching equation.

The matching equation, derived below, gives the mean radius \(A\) needed for (22) and (23).

C. Systematic Solution: Average Part, Matching Equation

We insert (15)–(17) into (11) to get

\[
e^2k(hp) = e^2 \alpha \frac{a}{3} + e^2q, \tag{24}\]

where \(\rho(z)\) is given by (20). To order \(e^4\),

\[
2e^2\alpha (p^2) = 2e^4 \alpha k^2 (g^2). \tag{25}\]

By above-mentioned \(k\) parity, \((hf_2) = 0\), so

\[
e^2k(hp) = -e^2 k^2 (h\hbar h) + e^4 \alpha k^2 (h\hbar h) - e^4 k^4 (h\{h\bar{h}\}) = e^2 k^2 (h\hbar h) + e^4 \alpha k^2 (g^2) - e^4 k^4 (h\{h\bar{h}\}). \tag{26}\]

We reordered integrations using the \(h(z)\) symmetries, Eq. (8). For example, \(-(h\hbar h) = (hf_2\hbar)\), with notation \(a(z) = A + a(z)\) and \(b(z) = A + b(z)\), where one uses (30), (22) and (23).

D. Phase Advances

Depressed Tune: From the well-known phase-amplitude result [5], the phase advance per quadrupole cell of length \(2L\) is \(\sigma = 2L\). Using the definition \(a(z) = A[1 + \rho(z)]\), expanding, and noting that the \(2\rho\) term has zero average, one obtains \(\sigma = 2Le \sigma - 2(1 + 3\rho^2)\). To leading order, \((\rho^2) = \langle \rho^2 \rangle\), and

\[
\sigma = 2L \frac{e^2}{A^2} \left(1 + 3\langle \rho^2 \rangle \right). \tag{31}\]

where \(A^2\) is calculated from (A56). Except for the correction term, this has the form of the smooth approximation, Eq. (7), but \(A^2\) is calculated more accurately here.

Undepressed Tune: We set \(Q = 0\) so that (30) becomes

\[
K_1^{\text{eff}} = \frac{e^2}{A^2} \left(1 + 3\langle \rho_0^2 \rangle \right), \tag{32}\]

with \(K_1^{\text{eff}}\) from (27). Combining this with (31) for \(Q = 0\), we eliminate \(eA^2\) to get

\[
\sigma_0 = 2L \frac{e^2}{A^2} \left(1 + 3\langle \rho_0^2 \rangle \right). \tag{33}\]

[Cf. Eq. (6).] We will see below that these simple formulas for \(\sigma\) and \(\sigma_0\), with single correction terms, give 3 to 10 times greater accuracy than the smooth approximations.

We emphasize that all the above results apply to a general symmetric lattice [4] with or without discontinuities in \(K(z)\).

III. SPECIAL CASE: FODO LATTICE

A. Solution of Ripple Equation

For the FODO cell, it is not hard to obtain the lowest-order ripple function \(\rho_0(z)\)—see Ref [4]. Here, we just quote its maximum value. With \(h\) the occupancy factor,

\[
e_1^2(0) = \rho_0^\max = K \int_0^{L/2} \frac{dz}{dz} h(z') dz' = \frac{1}{8} (2 - \eta) K^2. \tag{33}\]

For \(e^2f_2 = K^2f(hg)\), it is convenient to Fourier analyze because most harmonics make negligible
contributions to the results. Writing \(h(z) = h_1 \cos(\pi z/L) + c_3 \cos(3\pi z/L) + \ldots \), \[
\varepsilon^2 f_2 = 1/8 \rho_m^2 (1 + 10/27 c_3) \cos 2\pi z/L ; (34)
\]
c_3 = 1 for \(h = 0.5 \); \(r_m = h_1 KL^2/\pi^2 \). Neglected terms in (34) would contribute less than 0.06% to the final result for \(\alpha_{\max} \).

For \(\varepsilon^2 f_3 \) we integrate the first term but use Fourier representation for the second. We quote just maximum value [4]:

\[
\varepsilon^2 f_3(0) = \frac{1}{16} \eta \left(1 - \frac{\eta}{2} + \frac{\eta^3}{8} \right) \varepsilon^2 KL^4.
\]

The maximum radius is

\[
\alpha_{\max} = A[1 + \varepsilon f_1(0) + \varepsilon^2 f_2(0) + \varepsilon^3 f_3(0)], (36)
\]
adding up the results of Eqs. (34) – (36).

B. Matching Equation, Phase Advance, Transportable Current

For the FODO model, we obtain

\[
K^2 \langle |h|^2 \rangle = 1/12 \eta^2 (3-2\eta)K^2L^2, (37)
\]
which is used to calculate \(K_{\text{eff}}^2 \) on the left side of the matching equation (30). On both sides of (30) there are correction terms involving \(\langle \rho_0^2 \rangle \); from Eq. (24) we find

\[
\langle \rho_0^2 \rangle = \frac{1}{120} \eta^2 \left(\frac{5}{2} - \frac{5}{2} \eta^2 + \eta^3 \right) KL^4 (38)
\]
for the hard-edge model. With these results, Eq. (30) can be solved for the transportable current \(Q \) or the matched beam radius \(A \). We also use (38) in (31) and (32) to get the phase advances \(\sigma_0 \) and \(\sigma \) shown in Table 1.

4.3. Discussion of Table 1.

In Table 1, the lattice parameters, quadrupole voltage \(V_Q \), beam current \(I \), and normalized emittance \(\varepsilon_N \) are given quantities. First-order results for \(A, \alpha_{\max}, \sigma, \) and \(\sigma_0 \) are calculated from Eqs. (30), (36), (31) and (32), respectively, along with (37) and (38). The lattice parameters shown at the top of Table 1 are the same as for the MFE prototype ESQ accelerator [6], except that here the occupancy \(h \) is taken to be 0.5.

The analytic results in Table 1 are compared with exact values obtained by numerical integration of Eqs. (1) and (2). For the \(A, \alpha_{\max} \) and \(\sigma \) tables, the constant 20-kV focusing voltage \(V_Q \) produces a phase shift so of 83.37°; the beam parameters \((I, \varepsilon) \) are adjusted to keep the beam radius roughly constant while \(\sigma \) varies widely. Table 1 also gives smooth approximation results for \(A, \sigma, \) and \(\sigma_0 \) and the lowest-order result for \(\alpha_{\max} \).

Third-order results from Ref. [4] are also shown, with accuracy usually within a few parts per thousand.

IV. ACKNOWLEDGMENTS

I wish to thank W.B. Kunkel, D.A. Goldberg, E.P. Lee, and L.L. LoDestro, for their comments on various drafts of Ref. [4], and L. Soroka and K. Clubok for developing the envelope code used here for the exact values shown in Table 1.

This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

V. REFERENCES
