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Abstract

Application of Bayesian Methods in Cosmological Data Analysis: Parameter Constraint
Forecasts for Stage-IV Surveys and Bayesian Large-Scale Structure Inference

by

Byeonghee Yu

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Uroš Seljak, Chair

The application of Bayesian methodology in cosmological data analysis has gained enormous
popularity, as the Bayesian interpretation of statistics is particularly appealing to the field of
cosmology in which its subject, the Universe, is unique. In the coming decade, unprecedented
size of data observed from forthcoming Stage-IV experiments - e.g. galaxy surveys such as
DESI, Euclid, Roman, and LSST and CMB surveys such as SO and CMB-S4 - will call for
the development of more advanced statistical analysis tools, and the Bayesian framework is
expected to provide a key to decoding information hidden in the dataset. This will enable
us to unlock the fundamental mysteries of the Universe, which include the nature of dark
matter and energy, the neutrino mass scale, and inflationary physics.

Within a Bayesian framework, this thesis develops numerical and statistical tools in prepara-
tion for Stage-IV cosmological surveys. First, we forecast the constraining power of combining
LSST clustering and CMB-S4 lensing; we find that the constraint on the neutrino mass sum of
25meV can be achieved without optical depth information, and its constraint on the dark en-
ergy equation of state parameter is comparable to the LSST tomographic cosmic shear forecast.
In the remainder of this thesis, we build an e�cient, reliable analysis pipeline for growth of
structure measurements from large-scale structure dataset, which can be useful for upcoming
galaxy redshift surveys. This includes: hybrid covariance matrix generated by integrating the
analytic disconnected part and the data-driven connected part, optimization-based numerical
method for posterior inference, and the use of the halo perturbation theory model to provide
RSD measurements from the power spectrum multipoles of SDSS-III BOSS DR12 galaxies.
With the pipeline developed in this thesis, we find a tight constraint on f�8 corresponding to
S8 = 0.821±0.037 or an overall amplitude error of 4% at kmax = 0.2 hMpc�1, within 0.3 sigma
of Planck’s S8 = 0.832 ± 0.013. We also show that on smaller scales (kmax = 0.4 hMpc�1) the
constraint improves considerably to an overall 2.7% amplitude error (with S8 = 0.786±0.021),
but there is some evidence of model misspecification. Such RSD measurements provide
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one of the most powerful cosmological probes by testing dark energy and di↵erent gravity
models. Finally, we discuss the fundamental plane e↵ect, which is claimed to be an important
systematics of RSD analyses, and show that its impact on growth of structure constraints is
insignificant.
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Chapter 1

Introduction

In the coming decade and beyond, the field of cosmology is expected to enter a new
era, driven by unprecedented size of data collected from forthcoming Stage-IV ground and
space-based telescopes; we will finally be in the “Golden Age,” as David Schramm envisioned
earlier. Few decades ago, the Cosmic Background Explorer (COBE) Di↵erential Microwave
Radiometer (DMR) detected the intrinsic anisotropy of the Cosmic Microwave Background
(CMB), and since then cosmology has evolved into a data-driven science. With more sensitive
cameras surveying wider and deeper volumes of the Universe, current Stage-III experiments
achieved some major progress, further validating the consensus view that we live in a flat,
expanding universe mostly consisting of dark energy, cold dark matter (CDM), and ordinary
baryonic matter. Much more powerful dataset will be provided by forthcoming Stage-IV
galaxy surveys - such as the Dark Energy Spectroscopic Instrument (DESI) [72], the ESA
Euclid satellite mission [158], the Roman Space Telescope [76], and the Vera C. Rubin
Observatory Legacy Survey of Space and Time (LSST) [6] and Stage-IV CMB surveys - such
as the Simons Observatory (SO) [8] and CMB-S4 [4]. Observations from such next-generation
surveys will enable us to investigate the mysteries of the nature of dark matter, the equation
of state of dark energy, the neutrino mass scale, the physics of inflation, and much more.

Therefore, it is crucial to develop analysis tools which extract information encoded in
the large dataset observed from such cosmological probes. A handful set of parameters
describes the evolution of the Universe in the standard cosmological model, and we use
statistical methods to infer their values from the data. However, we have only one Universe,
and consequently the frequentist interpretation of statistics is not applicable, as we often
cannot repeat the same observation or generate multiple Universes. Alternatively, we choose
a Bayesian approach, where model parameters are described probabilistically with the data
fixed, and such characteristics make Bayesian statistics suitable for cosmological data analysis.
This thesis provides numerical and statistical tools for analysis of large astronomical dataset
within a Bayesian framework, in preparation for future cosmological surveys.

The remainder of this thesis is organized as follows. In Chapter 2 and 3, we forecast the
constraining power of combining Stage-IV galaxy and CMB experiments using the Fisher
information matrix. Chapter 4 develops an analytic method to model the disconnected part
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of the covariance matrix for large-scale structure (LSS) data analysis. In Chapter 5, we
design a new optimization-based method for parameter inference called EL2O, which is as
accurate as MCMC but its computational cost is only a fraction of that of MCMC. Chapter 6
presents growth of structure measurements from the SDSS-III BOSS DR12 galaxies using
the halo perturbation theory model and Bayesian numerical methods for parameter inference.
In Chapter 7, we introduce an important systematic for RSD analyses, fundamental plane
e↵ects, and discuss its impact on growth of structure measurements presented in Chapter 6.

1.1 The Standard Cosmological Model - ⇤CDM

With observations from di↵erent probes, such as the CMB, LSS, and Type Ia supernovae
(SNe), cosmologists have found good consistency with the standard cosmological model,
although there still remains a number of challenges. According to this model, the matter is
mostly non-baryonic, cold, collisionless, and dissipationless (hence labeled as CDM, Cold Dark
Matter), with the dark energy (often denoted by cosmological constant ⇤) accounting for
roughly 70% of the energy of the Universe and causing the accelerated expansion. Ordinary,
baryonic matter comprises only 5% of the energy budget, and the radiation (i.e. photon and
relativistic neutrino) energy density is many orders of magnitude lower. Hence, the standard
cosmological model is known as ⇤CDM model.

⇤CDM postulates that the Universe was initially extremely hot and dense and then has
expanded and cooled down to the current state. Photon was tightly coupled to matter,
electrons and baryons, and this nearly homogeneous mixture was in a hot plasma state and
made up the early Universe. Its initial conditions are thought to be set during the epoch
of exponential expansion, known as inflation, which happened almost immediately after
the Big Bang. Such expansion inflated quantum fluctuations on sub-microscopic scales to
macroscopic scales, and this seeded the growth of cosmic structure. Roughly few minutes
after the Big Bang, it is predicted that helium, deuterium, and other heavier nuclei formed
during the process called Big Bang nucleosynthesis, and predictions for their abundances in
⇤CDM cosmology agrees well with the measurements.

At a redshift of z ⇡ 3400 (50,000 years after the Big Bang), radiation was no longer
the dominant component of the energy budget, and the Universe started to become matter-
dominated. At that period, Photon-electron interactions (via Thomson scattering) and
electron-proton interactions (via Coulomb scattering) made photon and baryon tightly
coupled as a fluid. After such transition, the Universe further expanded and cooled down to
T ⇡ 3000K (380,000 years after the Big Bang), and protons and electrons bound together to
form the neutral hydrogen atoms during the period of recombination. Subsequently, photons
decouple from the matter and free-stream through the Universe, as the photon-electron
scattering rate drops below the expansion rate at z ⇡ 1100. Such radiation, traveling from a
spherical surface whose radius is the distance it has traveled since its last scattering from the
matter, still reaches us, observed as the CMB. Before decoupling, the radiation pressure in
the photon-baryon fluid balanced with gravity, resulting in acoustic oscillations in the fluid,
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Parameter Symbol Value + 68% interval

Physical baryon density ⌦bh2 0.02242 ± 0.00014
Physical CDM density ⌦ch2 0.11933 ± 0.00091

Angular size of acoustic scale 100✓MC 1.04101 ± 0.00029
Reionization optical depth ⌧ 0.0561 ± 0.0071

Primordial curvature fluctuation amplitude ln(1010As) 3.047 ± 0.014
Scalar spectral index ns 0.9665 ± 0.0038

Hubble constant [km s�1 Mpc�1] H0 67.66 ± 0.42
Present matter fluctuation amplitude �8 0.8102 ± 0.0060

Table 1.1: The best-fit ⇤CDM cosmological parameters and 68% confidence intervals from Planck
CMB power spectra (TT+TE+EE+lowE), combined with CMB lensing reconstruction and BAO
[11]. A set of six parameters in the top group are the base parameters, and other parameters - few
are shown in the bottom group - can be derived from the model set by the base parameters.

and this pattern became frozen after decoupling, its imprint observed as baryon acoustic
oscillations (BAO). The CMB blackbody radiation was at the temperature of ⇡ 3000K when
it formed, filling the Universe with red, uniform light. However, the CMB shifted to the
infrared over the next few million years, and the Universe entered the era of the Dark Ages,
as it became mostly not visible until the formation of the first stars, whose light reionized
all atoms in the intergalactic medium. Overdense regions expand with the Hubble flow
initially, then break away from it and collapses subsequently due to gravitational attraction.
The picture of structure formation is hierarchical, bottom-up rather than top-down, with
small overdensities collapsing first and merging into larger structures. Accordingly, CDM
first forms microhalos and merge together to form larger halos, and their gravity attracts
baryonic matter, which collapses to form stars and galaxies. More details about the large-scale
structure formation are discussed in section 1.2. Finally, direct measurements of Type Ia
supernovae, which serve as a standard candle measuring the cosmic expansion, suggest the
accelerating expansion of the Universe, driven by the dark energy (or in the form of ⇤)
whose negative pressure opposes gravitation attractions. Roughly 10 billion years after the
Big Bang, the Universe entered the dark energy-dominated era, but its physical origin and
characteristics are largely unknown.

The standard ⇤CDM model requires only six base parameters, such as: physical baryon
density ⌦bh2, CDM density ⌦ch2, angular acoustic scale 100✓MC, reionization optical depth
⌧ , the amplitude As primordial power spectrum of density perturbation, and scalar spectral
index ns. The model defined with such base parameters provides a good fit to the measured
data, and this significantly increases the e�ciency of parameter estimation [149].
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FRW metric and Friedmann Equation

The modern cosmology is built upon the so-called cosmological principle: the Universe
is homogeneous and isotropic on the largest sales, and in general relativity we develop the
metric for such homogeneous and isotropic spacetime, called Friedmann-Robertson-Walker
(FRW) metric:

ds2 = dt2 � a2(t)
h dr2

1� kr2
+ r2(d✓2 + sin2✓ d�2)

i
. (1.1)

The coordinate system (r, ✓, �) denotes fixed spatial coordinates called comoving coordinates,
and t is the proper time measured by the standard clock of a fundamental observer. The scale
factor a(t) describes the expansion in time, relating the comoving coordinates to physical
coordinates. The constant k determines the curvature (k > 0 in a closed Universe, k = 0 in a
flat Universe, and k < 0 in an open Universe).

The proper distance is the distance between two events in a frame where they occur
simultaneously:

s(t) = a(t)

Z
r

0

dr0p
1� kr02

= a(t)�(r), (1.2)

where �(r) is the comoving distance defined as

�(r) =

8
>><

>>:

1p
k
sin�1(

p
kr) for k > 0

r for k = 0
1p
|k|

sinh�1(
p

|k|r) for k < 0.
(1.3)

Similarly, we define the conformal time ⌧(t) with respect to the proper time t:

⌧(t) =

Z
t

0

dt0

a(t0)
. (1.4)

Then, the FRW metric in equation 1.1 can be expressed as

ds2 = a2(⌧)[d⌧ 2 � d�2 � r(�)(d✓2 + sin2✓d�2)], (1.5)

where r(�) is the inverse of �(r) in equation 1.3.
From the Einstein field equations, we then write the Friedmann equation which describes

the evolution of the scale factor in terms of the energy density ⇢ and pressure p of a perfect
fluid:

H2(a) ⌘
⇣ ȧ

a

⌘2
=

8⇡G

3
⇢� k

a2
, (1.6)

ä

a
= �4⇡G

3
(⇢ + 3p), (1.7)
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where H(a) ⌘ ȧ

a
is the Hubble parameter, and G is Newton’s gravitational constant. We

obtain the second Friedmann equation (1.7), or the acceleration equation, by di↵erentiating
the first equation and substituting the di↵erential of the density with the expression from
the fluid equation,

⇢̇ + 3H(⇢ + p) = 0. (1.8)

We define the equation of state parameter, w = p

⇢
and substitute this into the equation from the

first law of thermodynamics, d⇢
da + 3

�
⇢+p

a

�
= 0, yielding the equation ⇢ / a�3(1+w). Therefore,

the equation of state parameter of each component determines how the corresponding energy
density evolves with the scale factor. For instance, the pressure of the cosmological constant
⇤ is given as p = �⇢, implying w = �1.

The energy density required for k = 0 is defined as the critical density,

⇢c(a) =
3H2(a)

8⇡G
. (1.9)

We define the ratio of the total energy density to the critical density as ⌦(a) = ⇢(a)
⇢c(a)

, and the
Friedmann equation can be rewritten as

⇣H(a)

H0

⌘2
=

⌦r,0

a4
+

⌦m,0

a3
+

⌦k,0

a2
+

⌦DE,0

a3(1+w)
, (1.10)

where H0 is the Hubble parameter today, and ⌦r,0, ⌦m,0, ⌦k,0 and ⌦DE,0 refer to the present
values of ⌦ for radiation, total matter, curvature, and dark energy, respectively.

1.2 Large-Scale Structure

In the standard cosmological model, on large scales massive filaments of galaxies are
separated by voids in between and form a web-like structure called the cosmic web, or large-
scale structure (LSS). Studying the LSS survey provides cosmologists valuable information
about the origin and evolution of the Universe, particularly regarding primordial fluctuations,
the dark matter distribution, the strength of gravity, and characteristics of dark energy.

Two-point statistics

Galaxies are considered as correlated if they are clustered, and we use the two-point
correlation function to quantify the degree of their clustering. We first define the overdensity
field as �(x) = n(x)�hni

hni , where n(x) is the number density, and h i takes its ensemble average

or expected value. Then, we can write the correlation function ⇠(r) as the excess probability
of finding another galaxy at a separation r, relative to the probability expected for a random
distribution

⇠(r) = h�(x)�(x + r)i. (1.11)
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Figure 1.1: Left : Correlation function multipoles of the SDSS-III BOSS DR12 galaxy sample over
the redshift range 0.2 < z < 0.5, from [226]. Right : Power spectrum multipoles of the same galaxy
sample, from [37]. Solid and dotted curves indicate best-fit theory models.

Note that ⇠(r) = ⇠(r) as we assume the Universe to be isotropic. The power spectrum P (k)
is the Fourier transform of ⇠(r) and can be written with respect to the Fourier transform of
the overdensity field, �(k), in the following way:

h�(k)�⇤(k0)i = (2⇡)3�D(k � k0)P (k), (1.12)

where k is the wavenumber, and �D is the Dirac delta function. P (k) = P (k) due to the
isotropy assumption. We can relate the correlation function to the power spectrum:

⇠(r) =
1

2⇡2

Z
dk j0(kr) k2P (k). (1.13)

The power spectrum can also be expressed in terms of the multipole of order l:

P (k, µ) =
X

l

Pl(k)Ll(µ), (1.14)

Pl(k) =
2l + 1

2

Z 1

�1

dµ P (k, µ)Ll(µ), (1.15)

where Ll are Legendre polynomials of order l, and µ is the cosine of the angle between
the wavenumber k and the line of sight. We can similarly define the correlation function
multipoles. Figure 1.1 presents both correlation function multipoles (left panel) and power
spectrum multipoles (right panel) of the galaxy distributions, measured by Sloan Digital Sky
Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS), along with the best-fit
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theory models. In Chapter 6, we use the power spectrum estimator, provided in the python
software package nbodykit [104], to measure the galaxy power spectrum multipoles for the
SDSS-III BOSS DR12 dataset. Then, we fit the halo perturbation theory-based model of
[105] to the measured multipoles to constrain the cosmological parameters of our interest.

Redshift Space Distortions

As LSS surveys observe the redshifts of galaxies, not their true distances, the two-point
statistics are measured via their locations inferred from the observed angular positions and
redshifts. Hence, such conversion between di↵erent coordinate systems complicates the
analysis of galaxy clustering. First, the assumption of a fiducial cosmological model is needed
to convert the redshift and the angular position to the distance along the line of sight and
the angular diameter distance, respectively. The mismatch between the fiducial and true
cosmology results in a geometric distortion in the galaxy statistics, and this e↵ect is known
as the Alcock-Paczynski (AP) e↵ect. However, there exists a more dominant e↵ect on the
two-point statistics, called Redshift Space Distortion (RSD), caused by the peculiar velocity
of galaxies, which shift the measured redshifts and a↵ect the line-of-sight position of galaxies
accordingly. Therefore, RSD breaks the rotational symmetry of the galaxy correlations and
thereby makes the galaxy clustering signal anisotropic.

On large scales where linear perturbation theory can be applied, coherent infall of objects
toward the overdensity leads to a squashing e↵ect, known as the Kaiser e↵ect, along the
line of sight in the redshift space. We model such enhancement of the density field on
large scales as �S = �R(1 + fµ2), where f = dlnD/dlna is the logarithmic rate of the
linear growth factor D(a). Note that the superscript S and R denotes the redshift-space
and real-space measurements, respectively. Accordingly, we obtain the power spectrum as
P S(k, µ) = (1+fµ2)2 ·PR(k). For biased tracers like galaxies, we write the number density as
�gal = b�m and the power spectrum as P S

gal(k, µ) = (b + fµ2)2 · PR

m (k) = b2(1 + �µ2)2 · PR

m (k),
where b is the bias of the tracer which characterizes the galaxy clustering relative to the
matter field. Constraints on the parameter � = f/b provide tests of general relativity and
evidence of the standard cosmological model. As the term (1 + �µ2)2 involves terms only
up to µ4, expanding the power spectrum with Legendre polynomial (equation 1.15) leads to
non-vanishing monopole (l = 0), quadrupole (l = 2), and hexadecapole (l = 4) terms:

P0(k) =
⇣
1 +

2

3
� +

1

5
�2
⌘
b2Pm(k), (1.16)

P2(k) =
⇣4

3
� +

4

7
�2
⌘
b2Pm(k), (1.17)

P4(k) =
8

35
�2b2Pm(k). (1.18)

On small scales, the linear theory described above breaks down, as nonlinear e↵ects which
cannot be described by perturbation theory add complications to the analytic modeling.
Satellite galaxies within halos have virialized, random motion, stretching the density field
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Figure 1.2: A compilation of f(z)�8(z) measurements from the SDSS-III BOSS DR12 consensus
paper [15]. Left : Consensus results (9.3% and 8.0% f�8 constraints on low-redshift (0.2 < z < 0.5)
and high-redshift (0.5 < z < 0.75) galaxies), along with DR11 measurements and Planck ⇤CDM
prediction. Right : Comparison with the measurements form other surveys, such as 2dfGRS, 5dFGS,
GAMA, WiggleZ, and Vipers.

and thereby reducing the clustering amplitude along the line of sight. This nonlinear e↵ect is
known as the Finger-of-God (FoG) e↵ect. In previous literature, a damping factor G(kµ; �v),
where �v is the velocity dispersion of the galaxy sample, is introduced. Typically this damping
factor takes a form of a Gaussian or Lorentizan,

G(kµ; �v) =

(
e�k

2
µ
2
�
2
v/2 (Gaussian)

(1 + k2µ2�2
v
/2)�2 (Lorentzian).

(1.19)

Figure 6 in [193] shows how the predictions for di↵erent FoG damping functions, particularly
the Lorentzian model, agree well with N -body results. However, we note that the perturbation
theory-based approaches cannot fully capture the nonlinear e↵ects, on small scales in particular,
and therefore it may be necessary to use simulation-based modeling to account for small-
scale information. The galaxy power spectrum model assumed in Chapter 6 uses N -body
simulations to calibrate some of the key terms in the model.

Notwithstanding such di�culties in modeling, RSD has been widely used to constrain
the growth rate of structure, which in turn test dark energy and di↵erent gravity models. In
earlier studies, the ratio of the quadrupole to monopole,

P2(k)

P0(k)
=

4�/3 + 4�2/7

1 + 2�/3 + �2/5
, (1.20)

has been used as a estimator for � (and the growth rate f with known b), and this ratio is
expected to be scale-independent as long as the linear theory is valid. However, this assumes
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Figure 1.3: Left : BAO feature in the measured BOSS power spectrum. Right : Constraints on the
distance from the BOSS galaxies and other surveys, along with Planck ⇤CDM predictions. Both
figures are from [15].

a linear bias and linear perturbation theory, which are poor approximations for RSD. Recent
RSD analyses, therefore, has focused on using either simulation-based [157, 148, 285, 284]
or perturbation theory-based [131, 68, 291, 58] approaches to model nonlinear corrections,
measuring the growth rate via the parameter f(z)�8(z). Figure 1.2 presents the SDSS-III
BOSS DR12 final consensus results on the galaxies over the redshift range 0.2 < z < 0.75. In
this thesis, we provide RSD measurements using the halo perturbation theory model using
the BOSS galaxy power spectrum and show that our results o↵er tight constraints on f�8, in
a good agreement with both the DR12 consensus results and Planck amplitude.

Baryon Acoustic Oscillation

Baryon acoustic oscillations, or BAO, are the relics imprinted on the CMB anisotropy
and the galaxy clustering, caused by sound waves from the pre-decoupling era [80]. Before
decoupling, the overdensity pulled the matter together, thereby heating it up and creating an
outward pressure. Gravitational attraction and radiation pressure balanced with each other,
creating acoustic oscillations in the photon-baryon fluid. After decoupling, such features are
imprinted on large-scale structures as oscillations in the power spectrum, as shown in the
left panel of Figure 1.3. As a standard ruler, the BAO can be used to probe the Universe’s
expansion history and the dark energy properties. Back in 2005, [82] detected the BAO peak
in the correlation function measurements of the SDSS Luminous Red Galaxies (LRGs) and
provided a 4% meaurement of the ratio of the distances between z = 0.35 and z = 1100.
More recently, [15] used measurements of the BOSS galaxies and reported constraints on the
distance scale with a percent-level precision. The right panel of Figure 1.3 presents good
agreements between di↵erent BAO measurements and the Planck ⇤CDM predictions. In
the next decade, the DESI is expected to achieve a subpercent-level precision on the BAO
distance scale measurements. In Chapter 2 and 3, we use the forecasted uncertainties on the
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distance-redshift relation from the DESI, which significantly improves both neutrino mass
and dark energy equation of state parameter forecasts.

1.3 Statistical Data Analysis Tools in Cosmology

This section introduces di↵erent statistical techniques for data analysis in cosmology,
mostly Bayesian methods used in this thesis. This includes the basics of Bayesian statistics,
experiment design using the Fisher information matrix, and di↵erent methods - both sampling
approach and variational approximations - for cosmological parameter inference.

Bayes’ theorem and parameter inference

Bayesian statistics provides a subjective interpretation of probability which corresponds
to the degree of belief in a hypothesis and can be updated with new observations. On the
other hand, frequentist approach considers an objective measure of probability, which is
directly related to the proportion of outcomes in a large number of repeated experiments. As
we have only one Universe, cosmologists naturally choose the Bayesian method to extract
useful information encoded in the large astronomical dataset, finding the best-fit parameters
and their uncertainties given the cosmological model. In this section, we briefly discuss the
procedure of parameter inference within a Bayesian framework.

First, we assume a model M which depends on a set of parameters ✓ = (✓1, ✓2, ..., ✓N),
where N is the dimension of the parameter space. The Bayes’ Theorem gives the posterior
probability for ✓, which shows the degree of belief about the value of ✓ given J number of
observed data D = (d1, d2, ..., dJ):

P (✓|D, M) =
P (D|✓, M)P (✓|M)

P (D|M)
. (1.21)

P (D|✓, M) is the likelihood (henceforth denoted as L(D|✓)), the probability of making an
observation of the data, given the values of the parameters. P (✓|M) is the prior probability
distribution, which show the degree of belief about the values of ✓, prior to providing the data.
P (D|M) =

R
P (D|✓, M)P (✓|M) is a normalizing constant called the evidence or marginal,

which normalizes the posterior and ensures that it behaves as a probability. Evidence is often
ignored in parameter inference (reducing the Bayes’ Theorem to: posterior = likelihood ·
prior) but is important for Bayesian model selection.

First, assume N = 1 for the sake of simplicity. With the known posterior distribution,
we can compute the expectation value and uncertainty of ✓. Often we use a point estimate
called maximum a posteriori (MAP) to choose the value of ✓ which maximizes the posterior
probability:

✓MAP = arg max
✓

P (✓|D, M) = arg max
✓

JY

i=1

P (✓|di, M). (1.22)
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✓MAP, the MAP estimate of ✓, finds the peak of the posterior probability density function.
If we simply assume an uniform prior (i.e. P (✓|M) = constant), the posterior probability
P (✓|D, M) / L(D|✓), and the MAP estimate is equivalent to the maximum likelihood (MLE)
estimate, i.e. ✓MAP = ✓MLE = arg max✓ L(D|✓).

The MAP or MLE is only a point estimator, and the most widely used method to obtain
an error estimate is the Laplace approximation: approximating the posterior with a Gaussian
around the MAP. Under the Laplace approximation, the uncertainty of ✓ is given as:

1

�2
✓

= � d2

d✓2
lnP (✓|D, M)

���
✓=✓MAP

/ �
JX

i=1

d2

d✓2
L(di|✓)

���
✓=✓MLE

, (1.23)

where we define the log-likelihood as L = lnL.
More generally (for N > 1), assuming that the likelihood can be approximated with a

single-peaked, multi-variate Gaussian, we can Taylor expand the log-likelihood around the
MLE estimate in the following way:

L(D|✓) = L(D|✓MLE) +
X

i

@L
@✓i

���
✓i=✓MLE,i

(✓i � ✓MLE,i)

+
1

2

X

ij

(✓i � ✓MLE,i)
@2L

@✓i@✓j

���
✓i=✓MLE,i

(✓j � ✓MLE,j) + ... (1.24)

The first term is a constant, and the second term vanishes as the MLE finds the peak of the
likelihood distribution. Therefore, we can express the likelihood as:

L(D|✓) = L(D|✓MLE) · exp
h
� 1

2

X

ij

(✓i � ✓MLE,i)
@2L

@✓i@✓j

���
✓i=✓MLE,i

(✓j � ✓MLE,j)
i

= L(D|✓MLE) · exp
h
� 1

2

X

ij

(✓i � ✓MLE,i)Hij(✓j � ✓MLE,j)
i
, (1.25)

where Hij is the Hessian matrix, which shows the correlation between the estimates of ✓i and
✓j.

Finally, with the model which depends on N di↵erent parameters, only a few may be of
our interest, and others can be regarded as nuisance parameters. Say we are only interested in
the first I number of parameters (✓1, ..., ✓I), and then we can marginalize over other unwanted
parameters in the following way:

P (✓1, ..., ✓I |D, M) =

Z
d✓I+1...d✓NP (✓|D, M). (1.26)

With this, nuisance parameters are free to hold any values while constraining the parameters
of our interest.
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Designing an experiment

The Fisher information matrix is defined as an ensemble average of the Hessian matrix:

Fij = hHiji = �
D @2L

@✓i@✓j

E
. (1.27)

Here we replace the likelihood from the actual data with its ensemble average, which makes
this method useful for predictions of future analyses. The inverse of the Fisher matrix is the
covariance matrix, from which we can obtain the 1� uncertainties of the parameters of our
interest. The parameter uncertainty corresponds to �✓i �

p
(F�1)ii, with other parameters

marginalized over. If we have perfect knowledge of some of the parameters, we can fix them
by removing their corresponding rows and columns from the Fisher matrix. Or we can add
the prior information of the parameter, ✓prior,i ± �✓prior,i , from earlier experiments by adding
the squared inverse of �✓prior,i to the ith diagonal element of the Fisher matrix.

Assume that we have a model which depends on ✓ = (✓1, ..., ✓N), and we observe the
data D = (d1, ..., dJ) with noise � = (�1, ..., �J), measured at points x = (x1, ..., xJ). We can
Taylor expand the log-likelihood around the fiducial model and compute the Fisher matrix at
the fiducial parameters ✓fid. Then, the resulting Fisher matrix is as follows:

Fij =
JX

k=1

1

�2
k

@dk

@✓i

���
✓i=✓fid,i

@dk

@✓j

���
✓i=✓fid,j

. (1.28)

The advantage of this method is that actual data values are not needed, and we can instead
compute the Fisher matrix element at the fiducial model before doing any experiments.
Hence, we can use the Fisher matrix for experimental design, as it predicts the constraining
power of future experiments from the expected noise levels.

Let the probability distribution be Gaussian, and we measure the mean µ = hdi and the
covariance C = h(d� µ)T (d� µ)i. Then, the resulting Fisher matrix is given as [267, 114]:

Fij =
1

2
Tr
h
C�1@C

@✓i
C�1@C

@✓j
+ C�1

⇣@µ

@✓i

@µT

@✓j
+

@µ

@✓j

@µT

@✓i

⌘i
. (1.29)

Hence, if the data distrubution is Gaussian, and the mean and covariance matrix are known,
we can obtain the expected errors from the Fisher matrix before doing an actual experiment.
[267] provides a simple example for obtaining the constraining power of a future CMB
experiment, where the mean is zero, µ = 0, and the covariance C is diagonal. The observed
data is the angular power spectrum of the CMB, Cl, measured from l = 2 to some cuto↵ lmax

with the corresponding noise level �l. Assuming that the CMB fluctuations are Gaussian, we
obtain the following Fisher matrix from equation 1.29:

Fij =
lmaxX

l=2

⇣2l + 1

2

⌘ 1

�2
l

⇣@Cl

@✓i

⌘⇣@Cl

@✓j

⌘
. (1.30)
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Figure 1.4: Left : Confidence regions for di↵erent values of ��
2. The dashed ellipse represents

a 1� regon for two fitted paramers (⌫ = 2), and 68.3%, 90%, and 99% ellipses for ⌫ = 1 project
onto the intervals AA

0
, BB

0, and CC
0, respectively. Right : A table containing the values of ��

2

corresponding to di↵erent confidence levels and number of fitted parameters (⌫). Both figure and
table taken from [211].

In Chapter 2 and 3, we follow a similar procedure; assuming the Gaussian covariance matrix
of the CMB lensing convergence and the LSST galaxy auto- and cross-power spectra, we
calculate the Fisher matrix (equation 2.5) using the power spectrum and its derivatives
obtained from the camb Boltzmann code [1].

Goodness of fit

Assuming the Gaussian likelihood distribution, equation 1.25 can be expressed in terms
of chi-square �2, which can be defined as:

L(D|✓) = L(D|✓MLE) · exp(�1

2
�2), where �2 =

X

ij

(✓i � ✓MLE,i)Hij(✓j � ✓MLE,j). (1.31)

Therefore, maximizing the likelihood L corresponds to minimizing the chi-square �2, and
this procedure leads to finding the best-fit parameters of the model. However, this relation
does not hold when the likelihood cannot be approximated with a Gaussian.

The best-fit parameters are a set of parameter values which gives the lowest �2, min(�2).
With this quantity, we can calculate the uncertainties of our fits by comparing the chi-square
values of di↵erent parameter values to the best-fit. We define the quantity for evaluating the
goodness of fit as ��2 = �2 �min(�2), and the right panel of Figure 1.4 provides a table
containing the values of ��2 corresponding to 68.3%, 95.4%, and 99.73% (1�, 2�, and 3�,
respectively) confidence regions. The relation between ��2 and confidence regions depends
on the number of fitted parameters, ⌫. For example, if we fit two parameters (⌫ = 2), then
the 1� confidence region correspond to ��2 = 2.30, shown as the dashed ellipse in the left
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panel of Figure 1.4. But if we take the confidence region for one of these fitted paramters, i.e.
reducing ⌫ to 1, then 1� interval corresponds to ��2 = 1, between the lines A and A0.

Numerical methods for parameter inference

Parameter inference in cosmology often involves a large number of parameters, which
makes analytic evaluation of the posterior di�cult to attain. Moreover, if the prior and
likelihood are not in the conjugate form, the analytic approach is intractable. Such di�culties
lead to the usage of sampling methods for cosmological parameter inference.

The simplest numerical method is a grid-based approach, which sets up a grid of parameter
values and explores the likelihood space. However, testing over a full grid of parameters is
very time-consuming, as we also have to evaluate the model in regions where likelihood is
very low. This leads to the development of Monte Carlo Markov Chain (MCMC) method,
which does random walk in the parameter space and draws samples from more likely regions.
A sequence of such samples constitutes the MCMC chain, and its density slowly converges
to the target posterior distribution. As its name suggests, MCMC sampling uses a Markov
Chain, a series of random variables for which the (N + 1)th element depends only on the
Nth element, and consequently this method is a sequential process in which the distribution
of the current draws depends on the previous sample. The number of iterations required for
convergence scales generally with the number of parameters, but its computational cost is
much less than that of full grid searches. Drawing K number of samples in the MCMC chain,
we can approximate the target posterior distribution as P (✓|D, M) ' 1

K

P
K

i
�(N)(✓ � ✓i).

Samples in the MCMC chain provides important statistics, such as the posterior mean and
variance.

The Metropolis-Hastings algorithm is the simplest random walk method with a rule
for accepting or rejecting drawn samples to reach the target posterior. First, we choose a
proposal distribution q(✓k+1|✓k) from which we draw a new sample ✓k+1 based on the current
kth sample ✓k. For example, if we take a Gaussian N (0, �) as the proposal distribution,
✓k+1 = ✓k + ↵, where ↵ ⇠ N (0, �). The choice of the appropriate proposal distribution
requires some fine-tuning of the step size, as we would accept or reject too many samples if
the distribution is too narrow or wide. Then, for each candidate sample, we calculate the
following acceptance ratio:

↵ =
P (✓k+1|D, M)q(✓k+1|✓k)

P (✓k|D, M)q(✓k|✓k+1)
. (1.32)

New sample ✓k+1 is accepted if ↵ > 1, and otherwise it is acceptance with the probability
of ↵. If rejected, ✓k+1 = ✓k. As not all samples with low probability are rejected, there is a
chance to explore regions with low probability. It is important to initialize the chain so that
it does not require a large number of model evaluations to reach high probability regions.
Often we discard some of early iterations, called the burn-in.

To determine if the MCMC chain has converged, we first inspect the chain values visually
and check if the chain has not stuck at local minima. Furthermore, a metric such as Gelman-



CHAPTER 1. INTRODUCTION 15

Figure 1.5: An example of posterior distributions from MCMC sampling. Left : 1-d density of the
model parameters and the plot of chain values as a function of iterations. Right : 2-d posterior
distribution with 1� 4� confidence regions. Figures from [198].

Rubin criterion is useful for the convergence test. With X number of chains, each of length
Y , let B = Y

X�1

P
x
(h✓i,xi � h✓ii)2, where h✓i,xi is the average of the parameter ✓i in the xth

chain, and h✓ii is the global average of ✓i. B corresponds to the variance across the chain
for ✓i. We further define W = 1

X

P
x
s2
x
, where s2

x
is the variance for ✓i within the xth chain.

And V = Y�1
Y

W + 1
Y

B, and this estimates the overall variance of ✓i. Finally, we define

R =
p

V/W , and we check if R ' 1. For example, we can assume the convergence criteria to
be R < 1.1. Or alternatively we can compute the auto-correlation between the samples and
see if it lowers as we draw more samples. However, such metrics do not provides absolute
convergence, and we need to use heuristics to determine when to stop the sampling procedure.

Figure 1.5 uses MCMC sampling to estimate the 1-d and 2-d posterior distributions of the
present-day Hubble parameter H0 and the total matter density ⌦m of the standard ⇤CDM
model. In the left panel, the chain values for each parameter are plotted, along with its
density distributions. [198] reports Gelman-Rubin statistics for each paramter: R = 1.00045
for H0 and 1.00044 for ⌦m, suggesting that the chain has reached convergence. The right
panel plots the 2-d posterior distributions with 1� 4� confidence ellipses.

A simple Metropolis-Hastings algorithm may not be very e�cient, if the proposal dis-
tribution does not agree with the posterior. Such ine�ciencies lead to the development of
more advanced samplers. Gibbs sampling, which reduces the dimension of the parameters by
splitting ✓ into blocks and separately sampling each, is one example [90]. A�ne-invariant
ensemble sampler, implemented in emcee Python package [87], uses the members of ensemble
called walkers, and they run in parallel and exchange information at each step. Nested sam-
pling [246], implemented in the algorithm such as MultiNest [85], is particularly useful for the
calculation of the Bayesian evidence and sampling from a multimodal posterior distribution.
Hamiltonian Monte Carlo (HMC) [35] uses the gradient of the sampled density to avoid
the random walk sampling and e�ciently approaches high probability regions. No-U-Turn
Sampler (NUTS) [120] improves HMC in that it uses a recursive algorithm to eliminate the
need of manual tuning required in HMC.
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Figure 1.6: Results of optimizing approximate distributions from di↵erent families. By choosing a
family of Gaussian distribution (orange), we only have two fitting parameters (faster optimization),
but this leads to a high bias and consequently poor fit to the target posterior. Choosing a more
complex distribution such as Gaussian mixture model (green), optimization takes longer, but it fits
much better to the target. Figure from [221].

Variational inference as an alternative

MCMC sampling is widely used in cosmological parameter inference, but developing a
faster yet reliable method has remained as a major challenge, as the computational cost of
MCMC can be huge especially when the model evaluation is expensive. Approximate method
such as variational inference (VI) provides a less-expensive alternative to MCMC. In VI, we
approximate the target posterior distribution P (✓|D) with simple, analytically tractable
distributions and hence transform parameter inference into an optimization problem.

In this section, let us assume that we only have a single parameter ✓ for the sake of
simplicity. We propose a family of distributions Q, called variational distributions, and then
find a member q(✓) 2 Q closest to the target posterior P (✓|D). Figure 1.6 shows that finding
an optimal distribution within Q does not guarantee a good fit; no distribution in Q may
be close to the posterior, and therefore it is important to find Q complex enough to contain
the target posterior yet simple enough to make the optimization feasible [221]. The goal of
the optimization process is to find a member q(✓) by minimizing the distance to the target
posterior, defined as the Kullback-Leibler (KL) divergence:

KL(q(✓)||P (✓|D, M)) = Eq[lnq(✓)� lnP (✓|D, M)]

= lnP (D|M) + Eq lnq(✓)� Eq[lnP (D|✓, M) + lnP (✓|M)], (1.33)

where Eq denotes the expectation over q(✓). As the evidence, independent of the variational
distribution, is a constant with respect to q(✓), minimizing the KL divergence corresponds to
maximizing the rest of the terms, defined as evidence lower bound (ELBO) [48]:

ELBO(q) = Eq[lnP (D|✓, M) + lnP (✓|M)]� Eq lnq(✓)

= �KL(q(✓)||P (✓|D, M)) + lnP (D|M) (1.34)
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[154] shows that KL(.) � 0 between any distributions, and consequently the ELBO sets
a lower bound for the log evidence as its name suggests: lnP (D|M) � ELBO(q). The
ELBO is useful because we cannot calculate the KL divergence directly; we instead optimize
this quantity, which is equivalent to the KL divergence up to a constant. In VI, therefore,
parameter inference becomes an optimization problem which aims to maximize the ELBO.

As shown in Figure 1.6, VI starts with specifying an appropriate Q, and then we compute
the ELBO and its derivatives, finally maximizing the ELBO with gradient-based methods.
Black box variational inference (BBVI) avoids such model-specific calculations [212, 144],
and automatic di↵erentiation variational inference (ADVI) extends this by automatically
solving the variational optimization (i.e. once the model is specified, ADVI finds an optimal
VI algorithm automatically) [153]. This algorithm is integrated into Stan [56] and PyMC3

[224] and widely used in scientific research.
In Chapter 5, we argue that full rank ADVI may not be useful in high-dimensional problems

because of its computational ine�ciency, and the stochastic nature of a KL divergence leads
to the sampling noise. So we instead propose to replace the ELBO optimization with the
optimization of a L2 norm-based divergence, which converges significantly faster than KL
divergence-based methods.
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Chapter 2

Towards Neutrino Mass from
Cosmology without Optical Depth
Information

With low redshift probes reaching unprecedented precision, uncertainty of the CMB
optical depth is expected to be the limiting factor for future cosmological neutrino mass
constraints. In this chapter, we discuss to what extent combinations of CMB lensing and
galaxy surveys measurements at low redshifts z ⇠ 0.5� 5 will be able to make competitive
neutrino mass measurements without relying on any optical depth constraints. We find that
the combination of LSST galaxies and CMB-S4 lensing should be able to achieve constraints
on the neutrino mass sum of 25meV without optical depth information, an independent
measurement that is competitive with or slightly better than the constraint of 30meV possible
with CMB-S4 and present-day optical depth measurements. These constraints originate both
in structure growth probed by cross-correlation tomography over a wide redshift range as
well as, most importantly, the shape of the galaxy power spectrum measured over a large
volume. We caution that possible complications such as higher-order biasing and systematic
errors in the analysis of high redshift galaxy clustering are only briefly discussed and may be
non-negligible. Nevertheless, our results show that new kinds of high-precision neutrino mass
measurements at and beyond the present-day optical depth limit may be possible.1

2.1 Introduction

An important goal in both particle physics and cosmology is to understand the physics
underlying the neutrino mass [5]. The fact that neutrinos have a non-zero mass has been
known since the discovery of neutrino oscillations; however, the absolute scale of this mass is
uncertain, with oscillation experiments only giving a lower bound of ⇡ 60 meV for the normal

1This chapter is taken from “Towards Neutrino Mass from Cosmology without Optical Depth Information,”
Yu B., Knight Z., Sherwin B., Ferraro S., Knox L., Schmittfull M. (arXiv: 1809.02120).
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hierarchy and ⇡ 100 meV for the inverted hierarchy. A measurement of the neutrino mass
would not just reveal a new energy scale, it would set targets for terrestrial double beta decay
experiments (thus potentially contributing to a determination of whether neutrinos are Dirac
or Majorana particles) and might even give insight into the mass ordering. Perhaps the most
exciting possibility is that the combination of cosmological and laboratory measurements
reveals inconsistencies requiring new physics. A cosmological neutrino mass measurement
would significantly contribute to e↵orts to understand physics in the neutrino sector.

The neutrino mass can be probed precisely in cosmology because properties of the cosmic
neutrino background a↵ect the growth of cosmic structure and the expansion history of the
universe [160, 91]. A primary e↵ect targeted by future experiments is the suppression of
growth of small scale structure caused by a nonzero neutrino mass. The rest mass of the
neutrinos, as they become non-relativistic, increases the neutrino contribution to the total
mean energy density beyond what it would be in the massless case, thereby increasing the
expansion rate and thus suppressing growth. A secondary e↵ect is the scale dependence of
this suppression: above the free-streaming scale the neutrinos act just like cold dark matter
and therefore contribute to gravitational instability, with the net e↵ect of canceling out the
suppressive e↵ect of the increased expansion rate [51, 175, 126, 142, 200]. This results in a
fairly broad “step”-like feature in the matter power spectrum, where the size of the step is
time dependent and grows approximately linearly with every e-fold of expansion2.

To measure neutrino mass using this time-dependent suppression, the amplitude of struc-
ture at low redshift (probed by gravitational lensing, clusters, or redshift-space distortions) is
typically compared with the initial, high redshift amplitude probed by the CMB. In particular,
the small-scale suppression is about 4% between the redshift of recombination and today for
the minimal mass of 60 meV.

With the design of increasingly powerful CMB surveys, such as CMB Stage-4 experiment
(CMB-S4, [4]) and Simons Observatory (SO, [8]), it has become clear that the limiting factor
for upcoming neutrino mass constraints will not be the precision of the measurement of
CMB lensing or other low redshift probes, but instead the precision of the high redshift
amplitude of structure at the CMB redshift z ⇡ 1100 [18]. This high-z amplitude As, in turn,
is limited by how well we know the optical depth ⌧ to the CMB, because the combination
Ase�2⌧ (describing the amplitude of the CMB power spectrum) is what is measured by CMB
surveys [18, 183]. Since it is unclear whether substantially improved ⌧ constraints will be
forthcoming, it is well motivated to seek methods by which the neutrino mass can be probed
without relying on a knowledge of the CMB optical depth.

In this chapter we examine to what extent the combination of CMB lensing from future
experiments with galaxy surveys such as LSST can be used to obtain competitive neutrino
mass constraints without optical depth information. We further consider what future surveys
are required to improve on optical depth limited neutrino mass constraints.

Our investigation is motivated by two e↵ects that may allow neutrino mass constraints

2In linear theory, it can be shown that the size of the “step” feature in the power spectrum grows by 6
5f⌫

per e�fold of expansion, where f⌫ = ⌦⌫/⌦m is the fraction of mass in neutrinos.
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without optical depth information. First, the time dependence of the neutrino mass suppres-
sion of structure growth can not only be seen by comparing the amplitude of fluctuations
of the CMB and today; it can also be seen at low redshift alone using cross-correlations to
probe the growth of structure over a su�ciently long redshift lever arm, given su�ciently
precise measurements. Extremely high precision constraints on the amplitude of structure
as a function of redshift were indeed forecast by [231], and we build on these results in our
analysis (for similar recent forecasts also see, for example, [24, 184]). Second, there are other
physical e↵ects, such as the step feature in the shape of the matter power spectrum described
previously, through which neutrino mass can be constrained with low redshift probes alone;
we will consider these as well.

Our work follows a long list of papers that have forecasted constaints on neutrino mass
to come from cosmological surveys [55, 24, 263, 176, 172, 54]. But it is the first to explore
how the combination of CMB lensing and galaxy counts can be used to exploit the e↵ects
described in the previous paragraph to evade the impact of uncertainty about the optical
depth to Thomson scattering.

We will begin by introducing our forecasting assumptions, before presenting and discussing
our results.

2.2 Forecasting Method and Survey Systematics

A. Angular Power Spectra

We use the observed galaxy density field in ith tomographic redshift bin gi and the CMB
lensing convergence  to construct the 2-point angular power spectra: C

l
, Cgi

l
, and Cgigi

l
.

In the Limber approximation [168], we model all angular power spectra

C↵�

l
=

Z
dzH(z)

�2(z)
W↵(z)W �(z)P�↵��

✓
k =

l

�(z)
, z

◆
, (2.1)

where ↵, � 2 (, g1, ..., gN), H(z) is the Hubble parameter, �(z) is the comoving angular-
diameter distance to redshift z, P (k, z) is the matter power spectrum at wavenumber k and
redshift z, and N is the number of bins. �g is the CDM-baryon density contrast �cb, and � is
the total matter density contrast �cb⌫ including neutrinos. For the CMB lensing convergence,
the redshift kernel W (z) is

W (z) =
3

2H(z)
⌦mH2

0 (1 + z)�(z)

 
�⇤ � �(z)

�⇤

!
, (2.2)

where �⇤ is the comoving distance to the last scattering surface, and ⌦m and H0 are the
matter density and the Hubble parameter today, respectively. For the ith bin galaxy density
field gi, the kernel is

W gi(z) =
bi(z)dni/dzR
dz0(dni/dz0)

, (2.3)
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Figure 2.1: The redshift distribution of the CMB lensing convergence (red curve, normalized to a
unit maximum) and LSST galaxy samples, both Optimistic (light gray) and Gold (dark gray). We
assume 16 tomographic redshift bins in the range 0 < z < 7, cross-correlation bin widths indicated
with vertical dotted lines.

where dni/dz is the redshift distribution of the galaxies in the ith bin. We assume the
linear galaxy bias is given by bi(z) = Bi(1 + z) within each bin, where Bi is the overall bias
amplitude in the ith bin [6] (we assume a fiducial value of Bi = 1). Fig. 2.1 compares the
CMB lensing kernel with the redshift distribution of two di↵erent LSST samples, as further
described in Section B. We use the publicly available CAMB Boltzmann code to calculate the
power spectrum P�↵��

(k, z) [1, 161].

B. LSST Specifications

We assume two LSST number densities, as shown in Figure 2.1. The first sample is the
i < 25 gold sample (henceforth referred to as “Gold”), corresponding to n = 40 arcmin�2

and n(z) / 1/(2z0)(z/z0)2e�z/z0 following [6] with z0 = 0.3. As a second sample, we use a
more optimistic i < 27 magnitude cut with S/N > 5 in the i band assuming three years
of observations following [94] (“Optimistic”), and add Lyman break galaxies from redshift
dropouts, whose number density we estimate by scaling recent HSC observations [195, 110]
following [231]. This yields n ⇡ 66 arcmin�2 galaxies at z = 0 � 7. We decompose the
LSST kernel into 16 tomographic bins, with redshift edges of z = [0, 0.2, 0.4, 0.6, 0.8, 1,
1.2, 1.4, 1.6, 1.8, 2, 2.3, 2.6, 3, 3.5, 4, 7], assuming that neighboring bins do not overlap.
To reduce the sensitivity of our forecasts to uncertainties in non-linear modeling, including
bias modeling, we keep the density perturbations in the near-linear regime by setting a kmax

limit (0.3 hMpc�1 is assumed in Figure 2.2�2.6, with lower kmax shown in Table 2.1). For
each bin, we convert this to lmax = kmax�(zi), where zi is the mean redshift of the ith bin.
Imposing kmax = 0.3 hMpc�1, we find that including non-linear corrections from Halofit [254,
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262] has a negligible e↵ect on our forecasts when all external datasets, such as primordial
CMB and DESI information, are included. Hence, we use the linear matter power spectrum
in all forecasts. We assume the survey area of 18,000 deg2, which corresponds to fsky ⇡ 0.4.
Finally, we neglect any redshift space distortion e↵ects in the LSST power spectra.

C. CMB-S4 Specifications

For CMB lensing, we use a CMB-S4 experiment with the following configurations: beam
FWHM = 10, �T = 1µK 0, and �E,B = 1.4µK 0. We assume fsky = 0.4, with CMB-S4 fully
overlapping with the LSST [4]. White noise is assumed, as we expect the impact of non-
white noise to be small for lensing reconstruction from polarization-dominated experiments.
With quicklens [109, 9], we compute the minimum variance quadratic estimator lensing
reconstruction on the full sky with lT,E,B

min = 50, lTmax = 3000, and lE,B

max = 5000. We take
into account the improvement from iterative lens reconstruction by rescaling the EB noise
[118, 252]. In Table 2.1 and 2.2, we show forecasts assuming the resulting CMB-S4 lensing
reconstruction noise. For the CMB lensing convergence , we set lmin = 30 and lmax = 2000.

Additionally, with the CMB-S4 specifications as described above, we compute the CMB-
S4 Fisher matrix, using temperature and polarization power spectra from S4, to break the
parameter degeneracies. We also consider Planck primary CMB data for l > 30 in the
region not overlapping with the CMB-S4 (fsky = 0.25 accordingly) [4]. Since we aim here to
investigate neutrino mass constraints without ⌧ information, no prior on the optical depth
to reionization ⌧ is included, unless we explicitly note otherwise. Here we use the unlensed
CMB power spectra because the lensing auto-power spectrum C

l
already provides nearly

all the CMB lensing information [251] and because then the source of lensing information is
entirely clear.

D. DESI Specifications

We include the forecasted galaxy baryon acoustic oscillation (BAO) information from
the Dark Energy Spectroscopic Instrument (DESI) [64] which measures the distance-redshift
relation at low redshift. (We neglect RSD and other broadband sources of information
in the DESI galaxy power spectrum, but assume BAO reconstruction.) Including DESI
measurements significantly improves neutrino mass forecasts by better constraining ⌦m and
further breaking parameter degeneracies. We use the expected uncertainties on the distance
ratio from 18 bins in the range 0.15 < z < 1.85 with �z = 0.1, given in [10, 18].

E. Fisher Matrix Analysis

If we have N tomographic galaxy redshift bins, our observables are 1 + N (lensing-lensing
and galaxy-galaxy) auto-power spectra and N + N(N � 1)/2 (lensing-galaxy and galaxy-
galaxy) cross-spectra. For the CMB lensing convergence auto-spectra, we consider the lensing
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reconstruction noise N

l
, and for the galaxy-galaxy auto-spectra, we take into account the

shot noise N gg

l
= 1/n.

The Gaussian covariance matrix of the CMB lensing convergence and the LSST galaxy
auto- and cross-power spectra is given by

Cov↵1�1,↵2,�2

la,lb
=

�la,lb
fsky(2la + 1)

n
(C↵1↵2

la
+ N↵1↵2

la
)

(C�1�2

la
+ N�1�2

la
) + (C↵1�2

lb
+ N↵1�2

lb
)

(C�1↵2

lb
+ N�1↵2

lb
)
o

,

(2.4)

where ↵1,2, �1,2 2 (, g1, ..., gN).
We then construct the Fisher matrix

Fij =
X

↵1�1,
↵2,⌫2

X

l

@C↵1�1

l

@✓i
[Cov↵1�1,↵2,�2

l
]�1@C↵2�2

l

@✓j
, (2.5)

where ~✓ = {Bi, H0, ⌦bh2, ⌦ch2, ns, As,
P

m⌫ , ⌧}. Bi is the bias amplitude parameter of
the ith bin. We take the fiducial values for ⌧ and

P
m⌫ to be 0.06 and a minimum value of

60 meV, respectively. Unless stated otherwise, we fix w = �1.
Finally, we combine the above Fisher matrix with the primordial CMB and BAO Fisher

matrices and compute the marginalized constraints as Cov(✓i, ✓j) = (F�1)ij.

2.3 Results and Interpretation

With the Fisher matrix formalism described above, Fig. 2.2 presents forecasts of 1�
constraints on the sum of neutrino masses, marginalized over ⇤CDM parameters and linear
galaxy biases in all redshift bins, for kmax = 0.3 hMpc�1. No prior on the optical depth to
reionization is included. With the LSST Optimistic sample split into 16 bins in the range
z = 0� 7, combining LSST clustering and CMB lensing from S4 gives �(

P
m⌫) = 55 meV.

Adding the primordial CMB information (without any prior on ⌧ ), we can achieve a constraint
of 33 meV, corresponding to a ⇡ 1.8� detection on the minimum value of

P
m⌫ for the

normal hierarchy. Using the parameter constraints from S4, we gain ⇡ 7% improvement
in forecasts relative to the Planck primary Fisher matrix. Hereafter in this analysis, we
use S4 primary CMB information with Planck co-added. Finally, with the the DESI BAO
measurements added, we can achieve �(

P
m⌫) = 24 meV, reaching ⇡ a 2.5� measurement

of the minimal sum of the neutrino mass, without any optical depth information.
In Fig. 2.2, we find that adding clustering information at higher redshift results in

significantly better
P

m⌫ constraints. A more pessimistic galaxy sample, LSST Gold,
includes significantly less structures in high redshift and therefore yields only a minimal
improvement in the constraints for z > 3. However, relative to the LSST Optimistic, the
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Figure 2.2: Forecasted 1� constraints on the sum of the neutrino masses without optical depth
information, for di↵erent experiment configurations: CMB-S4 lensing and LSST clustering (black) +
primordial CMB data (green dotted for Planck and green solid for S4) + DESI BAO measurements
(red solid for LSST Optimistic and red dotted for LSST Gold). S4 primary CMB (with Planck
co-added) + DESI BAO gives �(

P
m⌫) = 42 meV, which further tightens to 37 meV with the

reconstructed CMB lensing potential included. Including the LSST galaxies at higher redshift
extends the redshift lever arm and increases the volume probed, which results in a significant
improvement in the constraints.

�(
P

m⌫) Gold sample constraints are not significantly worse when primary CMB and DESI
information are included. We also consider the e↵ect of having a broader redshift binning;
with 6 bins in the same redshift range, �(

P
m⌫) degrades by ⇡ 15%.

Table 2.1 provides the 1� constraints on the neutrino mass with di↵erent kmax limits, for
both LSST Gold and Optimistic samples. Having just CMB lensing and LSST clustering,
we find significant improvements as we assume a higher kmax. However, with all external
datasets included, we find only moderate dependence on kmax, with a degradation of only
10 � 15% when using kmax = 0.1 hMpc�1 instead of kmax = 0.3 hMpc�1. The dependence
on CMB sensitivity is similar: Improved CMB sensitivity improves constraints from CMB
lensing and LSST clustering alone significantly, but only mildly when including all other
probes. We note that such modest improvements of the neutrino mass constraints with the
S4 lensing reconstruction noise have been recognized previously [24].

We emphasize that the forecasts shown in Fig. 2.2 and Table 2.1 assume no prior informa-
tion on the optical depth. We therefore conclude that the ⌧ -less cross-correlation tomography
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�(
P

m⌫) [meV] (Gold/Optimistic)

kmax Lens + LSST + Planck/S4 T&P + DESI

0.05 307 / 243 94 / 68 32 / 29

0.1 176 / 129 68 / 53 31 / 27

0.2 107 / 71 47 / 38 28 / 25

0.3 84 / 55 40 / 33 27 / 24

0.4 79 / 49 38 / 31 26 / 23

Table 2.1: Forecasts of the neutrino mass constraints without optical depth information, for di↵erent
LSST number densities and redshift distributions, kmax limits, and lensing reconstruction noise
levels. For di↵erent combinations of data, constraints provided on the left assume the LSST Gold
sample, and those on the right assume the LSST Optimistic sample.

�(
P

m⌫) [meV]

Lens + Planck/S4 T&P + DESI

kmax �(⌧) = 0.01 0.005 0.002

0.3 25 17 12

�(
P

m⌫) [meV] (Gold/Optimistic)

Lens + LSST + Planck/S4 T&P + DESI

kmax �(⌧) = 0.01 0.005 0.002

0.3 22 / 20 16 / 16 11 / 10

Table 2.2: Forecasts of the neutrino mass constraints with di↵erent flat priors on the optical depth
assumed. Top: Combining CMB-S4 lensing, S4 primary CMB (with Planck co-added), and DESI
BAO information. Bottom: LSST clustering added. As in Table 2.1, numbers on the left assume
the Gold sample, and those on the right assume the Optimistic sample.

combining LSST clustering and CMB-S4 lensing provides a di↵erent and competitive way
to measure the sum of the neutrino masses. This is better illustrated in Fig 2.3. We obtain
slightly tighter bounds on

P
m⌫ and ⌧ (red solid curve) compared to the ⌧ -limited bounds

possible with CMB-S4 (blue dotted). Still, including a tight prior on ⌧ constrains
P

m⌫

better. Table 2.2 summarizes the e↵ects of the optical depth measurements on the neutrino
mass constraints in our forecasts. Assuming kmax = 0.3 hMpc�1, adding a flat prior �(⌧)
= 0.01 improves our constraints by 15 � 20%. A better determination of ⌧ reduces the
uncertainty on the

P
m⌫ detection; �(⌧) = 0.005 tightens our 1� constraint to 16 meV, and

imposing the cosmic variance limit on the ⌧ measurements brings �(
P

m⌫) down to 10 meV,
⇡ 6� detection on the minimal sum of the neutrino masses (LSST Optimistic sample with S4
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Figure 2.3: 1� confidence ellipses in the ⌧ �
P

m⌫ plane, with di↵erent combinations of datasets.
The solid curves assume no prior on the optical depth, whereas the dotted curves include a flat
prior on ⌧ . We find that the combination of LSST clustering and CMB-S4 lensing without any ⌧

information (red solid) can achieve constraints competitive with or slightly better than the ⌧ -limited
constraints possible with CMB-S4 (blue dotted).

lensing noise assumed).
What is the physical origin of these neutrino mass constraints without optical depth

information? We consider two possible mechanisms by which the constraints could arise.
First, they could originate by probing neutrinos’ e↵ect on the growth of structure over

a wider range of low redshifts. (We will henceforth refer to this as the “growth e↵ect”.)
To illustrate this, we forecast the constraints on the amplitude of matter fluctuations �8

as a function of redshift, by defining a parameter Ai which quantifies how the measured
power spectra deviate from the standard growth of structure: Pmm(k, zi) = A2

i
P fiducial
mm

(k, zi),
with Ai = 1 for the fiducial cosmology. Following [231], we consider broader redshift bins,
z = 0� 0.5, 0.5� 1, 1� 2, 2� 3, 3� 4, 4� 7, and treat Ai in all 6 bins as a free parameter.
Marginalizing over 6 ⇤CDM parameters (H0, ⌦bh2, ⌦ch2, ns, As, ⌧) and linear biases in
each bin and adding external datasets, such as primary CMB and DESI, we can convert Ai

constraints to subpercent-level constraints on �8 at each redshift, as shown in Fig 2.4. This
enables us to measure (to some extent) the tiny di↵erence between high- and low- redshift
amplitudes of structure, thereby leading to a better constraint on

P
m⌫ .

Since the precision to which the growth suppression alone can be measured appears
moderate, we also consider other physical e↵ects that can contribute to the constraints on
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Figure 2.4: 1� constraints on the matter amplitude �8 in 6 tomographic redshift bins, z =
0� 0.5, 0.5� 1, 1� 2, 2� 3, 3� 4, 4� 7, from the combination of LSST galaxies and CMB-S4 lensing.
kmax = 0.3 hMpc�1 is assumed. �8/�8,fiducial = 1 corresponds to

P
m⌫ = 0. Massive neutrinos

suppress the growth of density fluctuations, which can be shown by how the matter density contrast
scales with the scale factor: �m / a

1� 3

5
f⌫ [4]. Assuming the minimal mass sum 60 meV, the black

dotted curve plots such suppression. We either (1) marginalize over ⇤CDM parameters and linear
biases in each bin (light blue blocks) or (2) fix ⇤CDM parameters (dark blue). In both scenarios,
subpercent-level constraints on �8 can be achieved, leading to a significant improvement in theP

m⌫ detection.

neutrino mass. In particular, we consider constraints from the step-feature in the power
spectrum induced by neutrino free streaming (i.e., the characteristic spectrum shape caused
by growth suppression only below the free streaming scale); this should also improve with
larger volume and a larger number of low-k modes, as surveys extend to higher redshift. We
will label this e↵ect the “spectrum shape e↵ect”.

In Fig. 2.5, we investigate the relative contribution of the growth and spectrum shape
e↵ects to the constraints on neutrino mass without optical depth information. We begin from
an analysis including the full information arising from both galaxies and CMB lensing, in
which we obtain constraints shown by the red line. To understand the relative contributions,
will now remove either the growth e↵ect or the spectrum shape e↵ect. To remove the growth
e↵ect, we simply exclude all CMB lensing information (C

l
and Cg

l
removed); this gives

the constraints shown by the blue line. To remove the spectrum shape e↵ect, we artificially
remove the neutrino step feature by matching an

P
m⌫ = 0 power spectrum to the amplitude

of the small-scale power spectrum at k > 0.1h/Mpc. This way, the whole “featureless” power
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Figure 2.5: The relative contribution of the growth and spectrum shape e↵ects to the
P

m⌫ constraint
without optical depth information. kmax = 0.3 hMpc�1 assumed. From the full information
combining both galaxies and CMB lensing (red curve), we remove either the growth e↵ect by
excluding all CMB lensing information (blue curve) or the spectrum shape e↵ect by artificially
removing the neutrino step feature (green curve). The removal of either e↵ect substantially weakens
our constraints, and removing both growth and shape e↵ects (yellow curve) eliminates the majority
of the constraining power of our data.

spectrum growth is suppressed in a redshift dependent way that mimics that caused by
neutrinos. This gives the constraints shown by the green line. It can be seen that in both
cases, constraints are weakened substantially; the e↵ect sizes appear comparable, though
the removal of the spectrum shape e↵ect has slightly more impact 3. Removing both the
spectrum shape e↵ect and the CMB lensing data eliminates the majority of the constraining
power of our data; we thus conclude that both the shape of the galaxy power spectrum and
the growth of cosmic structure, probed by high redshift galaxy and CMB lensing surveys,
are responsible for the majority of our constraints on neutrino mass without optical depth
information.

Since we find that our forecasts for neutrino mass errors do not degrade dramatically with
the complete removal of CMB-S4 lensing information, we have also looked at constraints

3We note that when we reduce our default kmax = 0.3h/Mpc to kmax = 0.1h/Mpc, the spectrum shape
e↵ect, which mainly arises from low k, becomes much more important than the growth e↵ect, which requires
many modes to get precise measurements of �8(z).
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Figure 2.6: Forecasted 1� constraints on
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m⌫ with di↵erent survey configurations. The solid
curves include the LSST shot noise, and the dotted curves assume zero shot noise. Having more
galaxies observed in higher redshift, LSST Optimistic (red, blue, and black curves) yields tighterP

m⌫ constraints relative to LSST Gold (green). Assuming N = 22 in the same redshift range, we
can reach up to �(

P
m⌫) = 16 meV. Consequently, We conclude that having more bins in high

redshift tightens our constraints considerably.

to come from a nearer-term survey with 7 times larger map noise at �T = �E,B/2 = 7µK0.
This is similar to (though not necessarily equal to) the white noise level expected from the
Simons Observatory, also to be situated on the Atacama Plateau, with a survey coverage of
fsky ' 0.4 [8]. For kmax = 0.3h/Mpc, our forecast for �(m⌫)/meV from CMB temperature,
polarization and lensing combined with DESI BAO and the LSST Gold (Optimistic) sample
degrades from 27 to 29 (24 to 26) when S4 is replaced with this nearer-term, noisier survey.

Though we believe we have explained the origin of most of the combined probes’ constrain-
ing power, other e↵ects may contribute to some degree as well, such as: improved constraints
on cosmological parameters such as the matter density, which may break degeneracies with
neutrino mass, or constraints on the geometric factors probed by the relevant power spectra.
We defer a detailed analysis attempting to quantify the impact of these other e↵ects to future
work.

The analyses described in this chapter might provide the best prospects for improved
constraints in future experiments, since improving optical depth constraints further may be
di�cult. Fig. 2.6 explores possible improvements to our constraints, and shows that our
forecasts are moderately limited by the CMB lensing reconstruction noise and the galaxy shot
noise. Even though our LSST galaxy samples extend to z = 7, we consider one broad redshift
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bin for z = 4� 7, and only modest improvements can be achieved by including this broad bin.
The black dotted curve in Fig. 2.6 assumes N = 22, with finer bins in high redshift: �z = 1
in the range z = 4� 10 (flat dn/dz assumed for z > 7). Then, assuming zero lensing noise
and shot noise, we can achieve �(

P
m⌫) = 16 meV from the combination of LSST galaxies

and CMB-S4 lensing (all external datasets also added). This suggests that our forecasts are
primarily limited by the redshift extent of the galaxy surveys. Neutrino mass constraints
thus provide some motivation for extending galaxy surveys to higher redshift, though the
improvements are fairly slow and the analyses will be very challenging.

2.4 Conclusions and Outlook

We have forecast that the combination of LSST clustering and CMB-S4 lensing provides
competitive neutrino mass constraints without optical depth information. Following [231],
we use CMB lensing – galaxy survey cross-correlations, together with auto-power spectrum
information, to cancel sample variance in part and thereby break parameter degeneracies.

For kmax = 0.3 hMpc�1, the combination of CMB-S4 lensing with LSST galaxies, with
external datasets such as Planck and S4 primordial CMB information and DESI BAO
measurements included, can achieve �(

P
m⌫) = 24 meV, corresponding to a ⇡ 2.5� detection

on the minimal mass 60 meV assuming the normal hierarchy. This suggests that the ⌧ -less
CMB lensing cross-correlation tomography provides an (at least partially) independent and
competitive way to constrain the sum of the neutrino masses. Such improvements partially
originate from sub-percent level constraints on the amplitude of structure at a number of
di↵erent redshifts, which allow the measurement of the tiny di↵erence between high- and low-
redshift amplitudes of structure caused by neutrinos a↵ecting structure growth; they also, in
part, originate in constraints on the shape of the galaxy power spectrum, which benefit from
the large volumes probed by high redshift surveys.

We demonstrate that including LSST galaxies at higher redshift leads to tighter constraints
by extending the redshift lever arm. Comparing two LSST galaxy samples, we conclude that
for a more pessimistic sample that includes less galaxies at high redshift the improvements in
the constraints are only minimal for z > 3. We also assume zero lensing reconstruction noise
and galaxy shot noise and find that the redshift lever arm and tomographic binning of the
galaxy surveys (and the corresponding overlap with the lensing kernel) primarily limit our
forecasts. In addition, we show that better measurements of the optical depth, if attainable
and added to the analyses we describe, can improve the neutrino mass constraints further; in
particular, including a cosmic-variance-limited optical depth measurement tightens �(

P
m⌫)

to 10 meV.
We caution that for our forecasts to hold, we need to be able to model the observed power

spectrum in presence of massive neutrinos to better than ⇠ 1% level, which corresponds to
the size of the suppression due to neutrinos in the range probed by LSST galaxies (see Fig.
2.4). For comparison, the size of the quadratic b2 bias [23, 184], neglected in this analysis, can
be a few percent correction to the galaxy power spectrum at k = 0.1hMpc�1 and a ⇠ 20%
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correction at k = 0.3hMpc�1, depending on redshift and on the mass of the host halos. We
therefore anticipate needing to model and constrain scale-dependent corrections to the g
and gg power spectra from nonlinear bias terms to better than ⇠ 10% in order to achieve
the required accuracy. Moreover, in this work we have neglected super-sample variance,
and systematic errors in the analysis of high redshift galaxy clustering (such as photometric
redshift uncertainties), which may limit how well we constrain the growth of structure. A full
analysis of nonlinear biasing, photometric redshift errors and other systematic limitations is
therefore well-motivated.

Nevertheless, if these systematic limitations can be controlled su�ciently well, our results
show that novel high-precision neutrino mass measurements at and beyond the optical depth
limit will be achievable with upcoming surveys.



32

Chapter 3

The Physical Origin of Dark Energy
Constraints from Rubin Observatory
and CMB-S4 Lensing Tomography

In this chapter, we seek to clarify the origin of constraints on the dark energy equation of
state parameter from CMB lensing tomography, that is the combination of galaxy clustering
and the cross-correlation of galaxies with CMB lensing in a number of redshift bins. We focus
on the analytic understanding of the origin of the constraints. Dark energy information in
these data arises from the influence of three primary relationships: distance as a function of
redshift (geometry), the amplitude of the power spectrum as a function of redshift (growth),
and the power spectrum as a function of wavenumber (shape). We find that the e↵ects from
geometry and growth play a significant role and partially cancel each other out, while the
shape e↵ect is unimportant. We also show that Dark Energy Task Force (DETF) figure of
merit forecasts from the combination of LSST galaxies and CMB-S4 lensing are comparable
to the forecasts from cosmic shear in the absence of the CMB lensing map, thus providing
an important independent check. Compared to the forecasts with the LSST galaxies alone,
combining CMB lensing and LSST clustering information increases the FoM by roughly
a factor of 3-4 in the optimistic scenario where systematics are fully under control. We
caution that achieving these forecasts will likely require a full analysis of higher-order biasing,
photometric redshift uncertainties, and stringent control of other systematic limitations,
which are outside the scope of this work, whose primary purpose is to elucidate the physical
origin of the constraints. 1

1This chapter is taken from “The Physical Origin of Dark Energy Constraints from Rubin Observatory
and CMB-S4 Lensing Tomography,” Yu B., Ferraro S., Knight Z., Knox L., Sherwin B. (arXiv: 2108.02801).
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3.1 Introduction

Future surveys of the Cosmic Microwave Background (CMB) in intensity and polarization
will produce high signal-to-noise ratio (SNR) CMB lensing maps over a large fraction of the
sky. The survey conducted from the Atacama Plateau in Chile by CMB-S4 [4] will have
significant spatial overlap with the deep and wide photometric galaxy catalogs to come from
the Vera C. Rubin Observatory, an optical facility located at Cerro Pachón, also in Chile
[6]. For the first ten years of operation, the Rubin Observatory will perform the Rubin
Observatory Legacy Survey of Space and Time (LSST).

In this chapter we investigate physical origin of the constraints on the dark energy equation
of state (EoS) parameter w that can be obtained by cross-correlating redshift-binned galaxy
maps and a high SNR CMB lensing map. We choose to not include the forecasts of galaxy
weak lensing (WL), in order to find out what can be achieved without WL and to create
a complementary probe to those which do include WL. We have previously explored the
physical origin neutrino mass constraints in a very similar setup in chapter 2.

Varying the EoS parameter of dark energy a↵ects both the expansion rate of the Universe
and the growth of large-scale structure (LSS), which impacts both the amplitude of the matter
power spectrum and the angular position of the Baryon Acoustic Oscillation (BAO) features
within it. The distribution of galaxies within a narrow redshift bin traces the distribution of
matter at that redshift, and therefore its map and power spectrum contain information about
expansion and growth in the same redshift range. On the other hand, the lensing of the CMB
traces the distribution of matter over a wide range of redshifts, combined into a single map
and power spectrum. Galaxy surveys measure the luminous matter, while lensing is sensitive
to the underlying matter distribution, so we expect the cross-correlation between galaxies
and lensing to provide a measurement of the relationship between luminous and dark matter
[4], crucially breaking the intrinsic degeneracy between the amplitude of fluctuations and
galaxy bias. Our goal is to describe the benefit of combining these two sources of information,
particularly in how they together can inform us on the dark energy EoS parameter.

The cross-correlation of redshift-binned maps of galaxy number densities with CMB
lensing is very useful due to the di↵erent ways in which galaxy clustering and CMB lensing
are dependent on the galaxy bias. We use the standard definition of the linear galaxy bias
as the ratio of the overabundance of galaxies to the overdensity of mass, b(z) = �g(r)/�(r);
�g(r) = (n(r)� n̄)/n̄, where n(r) is the density of galaxies at location r and n̄ is its spatial
average, and �(r) = (⇢(r)� ⇢̄)/⇢̄, where ⇢(r) is the mass density at a location r and ⇢̄ is its
spatial average. We can then determine such linear and scale-independent bias, to within
noise limitations, as the ratio between angular power spectra, bi ' Cgigi

l
/Cgi

l
, where i runs

over tomographic redshift bins. With improved constraints on galaxy bias at various redshifts,
we can break the degeneracy between galaxy bias and the amplitude of the matter power
spectrum P (k, z), thereby better constraining the cosmological model parameters [203, 231].

[92] used the high depth and density of the DES survey to construct maps of galaxy
number density in several photometric redshift bins. They then cross-correlated these maps
with a CMB lensing map inferred from Planck and SPT data in order to determine both
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the galaxy bias and the CMB lensing amplitude, in a process they called “CMB lensing
tomography” (see for example [239, 47, 206] for early work and [209, 194, 152, 179, 69, 107,
145, 151, 89, 60] for more recent analyses).

CMB lensing tomography provides us with a means, complementary to tomographic
cosmic shear, of reconstructing the mass distribution across the sky in coarse slices in redshift.
Here we study the role, in reaching constraints on dark energy parameters, of not just the
amplitude as a function of redshift, but also the shape of the matter power spectrum, and
the distance-redshift relation that influences observables that are all seen in projection.

In this chapter we focus on the constraints on dark energy that can come from the
CMB lensing tomography enabled by CMB-S4 lensing maps and LSST galaxy clustering.
Current SNRs for the best-measured modes in CMB lensing maps are quite modest. The
Planck lensing map [7], has a SNR per mode (on spherical harmonic modes with multipole
moment l) approximately equal to 1 for l ' 50, and lower everywhere else. From CMB-S4
we expect SNRs of greater than unity for all modes with l . 1000 and as large as ' 40
for the best-measured modes. This increase in CMB lensing precision, together with LSST
galaxy clustering, opens up the possibility of measuring the amplitude of structure to a high
precision over a range of redshifts [4].

The roles of ”geometry” (the distance-redshift relation) and ”growth” (the amplitude
of the matter power spectrum as a function of time) have been well-studied in the case of
tomographic cosmic shear [3, 240, 290, 147, 287, 288, 181, 289]. Although often described as
a probe of growth, distinguishing it from purely geometric probes such as the use of SNeIa as
standard candles, these studies clarify that geometry is just as important as growth, if not
more so, for constraints on dark energy parameters.

Several forecasts have been done for cosmological parameter sets which include ⌃m⌫ and
w, through several combinations of observables that include WL, high-SNR CMB lensing, and
galaxy clustering. Early forecasts which included either WL or CMB lensing either did not
include galaxy custering [141, 108, 186, 278], or did not include the cross-correlation between
CMB lensing and galaxy clustering [225, 150, 79]. More recently, studies have gone to the
opposite extreme. That is, recent studies have included the cross correlation between CMB
lensing and galaxy clustering, as part of a robust and inclusive forecast that also includes the
cross-correlations between cosmic shear and galaxy clustering, and between cosmic shear and
CMB lensing. However, these studies did not attempt to forecast the benefits of the CMB
lensing - galaxy clustering cross-correlation, without also including WL cross-correlations
[137, 183, 230].

Two studies which we follow very closely are those of [231] and [283], in which we
presented forecasts of ⌃m⌫ that include CMB-S4 lensing, LSST galaxy clustering, and their
cross-correlation, but did not forecast the dark energy figure of merit. The forecast of [231]
includes a forecast of �8, the linear theory RMS of the mass distribution on scales of 8 Mpc/h,
which e↵ectively serves as a proxy for the amplitude of the matter power spectrum.

[229] considered the impact of photometric redshift uncertainties and the potential for
self-calibration in a setup similar to ours. That work shows that the fraction of photometric
redshift outliers can be constrained by the data itself, and it considers the e↵ect of dynamical
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Dark Energy and neutrinos, similar to this forecast. [83] explores constraints from cosmic
shear, clustering and CMB lensing, including the e↵ect of baryons and photo-z outliers.
However, the physical origin of the constraints on Dark Energy, the main goal of the present
chapter, was not explored in these works.

The remainder of our chapter is organized as follows: In Section 3.2, we present our
cosmological model space and assumptions about observables and noise. Consistent with our
focus on understanding the physics that leads to the forecasted constraints, our modeling of
the data is quite simple, and in particular does not include sources of systematic error. In
Section 3.3 we describe our forecasting formalism and in Sections 3.4 and 3.5 we present and
discuss our results. Note that we discuss the physical origin of dark energy constraints in
Section 3.2 and 3.4.

3.2 Model and Assumptions

In chapter 2, we assume the ⇤CDM model extended to include massive neutrinos, and
here we further extend it to include time-varying dark energy. The cross-correlations are
computed in spherical harmonic space and take the form of angular power spectra.

We assume a fiducial model with the following parameters: ⌦bh2 = 0.02226, ⌦ch2 = 0.1193,
⌧ = 0.063, As = 2.130 ⇥ 10�9, ns = 0.9653, ✓MC = 1.04087 ⇥ 10�2, and ⌃m⌫ = 0.06
eV. The neutrinos in this model are relativistic in the early universe and slow down as
the universe expands, becoming non-relativistic at late times. We add time-varying dark
energy by considering the dark energy equation of state parameter w to follow the common
parameterization [61, 170] w(a) = w0 + (1� a)wa, where a is the scale factor of the expansion
of the universe normalized such that a = 1 today, while noting that di↵erent parameterizations
are possible [133, 78, 25, 63]. The fiducial values that we use are w0 = �1, wa = 0. We also
include one galaxy bias parameter for each galaxy bin, as described in section 3.2.

Galaxy Binning

Following chapter 2, we employ two di↵erent assumptions for LSST galaxy redshift
distributions in our analysis, as shown in figure 2.1. The first redshift distribution is the
i < 25 Gold sample [6], which takes the analytic form dN(z)/dz / (1/2z0)(z/z0)2e�z/z0 , with
z0 = 0.3 and a corresponding galaxy solid angle number density of n̄ = 40 arcmin�2, and is
hereafter referred to as the “LSST Gold” sample. The second distribution, which we refer
to as the “LSST Optimistic”, assumes a fainter observable magnitude limit of i < 27 with
S/N > 5 in the i band and includes Lyman break galaxies from redshift dropouts, and this
results in the increase the number density of observable galaxies to n̄ = 66 arcmin�2 [231].
This large number density may not be overly optimistic for our purposes as we do not rely
on galaxy shape measurements, but just galaxy locations.

We divide LSST galaxy redshift distributions into 16 non-overlapping tomographic bins
with the bin edges of z = [0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.3, 2.6, 3, 3.5, 4, 7].
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Defining redshift bins with perfectly sharp edges in an actual galaxy survey, however, is not
currently achievable, as the high number of galaxies can only have their redshifts determined
photometrically, with an associated photometric redshift error. Thus our forecasts describe
the ideal case in which the photometric redshift (“photo-z”) error has been completely
eliminated. This is a conceptually simpler case than one in which the redshift bins are more
realistic and contain the photo-z error, and we leave the forecasting that includes such error
to a future study.

Likewise, our idealized treatment neglects a number of e↵ects that should be included in
more realistic forecasts. These include e↵ects of galactic dust, photometric redshift errors
(e.g. [116, 229]), galaxy-galaxy blending [113], and magnification-induced correlations across
redshift bins (e.g. [93]). Also, we neglect any non-Gaussian corrections to the covariance
matrix [260, 150]. As stated above, we find that this simplified setting is helpful to elucidate
the physical origin of the constraints, and we don’t expect our conclusions to change when
considering a more realistic forecast.

We use galaxies as tracers of matter and assume a single galaxy population. We use a
linear galaxy bias model, which [67] show to be valid (in the Dark Energy Survey) at least
on the scales where the linear growth of structure is a su�ciently accurate approximation.
Similarly, we’ll restrict our analysis to large scales (defined below), and use the linear matter
power spectrum. More sophisticated modeling of non-linearities in matter and bias will be
required in a more realistic analysis (see for example [184, 151, 145, 201]). Following [6] and
[231], we assume b(z) = 1 + z as our fiducial bias evolution.

For each redshift bin, we define a bias parameter calculated as a weighted average of this
galaxy bias function over the redshift range of the bin:

bi =
1

⇥ R
dNi(z0)

dz0 dz0
⇤
Z

dNi(z)

dz
bi(z)dz, (3.1)

where bi(z) = Bib(z). Bi is e↵ectively an amplitude of the bin bias, and b(z) is the redshift
dependent galaxy bias function. The Bi parameters are the ones that we use in our Fisher
forecasting, with fiducial values of Bi,fid = 1. Similarly, bi,fid = bi(Bi,fid), which leads to
�(Bi) = �(bi)/bi,fid in the Fisher results.

Theoretical Power Spectra

With the CMB lensing convergence  and a tomographic set of galaxy distribution map,
we compute the following 2-point angular power spectra: C

l
, Cgi

l
, and Cgigi

l
, where gi is

the galaxy density field in the ith tomographic redshift bin.
The CMB lensing convergence in direction n̂ can be calculated as a line-of-sight integral

over the fractional matter over-density �(r, z) at the comoving position r and redshift z:

(n̂) =

Z
d�W (�)�

�
�n̂, z(�)

�
, (3.2)
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where � is the the comoving distance, and the lensing distance kernel is [66, 255, 47]:

W (�) =
3

2
⌦mH2

0

�

a(�)

�CMB � �

�CMB
, (3.3)

where ⌦m is the matter fraction at the current time, H0 is the current value of the Hubble
parameter, a(�) is the scale factor at comoving distance �, and �CMB is the comoving distance
of the CMB’s surface of last scattering.

For the galaxy density field in the ith bin, we can also calculate the following line-of-sight
integral:

gi(n̂) =

Z
d�W gi(�)�

�
�n̂, z(�)

�
, (3.4)

where the galaxy distance kernel is [47]:

W gi(�) =
1

⇥ R
dz0 dNi(z0)

dz0

⇤
dz

d�

dNi(z)

dz
bi(�). (3.5)

Note that we neglect the magnification bias.
Using the Limber approximation [167, 140], we model the angular power spectrum as:

C↵�

l
=

Z
dz

d�

dz

1

�2
W ↵(�)W �(�)P�↵��

⇣ l + 1/2

�
, z(�)

⌘
(3.6)

where ↵, � 2 (, g1, ..., gN), and P (k, z) is the matter power spectrum at wavenumber k and
redshift z. Following [231] and [283], we use the CDM-baryon density contrast �cb for galaxy
clustering and the total matter density contrast �cb⌫ (which includes neutrinos) for lensing.

We use the publicly available camb code [161] and its Python wrapper [123] in order to
calculate P (k, z), as well as the unlensed primary CMB power spectra CTT

l
, CTE

l
, and CEE

l
.

For such calculations, we assume the normal hierarchy, in which the third neutrino mass
eigenstate ⌫3 is heavier than the other two eigenstates. We use the fluid dark energy model
implemented in the python wrapper of camb, available since its major update in version 1.0.

As in chapter 2, we impose the limit on the maximum wavenumber to be included in
our analysis (see Table 3.1 for the corresponding lmax values of each redshift bin) so that
perturbations can be assumed to remain in the linear regime, and therefore uncertainties
due to non-linear modeling have negligible e↵ects on our forecasts. The vertical lines in
Figure 3.1 indicate the scale cuts assumed for the galaxy auto-power spectrum in di↵erent
tomographic redshift bins. All forecasts presented in this work assume the linear matter
power spectrum, as we find that the e↵ects of adding non-linear corrections from Halofit

to the power spectrum are only negligible with kmax = 0.1 or 0.2 hMpc�1 imposed.

Separating Impacts of Distance, Growth, and Shape

The EoS parameter of dark energy a↵ects both the cosmic distance scale and the growth
factor. The relative importance of these two e↵ects on constraining the EoS parameter has



CHAPTER 3. THE PHYSICAL ORIGIN OF DARK ENERGY CONSTRAINTS FROM
RUBIN OBSERVATORY AND CMB-S4 LENSING TOMOGRAPHY 38

Table 3.1: lmax values corresponding to two kmax limits, 0.1 and 0.2hMpc�1, for the left edge of each
tomographic redshift bin. (lmax is therefore set to be zero for the first bin.) We assume lmin = 30 to
account for the expected di�culty of attaining low-noise data on large angular scales.

kmax \ bin 1 2 3 4 5 6 7 8

0.1 0 57 108 153 193 229 261 289

0.2 0 114 216 307 387 459 522 579

kmax \ bin 9 10 11 12 13 14 15 16

0.1 315 338 358 386 411 439 469 495

0.2 630 676 717 773 822 879 939 991
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Figure 3.1: Fractional change of the auto-power spectra C


l
and C

gg

l
with respect to �w0:

|�Cl|/Cl = 1
Cl

|�w0 ⇥ @Cl/@w0|, where �w0 = 0.05. ✓MC is held fixed. Top: Comparison be-
tween the S4 lensing reconstruction noise (blue shaded region) and the changes in the CMB lensing
auto-power spectrum with respect to �w0 (blue curve). Bottom: The galaxy shot noise and the
changes in the galaxy auto-power spectra with respect to w0, in the 2nd (red) and 9th (green)
tomographic redshift bin. Also shown are vertical lines indicating the lmax values for each redshift
bin, corresponding to the two kmax values indicated in Table 3.1.
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Figure 3.2: Fractional change of the matter power spectrum P (z, k) with respect to w0 (�w0 = 0.05),
�P (z, k)/P (z, k), for five di↵erent redshifts within the range of our analysis. ✓MC is held fixed. To
preserve the distance to the last scattering surface, The vertical dashed lines correspond to the low-l
cuto↵ (lmin = 30) used in the Fisher forecasts, de-projected to the redshifts (from the right) 0.2, 0.5,
1.7, and 3.1. With the resulting k-limits, we remove dark energy perturbations on large scales from
the analysis, thereby making the power spectrum shape e↵ects negligible.

been discussed for WL by several groups [3, 240, 290, 147, 287, 288, 181], using various
methods. As was shown by [240] and by [181], there is a partial cancellation of the geometry
and growth e↵ects for WL observables when w is varied.

In Figure 3.1 and 3.2, we vary w0 while keeping the angular size of the sound horizon ✓MC,
⌦b, and ⌦m fixed in order to make minimal changes to primary CMB power spectra. In this
scenario, if we increase w from its fiducial value, the dark energy density decreases with time.
In order to keep ✓MC fixed, and therefore the angular-diameter distance to last-scattering
fixed, we increase the dark energy density at high redshifts. The result is that, compared
to the fiducial model, with w0 increased H(z) is decreased at z . 0.9 and gently increased
at z & 0.9, asymptoting to zero increase deep in the dark-matter-dominated regime. One
result is that the distances to all redshifts at z . 1100 are increased, asymptoting to zero
change deep in the dark-matter dominated regime. Another is that at z & 0.9, growth is
slowed down. The impact on the growth reverses when H(z) starts to become less than in
the fiducial model at z ' 0.9. Figure 3.2 indeed shows �P (k) < 0 for �w > 0, with more
power suppression at z ⇡ 0.5 than for any of the other redshift choices shown in the figure.
On the other hand, increasing w leads to positive growth function, D(z) > 0, at all redshifts
(asymptoting to zero at high redshift), thereby increasing the angular power spectrum Cl. We
find that these two e↵ects partly cancel each other leading to weaker cosmological constraints
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than if growth and distance were measured separately, as we shall see below. Note that in
Figure 3.2, P (k) is suppressed at all redshifts, and therefore there is partial cancelation in all
redshift bins.

One way of comparing the relative importance of distance and growth on constraining w
in a Fisher forecast is to split w into two components: wd, which only a↵ects the distance, and
wg, which a↵ects the growth only. Previous work has used this parametrization to distinguish
between the two e↵ects and systematic errors [290], or to investigate which has more
constraining power [240, 288]. [287] extends this idea of splitting the parameter w to examine
constraints on (w0, wa) for distance-only, growth-only, and full (growth+distance) cases,
finding that the growth-only case has the least constraining power; with other cosmological
parameters marginalized, the full case has the most constraining power, while fixing them
make the distance-only case more powerful.

We instead apply a similar procedure to investigate the relative importance of distance
and growth in our forecasts, but we take an additional step of separating the growth e↵ect
further into two separate components: the growth of amplitude of the power spectrum and the
change in the shape of the power spectrum due to growth. The reason for such decomposition
is the degeneracy between the power spectrum amplitude and the galaxy bias, and we break
this degeneracy by incorporating observables which have di↵erent dependencies on galaxy
bias2.

Figure 3.2 shows the fractional change in P (z, k) due with respect to �w0 for five di↵erent
values of redshift. We only show the plots for w0, but wa derivatives are very similar in
appearance. The absence of scale-invariance seen in this figure is a generic e↵ect associated
with w 6= �1 dark energy models, as pointed out by e.g. [30] and [271], who showed that
dark energy perturbations appear on very large scales, depend in particular on the sound
speed, and are model dependent.

At first glance, Figure 3.2 looks as if ignoring the shape of w derivatives is e↵ectively
flattening the large low-k features in the derivatives. However, these features occur on scales
much larger than the maximum angular scale we include in the analysis. Due to the possibility
of large-scale systematics, we also impose a low-l cuto↵ of lmin = 30 for each redshift bin.
We check that with the resulting k-limits, shown as vertical lines in Figure 3.2, we remove
large perturbative features from the w derivatives. The portion of the power spectrum
greater than these cut-o↵ points di↵ers from the shape-less version (identical to the value
at k = 0.01hMpc�1) by only several hundredths of a percent. Due to the smallness of this
feature, we can safely neglect it.

When we calculate the partial derivatives of the observables with respect to the w0, wa

parameters, P (k, z) in each tomographic redshift bin is fixed to the value of P (k, zmed), where
zmed is the median redshift of each bin, to remove w(a)-dependent variations of the power
spectrum across the width of each bin. Such variations, degenerate with the evolution of bias
across the bin, can make our results artificially sensitive to those changes, especially given

2CMB lensing has no galaxy bias dependence whereas galaxy observations do, which allows the combination
of the various observables C

gigi

l , C
gi

l , and C

l to distinguish a change in amplitude from the galaxy bias.
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that we fix the bias evolution within each bin. We find that overlooking such procedure can
lead to artificially rosy forecasts, increasing the constraining power by tens of percent.

3.3 Fisher Forecasting

We use the Fisher information matrix formalism to forecast constraints on the cosmological
parameters of interest [267, 28].

Observables

We forecast the constraining power of cross-correlating CMB-S4 lensing with the galaxy
clustering tomography observations of Rubin Observatory LSST (similar to [92]), and our
observables are auto- (C

l
and Cgigi

l
) and cross-spectra (Cgi

l
) from Section 3.2. We do not

include C
gigj

l
, cross-spectra of galaxy tomographic bins, nor do we include the cross-spectrum

CT

l
, which would be nonzero at low l due to the gravitational Integrated Sachs-Wolfe (ISW)

e↵ect.
For CMB lensing, we assume a CMB-S4 experiment with the telescope beam of Full-

Width-Half-Maximum (FWHM) of 10 and a white noise level of 1µK 0 for temperature and
1.4µK 0 for polarization. We assume fsky = 0.4 and set the noise levels NTT

l
, NEE

l
in the

primary CMB as a Guassian noise as:

NXX

l
= s2exp

⇣
l(l + 1)

✓2FWHM

8log2

⌘
, (3.7)

where XX stands for TT or EE, s is the total intensity of instrumental noise in µKrad,
and ✓2FWHM is the FWHM of the beam in radians [278]. For the CMB lensing reconstruction
noise, we use the EB quadratic estimator method described in [127], implemented by the
quicklens [124] software package. Following [231], we rescale the EB noise to approximately
match the expected improvement from iterative lens reconstruction for CMB-S4 [118, 252].

For the LSST, we assume that the survey covers an area on the sky of 18,000 deg2,
corresponding to ⇡ 40% of the sky, and that it fully overlaps with CMB-S4. The shot noise
associated with the galaxy redshift distributions is 1/n̄i, where n̄i is the galaxy number
density per redshift bin, calculated per bin from the ratio of the integrated area of dNi/dz to
that of the total dN(z)/dz multiplied by the overall galaxy density n̄.

Fisher Matrices

Assuming our observables from Section 3.3 are the power spectra of Gaussian random
fields, we can compute the covariance matrix as:

Cov(Cµ1⌫1

l
, Cµ2⌫2

l0 ) =
�ll0

(2l + 1)fsky

⇣
Cµ1µ2

l
C⌫1⌫2

l
+ Cµ1⌫2

l
C⌫1µ2

l

⌘
, (3.8)
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⇤CDM + m⌫ free + w0, wa free

(+ S4/Planck T&P) �(⌃m⌫) [meV] �(w0) �(wa) �(wp) FoM �(⌃m⌫)

S4Lens 69 0.25 0.95 0.14 7.5 83

kmax = 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1

S4Lens + LSST Gold 36 50 0.12 0.18 0.37 0.50 0.050 0.085 54 23 55 61

+ DESI BAO 22 23 0.093 0.11 0.28 0.31 0.026 0.029 138 111 39 41

S4Lens + LSST Optimistic 31 41 0.10 0.15 0.33 0.46 0.042 0.077 71 28 48 54

+ DESI BAO 21 22 0.085 0.11 0.26 0.31 0.024 0.028 159 117 37 40

Table 3.2: Forecasts of the neutrino mass and dark energy constraints, for di↵erent experiment
configurations and kmax limits. The first two columns assume the dark energy parameters are held
fixed, while marginalizing over six ⇤CDM parameters and linear bias amplitudes in tomographic
bins, and the rest of the columns include w0 and wa as free parameters.

where (µ1, µ2, ⌫1, ⌫2) 2 {, g1, ..., gN}. We assume that each Cl contains both signal and noise.
Then, the Fisher matrix is given by:

Fij =
X

µ1,⌫1,
µ2,⌫2

X

l

@Cµ1⌫1

l

@✓i

h
Cov(Cµ1⌫1

l
, Cµ2⌫2

l0 )
i�1@Cµ2⌫2

l

@✓j
, (3.9)

where ~✓ is a set of cosmological model parameters and the bias amplitude parameters, Bi,
from Section 3.2. We can combine the Fisher matrix in equation 3.9 with external datesets,
such as the primordial CMB and BAO Fisher matrices, if needed and then invert the resulting
matrix to determine the marginalized constraints on the parameters of our interest.

3.4 Forecast results

We frame our w0, wa forecasts in terms of the Dark Energy Task Force (DETF) Figure of
Merit (FoM) [17], defined as the inverse of the area of an error ellipse in the w0, wa plane.
Hence, a higher FoM corresponds to a smaller error.

Table 3.2 presents constraints on the the neutrino mass and dark energy equation of
state, marginalized over ⇤CDM parameters and linear galaxy bias amplitudes in all bins,
for di↵erent experiment configurations and kmax limits. All forecasts include the primordial
CMB information. We find that the relative merit of cross-correlating CMB lensing with
galaxy clustering is huge; with kmax = 0.2hMpc�1, combining the galaxy clustering from the
LSST Optimistic sample and CMB-S4 lensing can achieve the FoM of 71.
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Figure 3.3: Forecasted DETF Figure of Merit, defined as [�(wa)�(wp)]�1, with changes to either
growth (blue) or geometry (red) disregarded. We also include the results with the ”full” Fisher
matrix (black), where we apply no restrictions (all e↵ects included), for comparison. Top: FoM
from the combination of S4 primordial CMB, S4 lensing, and LSST clustering (using Optimistic
dN(z)/dz with kmax = 0.2hMpc�1). We observe the partial cancellation between growth and
geometry. Bottom: Only with LSST galaxies, ignoring changes to geometry (by fixing �(z)) makes
the constraining power negligibly small.

In Figure 3.4, we show the DETF FoM with the sum of neutrino mass either marginalized
(top panel) or fixed (middle and bottom). All forecasts demonstrate that including the galaxies
in higher redshift bins significantly improves the constraints by extending the redshift lever
arm and increasing the volume probed. We also show that with the DESI BAO measurements
combined, a notable improvement in the FoM is acheived.

Growth or Geometry?

To investigate how sensitive our forecasts are to the distance-redshift relation (geometry)
and the amplitude of the matter power spectrum as a function of redshift (growth), we make
the following di↵erent types of forecasts: “P (k) fixed”, for which we do not allow the power
spectrum to change as w changes, “�(z) fixed”, for which we do not let the distance-redshift
relationship change as w changes, and “Full” for which we apply no restrictions.

Figure 3.3 shows the result of FoM forecasts for all three cases, using the LSST Optimistic
dN(z)/dz with kmax = 0.2hMpc�1. We present FoM values as functions of redshift: at each
redshift, only bins at and below that redshift are included, and FoM increases as we extend



CHAPTER 3. THE PHYSICAL ORIGIN OF DARK ENERGY CONSTRAINTS FROM
RUBIN OBSERVATORY AND CMB-S4 LENSING TOMOGRAPHY 44

the redshift lever arm and thereby include more galaxies, as expected.
The top panel of Figure 3.3 shows the forecasts of CMB lensing and LSST clustering

combined. We note that both geometry and growth play a significant role, as can be seen by
comparing the red and blue curves; the “Full” Fisher matrix (black curve), which include
all of the e↵ects, appears to have less constraining power than either geometry or growth,
suggesting that there is a partial cancellation at play. A similar cancellation was noted for
WL observables in [240, 181] and we find that this applies to clustering measurements as
well. In short, we note that the partial cancellation between growth and geometry e↵ects
that has been noticed before also appears in our S4 lensing + LSST forecasts.

We also find that inclusion of CMB lensing increases the FoM by a factor of 3-4 (over the
S4 primary CMB + gg result not shown in Figure 3.3), suggesting that cross-correalations
between CMB lensing and galaxy clustering provide a very competitive dark energy probe.
The bottom panel shows that with only LSST galaxies, “�(z) fixed” case has a negligibly small
constraining power, as we cannot gain any dark energy information if the distance-redshift
relation is fixed, and the amplitude of power spectrum is degenerate with bias.

Comparisons with Galaxy Weak Lensing Forecasts

[286] presents LSST Cosmic Shear + Planck forecasts of [�(wa)�(wp)], for various levels
of photometric redshift error. Our forecasts assume zero uncertainty in the redshifts of the
observed galaxies. Our redshift bin widths are �z = 0.2 for the lowest redshift bins up
until z = 2, then �z = 0.3� 0.5 out to redshift z = 4, and the final bin width of �z = 3.0
from z = 4 to z = 7. To reduce the sensitivity to photo-z errors, we make the bin widths
wider than the expected rms scatter in photo-z errors, but we acknowledge that the e↵ects of
photo-z errors are not entirely eliminated. We leave an analysis of quantifying such impacts
to future work. [286] provides [�(wa)�(wp)] as a function of �z/(1 + z), where �z is the
rms photometric redshift error. For simplicity, we compare against the FoM corresponding
to two specific values of redshift error: FoM ⇡ 91 for �z/(1 + z) = 0 and FoM ⇡ 67 for
�z/(1 + z) = 0.05, and these forecasts appear as black horizontal lines in the middle panel of
Figure 3.4, labeled as “Planck T&P + LSST Cosmic Shear.” We find that our results are
at a similar level to these cosmic shear forecasts. We also note that the middle and bottom
panels of Figure 3.4 provides the FoM forecasts with fixed ⌃m⌫ to make a fair comparison to
the forecasts in [286].

However, the forecasts in [286] assume slightly di↵erent choices for the survey charac-
teristics. For the LSST specifications, [286] assumes fsky = 0.48 and uses a full-survey
galaxy number density of n̄ = 50 galaxies/arcmin2, while we use fsky = 0.4 and n̄ = 40
galaxies/arcmin2. Moreover, [286] uses a fiducial bias function of b(z) = 1 + 0.84z, whereas
we use 1 + z. The di↵erences in n̄, fsky, and b(z) should each a↵ect the values of the FoM,
but only to a small degree. Changing our forecast parameters to more closely match [286]’s
would change our forecasted FoM values somewhat.

As an alternative way to compare our forecasts with the LSST cosmic shear forecast,
we also present 1� error ellipses in the w0-wa plane. Figure 3.5 includes our forecasts with
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Figure 3.4: Forecasted DETF Figure of Merit for di↵erent experiment configurations and kmax

limits. Top: Forecasts with the neutrino mass sum marginalized. Addition of galaxy bins at higher
redshift extends the redshift lever arm, resulting in a greater constraining power. Middle: Forecasts
with the neutrino mass sum fixed. Our results are at a similar level to the forecast with LSST weak
lensing combined with Planck measurements [286] (black). Bottom: Forecasts with the DESI BAO
measurements included. With the S4 primary CMB data, we gain a noticeable improvement in
forecasts relative to the Planck data.
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Figure 3.5: 1� confidence ellipses in the w0 � wa plane, with di↵erent survey configurations. We
observe that dark energy constraints from LSST clustering in combination with CMB-S4 lensing
(blue and red) are comparable to those from the LSST cosmic shear data (black).

di↵erent survey configurations (assuming kmax = 0.2hMpc�1), for both the LSST Gold and
Optimistic samples. Plotted with them is the LSST cosmic shear forecast from [289], and
this includes anticipated systematics, such as additive and multiplicative errors in the shear
power spectra and uncertainty in the photometric redshift error distribution. This forecast is
similar to the one in [286], though the LSST data model is updated, but it does not include
galaxy clustering power spectra nor galaxy-galaxy lensing power spectra. Its error ellipsis
appears to have a similar size as our forecast ellipses, consistent with the result shown in
Figure 3.4.

3.5 Summary

We have studied the prospect for CMB Lensing Tomography to constrain the dark
energy parameters by combining LSST redshift-binned galaxy clustering maps and CMB-S4
convergence map. Although one might expect that the dominant contribution to dark energy
constraints would come from the determination of the matter power spectrum as a function of
redshift, the observable statistical properties that we consider (auto- and cross-power spectra)
are also sensitive to the distance-redshift relation. We find that a comparable amount of
information about w(a) comes from geometrical features as comes from growth.
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To conduct such analysis, we need to take care not to artificially break degeneracies of
galaxy biasing with the amplitude of the matter power spectrum. This danger is present due
to the low dimensionality of our parameterization of the bias-redshift relation. In our analysis,
we use one parameter for each bin, with a precisely fixed and known redshift dependence
within each bin. To avoid an artificial breaking of degeneracy, we remove variation of the
redshift dependence of P (k, z) within a redshift bin. As the dark energy equation of state
parameters vary, we adjust the amplitude of P (k, z) at the center of each redshift bin, while
keeping the shape unchanged.

We find that large angular scales are particularly important for the study of dark energy.
Uncertainties associated with non-linear evolution and galaxy biasing on small scales lead
us to ignore, in our forecasting, wavenumbers larger than k=0.2 h/Mpc. Another approach
would be to increase the maximum k value as redshift increases, since the scale of non-linearity
moves out to higher k. However, at higher redshift, the mean bias factor of the galaxies in
the catalog increases, reducing tolerance to errors in the modeling of galaxy bias [184]. The
choice of fixed maximum k means that there is e↵ectively a maximum value of l for each
redshift bin, which is an increasing function of redshift.

Finally, we present the DETF Figure of Merit for di↵erent experiment configurations and
find that adding CMB lensing information to LSST clustering increases the FoM by roughly
a factor of 3-4. We also show that our result is comparable to those from LSST tomographic
cosmic shear, suggesting that the combination of CMB-S4 lensing and LSST clustering is
a competitive probe of dark energy with very di↵erent systematics, and therefore highly
complementary to the traditional analyses.
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Chapter 4

Disconnected Covariance of 2-point
Functions in Large-Scale Structure

Optimal analyses using the 2-point functions of large-scale structure probes require
accurate covariance matrices. A covariance matrix of the 2-point function comprises the
disconnected part and the connected part. While the connected covariance only becomes
important on small scales, the disconnected covariance is dominant on large scales, where the
survey window has a significant impact. In this chapter, we develop an analytical method
to compute the disconnected covariance, accounting for the window e↵ect. Derived under
the flat-sky approximation, our formalism is applicable to wide surveys by swapping in the
curved-sky window functions. Our method works for both the power spectrum and the
correlation function, and applies to the covariances of various probes including the multipoles
and the wedges of 3D clustering, the angular and the projected statistics of clustering and
shear, as well as the cross covariances between di↵erent probes. We verify the analytic
covariance against the sample covariance from the galaxy mock simulations in two test cases:
(1) the power spectrum multipole covariance, and (2) the joint covariance of the projected
correlation function and the correlation function multipoles. Our method achieve good
agreement with the mocks, while at a negligible computational cost. Unlike mocks, our
analytic covariance is free of sampling noise, which often leads to numerical problems and
the need to inflate the errors. In addition, our method can use the best-fit power spectrum
as input, in contrast to the standard procedure of using a fiducial model that may deviate
significantly from the truth. We also show that a naive diagonal power spectrum covariance
underestimates the signal-to-noise ratio compared to our analytic covariance. 1

1This chapter is taken from “Disconnected Covariance of 2-point Functions in Large-Scale Structure,” Li
Y., Singh S., Yu B., and Seljak B. (arXiv: 1811.05714).
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4.1 Introduction

Studies of the large-scale structure of the Universe have made rapid progress over the
last two decades especially with high precision measurements using large galaxy surveys.
These surveys have provided sensitive tests on the cosmological models using combinations of
several independent probes including redshift space distortions (RSD) [43, 37, 213], baryon
acoustic oscillations (BAO) [36, 20, 15], weak gravitational lensing [269, 136, 243, 115],
supernovae [220] and strong lensing [53]. The next generation of galaxy surveys, LSST [173],
Euclid [19], DESI [72], WFIRST [76], aim to make even more precise measurements by
observing even larger volume of the universe.

With the increasing precision of the measurements, it is becoming increasingly important
to have accurate methods to infer and extract information from these measurements. In this
chapter we focus on the probes of matter and galaxy two-point functions. The two-point
functions that measure clustering of galaxies or matter are still the primary source to extract
cosmological information from the observables. One of the challenges in extracting this
information is to accurately model the covariance matrices of these probes in order to obtain
unbiased likelihoods of model parameters. Inaccurate covariances make the inferences sub-
optimal and in extreme cases also introduce biases in the most likely values of the parameters.
Common methods account for the e↵ects of noise in numerical covariances by inflating the
errors in the final constraints [112, 75, 238].

There are mainly three common approaches to quantify the covariance, including estima-
tions using mock simulations, internal estimations from data using jackknife or bootstrapping
methods, and analytic (or semi-analytic) modeling. Covariance estimation using mock simu-
lations has become the most popular approach as it is in principle possible to include proper
treatment of all the observable e↵ects as well as nonlinear and multiscale physics. However,
mock covariance require generating many independent realizations and then computing the
two point functions over all realizations. This method becomes computationally very expen-
sive, because the required number of simulations scales with the number of data points and
with the desired accuracy of the parameter covariance [265]. To overcome these challenges,
several fast methods to run approximate mocks have been developed (see e.g. [171, 49] for
comparison of covariances from di↵erent mocks). Nonetheless, lack of correct physics in these
mocks potentially leads to biased covariances [29]. In addition, it is di�cult to guess a priori
the right fiducial model at which the mocks should be generated. Any deviation of the model
from the truth introduces errors in the covariance, either underestimating or overestimating
the covariance depending on the relation of the fiducial model to the truth.

Computing covariance directly from the data has the potential to overcome these challenges
as it includes all possible observational e↵ects and can be estimated with relatively small
computational overhead. This approach requires splitting the data into smaller mutually
exclusive subsets, and the number of subsets required depends again on the number of
data points and the desired accuracy of parameter covariance. However, splitting data into
smaller subsamples limits the largest scales that can be used in the analysis. Furthermore,
the subsamples are not totally independent (a requirement by the jackknife and bootstrap
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methods), and as a result they bias the covariance [188]. They are also biased by their
subvolume windows that are di↵erent from the survey window.

Compared to the mock and internal methods described above, calculating the covariance
matrices analytically has multiple advantages: its predictions are noiseless; it can be evaluated
at the best-fit cosmology with an iterative procedure, and it is computationally e�cient.
However, analytically modeling the covariance proves to be di�cult due to the following
reasons. The covariance of 2-point functions is related to 4-point functions that consists of
the disconnected and the connected contributions. The disconnected covariance, including
the Gaussian and Poisson errors, is a full-rank matrix and dominant on large scales [84]. It is
sensitive to the window of the survey, which is non-trivial to model accurately. On the other
hand, the connected covariance is a low-rank matrix, becomes important on small scales, and
is hardly a↵ected by the window function. It receives many contributions, including nonlinear
mode-coupling [182, 233, 65, 111, 33, 185, 27, 155], the super-sample covariance [102, 125,
259, 260, 162, 163, 14, 164, 26], shot noises [182, 62, 253], and possible baryonic e↵ects.
However, even as the subject of extensive studies, the connected part remains intractable for
accurate analytic prediction. Due to these challenges, semi-analytic approaches have been
developed, by combining parametric covariance models with fewer number of mocks or the
data [210, 190, 202, 100, 189]. These methods are able to relieve the computational burden
by a factor of O(10), but their accuracy is subject to the quality of the parametric models.
They also inherit other drawbacks from the mock and internal methods, such as fixation on
fiducial cosmology, lack of correct physics, and missing large-scale modes.

In this chapter, we propose a hybrid method to tackle the covariance challenge. We
develop a fully analytic method to compute the full-rank disconnected covariance with a
proper treatment of the window e↵ect. We demonstrate its accuracy and e�ciency using
galaxy mock simulations. Given the di�culty in modeling the connected contributions, and
the fact that it is only important on small scales and not sensitive to the survey window,
one should be able to calibrate it internally from the data, e.g. by low-rank approximation.
By treating the disconnected and connected components separately, our hybrid approach
enjoys the benefits of both the analytical and internal methods, and at the same time avoid
their disadvantages. In this chapter we focus on the disconnected covariance, and leave the
internal estimation of the connected part as a future project.

This chapter is structured as follows. In Sec. 4.2 we develop the methodology to analytically
model the disconnected covariance matrix of the power spectrum or the correlation function
of various large-scale structure probes, taking into account the survey window function. Our
analytic method involves oscillatory integrals with two Bessel functions, which we solve in
Sec. 4.3 with a novel quadrature algorithm. Using the mock simulations described in Sec. 4.4,
we demonstrate the accuracy and e�ciency of the analytic method in Sec. 4.5.
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4.2 Formalism and Methodology

In this section we develop the formalism of the analytic disconnected covariance including
the window e↵ect. We start with the power spectrum covariance, and take the case of
the power spectrum multipoles as the main example. Our derivation assumes flat-sky
approximation, and is applicable to wide surveys by swapping in the curved-sky window
functions. We then generalize our method to the case of the correlation function, and various
other large-scale structure probes.

3D Power Spectrum Covariance

We begin by writing the number density of a discrete tracer field as a sum of Dirac delta
functions

ndata(x) =
X

i

�d(x� xi), (4.1)

whose underlying number density is a continuous field n̄(x) ⌘ hndata(x)i, determined by the
tracer evolution and the survey selection. h i takes the ensemble average or the expected value
of a quantity. The survey selection is most conveniently captured by a synthetic random
catalog, which in the simplest case is a Poisson process with mean hnrand(x)i = n̄(x)/↵,
where ↵ is a constant usually⌧ 1 to reduce its shot noise. We can write down the overdensity
fields of those data and random catalogs2

�data = �1 +
1

n̄(x)

X

i2 data

�d(x� xi),

�rand = �1 +
↵

n̄(x)

X

j2 rand

�d(x� xj). (4.2)

Following [84] (hereafter FKP), the galaxy overdensity is estimated as the di↵erence
between the data and random catalogs weighted by a weight function w(x) (that maximizes
the performance of an estimator like the FKP weight, and/or minimizes some systematic
e↵ects)

�W (x) ⌘ w(x)
⇥
ndata(x)� ↵nrand(x)

⇤

⌘ W (x)
⇥
�data(x)� �rand(x)

⇤
⌘ W (x)�(x). (4.3)

On the second line we have rewritten the di↵erence in number densities with the di↵erence
in overdensities, and defined a combined overdensity field � ⌘ �data � �rand that includes
stochasticity from both data and random catalogs. We have also combined the survey
selection and the weight function in the definition of the window function

W (x) ⌘ n̄(x)w(x). (4.4)
2These overdensity fields of discrete catalogs are only formal, and they help to simplify the calculation of

shot noise terms, e.g. h�data�randi vanishes in (4.8).
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Throughout this chapter W denotes the windows on the fields, and is to be distinguished
from the other window factors introduced later for the 2-point functions or their covariances.

Under the flat-sky approximation, the power spectrum can be simply estimated by
normalizing the squared Fourier-space overdensity before subtracting the shot noise

P̂ (k) =
|�W (k)|2

W0
� Pshot, (4.5)

where the shot noise power spectrum is

Pshot =
S0

W0
, (4.6)

and the constant factors are given by3

W0 =

Z

x

n̄(x)2w(x)2 =

Z

x

W (x)2 =

Z

k

|W (k)|2,

S0 = (1 + ↵)

Z

x

n̄(x)w(x)2. (4.7)

Assuming flat sky and no redshift evolution, �data(x) and �rand(x) are statistically homo-
geneous and satisfy

⌦
�data(k)�data(�k0)

↵
= (2⇡)3 �d(k � k0)P (k) +

Z

x

1

n̄(x)
e�i(k�k0)·x,

⌦
�rand(k)�rand(�k0)

↵
=

Z

x

↵

n̄(x)
e�i(k�k0)·x,

⌦
�data(k)�rand(�k0)

↵
= 0. (4.8)

Here the Dirac delta is a result of the translation invariance, P (k) is the 3D power spectrum
of the tracer, and the shot noise terms involving 1/n̄ arise from the discrete nature of the
data and random catalogs. As independent samples from n̄(x), the data and the random
overdensity fields are not correlated, indicated by the third line in the above equations.

Plugging (4.3) and (4.8) into the ensemble average of the estimator in (4.5) we get

⌦
P̂ (k)

↵
=

1

W0

Z

q

P (k � q)|W (q)|2 ' P (k)

W0

Z

q

|W (q)|2 = P (k). (4.9)

The first equality shows that the expectation of P̂ is a convolution of the true power spectrum
P with a window. To distinguish hP̂ i and P we refer to them as the convolved and the

3In this chapter we use the following shorthand notations for configuration-space and Fourier-space
integrals Z

x
!
Z

d3x,

Z

k
!
Z

d3k

(2⇡)3
.
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unconvolved power spectra, respectively. In the second equality we have assumed that the
scales of interest are much smaller than the window size, i.e. k � q for q where W (q) is
significant, so that a smooth power spectrum P (k�q) ' P (k) can be taken out of the integral.
Therefore the last equality proves that (4.5) is an unbiased estimation of the true power
spectrum for modes much smaller than the survey scale. In other words, the unconvolved
and the convolved power spectra di↵er on large scales due to the window.

The covariance function of the power spectrum estimator is define as

Cov
⇥
P̂ (k), P̂ (k0)

⇤
⌘
⌦
P̂ (k)P̂ (k0)

↵
�
⌦
P̂ (k)

↵⌦
P̂ (k0)

↵
(4.10)

Substituting (4.5) into the above equation, we split the covariance into the disconnected and
connected pieces in the multivariate cumulant expansion

Cov
⇥
P̂ (k), P̂ (k0)

⇤
= Covdisc

⇥
P̂ (k), P̂ (k0)

⇤
+ Covconn

⇥
P̂ (k), P̂ (k0)

⇤
,

Covdisc
⇥
P̂ (k), P̂ (k0)

⇤
=

1

W2
0

��⌦�W (k)�W (�k0)
↵��2 + (k0 $ �k0),

Covconn
⇥
P̂ (k), P̂ (k0)

⇤
=

1

W2
0

⌦
�W (k)�W (�k)�W (k0)�W (�k0)

↵
c
. (4.11)

The disconnected part Covdisc captures the part of the 4-point correlation arising from
products of 2-point correlations, and the connected part Covconn is from the excess correlation
beyond Covdisc. The subscript “c” on the ensemble average denotes the connected part or
the cumulant of the 4-point function.

In the conventional terminology, Covdisc is referred to as the Gaussian part and Covconn is
named the non-Gaussian part. This is true for a continuous random field, in which case the
terms “disconnected” and “Gaussian” can be used interchangeably. However, the conventional
names are not accurate and can be confusing for point processes like a galaxy catalog. Since
Gaussian and Poisson contributions enter both Covdisc and Covconn, Covdisc is not purely
Gaussian and Covconn is not completely free of Gaussian contribution. Therefore in this
chapter we rename this covariance decomposition for clarification.

Let’s first look at the disconnected piece. From (4.3) and (4.8)

⌦
�W (k)�W (�k0)

↵
=

Z

k00
P (k00)W (k�k00)W (k00�k0)+(1+↵)

Z

x

n̄(x)w(x)2e�i(k�k0)·x, (4.12)

which includes both Gaussian and Poisson contributions. For modes much smaller than the
survey scale, the Gaussian term is only important when k00 is close to both k and k0, thus
P (k00) approximates P (k) and P (k0). So we can approximate the integral by taking the
power spectrum out of the convolution while preserving the k$ k0 exchange symmetry, and
then plug it into (4.11)

Covdisc
⇥
P̂ (k), P̂ (k0)

⇤
⇡
���
P (k) + P (k0)

2

W(k � k0)

W0
+ Pshot

S(k � k0)

S0

���
2

+ (k0 $ �k0), (4.13)
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where we have introduced the following window factors

W(q) =

Z

x

W(x)e�iq·x ⌘
Z

x

W (x)2e�iq·x,

S(q) =

Z

x

S(x)e�iq·x ⌘ (1 + ↵)

Z

x

n̄(x)w(x)2e�iq·x, (4.14)

that modulate Gaussian and Poisson pieces, respectively. W and S are to be distinguished
from W , the window on the field. Notice that the constants W0 and S0 introduced earlier
in (4.7) are special cases of W(q) and S(q) at q = 0.

The expansion of (4.13) contains quadratic combinations W2, WS, and S2, therefore we
further define the window factor Q’s as the auto and cross 2-point correlation of W and S.
In Fourier space

QW(q) ⌘W(q)W(q)⇤ =

Z

s

QW(s)e�iq·s,

QS(q) ⌘ S(q)S(q)⇤ =

Z

s

QS(s)e�iq·s,

Q⇥(q) ⌘W(q)S(q)⇤ =

Z

s

Q⇥(s)e�iq·s, (4.15)

with the configuration-space Q(s)’s being the correlation functions of W(x) and S(x), e.g.

Q⇥(s) =

Z

x

W(x + s)S(x). (4.16)

So they can be measured as the correlation functions or power spectra of the properly weighted
random catalogs, which we describe in more details in Sec. 4.2.

The final expression for the disconnected covariance given the power spectrum P and the
window function Q’s is

Covdisc
⇥
P̂ (k), P̂ (k0)

⇤
⇡ 1

W2
0

n
P (k)P (k0)QW(k � k0)

+
⇥
P (k) + P (k0)

⇤
<
⇥
Q⇥(k � k0)

⇤
+ QS(k � k0)

o
+ (k0 $ �k0). (4.17)

Notice that under the same P (k) ⇡ P (k0) approximation we have further simplified the
expression by combining both P (k)P (k) and P (k0)P (k0) terms into P (k)P (k0) while pre-
serving the exchange symmetry. In general, the Q(k�k0) windows have non-vanishing width
determined by the survey size, and its shape characterizes the correlation between neighboring
modes at k and k0. Also di↵erent Q windows generally have di↵erent shapes, and neglecting
this di↵erence would lead to inaccurate Covdisc, which we show later in Fig. 4.7.

Now turning to the connected piece Covconn, it is composed of a mixture of the non-
Gaussian, Poisson, and Gaussian contributions. The non-Gaussian part arises from the
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gravitational mode-coupling, including the trispectrum piece [182, 233] and the super-sample
covariance (SSC) [102, 125, 260]. The remaining parts of Covconn are various shot noise
terms due to the discrete nature of the tracer field [182], and involves Poisson, non-Gaussian
(bispectrum), and Gaussian (power spectrum) components. Overall Covconn is more di�cult
and complicated to model analytically than Covdisc. However, it is a smooth function of k
and k0 and can be well approximated with a low-rank eigen-decomposition [111, 185], which
allows it to be measured from the data with the internal covariance estimators. Leaving the
internal estimation of Covconn as a future project, in this chapter we can obtain Covconn from
the mock simulations by subtracting Cdisc from the mock sample covariance. We find this
empirical Covconn is indeed smooth and a low-rank component with a principal component
analysis.

Diagonal Limit

We expect Covdisc in (6.12) to reduce to the familiar diagonal form when certain condition
is met. In the limit where |k � k0| is much greater than the window scale, e.g. when they
are from di↵erent bins with very wide bin width, Q(q) approaches (2⇡)3 �d(q)Q(s = 0), and
Covdisc reduces to a diagonal covariance:

Covdiag
⇥
P̂ (k), P̂ (k0)

⇤
= (2⇡)3 �d(k�k0)

⇢
P (k)2

VW
+

2P (k)Pshot

V⇥
+

P 2
shot

VS

�
+(k0 $ �k0), (4.18)

where V ’s are e↵ective volumes defined as follows

VW ⌘
W2

0

QW(s = 0)
=

⇥R
x n̄(x)2w(x)2

⇤2
R
x n̄(x)4w(x)4

,

VS ⌘
S2
0

QS(s = 0)
=

⇥R
x n̄(x)w(x)2

⇤2
R
x n̄(x)2w(x)4

,

V⇥ ⌘
W0S0

Q⇥(s = 0)
=

R
x n̄(x)2w(x)2

R
x0 n̄(x0)w(x0)2R

x n̄(x)3w(x)4
. (4.19)

We call (4.18) the diagonal limit, and take it as an ansatz for Covdisc for any k and k0 even
though the derivation only holds far enough from the diagonal. This diagonal covariance
accounts for the size of the window which is captured by Q(s = 0), but ignores the shape of
Q(s), and as a result biases the signal-to-noise ratio shown later in Sec. 4.5.

In the diagonal limit, the Covdisc matrix of the band-power, binned in spherical k shells
following the later Sec. 4.2, is

Covdiag
⇥
P̂ (ki), P̂ (kj)

⇤
= 2�k

ij

Z
k
i+1

2

k
i� 1

2

4⇡k2dk

Vki

⇢
P (k)2

NW
+

2P (k)Pshot

N⇥
+

P 2
shot

NS

�
, (4.20)
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where �k is the Kronecker delta, and N ’s are the e↵ective numbers of modes associated with
the e↵ective volumes:

NW =
VkVW

(2⇡)3
, NS =

VkVS

(2⇡)3
, N⇥ =

VkV⇥

(2⇡)3
. (4.21)

Often only NW is used to compute the diagonal covariance matrix, ignoring the di↵erences
among N ’s, that however could cause larger biases in the signal-to-noise ratio (see Sec. 4.5).
Eq. (4.18) and the constant e↵ective volumes generalize the scale-dependent e↵ective volume
commonly used in survey forecast [266] for any weights w(x).

Multipole Covariance

In redshift space, because of the azimuthal symmetry about the line of sight (LOS), the
power spectrum does not have azimuthal dependence, i.e. P (k) = P (k, k̂ · n̂), where n̂ is the
LOS direction. It is natural to decompose it into multipoles

P (k) =
X

`

P`(k) L`(k̂ · n̂), (4.22)

in which L` is the Legendre polynomial of degree `. The multipole moments can be obtained
by4

P`(k) = (2` + 1)

Z

k̂

P (k) L`(k̂ · n̂). (4.23)

In real space, all high-order multipoles usually vanish, leaving only the monopole.
(4.22) and (4.23) also apply to their estimators P̂ (k) and P̂`(k), so the disconnected

covariance of multipoles follows straightforwardly from (6.12)

Covdisc
⇥
P̂`(k), P̂`0(k

0)
⇤
⇡ 2(2` + 1)(2`0 + 1)

W2
0

Z

k̂,k̂0
L`(k̂ · n̂) L`0(k̂

0 · n̂)
n

P (k)P (k0)QW(k � k0) +
⇥
P (k) + P (k0)

⇤
<
⇥
Q⇥(k � k0)

⇤
+ QS(k � k0)

o
. (4.24)

Since P (k) = P (�k) for auto power spectrum, here we only consider the even multipoles, for
which the k0 $ �k0 term in (6.12) simply doubles the first one giving the factor of 2 in the
above equation.

4 In this chapter we use the following shorthand notation for averaging (instead of integrating) over 4⇡

solid angle of any vector v:
R
v̂ !

R
d⌦v
4⇡ .
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We compute the three terms in the curly brackets of (4.24) separately. First we consider
the P 2 term, expand the power spectra in multipoles, plug in QW from (6.11) and derive

Z

k̂,k̂0
L`(k̂ · n̂) L`0(k̂

0 · n̂)P (k)P (k0)

Z

s

QW(s)e�i(k�k0)·s

=
X

`1`2`3`4

P`1
(k)P`3

(k0)(2`2 + 1)

 
` `1 `2
0 0 0

!2

(2`4 + 1)

 
`0 `3 `4
0 0 0

!2

⇥ (�i)`2�`4

Z
4⇡s2ds

X

`00

 
`2 `4 `00

0 0 0

!2

QW`00(s)j`2(ks)j`4(k
0s). (4.25)

Similarly we obtain the cross term between power spectrum and shot noise (P ⇥ Pshot)

Z

k̂,k̂0
L`(k̂ · n̂) L`0(k̂

0 · n̂)
⇥
P (k) + P (k0)

⇤
<
hZ

s

Q⇥(s)e�i(k�k0)·s
i

=
X

`1`2

P`1
(k)(2`2 + 1)

 
` `1 `2
0 0 0

!2

(�i)`2�`
0
Z

4⇡s2ds
X

`00

 
`2 `0 `00

0 0 0

!2

Q⇥`00(s)j`2(ks)j`0(k
0s)

+ (`, k $ `0, k0), (4.26)

and the third (P 2
shot) term

Z

k̂,k̂0
L`(k̂ · n̂) L`0(k̂

0 · n̂)

Z

s

QS(s)e�i(k�k0)·s

= (�i)`�`
0
Z

4⇡s2ds
X

`00

 
` `0 `00

0 0 0

!2

QS`00(s)j`(ks)j`0(k
0s). (4.27)

Note that in the above derivations the disconnected covariance only depends on the
multipole moments of the window Q due to the redshift-space symmetry

Q`(s) = (2` + 1)

Z

ŝ

Q(s) L`(ŝ · n̂). (4.28)

As shown in (6.11) and (4.16), Q factors are really the 2-point functions of the W and S
windows, so their multipoles can be readily measured from a random catalog of a survey. Given
Q`(s) from the randoms and P`(k) from the data, we can numerically evaluate (4.25), (4.26)
and (4.27) before summing them up in (4.24) to obtain the disconnected covariance for power
spectrum multipoles. The only remaining di�culty lies in the numerical integrals involving
two spherical Bessel functions, to which we provide a novel solution in Sec. 4.3.
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Window Functions

In deriving the disconnected covariance we have assumed the flat-sky approximation.
However, many current and future surveys have wide sky coverages, making their window
functions fundamentally curved-sky entities. Furthermore, the redshift-space clustering
between two points depends on the LOS direction that varies with the positions of the pair
of points. To account for this, the Yamamoto estimator proposed by Ref. [279] measures the
multipoles of galaxy clustering with respect to the midpoint direction of the two galaxies.
An alternative estimator also suggested by Ref. [279] uses the position of one galaxy of the
pair as the reference direction, and can be measured with a suite of e�cient FFT-based
algorithms [104, 258, 41, 234, 247].

Fortunately, it is easy to adapt our formalism to account for the curved-sky e↵ects both
in the window function and the power spectrum. For modes smaller than the window scale,
our flat-sky equations remain a good approximation to capture their local power-window
coupling. The LOS dependence can be simply incorporated in our window functions, e.g.
in (4.28) by letting the fixed line-of-sight direction n̂ to depend on x and/or x+ s. Likewise,
we can use the model fit to the power spectrum multipoles measured with a LOS-dependent
estimator, to compute Covdisc.

We use nbodykit, which calls corrfunc [245], to measure the window functions via fast
pair counting. With a random catalog that describes the survey geometry and weights, we
count the weighted pair in bins of both separation s and the polar angle cosine µ, and then
normalize the counts by the shell volume. For example

QS(s, µ) ⇡
3
R
x,s W(x + s)S(s)

2⇡(s3
i
� s3

i�1)(µj � µj�1)
⇡ 3↵2

P
ab

n̄(xa)w(xa)2w(xb)2

2⇡(s3
i
� s3

i�1)(µj � µj�1)
. (4.29)

We take 441 logarithmic s bins ranging from 1 Mpc/h to 3.4 Gpc/h, and 100 µ bins from 0
to 1. The corrfunc package measures the midpoint polar cosine

µ =
ŝ · (x + s/2)

|x + s/2| . (4.30)

To relate the double integral to the pair summation, we have simply replaced
R
x n̄ with

↵
P

a
. Given the Q windows in s and µ bins, we then transform them into multipoles to

obtain an estimate of Q` with (4.28). All the odd order multipoles vanish because of the
choice of midpoint for measuring µ. With the same discretization trick, we can estimate the
normalization constants in (4.7) by replacing the integral with a summation over a random
catalog, e.g.

W0 ⇡ ↵
X

a

n̄(xa)w(xa)
2. (4.31)

We have seen in (6.9) that the expectation of the estimated power spectrum is subject
to a convolution with the window, and the unconvolved and convolved power spectra di↵er
significantly on large scales. For accurate Covdisc, rather than directly using the estimated P̂ ,



CHAPTER 4. DISCONNECTED COVARIANCE OF 2-POINT FUNCTIONS IN
LARGE-SCALE STRUCTURE 59

we should use an unconvolved model fit. To achieve this we convolve the power spectrum
model from [105] with the mask [277] before fitting it to the data (more detailed description
in Sec. 4.5 and illustration in Fig. 4.2). We then use the model before convolution to compute
Covdisc.

Corollary Covariances

We generalize our formalism below for more applications.

Cross Correlation and Cross Covariance

In Sec. 4.2 and 4.2 we have considered the simplest case for 2-point function disconnected
covariance: the covariance of auto correlations of a single tracer. In more general applications,
one may need the cross covariance between di↵erent sets of auto and cross correlations
between di↵erent tracers. For the most general case, we can derive the equations for cross
covariance of cross 3D power spectra. The derivation parallels that of Sec. 4.2 and preserves
the Hermitian symmetry. The equations can be easily generalized to all other cases including
multipoles and those in the rest of this subsections.

Angular Power

We can generalize the formalism developed in Sec 4.2 to the angular power spectrum
C(`) which are generally used to measure the correlations in observables from CMB, weak
gravitational lensing as well as the clustering of photometric samples of galaxies. Compared
to the multipole case, the angular window e↵ect is captured by some Q windows similar
to (4.28) but defined on the sky, and the evaluation involves double Bessel integral but with
the zeroth-order Bessel function J0 in place of the spherical Bessel functions. The curved
sky window can be incorporated simply by using the Q window measured from the random
catalog as a function of angular separation on the sky similar to Sec. 4.2. Our method
can be a fast alternative to the calculation on the sphere as is generally done for the CMB
measurements [207].

Projected Power and Projected Cross Multipoles

When cross correlating a field with 3-dimensional information, such as spectroscopic
galaxies, with a field with poor radial information, e.g. weak lensing shear or convergence,
one can estimate their correlation projected at fixed transverse separation using the radial
information of the 3D field. This is commonly done in galaxy-shear cross correlations
measurements using spectroscopic galaxies for which covariance was derived by [242]. Because
a projected power spectrum is indeed the transverse part of its 3D counterpart, and the
transverse power can be approximated by a series of multipoles, we can adapt the multipole
formalism to work for this cross covariance.
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Correlation Functions

In configuration space, the Landy-Szalay estimator [156] is typically employed to measure
the correlation function, and it can be written in our notation as

⇠̂(s) =
1

QW (s)

Z

x

�W (x)�W (x + s), (4.32)

where we have defined the normalization factor analogous to (4.16)

QW (s) ⌘
Z

x

W (x + s)W (x). (4.33)

(4.32) is free from the window e↵ect, that can be shown easily in flat sky by taking its
expectation

⌦
⇠̂(s)

↵
=

1

QW (s)

Z

x

W (x)W (x + s)
⌦
�(x)�(x + s)

↵

⌘ ⇠(s)

QW (s)

Z

x

W (x)W (x + s) = ⇠(s), (4.34)

where we have used the translation invariance of the correlation function ⇠(s) ⌘
⌦
�(x)�(x+s)

↵
.

The 3D correlation function and power spectrum are simply related by the Fourier
transform, again assuming translation invariance. However, the relation between their
estimators is more complex due to the di↵erence in normalizations:

⇠(s) =

Z

k

P (k)eik·s,

⇠̂(s) =
W0

QW (s)

Z

k

P̂ (k)eik·s. (4.35)

Here W0 is equal to the value of QW (s = 0) according to (4.14) and (4.33). So the covariance
of the two 3D estimators are related by

Cov
⇥
⇠̂(s), ⇠̂(s0)

⇤
=

W2
0

QW (s)QW (s0)

Z

k,k0
Cov

⇥
P̂ (k), P̂ (k0)

⇤
eik·seik

0·s0 . (4.36)

We are more interested in the correlation function covariances cast in the multipole,
angular, and projected form.

Wedges

In this chapter and especially Sec. 4.2, we focus on using the multipole moments to label
the angular variation in 2-point functions. Another popular choice is the so-called wedges,
which are averages of the 2-point functions within bins of polar angle cosine, µi, between
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bin edges (µ
i� 1

2

, µ
i+ 1

2

) for i = 1, . . . , Nwedge. The power spectrum wedges are related to the
multipoles by

P̂ (k, µi) =

Z
µ
i+1

2

µ
i� 1

2

dµ

µ
i+ 1

2

� µ
i� 1

2

h`maxX

`=0

P̂`(k) L`(µ)
i

=
`maxX

`=0

P̂`(k)L̄`(µi), (4.37)

where we have truncated the multipoles at `max and denoted the mean Legendre polynomial
across a wedge by L̄

L̄`(µi) ⌘
Z

µ
i+1

2

µ
i� 1

2

L`(µ) dµ

µ
i+ 1

2

� µ
i� 1

2

. (4.38)

Therefore

Covdisc
⇥
P̂ (k, µi), P̂ (k0, µj)

⇤
=

`maxX

`=0

`maxX

`0=0

Covdisc
⇥
P̂`(k), P̂`0(k

0)
⇤
L̄`(µi)L̄`0(µj). (4.39)

The same relation applies to the correlation functions5 by replacing P ! ⇠, k ! s.

Binning

All previous results in this section assume the power spectrum covariance as a function of
continuous k and k0. When numerically evaluating the equations we then discretize k and s
on logarithmic grids (more details in Sec. 4.3). In practice, the estimated power spectra are
averaged in bins ki separated by bin edges (k

i� 1

2

, k
i+ 1

2

) for i = 1, . . . , Nbin. In accordance, we
integrate the analytic prediction within spherical k-shells

Cov
⇥
P̂ (ki), P̂ (kj)

⇤
=

Z
k
i+1

2

k
i� 1

2

4⇡k2dk

Vki

Z
k
j+1

2

k
j� 1

2

4⇡k02dk0

Vkj

Cov
⇥
P̂ (k), P̂ (k0)

⇤
, (4.40)

where Vki = 4⇡(k3
i+ 1

2

� k3
i� 1

2

)/3 is the volume of the ith k-shell. The numerical integration

is achieved by interpolating the covariance function along each k at a time with B-splines
before integrating the piecewise polynomials.6

In the case of correlation functions, because their denominators are scale dependent, we
need to average separately the numerator and denominator in s bins before dividing them.
The binning integrals are similar to the above equation.
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Figure 4.1: An example 27⇥ 27 Hankel matrix H0, for the J0 Hankel transform. We visualize it in
the left panel, and demonstrate in the right panel that the squared Hankel matrix is an identity
matrix. As a circulant matrix, a Hankel matrix carries out the convolution operation in the FFTLog
algorithm (Eq. 4.43 and 4.45). It is also the building block of the double Bessel quadrature method
(Eq. 4.41 and 4.50).

4.3 Double Bessel Quadrature

Eq. (4.25), (4.26), and (4.27) all have integrals involving two spherical Bessel functions.
More generally, we are interested in evaluating the following integral with Bessel functions

G(y, y0) =

Z 1

0

xdx F (x)J⌫(xy)J⌫0(xy0), (4.41)

which proves useful also for the applications in Sec.4.2. This applies to (4.25), (4.26),
and (4.27) given

jn(t) =

r
⇡

2t
J
n+ 1

2

(t). (4.42)

Usual quadrature methods struggle to converge for (4.41) because the Bessel kernels are
highly oscillatory and damp slowly. Recent solutions proposed by Ref. [21, 95] generalized
the FFTLog algorithm [264, 101] to perform the integral transform from F (x) to G(y, y0) for
each fixed ratio y0/y.

5Note that the wedges are di↵erent from the µ bins used for estimating ⇠̂`(s). While one can directly
estimate P̂`(k), due to its normalization ⇠̂`(s) is usually converted from ⇠̂(s, µi) which is estimated in very fine
µ bins. Here the width of the wedges is assumed to be much wider than the width used for such conversion.

6We package and release this simple and general-purpose utility at https://github.com/eelregit/
avgem.

https://github.com/eelregit/avgem
https://github.com/eelregit/avgem
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Here we present a fast and simple algorithm that potentially suits the covariance calculation
better than that in Ref. [21, 95]. First let’s look at a simpler integral with only one Bessel
function

B(x) =

Z 1

0

ydy A(y)J⌫(xy), (4.43)

known as the Hankel transform. We can perform integral transforms like this one using the
mcfit [165] package, which implements and generalizes the FFTLog algorithm. This method
exploits the convolution theorem in terms of ln x and ln y. It approximates A(eln y) with
truncated Fourier series over one period of the periodic approximant, and Fourier-transforms
the kernel J⌫(elnx+ln y) analytically. Because of the exact treatment of the kernel function,
this algorithm is ideal for oscillatory kernels like the Bessel functions.

Specifically, we compute an equivalent form of (4.43)

xB(x) =

Z 1

0

dy

y

⇥
yA(y)

⇤⇥
xyJ⌫(xy)

⇤
, (4.44)

with the input, output, and kernel functions rescaled by corresponding linear powers: A(y)!
yA(y), B(x) ! xB(x), and J⌫(t) ! tJ⌫(t). mcfit evaluates (4.44) by discretizing x and
y to grids of equal logarithmic intervals � ⌘ � ln x = � ln y, on which the linear transform
essentially takes the following matrix form

Bi = x�1
i

NX

j=1

H⌫,ijyjAj, (4.45)

where the H⌫ is an N ⇥N real matrix carrying out the convolution, and N is the number
of grid points. H⌫ is a Hankel circulant matrix, i.e. H⌫,ij = hi+j with h being periodic
(hi+N = hi). The explicit form of h can be found in Eq.(B26) of Ref. [101]. As an example
we show in Fig. 4.1 a 27 ⇥ 27 H0 matrix with � = 0.34. The above rescaling in (4.44) is
important because it (together with the FFTLog low-ringing condition when N is even) makes
H⌫ a unitary matrix and involutory (being its own inverse), leading to the most numerically
stable results as demonstrated in the right panel of Fig. 4.1 by the nearly perfect agreement
between H2

0 and the identity matrix to machine precision.
Notice that formally (4.45) can be obtained by applying the following replacement rule

on (4.44) or (4.43):

xyJ⌫(xy) �! H⌫,ij

�
,

Z
dy

y
�! �

X

j

. (4.46)

While we emphasize that this rule is not rigorously true, i.e. H⌫,ij 6/ J⌫(xiyj), coincidentally,
our final recipe for the double Bessel integral (4.41) also follows from this rule.

Now we are ready to derive our double Bessel quadrature algorithm. Consider the following
integral that further integrates (4.41) with some arbitrary auxiliary functions A(y) and A0(y0)
over y and y0

I =

Z 1

0

ydy

Z 1

0

y0dy0 A(y)G(y, y0)A0(y0). (4.47)
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We can change the order of integration to first integrate out y and y0 to get B(x) and B0(x),
respectively, as shown from (4.43) to (4.45), so that

I =

Z 1

0

xdx F (x)B(x)B0(x) ⇡ �
X

i

Fi

X

j

H⌫,ijyjAj

X

j0

H⌫0,ij0yj0A
0
j0 . (4.48)

Alternatively, a direct discretization of (4.47) reads

I ⇡ �2
X

jj0

y2
j
AjGj,j0y

2
j0A

0
j0 . (4.49)

Since A and A0 are arbitrary, by comparing the above two equations we derive the formula
to compute G(y, y0) on the logarithmic grid

Gj,j0 =
1

�

X

i

y�1
j

H⌫,ijFiH⌫0,ij0y
�1
j0 . (4.50)

This result can also be obtained, formally, by applying the same replacement rule (4.46)
to (4.41).

Evaluation of (4.50) is simple and fast, as the formula can be optimized to O(N2 log N)
time complexity: constructing the H⌫ matrix requires one Fast Fourier Transform per ⌫;
the summation over i is a convolution therefore can be done e�ciently with FFT by calling
mcfit; and our algorithm does not require any additional special function implementations
as do Ref. [21, 95].

Furthermore, (4.49) implies that Gj,j0 approximates G(y, y0) as average values in the
logarithmic intervals. Generally G(y, y0) peaks sharply on the y = y0 diagonal and almost
vanishes elsewhere, with roughly constant peak width. Our algorithm does not intend to
compute the exact value of G at point (y, y0) but a smoothed version over the (yj, yj0) grid.
This turns out to be beneficial as we are only interested in its coarse-grained values (see
Sec. 4.2) rather than the finer structure, and (4.50) allows us to perform the numerical
integration without scanning a very fine grid. On the other hand, the method in Ref. [21, 95]
evaluates G(y, y0) itself, thus need to sample densely around the peak width to arrive at the
same coarse-grained result. And because of the logarithmic grid and constant peak width,
the sampling rate is determined by the large y end, and resolving the peak at large y leads to
waste of computation at small y.

4.4 Simulations

To verify our analytic covariances, we compare them to the empirical results measured
from Nmock = 1000 realizations of the Multidark-Patchy galaxy mocks [146], produced for
BOSS data release 12 (DR12) [15]. The Patchy algorithm are based on the augmented
Lagrangian perturbation theory and a stochastic halo biasing scheme calibrated on high-
resolution simulations. It then uses halo occupation distribution to construct catalogs to
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Figure 4.2: Power spectrum multipoles, of 1000 Patchy mocks for NGC of BOSS DR12 in 0.5 <

z < 0.75. The points with errobars show the sample mean and variance of the power spectrum
multipoles of the galaxy mocks. The “convolved” curve shows the best-fit RSD model from [105],
including the convolution with the appropriate window function [277] to accounts for mixing of
power by the window. We also show the “unconvolved” model prior to the convolution. We will
use this “unconvolved” model along with the window factors Q shown in Fig. 4.3 to compute the
covariance matrices.

match the observed galaxy clustering and its redshift evolution. In this chapter we use the
North Galactic Cap (NGC) region covering 6800 deg2 of the sky, and two redshift ranges:
the first (0.2 < z < 0.5) and the third (0.5 < z < 0.75) redshift bins of BOSS DR12. The
cosmology assumed by the Patchy mocks is ⌦m = 0.307, ⌦b = 0.048, h = 0.678, �8 = 0.829.

We estimate the redshift-space power spectrum multipoles with the endpoint Yamamoto
estimator [279] in the third redshift bin. We employ the FFT-accelerated algorithm [104]
enabled by multipole decomposition [248], implemented in the large-scale structure toolkit
nbodykit [106]. We use the standard Landy-Szalay [156, 242] estimator to estimate the
correlation functions in the first redshift bin. Correlation function multipoles are transformed
from the correlation function measured in 50 µ bins and the projected correlation function
is computed using the ratio of pair counts integrated over the line of sight. Note that our
projected correlation function estimator is dimensionless and di↵erent from the projected
correlation function which has dimensions of length (see e.g. [242] for correlation function
with dimensions of length).

For a pair of 2-point observables, denoted by O and O0, the unbiased sample covariance
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Figure 4.3: Window function multipoles, of 1000 Patchy mocks for NGC of BOSS DR12 in 0.5 <

z < 0.75. The Q window functions are directly related to the covariance, defined in (6.11), (4.16)
and (4.28). We normalize the window multipoles by their zero-lag monopoles to compare their
shapes. As the covariance is ⇠ (P + Pshot)2, three Q factors in di↵erent colors describe the windows
for di↵erent pieces: QW for P

2, Q⇥ for P ⇥ Pshot, and QS for P
2
shot. Their normalized monopoles

start from 1 on small scales and vanish on large scales beyond the size of the window. The higher
order multipoles are only non-vanishing around the window scale and capture the anisotropy of
the window. Combining the unconvolved P` in Fig. 4.2 and the Q` here, we can compute the
disconnected covariance of P̂` following Sec. 4.2.

matrix from the Nmock realizations is

dCov(O, O0) =
1

Nmock � 1

NmockX

r=1

(Ôr � Ō)(Ô0
r
� Ō0), (4.51)

where Ō (Ō0) is the sample mean of Ôr (Ô0
r
) for r over all Nmock realizations.

For all the test cases in this chapter, we use the following weight function

w = wFKP ⇥ wveto, (4.52)

in which wFKP ⌘ 1/(1 + n̄ ⇥ 104 Mpc3/h3), and the veto mask excludes certain types of
unobservable regions, e.g. near bright stars. To estimate the power spectrum, we use synthetic
random catalogs that have 50 times as many points as the mock galaxies, i.e. ↵ = 0.02. For
correlation functions we use 5 times as many randoms, i.e. ↵ = 0.2. And we estimate the
window functions using pair counting with ↵ = 0.2.
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4.5 Results

In this section, we validate our analytic disconnected covariance against the sample
covariance measured from the mock simulations. We compare them in two test cases: the
power spectrum multipole covariance, and the joint covariance of projected correlation
function and correlation function multipoles.

Power Spectrum Multipole Covariance Matrix

We compute the analytic disconnected covariance of P`(k) using the equations in Sec. 4.2,
that requires the unconvolved P` and the window function multipoles Q` as inputs. To obtain
the former, we measure the sample mean and variance of the power spectrum multipoles
from the 1000 Patchy mocks, shown in Fig. 4.2. With all model parameters initialized to
their fiducial values, we use the RSD model from [105] to compute a diagonal covariance
matrix [97] and fit this model to the mock sample mean over the k range from 0.02 h/Mpc to
0.4 h/Mpc. We obtain the maximum a posteriori (MAP) estimate of the model parameters
using the L-BFGS algorithm, and subsequently the diagonal covariance is re-computed using
the best-fit model. We then repeat the fitting process until convergence is reached. This
analysis is performed with the pyrsd package. To account for the window convolution in (6.9),
we convolve the model with the appropriate window [277] before fitting it to the mocks. We
show both the unconvolved and convolved model curves in Fig. 4.2.

To measure the window functions represented by their multipole moments, as defined
in (6.11), (4.16), and (4.28), we use the random catalog of Patchy mocks, and follow the
procedure described in Sec. 4.2. As shown from (4.13) to (6.12), because the covariance has
a quadratic form in power spectrum and its shot noise, i.e. ⇠ (P + Pshot)2, the three di↵erent
window factors describe the covariance shape of di↵erent pieces: QW for P 2, Q⇥ for P ⇥Pshot,
and QS for P 2

shot. They capture the same survey geometry but di↵er in the weights, and
therefore have similar shapes and di↵erent normalizations. Our analytic Covdisc is derived
in the flat-sky limit, so only depends on the even order Q`’s. We find that our results have
converged when truncating the multipoles at `max = 10. In Fig. 4.3, we show the shapes
of the first 4 Q`’s after normalizing them by their monopoles at zero lag. Starting from
the small scales, the window monopoles are . 1 while the other multipoles are negligible,
reflecting the fact that the windows are homogeneous and isotropic in the small scale limit.
Moving to larger scales, the monopoles start to decrease, whereas the higher order multipoles
rise due to the anisotropy of the window on those scales. And finally all the multipoles vanish
beyond the size of the window.

With the unconvolved P` the Q`, we can evaluate the analytic disconnected covariance
of P̂` using the equations in Sec. 4.2. The equations involve double Bessel integrals that we
compute using the quadrature method introduced in Sec. 4.3. And finally we average the
covariance function in linear k bins of width 0.005 h/Mpc to obtain the covariance matrix, as
described in Sec. 4.2. The computation takes 2 minutes on a single CPU.
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In Fig. 4.4, we compare our analytic covariance for power spectrum multipoles, P0, P2, P4,
to the mock sample covariance computed using eq. (4.51). Out of the six combinations, we
focus on the auto covariance of the P0, P2, P4, and the cross covariance between P0 and
P2, in di↵erent panels. All panels are normalized by P0 (without shot noise), to present the
relative error with respect to the monopole. Because the covariance matrices peak sharply
near the k-k0 diagonal where the disconnected piece dominates, and are smooth otherwise (as
better illustrated by Fig. 4.5), for each 2D matrix we plot a few slices across fixed k near the
diagonal (|k0 � k| . 0.0025 h/Mpc).

Recall that our analytic covariance matrix only has the disconnected contribution, whereas
the mock result also contains the connected piece. By subtracting the analytic matrices from
the mock ones, we can obtain an estimate of the connected covariance matrices:

dCov
conn

= dCov � Covdisc . (4.53)

We also show the di↵erences in mock and analytic covariance in Fig. 4.4 and find them
smooth as expected, implying that the analytic result has accounted for most, if not all, of
the disconnected covariance of the mocks.

Having shown the amplitude and shape of the covariance in a few slices near the diagonal,
in Fig. 4.5 we present the shape of the full covariance matrix by normalizing it as the linear
correlation coe�cients given by

Corr(O, O0) =
Cov(O, O0)p

Cov(O, O) Cov(O0, O0)
, (4.54)

where Cov 2 {Covdisc, dCov} for analytic and mock covariances, respectively. The visualized
matrix has 3 ⇥ 3 blocks, with the horizontal and vertical blocks corresponding to O 2
{P0(k), P2(k), P4(k)} and O0 2 {P0(k0), P2(k0), P4(k0)}, respectively. Because the covariance
is symmetric, we combine the analytic and mock covariances in the top panel, with the upper
triangular part showing the analytic covariance and the lower triangular part showing the
mock covariance. The diagonals of corresponding blocks in the upper and lower triangles
have very similar shapes and scale dependence. We again observe that far from the block
diagonals the analytic blocks have vanishing elements, while the mock blocks vary smoothly
with some noise.

To visualize the full connected covariance, we normalize the (4.53) by the diagonal of the
analytic disconnected covariance

Corrconn(O, O0) =
dCov

conn
(O, O0)q

Covdisc(O, O) Covdisc(O0, O0)
, (4.55)

and show it in the lower panel of Fig. 4.5. Note that it is not normalized properly as a
correlation matrix, but correspond to the ratio of connected to disconnected covariance. As
was shown in Fig. 4.4, this residual component is smooth, suggesting that the disconnected
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part has been cleanly removed. There are some notable remaining low k diagonal features for
` = 4 and ` = 2, and they are likely due to the bias in mock P̂` caused by the sparse angular
sampling of the Fourier grid.

Note that the connected covariance estimated with (4.53) also includes possible error in

our analytic Covdisc as well as the noise in the mock sample covariance. From dCov
conn

we can
extract the connected part alone, by exploiting the fact that it is smooth and has a low-rank
approximation [185, 111]. We perform principal component analysis on Corrconn in (4.55),
and find that only the first 4 principal components have eigenvectors with broadband features,
while the rest are consistent with noise. Therefore we can replace Corrconn with this rank
4 substitute, and rescale it by the denominator in (4.55) to obtain a smooth estimate of
dCov

conn
, which we denote by dCov

conn,sm
. Now if we subtract that from the mock sample

covariance, the residual is an estimate of its disconnected covariance from the mocks

dCov
disc

= dCov �dCov
conn,sm

. (4.56)

This mock dCov
disc

can be compared directly to the analytic Covdisc, which we present in
Fig. 4.6 as slices across the correlation matrix. The slices are arranged in the same way as in
Fig. 4.4. Also shown is the di↵erence between the analytic and mock results, with everything
normalized by the analytic Covdisc as in (4.55) so that the comparison is fair. This residual
contains possible flaw in the analytic Covdisc and the error on mock sample covariance. We
can quantify the level of the latter with the bootstrapping method, and find it comparable to
the residual. Therefore our analytic disconnected covariance is accurate to the extent of the
errors on the sample covariance from 1000 mocks.

Before moving on, we examine the dependence of analytic Covdisc on the Q windows. In
this chapter we have been modeling and measuring three distinct covariance windows, namely
QW , Q⇥, and QS . Given their similarity in shapes (see Fig. 4.3), one possible simplification
is to approximate all Q windows with the same shape. In practice this can be achieved
in (4.13) by adding the shot noise to the power spectrum and multiplying the squared sum
by a single Q window, for which we use QW . We compare this simplified treatment with our
previous result in Fig. 4.7. Since all results are analytic, the unbinned curves are shown for
better visualization. We find that the approximation leads to 20% error in the disconnected
covariance. And this error depends on the shot noise magnitude since we have changed
the shot noise window, and is larger on small scales where shot noise is more important.
Therefore, it is necessary to use three separate Q windows for accurate evaluation of Covdisc,
especially when shot noise is significant.
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Figure 4.4: Slices of covariance matrices of power spectrum multipoles, of bin width 0.005h/Mpc,
normalized by the monopole. Di↵erent panels shows the auto and cross covariance matrices of
di↵erent multipoles, as labeled next to the vertical axes. Every spike corresponds to a slice of
covariance matrix near the diagonal (k0 ⇡ k) at fixed k (marked by the position of the peak). The
di↵erence (dashed orange) between the mock (dotted black) and analytic (solid blue) covariance
is consistent with a smooth component, as expected from the connected covariance in the mocks.
This demonstrates that the analytic result has accounted for most, if not all, of the disconnected
covariance of the mocks. For comparison we also show the diagonal limit of the analytic covariances
from (4.20) in red dots, that ignores the inhomogeneity and anisotropy of the survey window and
are only nonzero at the peak of each spike with very di↵erent values.
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Figure 4.5: Correlation matrix of the power spectrum multipoles. In the 3⇥ 3 blocks, from bottom
to top and from left to right, we visualize the auto and cross correlations of P̂0, P̂2, P̂4. The top
panel compares the analytic result in its upper triangular block with the mocks covariance in the
lower triangular block. The bottom panel shows the di↵erence between the mock and analytic
covariance matrices, normalized by the diagonal of the latter. As was shown in Fig. 4.4, this residual
component is smooth, and captures the connected part of the covariance matrix. There are some
remaining low k diagonal features that are more prominent for larger `, and are likely due to the
bias in mock P̂` for ` > 0 caused by the sparse angular sampling of the Fourier grid.
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Figure 4.6: Slices of disconnected correlation matrix of power spectrum multipoles. Every spike
corresponds to a slice of covariance matrix near the diagonal (k0 ⇡ k) at fixed k (marked by the
position of the peak). For fair comparison, all covariance matrices are normalized by the diagonal
of the analytic one. The mock disconnected covariance is obtained by subtracting the connected
part, approximated with the first 4 principal components of the lower panel of Fig. 4.5, from its
full covariance. Its di↵erence from the analytic result reflects latter’s accuracy and this residual is
comparable to the bootstrapping errors on the mock sample covariance (grey band around zero).
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Figure 4.7: Slices of analytic disconnected correlation matrix of power spectrum multipoles, using
di↵erent Q functions. The solid blue lines show the same but unbinned result as in previous figures,
with which we normalize all the covariance in this figure for fair comparison. It was computed with
the window functions QW , Q⇥, and QS , which are shown in Fig. 4.3. To illustrate the necessity
of modeling three separate windows, in dotted black line we show an approximation computed by
assigning the same shape to all Q’s: Q⇥  QW and QS  QW . The dashed orange lines give
the di↵erence between the two approaches. Although three Q functions have similar shapes, their
di↵erences can leads to 20% di↵erence in the disconnected covariance. This di↵erence depends on
the shot noise magnitude, and is larger on small scales where shot noise is more important.
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Signal-to-Noise Ratio

Our analytic disconnected covariance Covdisc captures the correlation between neighboring
k bins and multipoles due to the window e↵ect. In Sec. 4.2 we have derived its diagonal
limit Covdiag, that only captures the survey size but neglect its inhomogeneity and anisotropy.
Fig. 4.4 compares the two and shows they can have very di↵erent shapes and values. However
such comparison is sensitive to binning: coarser bins would suppress the o↵-diagonal elements
of Covdisc and reduce the di↵erence between Covdisc and Covdiag on their diagonals. Here we
compare their signal-to-noise ratios, which are independent of binning, thereby study more
carefully the impact of the survey window on the information content.

The signal-to-noise ratio of each power spectrum multipole is defined as

⇣ S

N

⌘2
disc

=
X

ki,kj<kmax

P`(ki) Covdisc
⇥
P̂ (ki), P̂ (kj)

⇤�1
P`(kj), (4.57)

as a function of the maximum wavenumber kmax. The covariance is limited to the disconnected
part to compare Covdisc and Covdiag, and P` are the convolved power spectrum multipoles.
Fig. 4.8 shows the results for P0 and P2. We find that with the diagonal covariance S/N is
underestimated. The di↵erence is more significant on large scales: & 10% below 0.1 h/Mpc,
and ⇡ 5% even between 0.2 h/Mpc and 0.4 h/Mpc. This trend is expected because the
window a↵ect mostly the largest scales in the survey, and is roughly homogeneous and
isotropic on small scales as shown in Fig. 4.3. We also show that it further biases S/N on
small scales if one ignores the di↵erences among the three e↵ective volumes in (4.18) and
uses only VW , due to incorrect normalizations of the shot noise terms.

We warn however that this figure cannot be used for a quantitative estimate of S/N of
cosmological parameters, and a more complete analysis that marginalizes over all nuisance
parameters, and includes also the connected covariance, is needed. This analysis will be
presented in a future work.
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Figure 4.8: The signal-to-noise ratio of the power spectrum monopole and quadrupole with the
disconnected covariance. We compare the signal-to-noise ratios using our analytic Covdisc and its
diagonal limit (Sec. 4.2). The latter captures the window size with three e↵ective volumes in (4.18),
but ignores the shape of the window, resulting in very di↵erent covariance matrices (see Fig. 4.4).
It underestimates the signal-to-noise ratio, and the di↵erence is significant on large scales. This
trend is expected because the window a↵ects mostly the largest scales in the survey, and is roughly
homogeneous and isotropic on small scales (see Fig. 4.3). Also shown is the approximation that
uses only VW for all three e↵ective volumes, which causes large bias on small scales where the shot
noise terms are incorrectly normalized.

Projected-Multipole Correlation Function Covariance Matrix

Using the equations derived in Sec. 4.2, we can transform the power spectrum covariance
to that of the correlation functions. Here we test this formalism on the joint covariance of the
projected correlation function ⇠? and correlation function multipoles ⇠`. Note that here ⇠? is
dimensionless unlike the wp estimator which is more commonly used and has the dimension
of length. While it’s possible to predict the covariance of wp with our formalism, we choose
⇠? as the test case as it is simpler to compute (see [242] for derivation of covariance for wp).
⇠? and wp have similar signals and correlation matrices, as ⇠? is e↵ectively wp with one very
large bin of LOS separation, although the amplitudes of the two estimators are di↵erent due
to the factor of length in wp. However, the correlation matrices for two estimators can be
di↵erent for very large LOS integration: the wp estimator gets larger contribution from noisier
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Figure 4.9: The diagonal of the joint covariance matrices of the projected correlation function and
correlation function multipoles. We verify that the small-scale deviations in the ⇠` covariances are
due to the connected covariance.

bins from large LOS separation, while in ⇠̂? those bins are damped by the LOS window.
First, we use the same power spectrum model P` and window function multipoles Q` as

in Sec. 4.5, to compute the auto covariance of the projected power spectrum P?, and the
cross covariance between P? and P`’s. Together with the auto covariance of P`’s obtained
in Sec. 4.5, we have the full joint covariance of P?(k) and P`(k)’s. Note that this is before
the binning operation and k is sampled on a logarithmic grid. Then we can perform Hankel
transforms on this covariance twice with mcfit to replace k with s, and k0 with s0. The result
is almost the correlation function covariance, except for the di↵erence in the normalization
factors arising from the P̂ and ⇠̂ estimators. We account for this normalization di↵erence,
before binning the covariance into matrices with s bins of width 4 Mpc/h. The whole process
takes less than 30 minutes on a single CPU, and is more than ten times as long as the
computation for the power spectrum. Most of the time is spent on the ⇠? cross ⇠` blocks
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where we approximate a Dirac delta function with multipole expansion truncated at `max = 16,
much higher than the power spectrum case. The computation can be significantly faster
when the cross covariance is not needed.

Again we compare the analytic correlation function Covdisc to the sample covariance
from mocks. Fig. 4.9 shows this comparison on the s = s0 diagonal of the auto covariance
matrices. We find the analytic Covdisc reproduce well the scale dependences. On small scales
. 50 Mpc/h, the mock covariances of ⇠0 and ⇠2 are larger than the analytic ones, and we
find these excesses are due to the connected covariance by transforming the power spectrum
dCov

conn,sm
from Sec. 4.5. Apart from that, the analytic and mock covariance still di↵er by an

o↵set for ⇠? and a 15% deficit near 50 Mpc/h for ⇠2. This is probably due to the fact that
the analytic Covdisc is based on the best-fit P` to the mock power spectrum, that in general
can be somewhat di↵erent if fitted against the correlation function measurement.

We also compare the shapes of the analytic and mock covariance by showing their
correlation matrices in Fig. 4.10. The top panel shows the two have very similar shapes, and
their di↵erence (normalized by the diagonal of the analytic Covdisc similar to Fig. 4.5) is
. 10% except in the regions noted above.
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Figure 4.10: Correlation matrix of of the projected correlation function and correlation function
multipoles. In the 3⇥ 3 blocks, from bottom to top and from left to right, we visualize the auto
and cross correlations of ⇠̂?, ⇠̂0, ⇠̂2. The upper figure compares the analytic result in its upper left
corner with the mocks in the lower right corner. And the lower figure shows the di↵erence between
the mock and analytic covariance matrices, normalized by the diagonal of the latter.
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4.6 Discussion

We presented an analytic method to compute the disconnected part of the covariance
matrix of 2-point functions in large-scale structure studies, accounting for the survey window
e↵ect. This method works for both power spectrum (Sec. 4.2) and correlation function
(Sec. 4.2), and applies to the covariances for various probes including the multipoles (Sec. 4.2)
and the wedges (Sec. 4.2) of 3D clustering, the angular and the projected statistics of
clustering and lensing, as well as their cross covariances.

We verify our analytic covariance against the covariance from 1000 galaxy mock simulations
for BOSS DR12. We compare the analytic and mock covariance matrices on power spectrum
multipoles, and demonstrate that we obtain an excellent agreement without the sampling
noise associated with numerical covariance matrices. As a consequence, our method does not
require various corrections and inflated errors that have been developed for this purpose [112,
238].

Another advantage of our method is that its predictions use the best-fit power spectrum
model to the data, and does not assume a fiducial model that may not fit the data well. The
method is thus best viewed as part of a full data analysis pipeline, where we determine both
the power spectrum and the covariance matrix within the same (iterative) procedure. We
also tested the joint covariance matrices of the projected correlation function and correlation
function multipoles, and find the accuracy of the analytic prediction is satisfactory, given that
our model is fitted to the power spectrum instead of the correlation function. The analytic
computation is e�cient and costs negligible CPU time compared to the mocks.

In contrast to previous work [97] our method includes the window e↵ect on the covariance.
This commonly adopted approximation to the disconnected covariance only captures the
size of the survey window but ignores its shape (inhomogeneity and anisotropy), resulting
in a diagonal power spectrum covariance matrix. We show the proper diagonal limit arises
as the homogeneous and isotropic limit of our analytic covariance, and it generalizes the
usual expression by accounting for the inhomogeneous number density. We show that
such a diagonal covariance underestimates the signal-to-noise ratio compared to our analytic
covariance. Other previous works modeled the window e↵ect to di↵erent extents. In Ref. [122],
the authors accounted for the window function in the diagonal elements of the power spectrum
covariance matrix in the flat-sky limit, by using FFT and pair summation over Fourier modes,
but they needed an ansatz to approximate the o↵-diagonal elements that again ignored
the window. Ref. [42] presented an analytic calculation of the disconnected covariance of
the galaxy power spectrum multipoles with variable LOS, under some approximations that
simplify the coupling between the power and the window. Our formalism assumes flat sky and
similar simplified power-window coupling, but uses the curved-sky window to account for the
spherical geometry. Compared to our method, the equations in ref. [42] are more complicated
and need Monte-Carlo integration to evaluate. Ref. [242] also derived the expression for the
covariance and cross covariance for 3D clustering and projected correlation functions, but
assumed uniform window when computing the covariance matrices. Our method generalizes
the disconnected covariance for arbitrary windows which are normally encountered in the
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large-scale structure surveys.
Being able to compute the accurate disconnected covariance analytically opens the

possibility of calibrating the connected part using only small-volume mocks or internal
covariance estimators from the data, thereby substantially reduces the computational cost
required for estimating the full covariance matrices. We will address this connected part of
covariance matrix in the future work. Having the complete noiseless covariance will allow for
the optimal analyses of the 2-point functions from the large-scale structure data.
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Chapter 5

Variational Inference with L2
optimization

Standard Variational Inference (VI) optimizes the expectation lower bound objective
(ELBO). In higher dimensions it must be evaluated using stochastic integration of KL
divergence, which has large sampling noise. In this chapter, we propose instead to minimize
the expectation of L2 distance squared between the gradient of approximating log posterior
q✓(z) and the log of the joint distribution p(x, z). This expectation of L2 objective (EL2O)
reduces the sampling noise, and as a result has better convergence properties. We apply the
method to a full rank Gaussian ansatz for q✓(z), and further extend it to point-wise nonlinear
transformations. We present several examples, which show that EL2O converges faster than
ELBO based Stochastic Variational Inference such as ADVI. These include multi-variate
Gaussian of di↵erent dimensionality, as well as a scientific inverse problem example of a 13
dimensional galaxy clustering analysis with an expensive nonlinear forward model, in both
cases EL2O being orders of magnitude faster than ADVI and MCMC. EL2O residual also
provides an estimate of the error, and can be used as an initialization of MCMC.1

5.1 Introduction

A general statistical inference of an inverse problem is how to infer parameters from the
data: we have some data x = {xi}N

i=1 and some parameters the data depend on, z = {zj}M

j=1,
with a forward model m(z) relating the two. In Bayesian methodology we describe the
uncertainty quantification as a posterior of z given data x. We can define the posterior
p(z|x) as

p(z|x) =
p(x, z)

p(x)
, where p(x) =

Z
p(x, z)dz. (5.1)

1This chapter is taken from “Posterior inference unchained with EL2O,” Seljak U. and Yu B. (arXiv:
1901.04454).
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Here the joint is p(x, z) = p(x|z)p(z), where p(x|z) is the likelihood of the data, p(z) is
the prior of z and p(x) is the normalization or evidence. In general we have access to the
joint, i.e. the prior and the likelihood, but not the normalization p(x). In many inverse
problems the likelihood is often written as a Gaussian noise probability model between the
data and the forward model m(z), which maps from the parameters z to the data space x,
so p(x|z) = N(m(z)� x,�2), where �2 is a vector of noise variances �2

i
, which in general

can depend on data index i.
For many scientific applications the model m(z) is expensive to evaluate, and often we

do not have the gradient information with respect to all parameters z. For example, the
model could be the outcome of a complicated ODE or PDE numerical solution. Note that
the gradient of the log likelihood is easy to evaluate if we have access to the gradient of the
model, rz ln p(x|z) = �rzm(z) · [(m(z)� x)/�2], while the likelihood component of the
Hessian can often be well approximated with the Gauss-Newton method �rzrz ln p(x|z) ⇡
rzm(z)T��2rzm(z). To this one must also add the prior component of the Hessian
�rzrz ln p(z), which vanishes for flat priors.

The final result of a scientific inverse problem analysis is a posterior of individual pa-
rameters marginalized over all other parameters. The posteriors are best parametrized in
terms of 1D probability density distributions. Occasionally we also want to examine higher
dimensional posteriors, such as 2D posteriors, but we rarely go to higher dimensions due to
the di�culty of visualizing it. While we want to summarize the results in a series of 1D and
2D posterior plots, the actual problem can have a large number of dimensions M , many of
which we may not care about, but which are correlated with the ones we do care about. The
main di�culty in obtaining reliable lower dimensional posteriors lies in the marginalization
part: marginals, i.e., averaging over the probability distribution of other parameters, can
change the answer significantly relative to the answer for the unmarginalized posterior where
those parameters are assumed to be known.

A standard approach to posterior estimation is Monte Carlo Markov Chain (MCMC)
sampling, which gives samples in M -dimensional space, which can directly give 1D and 2D
marginal density estimates with a simple application of a kernel density estimation. However,
in many applications the cost of evaluating the likelihood can be very high, and one typically
requires 105 or more likelihood evaluations, making MCMC often too expensive to be feasible,
even in its more e�cient forms such as Hamiltonian Monte Carlo. Alternatives to MCMC are
approximate methods such as Maximum A Posteriori (MAP) estimation, where we search
for the peak posterior. This can be supplemented by the Laplace approximation, where we
evaluate the Hessian at MAP, to give a Gaussian approximation to the posterior. While
this is often su�cient, per central limit theorem argument, there are situations where the
posteriors are non-Gaussian. Moreover, the first order Taylor expansion at the peak may
be inaccurate, and can lead to unreasonable results, if for example the curvature (Hessian)
changes a lot from the peak to the nearby regions.

An alternative is KL divergence minimization based Variational Inference (VI) [275, 48].
In variational approaches we approximate the posterior p(z|x) with q✓(z) parametrized by
parameters ✓ we optimize for via KL divergence optimization. VI can be less expensive than
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MCMC, but can also give inaccurate results and must be used with care: for example, a
mean field VI can be inferior to the MAP + Laplace where Hessian is a full rank matrix,
since the 1D marginals will ignore the correlations between the parameters and lead to too
narrow posteriors. Increasing the expressivity of the posterior approximation q✓(z) in VI
makes it more accurate, but also increases the computational cost.

A recent development is stochastic VI such as Automatic Di↵erentiation Variational
Inference (ADVI) [153], which uses the evidence lower bound (ELBO) to optimize on
parameters ✓ using gradient optimization. As the authors acknowledge, full rank ADVI can
be prohibitively slow in high dimensions. As we show in this chapter, a property of ELBO
stochastic VI optimization is an inherent sampling noise present in KL divergence integration.
The integrand of a KL divergence can be positive or negative, such that the integral can be
zero, but for a finite number of sampling points there is integration noise scaling as number
of samples N�1/2

k
.

In this chapter we propose is to replace KL divergence optimization (ELBO) with
optimization of L2 norm between the logs of the two distributions evaluated at the same
sampling point: this is only zero if the two distributions are equal (up to normalization) at
each sample. If gradient is available we can minimize the L2 norm between the gradients
of the two distributions, in which case the normalization drops out. This L2 norm based
divergence is less noisy and we show it converges significantly faster than KL divergence
based standard VI. An interesting aspect of L2 norm is that it corresponds to the second
cumulant of the importance weighting cumulant expansion. However, we generalize this
concept to the common situation where gradients are available, in which case it becomes a
Fisher divergence [103].

From a practical perspective, our main motivation is to develop a method that starts close
to MAP + Laplace, and when that is the correct solution, it remains there, only updating it
if needed. We will show that stochastic VI such as ADVI [153] is noisy and often fails to
converge even when it starts from the correct solution, while our proposed EL2O approach
converges rapidly. EL2O also provides an estimate of the error. If large at the solution EL2O
can be used as a starting point for MCMC. For example, it can provide a mass matrix for
Hamiltonian MC [34], or a sampling proposal matrix for Metropolis-Hastings MC.

5.2 KL divergence versus Fisher divergence

We can define V (x, z) = ln q✓(z)� ln p(x, z) and use the importance sampling identity
to derive the following cumulant expansion [196]

ln p(x) = ln

Z
dzp(x, z) = ln

Z
dzq✓(z)

p(x, z)

q✓(z)
⌘ ln Eq

p(x, z)

q✓
=

ln Eq exp[�V (x, z)] = �Eq V (x, z) +
1

2
Eq[V (x, z)� Eq V (x, z)]2 + ... (5.2)
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where in the last expression we only explicitly wrote the first two cumulants. The first
cumulant

ELBO ⌘ �Eq V (x, z) = ln p(x, z)� ln q✓(z), (5.3)

is the evidence lower bound, which is optimized in the standard VI, and is the result of
the minimization of KL divergence between the approximate posterior q(z) and true, but
unknown, posterior p(z|x).

The second cumulant in equation 5.2 is an L2 norm between ln q✓(z) and ln p(x, z). This
can be optimized too, but depends on the first cumulant ELBO, which can be optimized
together with the parameters ✓,

EL2O = min
✓

Eq[(ln p(x, z)� ln q✓(z)� ELBO)2]. (5.4)

This loss has an L2 form. The proposal of this chapter is to replace the first cumulant ELBO
optimization with the second cumulant optimization.

Often however we also have available gradients rzi ln p(x, z). At each sample z this gives
an additional M constraints, and when M is large it provides a lot more information than
the joint ln p(x, z) itself. When gradients are available the proposal of this chapter is to
replace the first cumulant ELBO optimization with the expectation of L2 optimization (EL2O)
of gradients between ln q(z) and ln p(x, z). This is independent of the ELBO normalizing
constant, which does not dependent on z. It takes advantage of the gradient information as
a pointwise sum over L2 norm of all the gradients with respect to zi,

EL2O = M�1 min
✓

Eq̃

(
MX

i=1

[rzi ln q✓(z)�rzi ln p(x, z)]2
)

, (5.5)

where the averaging is done over the samples zk drawn from a previous iteration of q✓ which
we denote q̃, and the sum is over all M gradient terms. The corresponding divergence is
called Fisher divergence [103]. If we denote each sample as zk then the above expression is

EL2O = (NkM)�1 min
✓

(
NkX

k=1

MX

i=1

[rzi ln q✓(zk)�rzi ln p(x, zk)]
2

)
. (5.6)

If q✓(z) is modeled as a full rank Gaussian N(µ,⌃) the optimization with respect to its
parameters can be evaluated analytically, and the resulting algorithm is given in algorithm 1.

Expectation of these equations has been derived in the context of variational methods
[197], showing that the solution to EL2O is the same as ELBO optimization in the high
sample limit. However, optimizing EL2O di↵ers from optimizing ELBO with respect to the
parameters ✓ of q✓(z). One di↵erence is that unlike in ELBO optimization we do not need to
propagate the gradients with respect to the samples zk using the reparametrization trick: we
can view the samples zk from q✓(z) as being samples from a previous iteration of q✓, which
we denote q̃. One then minimizes the L2 loss without having to propagate the gradient with
respect to ✓ through the samples zk. The lower the EL2O value is the better approximation q✓
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Algorithm 1 Full Rank EL2O

Input: data xi, size N
Find a solution near MAP. Initialize q̃ with Laplace ⌃. Draw Nk = M samples zk.
while EL2O value has not converged do

Draw a new sample zNk+1 from q̃. Increase Nk by 1.
Hij =

PNk

k=1(zk,i � µi)(zk,j � µj)
⌃�1

ij
= �

PNk

k=1[(zk,i � µi)rzj ln p(x, z
k
) + (zk,j � µj)rzi ln p(x, z

k
)]/2Hij

µ = N�1
k

PNk

k=1[zk + ⌃rz ln p(x, z
k
)

Compute EL2O; update q̃ = N(µ,⌃)
end while

is to the posterior. Another important di↵erence is that both q✓(z) and p(x, z) are evaluated
at the same position of a given sample zk. We will show that this eliminates the sampling
noise inherent in MC integration of KL divergence that underlies ELBO optimization. For
example, the presence of zk at the end of algorithm 1 guarantees there is no sampling noise,
while replacing it with its expectation µ there is sampling noise. We thus obtained a set of
equations that use gradient information, but these are di↵erent from stochastic VI equations
of ADVI [153]. When optimizing for a large number of parameters, such as full rank q✓(z),
the di↵erence in convergence between the two becomes significant, as we show in the examples.
EL2O optimization converges fast even in high dimensions, in contrast to the full rank ELBO
optimization in ADVI.

If we have no access to gradients we can still apply the method using a finite di↵erence
version of the gradient evaluated between two nearby points zk and zk + �zk. The accuracy
of the finite di↵erence gradient in approximating the actual gradient is not important, since
the same two points are chosen to evaluate ln q and ln p.

A Mean Field Gaussian example

To explain the motivation and the di↵erences between ELBO and EL2O we will for
simplicity assume we only have a single parameter z given the data x. We would like to
fit the posterior of z to a simple form such as a Gaussian q✓(z) = N(µ, ⌃). We will assume
the true posterior is a Gaussian, p(z|x) = N(µt, ⌃t), where the subscripts t denotes the true
value, but as this is something we do not know in advance we perform the estimation of
parameters of µ and ⌃ and study their convergence to the true values as a function of number
of samples.

In stochastic VI ELBO optimization, as for example automatic di↵erentiation variational
inference (ADVI) [153], we draw samples from the current etimate of q✓(z) and use these to
update the ELBO gradient. One can define the samples as zk = ⌃1/2✏k + µ, where ✏k is a
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random number drawn from a unit variance zero mean Gaussian N(0, 1). With this we find

ELBO ⌘ �Eq V (x, z) ⇡ N�1
k

X

k


✏2
k

2
+

ln(2⇡⌃)

2
+ ln p(x, zk)

�
, (5.7)

where Nk is the number of samples. We want to use gradient of ELBO with respect to µ to
update the information on µ, but it only enters via zk inside ln p(x, zk). So if we want to
optimize ELBO with respect to µ by making its gradient equal zero we have to propagate its
derivative through zk, the so called reparametrization trick [144, 218], which gives for this
example rµ ln p(x, z) = rz ln p(x, z) = �(zk � µt)/⌃t. With zk = ⌃1/2✏k + µ we find the
mean µ where the gradient is zero is

X

k

(zk � µt)

⌃t

= 0 ! µ = µt �N�1
k

X

k

⌃1/2✏k. (5.8)

Since the mean of ✏k is zero this will converge to the correct answer µt, but the convergence
will be stochastic, converging as N�1/2

k
. Even if we start at the correct solution provided by

MAP+Laplace, the stochastic nature of KL divergence leads to fluctuations in the subsequent
iterations.

To solve for the variance we similarly take a gradient of ELBO with respect to ⌃ and set
it to zero, with solution

⌃ =
Nk⌃tP

k
[✏2

k
+ (µ� µt)⌃�1/2✏k]

. (5.9)

This also leads to a stochastic convergence to the true answer as N�1/2
k

, but with a larger
prefactor, as shown in figure 5.1.

To understand the advantages of EL2O let us look at its solution of the same 1D Gaussian
case example above. We again assume we have access to the gradient rz ln p(x, z), as we
assumed for ELBO. The EL2O objective is equation 5.5

EL2O = arg min
µ,⌃

N�1
k

X

k


µ� zk

⌃
�rz ln p(x, zk)

�2
. (5.10)

Since for the toy example rz ln p(x, z) = �(zk � µt)/⌃t using gradient of EL2O with respect
to µ equal zero gives

µ =
⌃

⌃t

µt +

✓
1� ⌃

⌃t

◆
N�1

k

X

k

zk. (5.11)

A similar equation is obtained for ⌃,

⌃�1 = ⌃�1
t

P
k
(µ� zk)(µt � zk)P

k
(µ� zk)2

. (5.12)

These solutions also converge to the correct values, but they di↵er from ELBO optimization.
These equations show that as we approach the correct solution ⌃ = ⌃t and µ = µt, the
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Figure 5.1: Relative errors on the mean µ and variance ⌃ for the Gaussian ansatz of q✓ in a setting
where p(z|x) is a Gaussian. We find that the stochastic VI ELBO optimization is noisy and only
slowly converges to the correct answer, while EL2O gives the exact solution after 3 evaluations for
gradient free case and 2 evaluations for gradient case
.

sampling noise from zk vanishes, in contrast to ELBO in equations 5.8 and 5.9. A second order
Newton update can solve this system even more e�ciently. Moreover, in this gradient case
we only need 2 samples z1 and z2 to solve the problem exactly, and these two samples can be
drawn anywhere if q✓ family covers the posterior. If Nk > 2 the problem is over-constrained:
we are not gaining any additional information and EL2O remains zero, as there is no sampling
noise in minimizing EL2O if q✓ covers the true posterior. Finally, if we start at the correct
solution (for example, when MAP + Laplace is exact) we stay there, as zk dependence vanish.
If q✓ does not cover the posterior it is beneficial for the samples to be drawn as close as
possible to the true posterior, so we iterate, using samples of q✓ from the previous iteration(s).
A generalization of these equations to the multi-variate full rank Gaussian for q✓ is given in
algorithm 1.

These properties of EL2O optimization di↵er from the stochastic ELBO optimization and
incentivize use of expressive q✓(z), even if they contain many more parameters. We will show
that a full rank Gaussian q✓(z) converges rapidly, in contrast to ADVI. This in turn leads to
a higher quality marginal posterior, which is our main goal. As we add more expressivity to
q✓(z) beyond the mean field or full rank Gaussian approximation we not only improve the
posterior, we also improve the convergence because the sampling noise is reduced. If q✓(z)
covers the posterior we only need as many samples as the number of parameters ✓ we are
optimizing for. Moreover, a better q✓ also leads to a tighter ELBO, as we show in numerical
examples.

Can ELBO be modified in the similar way? If we treat the samples zk as from a previous
iteration unrelated to the current optimization of ✓ then

ELBO ⇡ N�1
k

X

k


(zk � µ)2

2⌃
+

ln(2⇡⌃)

2
+ ln p(x, zk)

�
. (5.13)
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Taking a gradient with respect to µ equal zero gives µ = N�1
k

P
k
zk. We see that the joint

ln p(x, zk) does not enter in the optimization at all, so ELBO in this form cannot learn from
it, in contrast to EL2O. So reparametrization trick is necessary for ELBO optimization, while
it is not required for EL2O optimization.

The di↵erence can be explained by the fact that the KL divergence is evaluated with
stochastic integration �ELBO = Eq V (z, x) =

R
dzq✓[ln q(z)� ln p(z|x)]. The KL divergence

is only positive after the integration, while the integrand can be positive or negative, but
the area under the positive integrands is larger. Deterministic integration is only feasible in
very low dimensions, while stochastic integration via Monte Carlo converges slowly, as N�1/2

k
.

If we wanted to evaluate KL divergence with a single sample we cannot guarantee that the
result is positive. In contrast, minimizing EL2O is based on comparing gradients of ln q(zk)
and ln p(zk,x) at the same sampling points zk: if the two distributions are to be equal their
gradients should agree at every sampling point individually, so the L2 norm is always positive
or zero, even if evaluated on a single sample. There is no need to perform the integral to
obtain a positive quantity, which is the fundamental di↵erence between the L2 norm of Fisher
divergence and the KL divergence. Thus there is no stochastic integration noise when using
Fisher divergence. It is however still a divergence, since the samples are drawn from q(z).

Posterior expansion beyond the full rank Gaussian

So far we presented an algorithm with a full rank Gaussian solution as an iterative process
which rapidly converges. If there is a strong variation of the Hessian elements evaluated at
di↵erent sampling points then we know the posterior is not well described by a multi-variate
Gaussian. In this case we may want to consider proposal functions beyond the full rank
Gaussian. A full rank Gaussian is the only correlated multi-variate distribution where analytic
marginalization can be done by simply inverting the Hessian matrix, which we want to keep.
For this reason we will only consider one-dimensional transformations of the original variables
z, for which this property is still preserved. Such 1D variable transformations need to be
bijective so that we can easily go from one set of the variables to the other and back (e.g.
[217]). Here we will use a very simple family of models that give rise to skewness and curtosis,
which are the one-dimensional versions of the gradient expansion at third and fourth order.

Specifically, we will consider nonlinear (NL) bijective transformations of the form yi(zi)
such that

q✓(z) = N(µ,⌃)⇧i|Ji|, Ji =
dyi
dzi

, (5.14)

with y distributed as N(µ,⌃). Under this form the marginalization over the variables is
trivial:marginalized posterior distribution of zi is q[zi(yi)] = N(µi, ⌃ii)|dyi/dzi|, where ⌃ii is
the diagonal component of the covariance matrix, obtained by inverting the Hessian matrix
⌃�1.

Generalizing skewness and curtosis to bijective NL transforms gives

yi(zi) = sinh⌘


exp(✏izi)� 1

✏i

�
, (5.15)
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where for ✏i = 0 the above is just yi(zi) = sinh⌘zi [232]

sinh⌘(x) =

8
>>><

>>>:

⌘�1sinh(⌘x) (⌘ > 0)

x (⌘ = 0)

⌘�1arcsinh(⌘x) (⌘ < 0).

(5.16)

Range constraints

If a variable has a boundary the posterior distribution can abruptly changed at the
boundary, which is di�cult to handle with Gaussians. The most common case is that a given
variable is bounded to a one sided interval, so will only consider this case, but generalization
to a two-sided boundary is straight-forward.

There are two methods one can adopt, first one is a transformation to an unconstrained
variable [153], and second one is a reflective boundary condition. For the latter, given a
boundary z0

i
> ai, the method extends the range to z0

i
< ai using a reflective (or mirror)

boundary condition across z0
i
= ai, such that if z0

i
< ai then L̃p(z0i � ai) = L̃p(ai � z0

i
). This

leads to a simple but non-bijective transformation: we have z0
i
defined on entire range and we

model it with a sum of two mirrored Gaussians or their NL generalizations. E↵ectively this is
equivalent to an unconstrained posterior analysis, where we take the posterior at z0

i
< ai and

add it to z0
i
> ai. It solves the boundary problem of the unconstrained transformation, as

the posterior at the boundary is not forced to zero, since it can be continuous and non-zero
across the boundary ai. The marginalization over this parameter remains trivial, since it is as
if the parameter is not constrained at all. For the purpose of the marginalized posterior for
the parameter with the range constraint itself, we must add the z0

i
< ai posterior to z0

i
> ai

posterior. If the posterior mass is non-zero at z0
i
= ai this will result in the posterior abruptly

transitioning from a finite value to 0 at the boundary, as desired.

Related Work

Our proposed divergence is in the family of f-divergences, specifically, it is the Fisher
divergence [103]. Other divergences have been introduced in recent literature (e.g. [73]) to
counter the claimed problems of KL divergence such as its asymmetry and exclusivity of q✓.
Here we do not try to do that: our solution is the same as that of KL divergence in the limit
of a large number of samples.

Stochastic VI has been explored for posteriors in several papers, including ADVI [153]. In
direct comparison test presented below we find it has a slower convergence than EL2O. Fisher
divergence minimization has been proposed by [129] as a score matching statistic, but was
rewritten through integration by parts into a form that does not cancel sampling variance
and has similar convergence properties as stochastic VI. Reducing sampling noise has also
been explored more recently in [222] in a di↵erent context and with a di↵erent approach.
Quantifying the error of the VI approximation has been explored in [280].
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Figure 5.2: EL2O and ELBO values as a function of the number of samples, for the multi-variate
Gaussian example in section 5.3. Left : EL2O converges rapidly for both M = 5 and M = 32. Most
of the iterations shown are during burn-in phase. The value of EL2O estimates the quality of the fit;
typically values . 0.2 indicate that we have obtained a satisfactory posterior. Right : Convergence
of stochastic VI ELBO optimization (ADVI) for M = 5 versus EL2O. Full rank (FR) ADVI (blue)
provides a tighter ELBO bound than mean field (MF) ADVI (green) because of correlations, but
converges more slowly. We do not show M = 32 since ADVI does not converge.

NL transformations have been explored in terms of boundary e↵ects in [153]. Our NL
transformations correspond more explicitly to generalized skewness and curtosis parameters,
and as such are useful for general description of probability distributions. We employ analytic
marginals to obtain posteriors and for this reason we only employ a single layer point-wise
NL transformations, instead of the more powerful normalizing flows [217]. More recently,
[169] also adopt GM and NL for similar purposes, also using Hessian based second order
optimization.

5.3 Numerical experiments

Here we present examples of the method, starting with two toy problems followed by a
real scientific inverse problem analysis. For all numerical experiments, we use the stopping
criterion such that when �EL2O < 10�3 the algorithm terminates. Similarly for stochastic
VI ELBO optimization, we use ADVI implementation in PyTorch: the algorithm terminates
when the fractional change of �ELBO, averaged over the past five iterations, is less than
10�3.

High dimensional multi-variate Gaussian

The first example is a simple correlated Gaussian example of increasing dimensionality
M . We model it as a full rank Gaussian without the point-wise non-Gaussian extensions.
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In previous section we presented as a toy model results for M = 1. As we increase the
dimensionality M , the number of parameters for a full rank approximation grows as M2. As
a result, the stochastic nature of ELBO optimization leads to slower and slower convergence.
In our experiments we find that ELBO based ADVI converges, albeit slowly, for M < 15,
but fails to converge above that, even if the starting point is MAP + Laplace, which is the
correct solution in this example.

In contrast, EL2O optimization converges rapidly for all the dimensions. In the left-hand
side of figure 5.2, we show EL2O optimization results for M = 5 and 32. Here we start at
random and include the burn-in, and EL2O requires about 50 and 2000 samples to fully
converge, for M = 5 and 32 respectively. At each iteration we can also evaluate ELBO, and
results for M = 5 are shown on the right-hand side of figure 5.2. In contrast, we see that
ELBO optimization in the full rank form requires nearly 107 iterations to converge to the
ELBO bound that EL2O has reached nearly instantly! The mean field ADVI converges to
an ELBO value that is considerably worse because of correlations between the variables.
Moreover, full rank ADVI fails to converge for M = 32 even if the starting point is MAP +
Laplace.

Non-Gaussian correlated 2D posterior

In this example we have a 2-dimensional problem modeled as two Gaussian distributed
and correlated variables z1 and z2, but the second one is nonlinearly transformed using
exp(z2) mapping. We model it as a full rank M = 2 Gaussian plus nonlinear (NL) point-wise
extension for both parameters.

This transformation is not in the family of skewness and curtosis transformations proposed
in section 5.2. Here we model the posterior using ✏ and ⌘ in addition to µ and ⌃. We
determine the marginal posterior of z2 using EL2O with the NL transform (NL-EL2O), and
compare to MAP, mean field (MF) and full rank (FR) EL2O (which equals MFVI and FRVI
in the large sampling limit).

The results are shown in figure 5.3. Left panel shows the 2D contours, which open up
towards larger values of z2 and as a result the MAP is away from the mean. Right panel shows
the resulting 1D marginalized posterior of z2. MAP gets the peak posterior correct but not
the mean. MF improves on the mean, and FR improves it further. None of these, however,
get the full posterior. Only NL-EL2O gets the full posterior in nearly perfect agreement
with the correct distribution, with EL2O value of 0.13, versus 0.5 or 0.7 for FR and MF,
respectively, as shown in figure 5.4.

We have argued that sampling noise free nature of EL2O can lead to faster convergence
even if q✓(z) has more freedom. This is seen in figure 5.4. The convergence of NL-EL2O is
faster, despite having more parameters: the convergence has been reached after 8 iterations.
We started with drawing 1 sample per iteration (Nk = 1) and ended with Nk = 5 for this
example, and we reused samples from previous iterations, with 25 total number of likelihood
evaluations (Ntotal = 25). As shown in the right-hand side of figure 5.4, VI ELBO optimization
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Figure 5.3: Example of a non-Gaussian correlated posterior problem in section 5.3. Left : The 2D
posterior and the means estimated by various methods. Right : 1D marginalized posterior of z2, with
the black vertical line marking its true mean. MAP (blue) finds the mode, and MFVI (green) and
FRVI (yellow) estimate the mean relatively well. All of them, however, fail to capture the correct
shape of the posterior and its variance. EL2O with the NL transform (NL-EL2O, red) accurately
models the posterior. Full rank VI ELBO with the NL transform provides a equivalently good fit,
but its convergence is slow and noisy, as shown in figure 5.4.
All curves have been normalized to the same value at the peak to reduce their dynamical

ranges.

is slow and noisy, requiring roughly fifteen times as many iterations for convergence than
EL2O.

An application to a scientific inverse problem: galaxy clustering
analysis

In scientific inverse problems, we typically have some data and a likelihood with respect
to the model parameters, but the model and the likelihood may be very expensive to evaluate.
Furthermore, we may have many model parameters we need to vary, but some of the gradients
may not be available. As an example of such analysis, we apply EL2O to a data analysis
of galaxy clustering data of the SDSS BOSS survey using the forward model of [105]. We
observe about 106 galaxy positions (redshift and angular position), measured out to about
half of the lookback time of the universe, and distributed over a quarter of the sky. The radial
positions are determined by the redshift, as extracted from the galactic emission lines in
spectroscopic data. Galaxy clustering is anisotropic because of the redshift space distortions
(RSD), generated by the Doppler shifts, which are proportional to the galaxy velocities.

We can summarize the anisotropic clustering by measuring the multipole moments of the
power spectrum Pl(k).

In this specific case we are given measured summary statistics of galaxy clustering P̂l(k),
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Figure 5.4: EL2O and ELBO values as a function of the number of iterations, for the 2D non-
Gaussian correlated posterior example in section 5.3. Left : Convergence is faster for NL-EL2O than
for MF or FR EL2O despite having more parameters, a consequence of reduced sampling noise of
EL2O if q✓ covers the true posterior better. In this example each iteration draws 5 samples, and we
average over the past samples after the burn-in. Right : VI ELBO requires roughly fifteen times as
many iterations for convergence than EL2O. Similar to figure 5.2, FR-ADVI finds a tighter ELBO
bound than MF-ADVI, while NL extension of FR further improves on ELBO.

where l = 0, 2, 4 are the angular multipoles (Legendre transforming the angular dependence
on µ) of the power spectrum and k is the wavevector amplitude, as well as their errors.
Figure 5.5 presents the measured values and errors of the monopole P0(k), quadrupole P2(k),
and hexadecapole P4(k) extracted from the SDSS BOSS galaxies at redshifts between 0.4
and 0.6 in the North Galactic Cap (NGC) [105].

The model of [105] predicts these power spectra Pl(k). The details of the model are not
relevant for the purpose of this work and we refer the reader to [105]. The galaxy power
spectrum model depends on 13 physically-motivated parameters. The likelihood is formed
assuming Gaussian errors, which are given as part of the galaxy clustering analysis, so it is in
the form p(x|z) = N(m(z)� x,�2), where x is the data Pl(k), m(z) is the model for the
data, z is the 13 parameters, and �2 is the noise (which we assume to be diagonal).

The model is nonlinear in its parameters and expensive to evaluate: the cost of each model
evaluation is of order 10 seconds, and gradients are available for 9 out of 13 parameters. We
use a finite di↵erence version of EL2O equation for the 4 parameters without the gradients and
we can use algorithm 1 directly. The finite di↵erence gradient is evaluated using �zi = 0.1⌃1/2

ii
,

and we verified that the results are insensitive to this choice: the finite di↵erence gradient
does not need to be accurate compared to the true gradient, what matters is that we can
learn q✓(z) using this finite di↵erence comparison between q✓(z) and p(x, z). Each iteration
therefore requires five model evaluations, one at the sample zk and four at the distance
�zi from it. We assume flat priors on all the parameters, but we have range constraints
on some parameters that are positive definite, which together with the nonlinearity of the
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Figure 5.5: An inverse problem example: we fit the model to the galaxy power spectrum multipoles
(monopole P0, quadrupole P2, and hexadecapole P4). We show the best-fit (MAP) theory model
(solid lines) and data measurements (points with errors). Fitting the model to data over the
wavenumber range k = 0.02� 0.4hMpc�1, we find a good agreement between the best fit model and
the data.

forward model leads to non-Gaussian posteriors. While the model is 13-dimensional, we only
care for a few parameters which represent the information about our universe, while the
remaining parameters describe the galaxy clustering parameters unrelated to the cosmological
information. Since the relevant cosmological parameters are correlated with all the others we
need to evaluate a 12-dimensional marginal of each parameter of interest. For this problem we
use full rank algorithm 1, but we go beyond the full rank by adopting 1D NL transformations
to model q✓.

We start with an optimization assuming q✓ is a delta function (MAP approach), which
defines the burn-in phase of finding MAP. MAP gives the best-fit model predictions in
figure 5.5 (black dotted lines). We then create the first q✓ from the Laplace approximation
evaluated close to the MAP, and switch to sampling from q✓ as we approach the MAP, and
gradually increase the number of samples Nk once we are past the burn-in, reusing samples
from the previous iterations after the burn-in. Overall for EL2O it took 25 iteration steps to
converge to the full non-Gaussian posterior solution. Because gradients were not available for
4 parameters finite di↵erence gradient has been used instead, leading to Ntotal = 125.

Results are shown in figure 5.6 and compared to MCMC and ADVI. In the top panel the
parameters are f�8 (product of the growth rate f and the amplitude of matter fluctuations
�8, which summarizes the cosmological information), b1 (linear bias), �c (velocity dispersion
for central galaxies), and f1h,sBsB (normalization parameter of the 1-halo amplitude), which
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Figure 5.6: Top: 1D and 2D posterior distributions of four selected model parameters whose
posteriors are close to Gaussian. Top left panel : MAP+Laplace gives inaccurate 2D posterior
relative to EL2O, even if 1D projections are accurate. Top right panel : MAP can be displaced
in the mean, while EL2O and ADVI results agree very well with MCMC samples. Bottom: 1D
posteriors for parameters which are most non-Gaussian. Together with the NL transform (blue solid
curves), EL2O results closely match the MCMC posterior (red solid). Also shown are 2.5%, 50%,
and 97.5% intervals (dotted lines), for MCMC and EL2O. 125 likelihood evaluations were used for
EL2O, compared to 105 for MCMC, and 2.3⇥ 104 for ADVI. Despite taking almost 200 times more
steps than EL2O, ADVI posteriors are considerably worse. For fsB parameter we have a boundary
fsB > 0, and we model it with the unconstrained transformation method (green solid) and adding
the reflective boundary method to it, the latter allowing the posterior density at the boundary to
be non-zero (blue solid).

are all galaxy clustering parameters unrelated to cosmological information. It is of interest
to explore how the results compare to MAP+Laplace (using Hessian at MAP to determine
the inverse covariance matrix) and we show these results as well in the top panel of figure
5.6. We see that MAP+Laplace can fail in the mean, or in the covariance matrix. This
could be caused by the marginalization over non-Gaussian probability distributions of other
parameters, or caused by small scale noise in the log posterior close to the MAP, which EL2O
improves on by averaging over several samples. The results have converged to the correct
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Figure 5.7: EL2O and ELBO values as a function of the number of iterations, for the galaxy
clustering example in section 5.3. We draw 5 samples each iteration and average over the past
samples after the burn-in. EL2O is 2 orders of magnitude faster than VI ELBO, providing a tighter
ELBO bound. As in figure 5.2 and 5.4, NL extension of FR improves on ELBO, but ADVI has
di�culty converging to the solution found by EL2O.

103 104 105 106 107

Total time [s]

MCMC

NL+FR-ELBO (ADVI)

NL-EL2O

Figure 5.8: Comparison of computational cost for the galaxy clustering example in section 5.3.
EL2O is roughly 103 times faster than MCMC and 170 times faster than ADVI using the same
parametrization, but note that ADVI did not converge, resulting in a worse posterior and lower
ELBO, as seen in figures 5.6 and 5.7.

posterior after 25 iterations, at which point the EL2O value is stable and around 0.18, which
is low enough for the posteriors to be accurate. Here we compare to MCMC emcee package
[87], which initially did not converge, so we restarted it at the EL2O best fit parameters
(results are shown with 105 samples after burn-in).

In the bottom panel we explore parameters that have the most non-Gaussian posteriors.
In all cases the EL2O posteriors agree remarkably well with MCMC. This is even the case
for the parameter fsB, which has a positivity constraint fsB > 0, but is poorly constrained,
with a very non-Gaussian posterior that peaks at 0. Even for this parameter the median and
2.5%, 97.5% lower and upper limits agree with MCMC. When we model this parameter with
the unconstrained transformation method, we see that the probability rapidly descends to
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zero at the boundary fsB > 0.
The reflective boundary method corrects this and gives a better result at the boundary,

as also shown in the same figure. In this example, with reflective boundary, we allowed
the posterior to go to -0.2 on this parameter. We do not show MAP+Laplace results since
they poorly match these non-Gaussian posteriors. In figure 5.8 we show the timing results,
showing that EL2O is 3 orders of magnitude faster than MCMC and 2 orders of magnitude
than ADVI, but it should be noted that ADVI has not converged to EL2O solution at this
number of evaluations and its ELBO value is lower than the corresponding solution found by
EL2O, as shown in figure 5.7.

5.4 Conclusions

Computationally expensive inverse problems require minimizing the number of forward
model evaluations needed for the log joint probability ln p(x, z). In many settings, specially
in scientific inverse problems, an evaluation of the forward model can be extremely costly.
At the same time, scientific discovery demands high quality uncertainty quantification: we
want to know for example not just one sigma error, but the full posterior, such that we can
quantify the probability of excluding certain parameter values. The current gold standard for
uncertainty quantification with a posterior analysis are MCMC methods, which asymptotically
converge to the correct answer, but require a very large number of likelihood evaluations,
often exceeding 105 or more. Using brute force MCMC sampling methods in these situations
is often impossible.

The main motivation of this work is to develop a reliable and fast uncertainty quantification
for inverse problems that improves upon MAP + Laplace and is faster than MCMC. Stochastic
VI approach such as ADVI [153] is a popular alternative, but converges very slowly because
of a large stochastic noise that is only slowly reduced with number of samples, and often fails
to converge at all. This can be traced to the feature of KL divergence that its integrand
does not have to be positive, even if the final KL divergence integral is: if sampled with
a few points only there is no guarantee that the KL integral will be positive, which leads
to an integration noise in the ELBO value. The optimization objective ELBO is the first
cumulant of variational expansion of the normalizing constant approximated with q✓(z) using
importance sampling identity. In this chapter we propose instead to minimize the second
cumulant, which we call EL2O. It is based on comparing ln q✓(zk) and ln p(x, z

k
) square

distance at the same sampling points zk: if the two distributions are to be equal they should
agree at every sampling point, up to the normalization constant. Similarly, if gradients are
available, they should agree at every sampling point. Thus even a few sampling points can
inform us of the quality of the approximation, in contrast to ELBO optimization. If q✓(zk)
covers the true posterior there is in fact no stochastic sampling noise in its optimization. This
thus motivates using more expressive forms of q✓(zk), and we show that this can actually
lead to a faster convergence. If available we can easily add higher order derivatives to the
method, or mix and match gradient and gradient free versions for di↵erent parameters ✓,
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which further reduces the required number of model evaluations for convergence.
In our applications we start with the MAP + Laplace approximation for the burn-in, then

slowly increase the number of samples we average over by reusing samples from past iterations,
typically to about 10-15 samples if gradient and Hessian are available. We first solve for the
full rank Gaussian and if EL2O residual is high generalize it to point-wise non-Gaussianity
(NL). There is no guarantee that this approach will result in a good posterior, a feature in
common with all other VI approaches. However, EL2O residual can inform us when the
method fails by EL2O value being too high (higher than 0.2 in our experiments), in which
case EL2O informs us that we need to resort to MCMC. In this case it can also give a useful
starting point for MCMC methods such as HMC, which requires a good initial mass matrix.

We present an application of the method to a realistic scientific application of an inverse
problem in the field of cosmology, with 13 parameters and no analytic derivatives for 4 of
them. We obtain good posteriors with about 25 iterations, with 5 calls each to obtain the
finite di↵erence gradients for a total of 125, of which about half were needed to find MAP.
This can be compared to 105 likelihood calls for MCMC. This is a particularly di�cult
problem for MCMC, which did not converge until we restarted it at MAP solution. For many
of the parameters the posteriors are very non-Gaussian, yet we found a remarkable agreement
between our EL2O posteriors and full MCMC, suggesting pointwise NL can be e↵ective in
modeling non-Gaussian distributions. Using the same parametrization ✓ with ADVI required
2.3⇥ 104 calls, but the posteriors are worse and ELBO lower, despite about 200 times higher
computational cost, a consequence of sampling noise of ELBO based optimization.

In this inverse problem example evaluation of 105 MCMC samples was feasible (although
expensive) and we were able to compare the results of EL2O to MCMC, but in many realistic
situations MCMC would not be feasible, and methods such as EL2O may be one of the
few possible alternatives. If a high quality posteriors are required for the inverse problem
solution, but we can only a↵ord a small number of forward model evaluations, then EL2O VI
optimization provides an attractive alternative that can deliver realistic posteriors at a low
computational cost.
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Chapter 6

RSD measurements from BOSS galaxy
power spectrum using the halo
perturbation theory model

In this chapter, we present growth of structure constraints from the cosmological analysis
of the power spectrum multipoles of SDSS-III BOSS DR12 galaxies. We use the galaxy power
spectrum model of [105], which decomposes the galaxies into halo mass bins, each of which
is modeled separately using the relations between halo biases and halo mass. The model
combines Eulerian perturbation theory and halo model calibrated on N -body simulations to
model the halo clustering. In this work, we also generate the covariance matrix by combining
the analytic disconnected part with the empirical connected part: we smooth the connected
component by selecting a few principal components and show that it achieves good agreement
with the mock covariance. We find tight constraints on f�8: f�8(ze↵ = 0.38) = 0.489 ± 0.036
and f�8(ze↵ = 0.61) = 0.455 ± 0.026 at kmax = 0.2 hMpc�1, in good agreement with Planck
amplitude. This corresponds to S8 = 0.821±0.037 or an overall amplitude error of 4%, within
0.3 sigma of Planck’s S8 = 0.832±0.013. We discuss the sensitivity of cosmological parameter
estimation to the choice of scale cuts, covariance matrix, and the inclusion of hexadecapole
P4(k). We show that with kmax = 0.4 hMpc�1 the constraint improves considerably to an
overall 2.7% amplitude error (with S8 = 0.786 ± 0.021), but there is some evidence of model
misspecification on MultiDark-PATCHY mocks. Choosing kmax consistently and reliably
remains the main challenge of RSD analysis methods. 1

6.1 Introduction

Large-scale clustering of the galaxies in redshift surveys is one of the major cosmological
probes which gives us insight into gravity, dark energy, and primordial non-Gaussianities. We

1This chapter is taken from “RSD measurements from BOSS galaxy power spectrum using the halo
perturbation theory model,” Yu B., Seljak U., Li Y., Singh S. (arXiv: 2211.16794).
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can quantify this structure using the 2-point correlation function or the power spectrum. The
2-point analyses have made accurate measurements of baryon acoustic oscillations (BAO),
caused by sound waves in the pre-decoupling Universe [80]. The BAO data have both isotropic
and anisotropic components, and with galaxy samples from Baryon Oscillation Spectroscopic
Survey (BOSS), a part of Sloan Digital Sky Survey (SDSS)-III, it provides constraints on the
distance scale with a percent-level precision [15].

Galaxy clustering amplitude cannot be directly related to the dark matter amplitude due
to galaxy biasing. However, we can consider another kind of anisotropy in the clustering of
galaxies caused by the redshift-space distortions (RSD). It is created by peculiar velocities of
galaxies, a↵ecting the measured clustering signal in redshift space along the line-of-sight, but
not transverse to it. Such distortions depend on the underlying matter density field, which
are correlated with the velocity field. In the linear regime we parametrize RSD with the
parameter � = f/b, where f is the linear growth rate, and b is the galaxy bias [138]. On small
scales the linear theory breaks down, and non-linear distortions, such as the Finger-of-God
(FoG) e↵ect, clustering dilution in redshift space along the line of sight due to the motion of
galaxies within virialized dark matter halos, need to be accounted for.

RSD has become one of the most powerful cosmological probes by measuring the growth of
structure via the parameter combination f(z)�8(z), thereby testing dark energy and di↵erent
gravity models. [215] provides the 2.5% constraint on f�8 on the BOSS CMASS galaxies using
a simulation-based analysis, but [215] does not employ an analytic approach to model the
small-scale clustering and uses only a single simulation box. [15] presents the Data Release 12
(DR12) final consensus results on the BOSS galaxies, over the redshift range 0.2 < z < 0.75,
and provides 9.3 and 8.0% f�8 constraints on low-redshift (ze↵ = 0.38) and high-redshift
galaxies (ze↵ = 0.61). More recently, there are BOSS DR12 measurements of the growth of
structure from PT-based models [131, 68, 291, 58] and from simulation-based models [157,
148, 285, 284]. In particular, [285] proposes a Gaussian Process emulator and provides 7.4,
5.6, and 4.9% constraints on f�8 at ze↵ = 0.25, 0.4 and 0.55, and [284] develops a hybrid
emulator which combines emulator with Markov chain Monte Carlo (MCMC) sampling,
giving the 3.6% constraint on the BOSS CMASS galaxies. In addition, some of the recent
works measure the clustering of the DR16 extended BOSS (eBOSS) samples and provides
the growth of structure measurements [130, 57].

This work applies the redshift-space galaxy power spectrum model of [105] to the BOSS
DR12 galaxy samples. [105] proposes an approach which combines perturbation theory(PT)-
based modeling techniques and simulation-based analyses. Following the halo model formalism
in [193], this model decomposes a galaxy sample into centrals and satellites and separately
model the 1-halo and 2-halo—correlations of 2 galaxies in the same and di↵erent halos,
respectively—contributions to the clustering of galaxies. The dark matter halo power
spectrum model in redshift space is based on the distribution function approach [236, 191,
192, 272, 273, 45], and Eulerian PT and halo biasing model are used to model the underlying
dark matter correlator terms [273]. Then, some of the key terms in the models are calibrated
from the results of N-body simulations. [105] tests and validates this power spectrum model
by performing independent tests using high-fidelity, periodic N -body simulations and realistic
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BOSS CMASS mocks, showing that the recovered values of f�8 has only small bias.
In this work, we not only extend the work from [105] by applying its power spectrum

model to the BOSS DR12 galaxies but also develop the hybrid covariance matrix, which
combines the analytic disconnected part [166] and empirical connected part, including up to
four principal components. Such covariance matrix can be especially useful for the analysis
of next-generation redshift surveys. We also discuss how the choice of scale cuts, covariance
matrix, and the inclusion of hexadecapole P4(k) a↵ect our clustering analysis and show
that removing BAO information from the multipole measurements only a↵ects cosmological
parameter estimation in a negligible way. We also compare our growth of structure constraints
with other BOSS DR12 measurements in the literature, based on both PT-based models and
simulation-based models.

The remainder of this chapter is organized as follows. In section 6.2, we describe the mock
simulations used to validate our model and the actual galaxy sample from BOSS DR12 used
for the main analysis. Section 6.3 presents the galaxy power spectrum estimator and model
parameters, as well as the survey window function convolved with the model. In section 6.4,
we outline analysis methods for the cosmological parameter estimation and introduce the
hybrid covariance matrix, demonstrating its accuracy compared to the mock covariance
matrix. In section 6.5, we validate the model performance by providing test results on the
mock catalogues which mimic the BOSS DR12 target selection. In section 6.6, we discuss the
main results of this chapter and conclude in section 6.7.

6.2 Data

SDSS-III BOSS DR12

In this work, we use the spectroscopic galaxy samples from SDSS-III BOSS DR12 [44, 50,
12, 70, 249, 16], selected using the imaging data from earlier SDSS-I and SDSS-II surveys.
The BOSS DR12 samples are divided into the three redshift bins - z1 (0.2 < z < 0.5), z2
(0.4 < z < 0.6), and and z3 (0.5 < z < 0.75), following [15]. Because z2 overlaps with the
other two samples and thus gives results correlated with others, we only consider z1 and z3,
two non-overlapping BOSS DR12 samples. Each sample is observed in two di↵erent patches
on the sky: North Galactic Cap (NGC) and South Galactic Cap (SGC). The BOSS DR12
sample, covering the redshift range 0.2 < z < 0.75 over the area of 10,252 deg2, contains
1,198,006 galaxies - 864,924 in NGC and 333,082 in SGC, and due to the di↵erence in the
imaging of the NGC and SGC samples, they have di↵erent characteristics, such as the bias
parameter, and therefore we run an independent analysis on each sky region.

To address the problems arising from incompleteness of the BOSS survey, we apply weights
to the galaxies, where the weights are given by

w = wsys(wno�z + wcp � 1), (6.1)

where wsys is a systematic weight. wno�z and wcp correct for missing redshifts due to failure
to obtain redshift (no-z) and fiber collisions for close pairs (cp) [223].
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The e↵ective redshift for the z1 and z3 samples can be obtained as

ze↵ =

PNgal

i
wfkp,i · wi · ziPNgal

i
wfkp,i · wi

, (6.2)

where wfkp = (1 + n̄(z)P0)�1 with P0 = 104h�3Mpc3. We find that ze↵ = 0.38 and 0.61,
respectively for z1 and z3.

MultiDark-PATCHY mock catalogues

We use the MultiDark(MD)-PATCHY mock catalogues [146] for the BOSS DR12 dataset,
produced using approximate gravity solvers and galaxy biasing models calibrated to the
BigMultiDark simulations, which use 38403 particles on a volume of (2.5h�1Mpc)3, and it
reproduces the observed evolution of the clustering of the BOSS DR12. All quantities in these
catalogues assume Planck13 cosmology: ⌦m = 0.307115, ⌦L = 0.692885, ⌦b = 0.048, �8 =
0.8288 and h = 0.6777. We have 2048 mock catalogues available for both NGC and SGC
hemispheres.

In section 6.4, we use Version 6C (V6C) catalogues, which is adjusted to reproduce the
observed clustering measurements of the BOSS DR12, to evaluate the mock covariance matrix.
Figure 6.2 shows that the power spectrum multipoles of V6C catalogues (colored dotted
curves) match well with the BOSS DR12 measurements (circular data points). In section 6.3,
we use Version 6S (V6S) catalogues to confirm that our theoretical model is accurate enough
to obtain the cosmological parameter constraints. However, the di↵erence between V6C and
V6S catalogues are only subtle [38].

6.3 Redshift-space galaxy power spectrum

Model: perturbation theory

In this work, we use the galaxy power spectrum model of [105], which is based on
perturbation theory combined with simulation-based calibration of halo model terms. We
only briefly summarize the model here and refer the reader to [105] for more details.

This model follows the halo model formalism in [193], separately modeling the 1-halo and
2-halo contributions to the correlation of central and satellite galaxies. For this modeling, we
decompose the galaxy sample into four sub-samples, based on whether there exists at least
one other neighboring satellite in the given halo: isolated centrals without satellites (“type A”
centrals), centrals with one or more satellites (“type B” centrals), isolated satellites (“type
A” satellites), and non-isolated satellites (“type B” satellites). Such sub-sampling helps us
separate 1-halo and 2-halo terms when modeling the total galaxy power spectrum in redshift
space:

Pgg(k) = (1� fs)
2Pcc(k) + 2fs(1� fs)Pcs(k) + f 2

s
Pss(k), (6.3)



CHAPTER 6. RSD MEASUREMENTS FROM BOSS GALAXY POWER SPECTRUM
USING THE HALO PERTURBATION THEORY MODEL 103

where P cc, P cs, and P ss are the auto-power spectrum of centrals, the central-satellite cross-
power spectrum, and the auto-power spectrum of satellites, respectively, and fs is the satellite
fraction. We also account for non-linear distortions caused by the large virial motions of
satellite galaxies within their halos - known as the Finger-of-God e↵ect. We model this e↵ect
with a Lorentzian damping factor G(kµ; �v) = (1 + k2µ2�2

v
/2)�2 applied to the redshift-space

power spectrum of each sub-sample, where �v is the velocity dispersion of the sample. In
this model, we assume a single velocity dispersion parameter for both type A and type B
centrals, �c, and parameters for type A satellites, �sA , and for type B satellites, �sB . We take
�c and �sA as free parameters and determine �sB from the relation between the linear bias
and velocity dispersion, using the relation for the halo mass and bias and the virial theorem
scaling between velocity dispersion and mass.

The resulting galaxy power spectrum model depends on the following 11 physically-
motivated parameters:

[f(ze↵), �8(ze↵), b1,cA , b1,sA , b1,sB , fs, fsB , hN>1,si, �c, �sA , f 1h
sBsB

].

This includes two cosmological parameters, the growth rate f and the amplitude of matter
fluctuations �8 evaluated at the e↵ective redshift of the sample ze↵ , and linear bias parameters
of type A centrals and type A and B satellites (b1,cA , b1,sA , b1,sB). We also consider the fraction
of all satellites fs, the fraction of type B satellites fsB , and the mean number of satellite
galaxies in halos with more than one satellite hN>1,si. The velocity dispersion parameters for
some sub-samples (�c and �sA) are accounted for, and we also vary the normalization nuisance
parameter for the 1-halo amplitude f 1h

sBsB
. Additionally, there exists the Alcock-Paczynski

(AP) e↵ect, geometric distortions of the galaxy statistics due to the mismatch between the
true cosmology and the fiducial cosmology which we assumed when converting redshifts and
angular positions of the observed galaxies into the three-dimensional physical positions. The
AP parameter is by construction 1 at low redshifts, and in general its value is extremely
insensitive to cosmological parameters at low redshifts [40, 37]. As a result we fix the scaling
factors ↵k and ↵? of the AP e↵ect to their fiducial values of Planck cosmology. The primary
goal of this chapter is to determine the growth rate f�8, and we will not attempt to separate
�8 from f .

Measurement: power spectrum estimator

We measure the galaxy clustering signal via the multipole moments of the power spectrum
Pl(k), using nbodykit, the python software package for large-scale structure data analysis.
In nbodykit, the FFT-based algorithm for the anisotropic power spectrum estimator, pre-
sented in [104], is implemented. This provides fast evaluation of the estimator in [279] by
expanding the Legendre polynomials into spherical harmonics rather than using a Cartesian
decomposition and thereby requiring only 2l + 1 FFTs to obtain a multipole of order l.

We estimate the power spectrum multipoles as:

Pl(k) =
2l + 1

A

Z
d⌦k

4⇡
F0(k)Fl(�k), (6.4)
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Figure 6.1: The window function multipoles in configuration space for the BOSS DR12 z1 (Left)
and z3 (Right) samples. We include up to Q8(s) because the contribution of l = 10 or higher is
negligible for the window convolution.

where ⌦k is the solid angle in Fourier space, and Ll is the Legendre polynomial. A is the
normalization defined as A ⌘

R
dr[n0

gal(r)wfkp(r)]2, where n0
gal is the weighted galaxy number

density field, and wfkp is the FKP weight.
The weighted galaxy density field F (r) is given by

F (r) =
wfkp(r)

A1/2
[n0

gal(r)� ↵0n0
ran(r)], (6.5)

where n0
gal and n0

ran are the number density field for the galaxy and randoms catalogues
respectively, with the factor ↵0 normalizing n0

ran to n0
gal, and

Fl(k) =

Z
drF (r)eik·rLl(k̂ · r̂)

=
4⇡

2l + 1

lX

m=�l

Ylm(k̂)

Z
drF (r)Y ⇤

lm
(r̂)eik·r.

(6.6)

We compute each summation over m using a FFT, hence a total of 2l + 1 FFTs.
However, [39] replaces the traditional definition of the normalization term A with the

value enforcing the following condition on the window function multipole of order l = 0,
Q0(s! 0) = 1, to ensure that the power spectrum and window function are normalized in a
consistent way. Table 1 in [39] shows that such correction of the normalization term results
in increasing the BOSS DR12 galaxy power spectrum multipole amplitudes by roughly 10%.
Following [39], we corrected all galaxy power spectrum measurements presented in this work.
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Figure 6.2: The window function e↵ects on the power spectrum multipoles (filled circles with
error bars) for the BOSS DR12 z3 NGC sample. The solid and dashed curves correspond to the
unconvolved and convolved multipoles, respectively. We also show the mean of 1000 MD-PATCHY
V6C mock catalogues (colored dotted curves), and shaded areas indicate 1� deviations of 1000
mocks. Dotted curves match well with the data points, suggesting that V6C catalogues reproduce
the clustering of the observed data (which makes them suitable for the covariance matrix estimation).
For our main analysis, we choose the minimum wavenumber of kmin = 0.02hMpc�1 to minimize any
large-scale e↵ects of the window function.

Survey window function

We account for the window function e↵ects by convolving the theoretical model in
section 6.3 with the survey window function, which corresponds to the Fourier transform of
the survey volume. We denote the resulting quantity as the “convolved” power spectrum.

We follow the method presented in [277] to compute the convolved power spectrum
multipoles. First, we use the pair counting algorithm in nbodykit [106], which employs
the Corrfunc package [245], to obtain the pair counts of the random catalogue. In fig-
ure 6.1, we present the resulting window function multipoles, Ql(s) /

R 1

�1 dµRR(s, µ)Ll(µ) ⇡P
i
RR(si, µi)Ll(µi), of the BOSS DR12 galaxy samples in configuration space, for a set of

separations s. The z1 and z3 window function multipoles vanish on scales larger than ⇡ 2000
and 3000 h�1Mpc, respectively, and these correspond to the largest scales in the volume of
the BOSS galaxy samples. In this work, we ignore l = 10 or higher, as its contribution to the
convolution is negligible.

Next, we convolve the correlation function multipoles ⇠l(s) obtained from the theoretical
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model with the survey window function to get the convolved multipoles ⇠̂(s):

⇠̂0 =⇠0Q0 +
1

5
⇠2Q2 +

1

9
⇠4Q4 + ...

⇠̂2 =⇠0Q2 + ⇠2
h
Q0 +

2

7
Q2 +

2

7
Q4

i

+ ⇠4
h2
7
Q2 +

100

693
Q4 +

25

143
Q6

i
+ ...

⇠̂4 =⇠0Q4 + ⇠2
h18

35
Q2 +

20

77
Q4 +

45

143
Q6

i

+ ⇠4
h
Q0 +

20

77
Q2 +

162

1001
Q4 +

20

143
Q6 +

490

2431
Q8

i
+ ...

(6.7)

Figure 6.2 demonstrates that the e↵ects of the window function is mostly on large scales.
In this work, we choose the minimum wavenumber as kmin = 0.02hMpc�1 to minimize any
large-scale e↵ects of the window function.

6.4 Analysis methods

Covariance matrices

Fitting the theoretical model to the measured data requires a covariance matrix estimate,
and in this work we not only consider the covariance matrix from mock catalogues (section 6.4)
but also the hybrid covariance matrix which combines the analytic disconnected component
(6.4) and smoothed connected component (6.4).

Mock covariance matrix

We compute the covariance matrix from 1000 realizations of MD-PATCHY mock catalogues
(section 6.2):

Cov
h
Pl(ki), Pl0(kj)

i
=

1

N � 1

NX

↵=1

h
Pl,↵(ki)� P l(ki)

i
·
h
Pl0,↵(kj)� P l0(kj)

i
, (6.8)

where N is the number of mocks, and P l(k) = 1
N

P
N

↵=1 Pl,↵(k) is the mean power spectrum.
Hence, we obtain the covariances between multipoles (for l = 0, 2, 4) along with their
uncertainties. For all multipoles, the fitting range is 0.02 < k < 0.4 hMpc�1 and �k =
0.005 hMpc�1 (corresponding to Nbin = 76 for each l). We also apply the Hartlap correction
[112] to get an unbiased estimate of the true inverse covariance matrix.

Analytic disconnected covariance matrix

Following [166], we compute the analytic “disconnected” covariance matrix (more conven-
tionally, “Gaussian” covariance matrix) which takes into account the window e↵ect. This
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analytic method is free of sampling noise and therefore avoids numerical issues of the mock
covariance matrix.

Assuming the flat sky approximation, we write the ensemble average of the estimated
power spectrum as

⌦
P̂ (k)

↵
=

1

W0

Z

q

P (k � q)|W (q)|2 ' P (k)

W0

Z

q

|W (q)|2 (for k � q) = P (k), (6.9)

where W (x) ⌘ n̄gal(x)w(x) denotes the windows on the fields, with n̄gal(x) =
⌦
ngal(x)

↵
and

the weight w(x) which minimizes systematic e↵ects. This shows that we get the ensemble
average of the estimator P̂ by convolving the true power spectrum P with a window, and
P̂ is an unbiased estimate of P for scales much smaller than the window. We then split
the covariance Cov

⇥
P̂ (k), P̂ (k0)

⇤
=
⌦
P̂ (k)P̂ (k0)

↵
�
⌦
P̂ (k)

↵⌦
P̂ (k0)

↵
into the disconnected and

connected pieces:

Cov
⇥
P̂ (k), P̂ (k0)

⇤
= Covdisc

⇥
P̂ (k), P̂ (k0)

⇤
+ Covconn

⇥
P̂ (k), P̂ (k0)

⇤
. (6.10)

The disconnected covariance component Covdisc involves quadratic combinations of the follow-
ing window factors which modulate Gaussian and Poisson parts: W(q) =

R
x W(x)e�iq·x ⌘R

x W (x)2e�iq·x and S(q) =
R
x S(x)e�iq·x ⌘ (1 + ↵)

R
x n̄(x)w(x)2e�iq·x. We further define

the factor QW , QS and Q⇥ as the auto- and cross-correlations of W and S,

QW(q) ⌘W(q)W(q)⇤ =

Z

s

QW(s)e�iq·s,

QS(q) ⌘ S(q)S(q)⇤ =

Z

s

QS(s)e�iq·s,

Q⇥(q) ⌘W(q)S(q)⇤ =

Z

s

Q⇥(s)e�iq·s, (6.11)

and write the disconnected covariance as

Covdisc
⇥
P̂ (k), P̂ (k0)

⇤
⇡ 1

W2
0

n
P (k)P (k0)QW(k � k0)

+
⇥
P (k) + P (k0)

⇤
<
⇥
Q⇥(k � k0)

⇤
+ QS(k � k0)

o
+ (k0 $ �k0). (6.12)

We refer the reader to [166] for a complete and detailed derivation.
Figure 6.3 presents the 3 ⇥ 3 blocks of correlation matrices from mock catalogues (left

panel) and from the analytic method described in this section (right panel). Correlation
coe�cients are defined as

Corr(O, O
0
) =

Cov(O, O
0
)p

Cov(O, O) Cov(O0 , O0)
, (6.13)

where O 2 {P0(k), P2(k), P4(k)} and O
0 2 {P0(k

0
), P2(k

0
), P4(k

0
)}. [166] demonstrates that

the analytic Gaussian covariance matrix is in excellent agreement with the mock covariance
matrix, and this method is free of the sampling noise with much smaller computational cost,
compared to the mocks.
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Figure 6.3: 3 ⇥ 3 blocks of correlation matrices of the power spectrum multipoles, which visualize
the auto- and cross-correlations of P0, P2 and P4. Left : Mock correlation matrix from 1000 MD-
PATCHY z3 NGC mock simulations (section 6.4). Right : Analytic disconnected correlation matrix
for the z3 NGC sample (section 6.4).
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Figure 6.4: The first six principal components of the (3⇥ 3) blocks of Pl from 1000 MD-PATCHY
z3 NGC mock simulations, where l = 0, 2, 4. We only include up to four principal components for a
low-rank approximation, as the components beyond the fourth are noisy and do not contain much
broadband correlations. �i denotes the eigenvalue of the i-th eigenvector.

Modeling the connected pieces using PCA

The remaining connected pieces of the covariance matrix, which include Poisson, non-
Gaussian (trispectrum) and Gaussian (power spectrum) components, is more di�cult to
model analytically than the disconnected piece. However, an eigenmode decomposition of the
connected components shows that it is a low-rank matrix [111, 185, 274]. In this work, we
first obtain the connected parts from the MD-PATCHY mock simulations by subtracting the
disconnected parts from the mock covariance matrix and show that this empirical connected
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Figure 6.5: Left : we combine the analytic Gaussian covariance with the smoothed connected pieces
obtained from low-rank components with principal component analysis. Right : The di↵erence
between the mock and the hybrid covariance which includes the analytic disconnected and smoothed
connected covariances, normalized by the diagonal of the latter. Because the connected part is
smooth and has a low-rank approximation, we find that only the first four principal components are
needed to obtain a smooth estimate of the connected part, and the di↵erence between the mock
and its smooth estimate is clean.

piece is indeed a low-rank component with principal component analysis (PCA).
In Figure 6.4, we perform PCA on the (3⇥ 3) blocks of Pl, where l = 0, 2, 4, and show its

first six principal components. The principal components beyond the fourth component are
noisy and do not carry much broadband correlations, and therefore we only include up to
four principal components; therefore, the connected components can be well approximated
by a low-rank eigen-decomposition. The resulting smoothed connected covariance, combined
with the analytic Gaussian covariance, is shown on the left panel of Figure 6.5, and the right
panel shows that it achieves good agreement with the mocks.

Parameter estimation techniques

In this work, we use the following methods to obtain the parameter posterior distribution:
1) Maximum a posteriori (MAP) estimation and Laplace approximation, using the hessian
of the log posterior to obtain the inverse covariance matrix of the model parameters and 2)
MCMC sampling of the likelihood, assuming the hybrid covariance matrix with the smoothed
connected parts. In section 6.5, we find the best-fitting model parameters for each of the 1000
mock catalogues from MAP estimation and present the 1D histograms and 2D correlations
of the cosmological parameters of our interest. Section 6.6 summarizes the main results of
this work: BOSS DR12 RSD measurements of the growth of structure, and we obtain the
parameter posteriors using the Python module emcee [86]. [237] presents an optimization-
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Figure 6.6: Left : Maximum a posteriori (MAP) results for 1000 MD-PATCHY z3 NGC (blue)
and SGC (red) mock catalogues. We fit the monopole, quadrupole, and hexadecapole over the
wavenumber range 0.02 < k < 0.2 hMpc�1. 1D distribution of our f�8 fit results gives f�8 =
0.499 ± 0.038 and f�8 = 0.502 ± 0.058, for z3 NGC and SGC respectively. The true cosmology
indicates f�8 = 0.478, which is 0.4-0.5� away from the mean of our recovered values. Middle,
Right : 2D correlations of f�8 and b1�8 for 1000 MD-PATCHY z3 NGC (blue) and SGC (red) mock
catalogues. Vertical dashed line indicates the true cosmology, and solid contours show 1� and 2�

confidence regions.

based posterior inference method called EL2O and shows that the posterior distribution from
EL2O agrees with the MCMC results. Particularly, section 4.4 in [237] discusses how EL2O
can be e↵ective in galaxy clustering analyses. We refer the reader to [237] for more detailed
analysis about the comparison between EL2O and MCMC methods.

6.5 Model Performance

Tests on the MultiDark-PATCHY mocks

In [105], the accuracy and precision of the power spectrum model in section 6.3 are
extensively assessed by performing independent tests using several sets of mocks based on
high-fidelity, periodic N -body simulations and realistic BOSS DR12 CMASS mocks. To
further confirm that this model is unbiased and accurate enough to provide cosmological
parameter constraints of the BOSS DR12 sample, we fit our model to 1000 MD-PATCHY mock
catalogues and verify that we can retrieve the true cosmology, provided by the BigMultiDark
simulation.

Applying the analysis pipeline in section 6.4 to the mock catalogues, we obtain the
best-fitting parameters for each of the 1000 catalogues by first measuring the power spectrum
multipoles (l = 0, 2, 4) for each of the catalogues and obtaining the MAP estimate using
the L-BFGS algorithm. Figure 6.6 presents the MAP results for 1000 MD-PATCHY z3
NGC (blue) and SGC (red) mock catalogues, and the black dotted vertical line indicates
the expected parameter value from the true cosmology of the MD-PATCHY simulations.
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If we include up to kmax = 0.2 hMpc�1, we find that f�8 = 0.499 ± 0.038 for z3 NGC and
f�8 = 0.502 ± 0.058 for z3 SGC, so we recover the true cosmology (f�8 = 0.478) within 1�
with only modest mean biases of �f�8 of 0.5�.

Choice of kmax

We can further investigate whether the 0.4-0.5 � bias we observe in Figure 6.6 is caused
by the priors or by model misspecification, by comparing it to the analysis where we treat all
1000 mocks as a single dataset. In this case the MAP will be dominated by the likelihood
and priors can be ignored. We find f�8 = 0.478 for z1 NGC and f�8 = 0.490 for z3 NGC for
kmax = 0.2 hMpc�1, compared to the truth (f�8 = 0.484 for z1 and 0.478 for z3), both with
very small error of order 0.001. In both cases the mean has moved closer to the true value,
suggesting the prior is driving the MAP away from the true value, even if there is also some
small model misspecification for z3 NGC. If we repeat the analysis for kmax = 0.4 hMpc�1

we find f�8 = 0.498 for z1 NGC and f�8 = 0.497 for z3 NGC. Now the bias is larger, and
suggests more significant model misspecification.

To investigate this further, Figure 6.7 shows the power spectrum multipole measurements
of MD-PATCHY z1 and z3 NGC mock catalogues, along with the best-fit theory lines.
Measurements are averaged over 1000 realizations, and the errors are therefore significantly
smaller than those of the BOSS survey. Solid and dashed curves indicate convolved and
unconvolved best-fit theory curves, respectively. Comparing the upper panel figures (assuming
kmax = 0.4 hMpc�1) with the lower panel figures (kmax = 0.2 hMpc�1), we find that extending
the model to a higher kmax limit makes the model fit noticeably worse at low k: both monopole
and quadrupole fits with lower kmax have better fits for z1 NGC, and similarly monopole fit
has with lower kmax has a better fit for z3 NGC.

MD-PATCHY mocks are not based on a real N-body simulation, and it is unclear if the
galaxy catalogs and the resulting power spectra can be realized in an actual universe. For
this reason such comparisons against PATCHY have not been implemented elsewhere, and it
is unclear whether we should be concerned given the model is good against real simulations.
On the other hand, using 1000 mocks enables one to separate statistical fluctuations from
systematics extremely well. In other tests based on one or a few simulation volumes the
deviations of recovered cosmological parameters from the truth were within one statistical
deviation, in which case it is unclear whether this is a purely statistical e↵ect that can be
ignored, or it is a sign of model misspecification, and one must correct for it. As we are unable
to answer whether MD-PATCHY power spectra can represent an actual galaxy realization
in a real universe, we present both results. However, more caution should be taken when
extending to a higher kmax, and we argue that a consistent, reliable choice of kmax is one of
the major unresolved questions of the RSD analyses. It becomes increasingly di�cult to
obtain unbiased estimates as we push to higher kmax, simply because the fits are dominated
by the smallest errors which are close to kmax, but cosmology information is entirely extracted
by the low k asymptote of the fitted model: even a slight model misspecification at high k
can lead to a biased answer at low k. Moreover, since we have to fit more parameters to high
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Figure 6.7: Power spectrum multipole measurements (circular points) of MD-PATCHY z1 NGC
and z3 NGC mock catalogues and the best-fit theory models. We take 1000 realizations, and the
errors are therefore reduced by

p
1000. Solid and dashed curves indicate convolved and unconvolved

best-fit theory curves, respectively. The upper panel figures assume kmax = 0.4 hMpc�1, while
the lower panel assumes a lower kmax (0.2 hMpc�1 with vertical lines showing the corresponding
wavenumber limits to the fits. We find that extending the model to a higher kmax = 0.4 hMpc�1

limit makes the model fit worse at low k, and as a result an incorrect cosmology may be recovered.
We do not observe this issue for kmax = 0.2 hMpc�1.

k the choice of their prior distribution also a↵ects the fits: even a seemingly innocent flat
prior choices can project onto a significant bias in the cosmological parameters. Di↵erent
works choose di↵erent values, which may partially explain why results from di↵erent studies
are discrepant in terms of their f�8 measurements.

6.6 BOSS DR12 RSD measurements

In this section, we present the measurements of the BOSS DR12 galaxy power spec-
trum multipoles in Fourier space. In figure 6.8, we show the measured monopole P0(k),
quadrupole P2(k), and hexadecapole P4(k) of z1 and z3 galaxies in both NGC and SGC
patches, using the FFT-based galaxy power spectrum estimator described in section 6.3.
We then fit the RSD model presented in section 6.3 to the measured multipoles and find
that the power spectrum multipoles are accurately modeled, in agreement with [105]. In
our fits, we set the minimum wavenumber kmin to 0.02 hMpc�1 for all samples, in order to
minimize any large-scale e↵ects of the window function. As described in section 6.3, we fix
the AP distortion parameters to their fiducial values and constrain 11 model parameters
(f(ze↵), �8(ze↵), b1,cA , b1,sA , b1,sB , fs, fsB , hN>1,si, �c, �sA , f 1h

sBsB
), of which two are primarily of
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Figure 6.8: The measured galaxy power spectrum multipoles in Fourier space (circular points
with error bars) and the best-fit theory curves (solid lines) for BOSS DR12 z1 (Left panel) and
z3 (Right panel) samples. (We only show every other data points for simplicity.) We can fit the
model to the monopole (blue), quadrupole (red), and hexadecapole (green), over the wavenumber
range 0.02 � 0.4hMpc�1, with �k = 0.005, but the choice of kmax may a↵ect the cosmological
analysis moderately, as discussed in section 6.5. Following [39], we use a consistent definition of the
normalization term for both power spectrum and window function.

our interests: the growth rate f and the amplitude of matter fluctuations �8. The Planck
satellite provides a strong prior on f with the tight constraint of the matter density ⌦m [11],
and we therefore put the Planck 2018 prior on f in all subsequent analyses.

Figure 6.9, along with the table of f�8 constraints with varying kmax cuts, summarizes
the main results of our analysis. Fitting our RSD model to the measured BOSS DR12
multipoles (monopole, quadrupole, and hexadecapole) and marginalizing over all nuisance
parameters discussed in section 6.3, we obtain the following growth of structure constraints:
f�8(ze↵ = 0.38) = 0.489 ± 0.036 for z1 sample and f�8(ze↵ = 0.61) = 0.455 ± 0.026 for z3
sample, with kmax = 0.2 hMpc�1. In the table, we also provide the constraints as a function
of kmax: f�8(ze↵ = 0.38) = 0.488 ± 0.049 for z1 and f�8(ze↵ = 0.61) = 0.456 ± 0.040 for z3
with kmax = 0.1 hMpc�1, while f�8(ze↵ = 0.38) = 0.445 ± 0.022 for z1 and f�8(ze↵ = 0.61) =
0.447 ± 0.014 for z3 with kmax = 0.4 hMpc�1. For all results, we assume the full covariance
with the smoothed connected parts in section 6.4. The left panel of Figure 6.9 also presents
the constraints for b1�8: with kmax = 0.2 hMpc�1, we obtain b1�8(ze↵ = 0.38) = 1.320 ± 0.010
for z1 and b1�8(ze↵ = 0.61) = 1.278 ± 0.008 for z3 sample.

Additionally, we present our constraints in terms of the parameter S8 ⌘ �8(⌦m/0.3)�,
where � = dlnf�8/dln⌦m ' 0.78 · (1 � ⌦m(z)) [143]. For the galaxy samples considered
in this work and for Planck fiducial value of ⌦m we have � = 0.37 for z1 and 0.28 for z3,
respectively. We find S8 = 0.821 ± 0.037 and 0.824 ± 0.054 with kmax = 0.2 and 0.1 hMpc�1,
respectively, consistent with the Planck’s S8 = 0.832 ± 0.013 [11]. Extending to a higher kmax

of 0.4 hMpc�1, we get S8 = 0.786 ± 0.021, about 2� lower than the Planck constraint. In
section 6.5 we argued that extending the model to kmax of 0.4 hMpc�1 may lead to model
misspecification.
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Figure 6.9: Left : 1D and 2D posterior distributions of two selected parameters f�8 and b1�8 for all
galaxy samples with kmax=0.2 hMpc�1. Right : The best-fit f�8 values and their 1� uncertainties for
the BOSS DR12 sample in two di↵erent redshift bins (including both NGC and SGC sky patches).
We put the prior on f using the Planck 2018 prior for ⌦m [11]. For all results, we fit to the monopole,
quadrupole, and hexadecapole, assuming the full covariance with the smoothed connected parts, as
described in section 6.4.

Figure 6.10 compares our f�8 measurements to previous BOSS DR12 results in the
literature [215, 15, 131, 68, 157, 58, 148, 284, 285], along with the constraint assuming the
Planck 2018 ⇤CDM cosmology [11]. [15] divides the BOSS galaxies into three redshift bins
(z1, z2 and z3) and provides the “consensus” f�8 constraints by combining measurements
from seven companion papers. Our constraints are not in tension with the consensus analysis
(with kmax = 0.2 hMpc�1, 0.22� lower for z1 and 0.73� higher for z3) or with the Planck
2018 predictions (with kmax = 0.2 hMpc�1, 0.39� higher for z1 and 0.51� lower for z3), while
providing one of the tightest constraints on f�8 among recent works.

Figure 6.11 shows how di↵erent combination of dataset, wavenumber range, and covariance
matrices may a↵ect the cosmological analysis. With kmax = 0.2 hMpc�1, we obtain f�8 =
0.450 ± 0.030 for z3 NGC, assuming the full covariance including connected parts. Extending
kmax to 0.4 hMpc�1 tightens the constraint significantly, while shifting the best-fitting
parameter mean modestly (f�8 = 0.458 ± 0.018). The dotted curves in the left panel present
the constraint assuming the analytic disconnected covariance (f�8 = 0.453 ± 0.027 and
0.461 ± 0.015 for kmax = 0.2 and 0.4 hMpc�1, respectively), and we thus find that including
the connected parts inflates its standard deviation by 10-20%.

In the right panel of Figure 6.11, we show results of fitting only the monopole P0 and
quadrupole P2 to quantify the impact of including hexadecapole P4 on our constraints on the
growth of structure. With P0 and P2 only, we obtain f�8 = 0.452±0.034 and 0.460±0.023 for
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Figure 6.10: Comparison of f�8 constraints to previous BOSS DR12 measurements [215, 15, 131,
68, 157, 58, 148, 284, 285], along with the prediction assuming the Planck 2018 ⇤CDM cosmology
(black curve with grey shades) [11]. We show our main results as thick diamonds points, for two
kmax limits: 0.2 (sky blue points) and 0.4 hMpc�1 (dark blue points). Our results, Alam et al. [15],
Ivanov et al. [131], Chen et al. [58], and Kobayashi et al. [148] present measurements of f�8 for
z1 and z3 galaxy samples (ze↵ = 0.38 and 0.61, respectively), but for graphical purpose they are
plotted at di↵erent redshifts. Reid et al. [215], D’amico et al. [68], and Yuan et al. [284] show the
constraints on the CMASS sample at ze↵ = 0.57, 0.55 and 0.52, respectively, Lange et al. [157] takes
the galaxy samples at z = 0.25 and 0.4, and Zhai et al. [285] splits the galaxy sample into three
redshift bins at ze↵ = 0.25, 0.41, and 0.56.

kmax = 0.2 and 0.4 hMpc�1, respectively, and find that the best-fit parameter mean remains
consistent, while the standard deviation of f�8 increases by 15-30%, which is consistent
with [37]. Therefore, we include the hexadecapole P4(k) in our main analysis (presented
in Figure 6.9) because this improves RSD constraints significantly, as reported earlier in
[37], [96], and [105].

In Figure 6.12 and Figure 6.13, we study the sensitivity of cosmological analysis to adding
a fixed BAO template to the galaxy power spectrum model. Figure 6.12 shows the ratio of the
wiggle (PW) to the no-wiggle (PNW) poles of the BOSS DR12 z3 NGC galaxy power spectrum
using the best-fit cosmology; we use the fitting formula from [80] for BAO models. With
this ratio, we create a fixed template for BAO wiggles and subtract it from the multipole
measurements to get no-wiggle data. The left panel of Figure 6.13 shows z3 NGC multipole
measurements (circular points with error bars): full data with BAO wiggles included (top)
and data with BAO wiggles removed (bottom). Subsequently, we fit the theory model to both
datasets, full and no-wiggle, and compare their f�8 constraints. The right panel of Figure 6.13
shows that the model constraints for both samples. Fitting to kmax = 0.2hMpc�1, we obtain
f�8(ze↵ = 0.61) = 0.450 ± 0.030 and 0.459 ± 0.031 with and without BAO, respectively;
we find that removing BAO information does not shift the model parameter constraints
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Figure 6.11: f�8 constraints of the BOSS DR12 z3 NGC sample, varying dataset, wavenumber
range, and covariance matrices. Left : Constraints obtained with di↵erent covariances matrices in
section 6.4. Adding the connected parts (blue) to the analytic disconnected covariance (red) weakens
our constraints by 10-20%. We also show the impact of including wavenumbers in a wider range.
Dashed curves assume kmax = 0.2 hMpc�1, and extending it to 0.4 hMpc�1 (solid curves) improves
our constraints considerably. Right : Results obtained with the inclusion (green) or exclusion (orange)
of the hexadecapole to quantify its impact on f�8 constraints. Excluding the hexadecapole inflates
its standard deviation by 15-30%. For both results, we assume the full covariance matrix with the
connected part.
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Figure 6.12: The ratio of the wiggle (PW) to the no-wiggle (PNW) poles of the BOSS DR12 z3 NGC
galaxy power spectrum using the best-fit cosmology. The ratio for the monopole, quadrupole, and
hexadecapoles are shown in the left, middle, and right panels, respectively.

significantly and fixing the BAO information with the fiducial template only minimally a↵ects
the cosmology. This result suggests a simplified large-scale structure analyis where the BAO
information is completely independent of the de-wiggled power spectrum analysis, without a
need to compute their covariance from mocks.
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Figure 6.13: Left : (Top panel) Power spectrum multipole measurements of the BOSS DR12 z3
NGC sample with BAO wiggles. Solid curves indicate the best-fit theory model, convolved with the
window function (PCONV). Dashed and dotted curves indicate best-fit unconvolved (PUNCONV) and
linear (PLIN) theory models, respectively. (Bottom panel) We take the BAO wiggle template from
figure 6.12 and subtract it from the measured data so that we can get the “no-wiggle” measurements.
All best-fit theory lines also assume the models without BAO wiggles. Right : The model constraint
with the full power spectrum and the no-wiggle fit with the fixed fiducial BAO template. Fitting to
kmax = 0.2hMpc�1, we obtain f�8(ze↵ = 0.61) = 0.450 ± 0.030 and 0.459 ± 0.031 with and without
BAO, respectively. Therefore, we argue that fixing the BAO information with the fiducial BAO
template does not a↵ect the cosmology considerably, which eliminates the need to do a joint power
spectrum BAO covariance analysis on mocks.

6.7 Conclusion

We have presented the analysis of the SDSS-III BOSS DR12 galaxy sample, employing
the redshift-space galaxy power spectrum model of [105], which can accurately model the
monopole, quadrupole, and hexadecapole down to small scales. With the Planck 2018 prior on
the growth rate f , we obtain 7.4% and 5.7% constraints on f�8 for BOSS DR12 low-redshift z1
(ze↵ = 0.38) and high-redshift z3 (ze↵ = 0.61) samples, respectively, fitting to k = 0.2 hMpc�1.
The combined error is 4%. Extending the wavenumber range to kmax = 0.4 hMpc�1, we find
significant improvement in our constraint: 4.9% and 3.1% constraints on f�8 for z1 and z3
samples, respectively, which correspond to an overall 2.7% constraint. However, tests on
MD-PATCHY mock catalogues suggest that the model fit to kmax > 0.2 hMpc�1 may not
be reliable, and more caution should be taken when extending to smaller scales. This is
further supported by strong running of f�8 with kmax for z1 from 0.2 to 0.4 hMpc�1 seen



CHAPTER 6. RSD MEASUREMENTS FROM BOSS GALAXY POWER SPECTRUM
USING THE HALO PERTURBATION THEORY MODEL 118

in Table 6.9, in contrast to little or no running from 0.1 to 0.2 hMpc�1. We argue that a
consistent choice of kmax is the main challenge of RSD analyses. With respect to the Planck
2018 ⇤CDM cosmology predictions or the DR12 final consensus results, we find no tension in
our f�8 constraints for kmax = 0.2 hMpc�1, while being 2 sigma lower for kmax = 0.4 hMpc�1.

Figure 6.10 presents a review of literature. Most of the measurements are below Planck,
and this has been interpreted as evidence of �8 tension with Planck from BOSS RSD (e.g,
[130, 204, 292, 59]). However, all the analyses are based on the same underlying data (galaxy
positions and redshifts), and one cannot simply average these di↵erent analyses. The spread
of the results is indicative of either model misspecification of some or all of the models, of the
influence of the choice of priors, or of the choices made in the analysis, such as the scale cut
kmax in power spectrum analysis, power spectrum versus correlation function versus wedges
analysis, as well as several additional choices. It is perhaps disturbing that the spread is so
large given that the underlying data are the same: at one end of the spectrum our results
agree with Planck within 0.3 sigma. At the other end of the spectrum some analyses disagree
with Planck at 3-4 sigma. These di↵erences need to be understood so that we can establish
the existence or absence of �8 tension in cosmology.

We developed the hybrid covariance matrix which combines the analytic disconnected (or
more conventionally, “Gaussian”) part [166], which accounts for the window function e↵ect,
and simulation-based connected part, smoothed by including up to four principal components.
We demonstrate that the di↵erence between the mock covariance and the hybrid covariance is
clean, and the hybrid covariance is free from noise and hence more appropriate to be used in
the likelihood analysis. Additionally, we show that using the disconnected covariance matrix
underestimates the cosmological parameter constraints by 10-20%.

Furthermore, we provide growth of structure constraints without BAO information by
constructing a fixed template for BAO wiggles and subtracting it from the BOSS DR12
multipole measurements. Comparing the constraints with and without BAO wiggles, we
conclude that removing BAO information does not noticeably shift the cosmological parameter
constraints and hence fixing BAO information with the fiducial template a↵ects the cosmology
only minimally. This method enables combining the power spectrum and BAO likelihoods
independently, rather than computing their covariance matrix with mock simulations.

Finally, we note that the galaxy power spectrum model and analysis pipeline used in
this work can be useful for extracting cosmological information from the next-generation
galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument (DESI) [72] and
the Euclid [158] and Roman [76] missions. DESI Emission Line Galaxy sample is expected
to provide considerably larger constraining power, as its bias is lower and satellite fraction
higher than the BOSS high-redshift z3 sample [72].
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Chapter 7

Fundamental Plane of BOSS galaxies:
Correlations with galaxy properties
and impact on RSD measurements.

Fundamental plane of elliptical galaxies can be used to predict the intrinsic size of galaxies
and has a number of plausible application to study cosmology and galaxy physics. In this
chapter, we present a detailed analysis of the fundamental plane of the SDSS-III BOSS LOWZ
and CMASS galaxies. For the standard fundamental plane, we find a strong redshift evolution
for the mean residual and show that it is primarily driven by the redshift evolution of the
surface brightness of the galaxies. After correcting for the redshift evolution, the FP residuals
are strongly correlated with the galaxy properties and some observational systematics. We
show that the variations in the FP between the central and satellite galaxies that has been
observed in the literature can primarily be explained by the correlation of the FP with the
galaxy luminosity. We also measure the cross correlations of the FP residuals with the galaxy
density field. The amplitude of the cross correlations depends on the galaxy properties and
environment with brighter and redder galaxies showing stronger correlation. In general,
galaxies in denser environments (higher galaxy bias ) show stronger correlations. We also
compare FP amplitude with the amplitudes of intrinsic alignments of galaxies, finding the
two to be correlated. Finally, using the FP residuals we also study the impact of intrinsic
alignments on the constraint of growth rate using redshift space distortions. We do not observe
any significant trends in measurements of the growth rate f as function of the amplitude of
FP-density correlations, resulting in null detection of IA e↵ects on RSD measurements. 1

1This chapter is taken from “Fundamental Plane of BOSS galaxies: Correlations with galaxy properties,
density field and impact on RSD measurements,” Singh S., Yu B., and Seljak B. (arXiv: 2001.07700).
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7.1 Introduction

Fundamental Plane (FP) of galaxies, an empirical relation between the size, surface bright-
ness and the velocity dispersion of early type galaxies, has been proposed as a cosmological
probe to estimate distances to galaxies, galaxy velocities [256], weak gravitational lensing
magnification [32], doppler magnification of galaxies [52], impact of intrinsic alignments on
galaxy selection functions [119]; in addition to its value as probe for galaxy physics.

For elliptical galaxies, a relation between the size, surface brightness and velocity dispersion
can be derived from the virial theorem assuming constant mass to light ratio for the galaxies.
Such relations have been observed for a long time [eg. 77, 74, 31, 227, 228], though the
observed FP deviates significantly from the virial theorem predictions as the galaxies do not
follow the simplified underlying assumptions. Furthermore FP has been observed to be a
function of galaxy properties [eg. 235, 187, 228] and their environment [71, 135, 228].

The cosmological prowess of the FP arises from its ability to provide an estimate of the
true intrinsic size of the galaxies (with some scatter). The observed galaxy size is a↵ected by
several processes, including estimates of cosmological distances, peculiar motion of galaxies
(since we estimate distance through redshift), relativistic e↵ects including the doppler shift,
gravitational lensing and the e↵ects of projecting three dimensional shapes onto the plane of
the sky. Once the intrinsic size of a galaxy is known, the di↵erence between the observed
and the true size of the galaxies (hereby size residual or FP residual) can be used to study
several of these e↵ects. The size residuals can provide a (noisy) estimate of the peculiar
velocity of individual galaxies which can be used to map the cosmological flows [256]. Cross
correlations of the size residuals with the foreground galaxies (or clusters) can be also be used
to measure the galaxy-lensing cross correlations [32, 128]. [52] also suggested measuring the
dipole of the galaxy-size residual cross correlations to estimate the doppler magnification of
the galaxies. [119] pointed out that due to the radial intrinsic alignment of galaxies and the
projection e↵ects, the size residuals are correlated with the local galaxy environment and if
the selection function for a galaxy survey is sensitive to such residuals, it can introduce biases
into measurements of redshift anisotropy of the galaxy auto correlations. Such an e↵ect was
tentatively detected by [180] using the fundamental plane of SDSS-III BOSS galaxies.

However, as pointed out earlier, the FP depends on the galaxy properties and their
environment [eg. 71, 235, 187, 135, 228]. [135] detected the cross correlations between the
FP residuals and the galaxy density field implying that the FP residuals are influenced by
the galaxy environment. They further detected the dependence of the FP residuals on the
galaxy type, with the brightest galaxies in groups having larger sizes than predicted by the
FP while the satellite galaxies have smaller sizes. Such dependence of the FP residuals on
the galaxy environment complicates the cosmological applications of the FP and detailed
studies are required to understand such dependencies and avoid possible contamination to
the cosmological inferences.

In this work, we extend the FP analysis from [135] to the BOSS LOWZ and CMASS
sample galaxies. We estimate the fundamental plane for these samples as well as for sub-
samples using splits based on color, luminosity and environment of the galaxies. We also
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study the cross correlations between FP residuals and galaxy density field and compare these
cross correlations to those expected from the e↵ects of intrinsic alignments as pointed out by
[119]. Finally we also perform a detailed study of contamination to the galaxy clustering
measurements from the radial alignments, similar to the analysis by [180], in an attempt to
confirm their results.

Throughout this work we will use flat ⇤CDM model with the Planck 2015 [208] cosmology
with h = 0.677, ⌦m = 0.307. Unless mentioned otherwise, distances are measured in unit of
comoving h�1Mpc. To compute the matter power spectrum, we use CLASS code [159] with
halofit [261] prescription for the non-linear matter power spectrum. For redshift-space galaxy
power spectrum calculations, we employ the FFT-based algorithm implemented in nbodykit

[106], and use pyRSD [105] to compute the theoretical predictions of the redshift-space power
spectrum of galaxies and run a likelihood analysis to find the best-fit theory model parameters.

7.2 Formalism

In this section we describe our formalism used in the estimation of fundamental plane
and the residuals over it (size or FP residuals); the estimators and models used to study the
cross-correlation between FP residuals and the density field; the power spectra and modeling
of the redshift space galaxy clustering.

Fundamental Plane

To estimate the fundamental plane of galaxies (FP), we closely follow the methodology
from [227] and [135]. We define the FP as

log R0 = a log �0 + b log I0 + c +
NzX

i=1

diz
i

cor
, (7.1)

where R0 is the physical radius of the galaxy, I0 is the surface brightness and �0 is the velocity
dispersion. Following [135], we also introduce polynomial terms dependent on the redshift of
the galaxies. zcor is the redshift of the galaxies in the CMB rest frame (correcting for the
motion of the earth with rest to CMB rest frame) and is estimated as detailed in [227].

The physical size of the galaxy, R0, is measured as (in units of kpc/h)

rcor = r0
p

qb/a (7.2)

R0 = DA(zcor) tan (rcor)⇥ 1000 (7.3)

where r0 is the angular galaxy size and qb/a is the axis ratio which is used to measure the
circularized galaxy size, rcor [31, 227], with both r0 and qb/a measured using the de Vaucouleurs
profile. DA(z) is the angular diameter distance in units of Mpc/h.
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The surface brightness, I0, is computed as

log I0 = � 1

2.5


Mke + 5 log

✓
DL

DL0

◆�
� log(2⇡R0) + 4 log(1 + zcor) (7.4)

Mke is the k + e corrected absolute magnitude as defined in [241], DL
DL0

is the correction to
the luminosity distance due to redshift correction (DL is estimated using zcor while DL0 is
estimated using measured redshift in observer frame). 4 log(1 + zcor) factor corrects for the
cosmological dimming of the surface brightness [268].

We also correct the velocity dispersion, �0, for the e↵ects of the fiber size (di↵erent
correction for BOSS and SDSS spectra) as [227]

�0 = �

✓
rfiber
rcor/8

◆0.04

(7.5)

where rfiber = 100 for BOSS and rfiber = 1.500 for SDSS spectrographs. We identify the
spectrograph from the date the spectra for the given galaxy was obtained and then apply the
relevant correction.

FP residual for a galaxy is defined in terms of the fractional di↵erence between the
measured size and the size predicted using FP,

�Nz = ln
R0

RFP,Nz

= log R0 � a log �0 � b log I0 � c�
NzX

i=1

diz
i

cor
, (7.6)

where Nz refers to the order of polynomial used for fitting the FP as defined in eq. (7.1). We
find that the upto third order polynomials in z in eq. (7.1) are not necesasrily su�cient to
fully null the redshift evolution of the �. To further reduce the e↵ects of redshift evolution,
we also fit the FP in redshift bins and will denote � from such fits as �zb. We typically use
bins with width �z = 0.02 for such fits to obtain �zb

Nz
for all galaxies and will subsequently

carry out the following analysis in the same manner as � (i.e. ignoring z binning).
[180] ignored the velocity dispersion measurements in their FP analysis. To study the

influence of velocity dispersion, we also define

log R0 = bI log I0 + cI +
NzX

i=1

dI

i
zi (7.7)

�I

Nz
= ln

R0

RI

FP,Nz

(7.8)

where we used superscript I to denote that the FP is only dependent on surface brightness
and not the velocity dispersion. We note that this FP definition is not strictly equivalent
to the FP definition used by [180] who defined the FP using magnitudes instead of surface
brightness.
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Galaxy-Galaxy correlations

Estimator

To compute the galaxy-galaxy cross-correlation function between two di↵erent samples,
we use the Landy-Szalay estimator [156, 242]

⇠gg(rp, ⇧) =
SD �DRS � SRD + RSRD

RSRD

, (7.9)

where rp is the projected separation for a pair of galaxies, ⇧ is the line of sight separation,
D and S refers to the dataset (galaxies) being cross correlated (D = S in case of auto
correlations) and RS and RD refer to the set of random points corresponding to S and D
samples. Product XY (eg. SD) refers to the binned weighted count of pairs across two
samples with distances that are within the (rp, ⇧) range of the given bin. The weight of a
pair is the product of the galaxy weights that are described in section 7.3.

The projected correlation function is then obtained by integrating ⇠gg over the bins in ⇧

wgg(rp) =
⇧maxX

�⇧max

�⇧ ⇠gg(rp, ⇧). (7.10)

Large values of ⇧max are required to reduce the impact of redshift space distortions (RSD)
on measured correlation function, even though measurement noise increases with larger ⇧max

[242]. To reduce the impact of redshift space distortions on the projected correlations, we use
⇧max = 100h�1Mpc, with 20 bins of size �⇧ = 10h�1Mpc.

Separately, to analyze the line of sight anisotropy, we also compute the multipoles of the
correlation function as

⇠gg,2`(s) =
2` + 1

2

Z
dµ⇠gg(s, µ)L2`(µ)dµ (7.11)

where s =
p

r2
p
+ ⇧2 is the separation between pair of galaxies in the redshift space and

µ = ⇧/s.

Modelling

The galaxy cross correlation function between samples S and D in redshift space is given
by

⇠gg(rp, ⇧) =

Z
dzW (z)bg,S(s, z)bg,D(s, z)rgg(s, z)

Z
d2k?dkz

(2⇡)3

⇥ P��(~k, z)(1 + �Sµ2
k
)(1 + �Dµ2

k
)ei(~rp.

~k?+⇧kz). (7.12)

where s =
p

r2
p
+ ⇧2, bg is the galaxy bias and is in general a function of redshift and scale,

P�� is the matter power spectrum. The Kaiser factor (1 + �µ2
k
) accounts for the e↵ects of
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redshift space distortions [139] with � = f(z)/bg, f is the growth function. We also introduced
the cross correlation coe�cient, rgg(s, z), between the two samples of galaxies but we will
assume that rgg(s, z) = 1 on all scales used for fitting the model (rp > 5h�1Mpc). W (z) is
the redshift weight accounting for the e↵ective contributions from di↵erent redshifts to the
measured correlation function and is given by [177]

W (z) =
p(z)2

�2(z)d�/dz

Z
p(z)2

�2(z)d�/dz
dz

��1

. (7.13)

p(z) is the redshift probability distribution for the galaxy sample.
To compute the projected correlation function, we will assume a scale independent bias,

bg and use the e↵ective redshift, z, for our sample computed by integrating over weights
W (z). We then integrate over the correlation function multipoles to obtain the projected
correlation function as [22]

wgg(rp) =
2X

`=0

2

Z ⇧max

0

d⇧⇠gg,2`(r)L2`(⇧/r) (7.14)

where L2` are the Legendre polynomials, prefactor 2 arises because we assume symmetry
around ⇧ = 0 and change the limits of integration. ⇠gg,2`(r) are the correlation function
multipole given as

⇠gg,2`(r) = (�1)`↵2`(�(z))
bg,Sbg,D

2⇡2

Z
dkk2P��(k)j2`(kr) (7.15)

where j2` are the spherical bessel functions. We use the package mcfit [166] to compute the
correlation function multipoles. The coe�cients ↵2`(�) are given by [22]

↵0(�) = 1 + 1/3(�S + �D) + 1/5�S�D (7.16)

↵2(�) = 2/3(�S + �D) + 4/7�S�D (7.17)

↵4(�) = 8/35�S�D (7.18)

Galaxy-FP residual cross correlations

Estimator

To compute the cross correlations between the galaxy density and the FP residuals, we
use

⇠g�(rp, ⇧) =
�SD � �SRD

RSRD

, (7.19)

�S is the FP residuals for sample S , D is the sample of galaxies used as galaxy density
tracers and RS, RD are the corresponding randoms sample. �SD e↵ectively refers to the pair
counts, weighted with FP residuals �,

�SD(rp, ⇧) =
X

S,D

�SwSD. (7.20)
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The
P

S,D
is over all the galaxy pairs with separation within the (rp, ⇧ ) bin limits, wSD is

the weight assigned to the pair of galaxies and �S is the FP residual from sample S. S�RD

measures the same quantity with density tracer sample being replaced by the random points.
Randoms subtraction can remove potential additive systematics that donot correlate with
underlying galaxy density and also leads to optimal covariance [242].

We caution that this estimator can be biased if the h�i is not zero, even after including
the randoms subtraction. This is because the � is estimated at the position of the galaxies
and is hence weighted by the galaxy density field, which results in contribution from the
galaxy clustering in case the h�i is not zero, i.e.

⇠g�(r) =
⌦⇥

(�0 + h�i)(1 + �S
g
)
⇤
�D
g

↵
(r)

=
⌦
�0(1 + �S

g
)�D

g

↵
(r) + h�i

⌦
�S
g
�D
g

↵
(r) (7.21)

where we used �0 to explicitly define the mean zero quantity. Thus before computing the
correlation function, we subtract out h�i even though FP definition and our fitting procedure
ensures that it is very small.

The projected correlation function wg� is then obtained by integration over line of sight
as in eq. (7.10) and the multipoles are obtained as in eq. (7.11).

Modelling

Following [119], we assume that the deviations from fundamental plane are correlated
with the tidal field due to the e↵ects of intrinsic alignments of galaxy shapes, i.e. galaxy
shapes are aligned with tidal field in the three dimensions and the projection e↵ects then
lead to correlations between tidal field and the projected shape and size of galaxies. Galaxy
sizes are a↵ected by the intrinsic alignments along the line of sight. � can then be described
in terms of matter field as

� = �A�⇣


rzrzr�2 � 1

3

�
�m (7.22)

� = A�⇣


1

3
� k2

z

k2

�
�m (7.23)

� = A�

⇣

3

⇥
1� 3µ2

⇤
�m (7.24)

where we used ⇣ = C1⇢crit⌦m

D(z) and µ~k
= kz/~k. Our sign convention implies that for A� > 0

galaxies in higher overdensities (larger �m) have larger size. Following convention of intrinsic
alignments studies [eg. 134], we will use C1⇢crit = 0.0134.

We note here that in general it is plausible that additional galaxy environment e↵ects also
a↵ect the projected galaxy sizes, in which case the deviations from the fundamental plane
can be written in terms of the trace of the tidal field, � / r2� / �m. This formalism also
results in the similar form for � as in eq. (7.24), but with di↵erent constants and di↵erent
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line of sight anisotropy term as compared to (1� 3µ2). Such a model was assumed by [135]
when modeling �. We will use the form in eq. (7.24) to fit the measurements of projected
correlation functions (where line of sight anisotropy has negligible e↵ect due to large line of
sight integration) and study the deviations from the model by comparing A� to the amplitude
of intrinsic alignments of galaxies AIA, where the expectation under the model is A� = AIA/2
[119]. The primary di↵erence between our model and that of [135] is that fitted values of A�

are rescaled by a constant ⇣/3 = C1⇢crit⌦m/3D(z).
To check for the impact of the (1�3µ2) term, we will also compute the multipole moments

of the galaxy-� cross correlations and we will replace this factor with (1 + ��µ2), i.e.

� = A�

⇣

3

⇥
1 + ��µ

2
⇤
�m (7.25)

where �� is a free parameter to be fit, with fiducial value set to �� = �3.
The cross correlation function of � with galaxies in redshift space is given by

⇠g�(rp, ⇧) =A�

⇣

3

Z
dzW (z)bg(r, z)rcc(r, z)

Z
d2k?dkz

(2⇡)3
P��(~k, z)(1 + �gµ

2
k
)(1 + ��µ

2
k
)ei(~rp.

~k?+⇧kz), (7.26)

where rcc(r, z) is the cross correlation coe�cient between galaxies and matter. In this work,
we will assume rcc(r, z) = 1 on the scales used to fit the model (rp > 5h�1Mpc). Note that
Kaiser factor for RSD (1 + �µ2

k
) is di↵erent from the galaxy clustering as we assume that

only galaxy positions are a↵ected by RSD and � carries the (1 + ��µ2) term (we are ignoring
the fact that the FP residuals are a↵ected by RSD. RSD e↵ects on � scale as �� / v

H(z)D(z) ,

v is galaxy velocity and D(z) is the line of sight distance to the galaxy).
The projected correlation function and multipoles are then computed using similar

transforms as in galaxy clustering, eq. (7.14) and eq. (7.15). When computing the projected
correlation function, wg�, we fix �� = �3, while when fitting the multipoles �� is a free
parameter.

As shown in eq. (7.21), since the FP residuals are sampled at the position of the galaxies,
the measured ⇠g� = �S(1 + �S

g
)�D

g
is weighted by the galaxy density and thus includes higher

order terms [see 46, for detailed study of this e↵ect in measurements of intrinsic alignments
of galaxies]. Detailed modeling of this e↵ect is outside the scope of current work and we will
ignore it in our models.

Galaxy-Intrinsic shear

We follow [241] and [244] for the measurements and modeling of intrinsic alignments. We
only briefly describe the methodology here and refer the reader to [241] for more details.
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Estimator

The cross correlations between galaxy shapes and the galaxy density field are measured as

⇠g+(rp, ⇧) =
S+D � S+RD

RSRD

, (7.27)

where S+D refers to the summation over the radial shear, �+,S, measured in the coordinate
frame defined by the pair of galaxies

S+D =
X

S,D

�+,SwSD. (7.28)

where �+,S is positive for radial alignment and negative for tangential alignments.
The projected correlation function wg+ is obtained by integration over line of sight as in

eq. (7.10)

Modeling

We assume the nonlinear-alignment model [117] for modeling the alignment signal

⇠g+(rp, ⇧) =AI⇣

Z
dzW (z)bg(r, z)rcc(r, z)

Z
d2k?dkz

(2⇡)3
⇥ P��(~k, z)(1 + �µ2

k
)(1� µ2

k
)ei(~rp.

~k?+⇧kz), (7.29)

with the line of sight anisotropy 1� µ2
k

accounting for the projection e↵ects [see 244, for a
detailed analysis]. We will only use the projected correlation functions for intrinsic alignments
where these terms have negligible e↵ect.

Redshift-space galaxy power spectrum

The model for the galaxy power spectrum in redshift space is based on [105]. We only
briefly summarize the formalism here, referring the reader to [105] for more details.

In this model, we follow the halo model formalism in [193] and separately model the 1-halo
(correlations of galaxies in the same halo) and 2-halo (correlations of galaxies in di↵erent
halos) contributions to the clustering of galaxies. To achieve such modeling, it is convenient
to decompose the galaxy density field in redshift space into contributions from centrals and
satellites:

�g(k) = (1� fs)�c(k) + fs�s(k), (7.30)

where fs is the satellite fraaction, and �c and �s are the density field of centrals and satellites,
respectively. The total galaxy power spectrum in redshift space, in turn, can be modelled as:

Pgg(k) = (1� fs)
2Pcc(k) + 2fs(1� fs)Pcs(k) + f 2

s
Pss(k), (7.31)



CHAPTER 7. FUNDAMENTAL PLANE OF BOSS GALAXIES: CORRELATIONS
WITH GALAXY PROPERTIES AND IMPACT ON RSD MEASUREMENTS. 128

where P cc, P cs, and P ss are the centrals auto power, central-satellite cross power, and satellite
auto power, respectively. We then separate 1-halo and 2-halo terms by further decomposing
the galaxy sample into the following four subsamples: centrals without satellites (denoted as
“type A” centrals), centrals with satellites (“type B” centrals), satellites with no other satellites
(“type A” satellites), and satellites with other neighboring satellites (“type B” satellites). We
also account for the Fingers-of-God (FoG) e↵ect when modeling 1-halo and 2-halo terms in
redshift space, by separately modeling the FoG e↵ect from each subsample.

The model for the dark matter halo power spectrum in redshift space is based on the
distribution function expansion [236, 191, 192, 272, 273, 45], and Eulerian perturbation theory
and halo biasing model is applied to model the halo velocity correlator terms [273]. The
results of N-body simulations are also used to calibrate key terms in the model.

The resulting galaxy power spectrum model depends on 13 physically-motivated parame-
ters, which include: the Alcock-Paczynski (AP) e↵ect parameters ↵||, ↵?, the growth rate f
and the amplitude of matter fluctuations �8 evaluated at the e↵ective redshift of the sample
ze↵ , the linear bias of the type A centrals and type A and B satellites [b1 cA , b1 sA , b1 sB ], the
satellite fraction fs, the fraction of type B satellites fsB , the mean number of satellite galaxies
in halos with more than one satellite hN>1,si, the centrals FoG velocity dispersion �c, The
type A satellites FoG velocity dispersion �sA , and normalization nuisance parameter for the
1-halo amplitude f 1h

sBsB
. We follow the notations introduced in [105]. In this work, we fix the

AP parameters to their fiducial values, 1.
We measure the clustering of galaxies using the multipole moments of the power spectrum

Pl(k). In this work, we take the FFT-based algorithm presented in [104], built upon the
methods proposed in [41] and [234], and this allows fast evaluation of the estimator in [279].
Using the spherical harmonic addition theorem to expand the Legendre polynomials into
spherical harmonics, we write the multipole estimator as:

Pl(k) =
2l + 1

A

Z
d⌦k

4⇡
F0(k)Fl(�k), (7.32)

where ⌦k is the solid angle in Fourier space, Ll is the Legendre polynomial, w is the weight,
A is the normalization defined as A ⌘

R
dr[n(r)w(r)]2, and

Fl(k) =

Z
drF (r)eik·rLl(k̂ · r̂)

=
4⇡

2l + 1

lX

m=�l

Ylm(k̂)

Z
drF (r)Y ⇤

lm
(r̂)eik·r.

(7.33)

The weighted galaxy density field F (r) is given by

F (r) =
w(r)

A1/2
[n(r)� ↵ns(r)], (7.34)

where n and ns are the number density field for the galaxy and randoms catalogs respectively,
and the factor ↵ normalizes ns to n.
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IA e↵ects on RSD

To account for the e↵ects of intrinsic alignments of galaxies on the selection functions of
galaxies and hence the RSD measurements, we follow the formalism in [119, 180], defining
the bias in observed galaxy density as:

b�g(x, �) = �g(x) + ✏(�(x)) (7.35)

To derive the error ✏, we assume that the probability of a galaxy in the observed sample, O,
is given as

P (O|T, �) = P (T )P (�)(1 + S(�)) (7.36)

Where T is the target sample, � is the FP residual for the given galaxy and S(�) is the size
dependent selection function. We can also write the number of galaxies with the observed
value of � as

N� =
dN

d�
= NP (�)(1 + S(�)), (7.37)

N is the total number of galaxies. Following the ansatz in [119, 180], we assume that the
some galaxies are missed when they are aligned with the plane of the sky, i.e. have positive
�. Under this assumption and assuming that the intrinsic distribution � is symmetric within
T , we can write

S(�) =
N� �N��

N� + N��

(7.38)

where N�� is the number of galaxies with a negative value of �. Note that the mean of S(�)
is zero by construction. S(�) is also zero if there are no size dependent selection e↵ects, since
we assume the � distribution to be symmetric (N� = N�� when no size dependent selection).

Galaxies have some random � values, �R, due to intrinsic variations in galaxy properties
as well as random projections. The additional �I sourced by intrinsic alignments acts as a
small perturbation on top of the �R (we assume �I << �R). We can then write the error ✏
that is relevant for cosmological inferences as

✏(�R(x) + �I(x)) = S(�R) + �I

@S(�)

@�
|�=�R (7.39)

Since �R and hence S(�R) does not correlate with the density field, the relevant part of ✏
that correlates with the density field can be written as

✏(x) ⇡ �A�⇣


1

3
� µ2

�
�m(x) (7.40)

where we used the relation of � to tidal field as defined in eq. (7.24) and defined the ensemble
response � as

� =

⌧
@S(�)

@�

�
=

1R
d�N�

Z
d�N�

@S(�)

@�
(7.41)
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The error in the growth rate and galaxy bias measurements is given by

�f = bf � f0 = ��A�⇣ (7.42)

bbg = bg,0 +
1

3
�A�⇣ = bg,0 �

1

3
�f (7.43)

We will determine � from the distribution of FP residuals. We note that since the datasets
we will be using are already a↵ected by the selection e↵ects, S(�), this can introduce a bias
the estimations of the � (the mean of � distribution is shifted which biases S). We will
work under the assumption that the selection e↵ects are small and hence the shift in the
mean of the distribution and the bias in � is also small. A� will be determined using the
cross correlations between the FP residuals and the galaxy density field and ⇣ is a cosmology
dependent constant. We will also compute the variations in f and b from our RSD analysis
and these measurements will allow us to test the eq. (7.42) and eq. (7.43).

In section 7.4, we will also split the galaxy sample into two subsamples according to the
sign of FP residuals, following [180]. These subsamples are expected to have almost identical
� values: �+ ⇡ ��, where + and � indicates samples with positive and negative FP residuals,
respectively. That is because @S(�)/@� is mirrored across the y-axis. Therefore, we expect
that the growth rate measurements between the two FP residual subsamples is consistent:
�f+ ��f� = �(�+ � ��)A�⇣ ⇡ 0, unlike the model assumed by [180].

Covariance matrices

For the correlation function measurements, we compute the covariance matrices using
Jackknife resampling method by splitting the sample into 100 approximately equal area
patches (68 patches in North Galactic Cap (NGC) and 32 in South Galactic Cap (SGC) of
BOSS data described in section 7.3). Since the jackknife covariances are noisy, leading to
biased inverse matrix, we also apply the Hartlap correction [112] when computing the inverse
covariance matrix used in the likelihood functions.

For the multipoles in Fourier space, we assume the theoretical Gaussian covariance,
following [97]:

C`1`2
(ki, kj) =

2(2⇡)4

V 2
ki

�ij

Z
ki+�k/2

ki��k/2

�2
`1`2

(k)k2dk, (7.44)

where Vki = 4⇡[(ki + �k/2)3 � (ki ��k/2)3)3]/3 is the volume of the shell in k-space. When
the expected mean number density n̄(z) is varying, the per-mode covariance �2

`1`2
(k) is given

by [279]:

�2
`1`2

(k) =
(2`1 + 1)(2`2 + 1)

A2

Z 1

�1

dµ

Z

Vs

dr n̄4(r)w4(r)

⇥
P (k, µ, z) + n̄�1(r)

⇤2 L`1
(µ)L`2

(µ),

(7.45)

where the normalization terms A is defined as A ⌘
R

dr[n̄(r)w(r)]2, following the notations
in section 7.2.
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For the galaxy subsamples we define in section 7.3, we compute their mean number
densities in order to obtain correct covariance matrices using eq. 7.44.

7.3 Data

In this work we use the LOWZ (0.16 < z < 0.43) and CMASS (0.43 < z < 0.7)
spectroscopic samples from SDSS-III BOSS [44, 50, 12, 70, 249] data release 12 [DR12; 16],
which are selected using the imaging data from SDSS-I and SDSS-II surveys. The SDSS
survey [99, 281, 121, 132, 88, 250, 81, 98, 219, 257] [174, 205, 270, 2, 13, 199]. To fit the
FP, we also obtain the photometric measurements for our galaxies, specifically the Radii,
axis ratios and magnitudes from de Vaucouleurs fits from the SDSS photometric catalog.
The magnitudes are corrected for the extinction and we also apply k-corrections using the
formalism of [276].

When computing galaxy clustering and galaxy-FP cross correlations, we apply weights to
the galaxies, where the weights are given by [223]

w = wsys(wno�z + wcp � 1), (7.46)

where wsys weights correct for the variations in the selection function on the sky (important
for CMASS) and wno�z, wcp correct for missing redshifts due to failure to obtain redshift
(no-z) or fiber collisions for close pairs, cp.

For intrinsic alignments of galaxies, the shape sample used to estimate the shear is
described in more detail in [216] and [241].

Furthermore, to study the dependence of FP and residuals on galaxy properties, we also
split the BOSS samples based on color and luminosity. We follow the procedure from [241],
whereby we split the samples in narrow redshift bins based on the percentiles of the color
and luminosity. We make 5 color samples, C1 � C5, with each sub-sample containing 20% of
the galaxies such that C1 starts with reddest galaxies and the subsequent samples contain
progressively bluer galaxies. Split in the redshift bins ensures that each sample has the same
redshift distribution. We follow the similar procedure for luminosity and make 4 luminosity
subsamples, L1 � L4 with L1 being brightest and L4 being faintest. L1 � L3 contain 20% of
the sample each while L4 contains 40% of galaxies.

For the LOWZ sample, we also identify the galaxies in groups using the counts-in-cylinders
technique [214] using the same procedure as was followed in [241]. Galaxies that are not in
groups (or are in group of 1) are designated as ‘Field’ galaxies, the brightest galaxy in a group
of more than 1 galaxy is designated as BGG (brightest group galaxy) while all non-BGG
galaxies are designated as satellite galaxies.

Since we are splitting the samples by color, luminosity and also FP residuals, the variations
in the photometry across the sky can lead to some variations in selection function of the
galaxies for these sub-samples. The variations can introduce biases when computing the
galaxy auto correlation functions for these galaxies. To avoid this issue, we will use cross
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correlations when computing the correlation functions, where we cross correlate the sub-
samples with the full sample from which they were selected. As a result the biases in the
signal are reduced though the covariance will still be a↵ected [242]. In the power spectrum
measurements, we will use the auto correlations. To reduce the impact of selection functions
on sub samples, we reweight the randoms provided by BOSS to correspond to these samples.
We compute the weight using the ratio of number galaxies within the sub-samples to number
of galaxies in the full sample, within each ⇠ 80 deg2 patch we generated for the jackknife
calculations. We also tried the weights computed in much smaller patches, but those weights
biased the measurements on small scales.

7.4 Results

In this section we present our results, beginning with the fits of FP to LOWZ and CMASS
as well as various subsamples and analysis of FP residuals based on some galaxy properties.
Then we present the measurements of cross correlations between FP residuals and galaxy
density and comparison of these cross correlations with the Intrinsic alignments of galaxies.
Following this we present the measurements of redshift space distortions (RSD) and the
correlations between RSD constraints and FP residuals.

FP Fits

In this section we present results of fitting FP to full LOWZ and CMASS samples and
an analysis of the FP residuals based on the redshift, luminosity and environment of the
galaxies. Note that unless mentioned otherwise, in this subsection, FP residuals are obtained
from fitting FP to the full samples and not the sub-samples.

In figure 7.1, we show the contour plots of the FP residuals as function of galaxy size,
magnitude and velocity dispersion. For the standard FP, �, we obtain the RMS values of
�rms = 0.22 for LOWZ and �rms = 0.26 for CMASS sample and for the redshift dependent
FP, �3, we obtain �rms = 0.15 for LOWZ and �rms = 0.16 for CMASS samples. Note that �
is defined in log

e
(ln) base and hence �rms is larger than the scatter in log10 R space by a

factor of ln 10 ⇠ 2.3. After accounting for this e↵ect, our results are consistent with the FP
scatter of ⇠ 0.1 obtained by [228, 135], albeit for somewhat di↵erent samples.

Also note in figure 7.1 that the FP residuals are correlated with the galaxy properties.
We now investigate some of these correlations in more detail.

Redshift dependence

In figure 7.2 we present the redshift dependence of the mean and the RMS of the FP
residuals for both LOWZ and CMASS samples. For the standard FP we find a strong
correlation of the mean residuals, �0, with the redshift. Including redshift dependence within
the FP using polynomials reduces the dependence of the mean by a large magnitude and
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Figure 7.1: The residuals over the FP for standard FP, �0 and the redshift dependent FP �3

as function of galaxy size, R0, r band magnitude Mr and the velocity dispersion �0. We show
the contours covering 95% of the sample for both LOWZ (solid lines) and CMASS (dashed lines)
samples.

Figure 7.2: a) Redshift dependence of the mean and standard deviation (mean subtracted RMS)
of the FP residuals for both LOWZ and CMASS samples. The subscript, �i, i 2 [0, 1, 3] denotes
the order of the polynomial in z used for fitting FP. The superscript ‘zb’ denotes the sample fitted
in narrow redshift bins �z = 0.02. The residuals over for the standard fundamental plane, �0,
have strong dependence on the redshift and including redshift polynomials in the FP reduce this
dependence as well as the scatter. Fitting FP within small redshifts further reduces the mean of
FP (though there can be evolution within the bins). b)Redshift evolution of galaxy properties that
are included in the FP. The redshift dependence of the residuals for standard FP can be explained
by the redshift dependence of these properties, especially the surface brightness of galaxies, log I,
which has the strong and monotonic dependence on redshift, driven by the log(1 + z) correction for
the Tolman dimming.



CHAPTER 7. FUNDAMENTAL PLANE OF BOSS GALAXIES: CORRELATIONS
WITH GALAXY PROPERTIES AND IMPACT ON RSD MEASUREMENTS. 134

also reduces the RMS (as function of z) by ⇠ 10%. The change (reduction) in the mean is
largest when using the first order polynomial with some further improvement when going to
the third order polynomial. There are still small residuals correlations between the mean and
redshift and such correlations can potentially be important for the correlation functions we
present in section 7.4 and for the cosmological applications of the FP in general. To further
reduce correlation between mean and the redshift, we instead fit the FP in narrow redshift
bins, �z = 0.02 (this choice is motivated to keep the bin size small but have large enough line
of sight size so as to not bias the cross correlation measurements presented in section 7.4).
Fits in the bins further reduce the impact of the redshift dependent residuals. We will use �3

as our fiducial FP (unbinned with third order polynomial in redshift), but we will test the
cross correlation results with the binned FP for comparison.

To study the source of the redshift dependence of FP, we show the redshift dependence of
the galaxy properties in figure 7.2. The velocity dispersion and physical radius only have
mild dependence on redshift for both LOWZ and CMASS sample. The surface brightness
of the galaxies on the other hand evolves strongly with redshift and is the primary driver
for the redshift evolution of the standard FP residuals, �0. The redshift evolution of surface
brightness is driven by redshift dimming [268] of the surface brightness, as a result of which
we only observe galaxies with larger surface brightness at higher redshifts. The evolution of
surface brightness is very similar to the log(1 + z) correction that was included in the eq. 7.4.
Hence, when including the redshift polynomials into the FP, we are essentially undoing the
log(1 + z) correction. Including log(1 + z) dependence in the FP is also a possibility instead
of the polynomials in z, but we opt for the polynomials (or fit in narrow z bins) as they
provide extra degrees of freedom which can account for the small redshift dependence of the
velocity dispersion, physical radius and luminosity.

Our results on the redshift dependence of the FP are qualitatively consistent with those
from [135], where such trends were observed for the SDSS main galaxy sample. Due to the
di↵erences in the samples used in this study and [135], a more quantitative comparison is
di�cult but we have tested our pipelines on the samples used in [135] and we are able to
reproduce their results.

Luminosity and environment dependence

In figure 7.3, we show the dependence of the FP residuals on the environment as function
of redshift. As in [135], we observe that the brightest group galaxies, BGGs have positive
residuals on average (they are larger in size than predicted by FP) while satellites have
negative residuals implying they are smaller than average. It is tempting to interpret these
results based on the environment dependence of galaxies, whereby centrals or BGGs tend to
be larger but less concentrated while satellites under going tidal stripping tend to be smaller
and more concentrated. However, in figure 7.3 we observe that the FP residuals are strongly
correlated with the galaxy luminosity, where brighter galaxies have larger (or more positive)
residuals. These trends can explain most of the variations between di↵erent galaxy types in



CHAPTER 7. FUNDAMENTAL PLANE OF BOSS GALAXIES: CORRELATIONS
WITH GALAXY PROPERTIES AND IMPACT ON RSD MEASUREMENTS. 135

Figure 7.3: a) Dependence of the FP residuals on galaxy types. Similar to [135], we observe that
Brightest group galaxies (BGG), satellites and field galaxies have di↵erent FP residuals, with
BGGs being larger than FP predictions while satellites being smaller. b) Mean FP residuals as
function of the r band magnitude. Di↵erent types of galaxies, BGGs, Satellites, Field, all give very
similar relation which suggests that the dependence in a) can be explained largely by magnitude
(or luminosity) dependence of the FP residuals. In the lower panel we show the di↵erence in the
mean FP residuals of di↵erent samples relative to the full LOWZ sample. BGGs (satellites) are still
higher (lower) than the full sample, though the di↵erences are much smaller than in a). We do not
observe any significant dependence of RMS of � with luminosity.

figure 7.3, with BGGs (satellites) being only marginally larger (smaller) after accounting for
the luminosity evolution, as shown in the lower panel of figure 7.3.

Given that � / �b log I / bMr (b is negative), the luminosity dependence of FP residuals
� is expected in case the various galaxy properties, namely luminosity, radius and velocity
dispersion are not perfectly correlated in a way to cancel such a dependence. While it is
possible to include the higher order luminosity dependence in the FP as well, we opt not to
do so as FP residuals are correlated with multiple galaxy properties and systematics (see
appendices) and including dependence on too many variables complicates the interpretation
of FP and its residuals (inclusion of z-dependence is necessary to avoid biases in cross
correlation measurements presented in section 7.4). Instead, we split our sample based on
luminosity, color and environment as described in section 7.3 and fit the FP separately
to those subsamples when studying the dependence of cross correlations on these galaxy
properties.

Cross correlations with galaxy density

In this section we present the measurements of galaxy clustering and cross correlations
between the galaxy positions and FP residuals. Throughout this section we will use FP with
third order polynomial as the primary FP and when considering the subsamples, we will fit
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Figure 7.4: Measurements of galaxy clustering (upper panels) and galaxy-� (lower panels) cross
correlation functions for (a) LOWZ and (b) CMASS samples. Lower panel shows measurements
with three di↵erent FP definitions, �

I

3 (blue, FP without velocity dispersion), �3 (orange) and FP
fitted in z-bins �3,zb. We measure strong correlations between galaxies and FP residuals for both
CMASS and LOWZ samples, with �

I

3 signal being factor of ⇠ 2 larger than the �3. Given that the
mean of �

I

3 and �3 are very similar and �
I

3 rms is larger by ⇠ 10%, this di↵erence is originating
from the intrinsic di↵erences between the two FP planes. Also, the consistency between �3 and �3,zb

suggests that the negative signal in LOWZ at large scales is unlikely due to any redshift dependent
additive systematics in the FP (as observed in figure 1). Numbers quoted in the plots are the best
fit galaxy bias and � amplitude A� obtained by fitting the model in range 5 < rp < 30h

�1Mpc
(marked by vertical dashed cyan lines). For the LOWZ sample, the �

2
dof
⇠ 0.7, even though the fit

looks inconsistent with the data. This is due to strong correlations between the bins on large scales,
likely driven by systematics.

FP to each of the subsamples separately.
We begin by presenting the measurements of projected correlation functions using full

LOWZ and CMASS samples in figure 7.4, with FP fit to the whole sample, �3, FP fit in
narrow redshift bins, �3,zb and the FP without velocity dispersion, �I

3. We fit the models
described in section 7.2 to both galaxy clustering and galaxy-� cross correlations in the
range 5 < rp < 30h�1Mpc. We do not fit the scales below rp < 5h�1Mpc as our model with
assumption of linear bias is not expected to work well on these non-linear scales and we also
do not use rp > 30h�1Mpc, as there is some evidence of systematics in the galaxy-� cross
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correlations. We have checked that including scales between 30 < rp < 70h�1Mpc does not
significantly change the best fit parameters as measurements on those scales are correlated
and also have lower signal to noise compared to smaller scales.

For LOWZ sample, we obtain the linear galaxy bias, bg = 1.868 ± 0.025 and for CMASS
sample we obtain bg = 2.096 ± 0.019. Using galaxy-�3 cross correlations , we obtain
A� = 5.8±1.6 for LOWZ sample and A� = 5.3±1.3 for CMASS sample, with CMASS sample
have lower noise due to larger volume of the sample, even though �rms is larger for CMASS
sample. The values of A� do not change significantly if we fit FP in narrow redshift bins
(�3,zb in figure 7.4) and/or if we fit the FP for North and South regions of BOSS separately
(measurements not shown). However, fitting the FP without velocity dispersion , �I

3, leads to
significantly larger amplitude, with A� being larger by factor of ⇠ 2� 5 depending upon the
sample and the FP definition.

To understand the source of the correlations, in figure 7.5 we show the cross correlations
of galaxy properties, the surface brightness log I, physical radius, log R (orange) and velocity
dispersion, log v in figure 7.5. The surface brightness shows strong correlations with the
density field, with a large fraction of the signal driven by its strong evolution with redshift.
These correlations provide interesting insights that the larger galaxies and ones with higher
velocity dispersion tend to reside in the over dense regions but galaxies in over dense regions
tend to have lower surface brightness.

The impact of these parameters can be observed in the lower panel of figure 7.5. The
correlations of the FP residuals, �, are essentially the weighted sum of the correlations
of the galaxy properties, where the weights are the parameters of the FP. For �0, surface
brightness dominates given that the redshift evolution has not been corrected for and leads
to large negative correlations. Once redshift evolution is corrected, the correlations of surface
brightness decrease and hence the FP cross correlations become positive for �1 and �3. This
further justifies our choice to include the redshift evolution in the FP, as the correlation
functions otherwise are dominated by the redshift evolution of the FP which itself is dominated
by the redshift evolution of the surface brightness.

We also note that our measurements of galaxy-�3 cross correlations are not consistent
with the results of [135]. This is because of the very di↵erent samples used in the two studies.
As observed in section 7.4, the FP residuals are strongly correlated with the galaxy luminosity,
with fainter galaxies having negative �. Fainter sub-samples also show negative correlations
between FP residuals and density, in our measurement. Given that SDSS main sample used
in [135] was fainter than BOSS samples, we hypothesize that the di↵erent measurements in
the two studies are primarily due to the di↵erent galaxy samples. In order to rule out pipeline
di↵erences, we also reanalyzed the data of [135] with our current pipeline and reproduced
their results2 (not shown).
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Figure 7.5: Upper panel: Galaxy-� cross correlation functions, where � is replaced with di↵erent
galaxy properties, namely the surface brightness, log I (blue), physical radius, log R (orange) and
velocity dispersion, log v (green). For the open points, we set the mean of these galaxy properties
to be zero only at the level of full sample, while for the closed points, the mean is set to zero
within small redshift bins, �z = 0.02. Size and velocity dispersion are positively correlated with the
density field, though surface brightness shows negative correlations which are also stronger when
redshift evolution is not corrected for. Lower panel: Cross correlation measurements using residuals
from di↵erent definitions of fundamental plane. Standard FP residuals , �0 is negatively correlated
driven by the e↵ects of surface brightness, while FP corrected for redshift evolution show positive
correlations with density.
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Figure 7.6: Galaxy clustering (cross correlation with LOWZ) and galaxy-� cross correlation
measurements for di↵erent environment samples, with full LOWZ sample as density tracers. Group
galaxies, BGGs and Satellites, have similar clustering and galaxy-size cross correlations, unlike
intrinsic alignments, where satellites do not show large scale shape alignments.
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Environment dependence

In figure 7.6, we show the correlations of FP residuals for group galaxies (satellites and
BGGs) as well as the field galaxies. Satellites and BGGs have higher galaxy bias as expected
since they are on average in more massive halos and hence more dense environments. More
interestingly, FP residuals for both satellites and BGGs show much stronger correlations with
the density field as compared to the field galaxies.

A� is rather large and also very similar for both Satellites and BGGs though the uncertain-
ties for both samples are also large. Primary concern with such large signal is that since these
galaxies reside in crowded regions, there can be some residual systematics in the photometry
leading to such correlations. Since we subtract the randoms signal, additive systematics are
unlikely to be able to lead to such large signals unless they strongly correlate with the galaxy
density field. We have some evidence for systematics a↵ecting the measurements, especially
for LOWZ sample, but those systematics are predominately on large scales and do not lead
to such large and significant A� values. We have also tested for the flags in SDSS photometry
for blending and other photometry issues and BGGs, satellites and field galaxies all have
very similar (low) rate of problematic photometry flags. Thus it is unlikely that satellite and
BGGs results in particular are a↵ected by the photometry problems.

Another possible explanations for such similarities is that the galaxy environment plays a
strong role in determining the galaxy size, in addition to galaxy properties such as luminosity
and size. To further study the impact of the environment on FP residuals, in figure 7.7 we
show the A� as function of galaxy bias, bg, where bias is a proxy for the galaxy environment.
Though there is considerable scatter, we observe that the galaxies with larger bias, i.e., the
galaxies in over dense regions, tend to have larger A�. The observed high A� for satellite
galaxies is consistent with this trend as these galaxies also have higher bias. These results
are are not straight forward to interpret within the context of the tidal stripping of satellite
galaxies as was used as an explanation in [135]. Our results suggests that FP residuals of the
satellite galaxies can primarily be explained by the luminosity dependence of the FP. However,
when computing the correlation functions, we fit FP only to the satellite galaxies and within
the satellite sample it is possible that stronger tidal stripping in denser environment can
imprint some environment dependence on FP residuals leading to stronger correlations. In
either case, our results suggest that environment plays a dominant role in determining the FP
residuals of a galaxy. More detailed interpretation of these results will require a study using
the realistic galaxy simulations to understand the relative importance of various processes
involved in determining the galaxy sizes. We leave such a study for the future work.

Correlations with IA

As discussed in section 7.2, intrinsic alignments (IA) of galaxies coupled with the projection
e↵ects can lead to the scatter over the FP and the correlations between the FP residuals and
the density field. The model in used in fitting the cross correlations between the FP residuals

2Both pipelines were developed by S. Singh
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Figure 7.7: Environment dependence (as characterized by linear galaxy bias) of FP residuals.
In more biased (overdense) environments, scatter about FP has stronger correlations with the
environment.

and the galaxy density field accounts for this e↵ects and indeed if IA is the only cause of
correlations of FP residuals, we expect A� ⇠ AI/2.

In figure 7.8 we present the comparison of the the intrinsic alignments amplitude (a
detailed analysis of IA measurements was presented in [241] and in this work we repeat
those measurements using BOSS DR12 data) and the FP residual amplitude A� derived
from the cross correlations with the density field. For both LOWZ and CMASS samples
we observe positive correlations between AI and A�, samples with stronger IA also showing
stronger correlations for FP. This is also consistent with the observations that IA and FP
correlations have similar environment dependence (see previous section and [241]). However,
our measurements are inconsistent with the model predictions of A� = AIA/2. In addition to
considerable scatter in the measurements, the best fit linear models we obtained (not shown)
deviated significantly from the model.
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Figure 7.8: Comparison of the intrinsic alignments amplitude (AIA) measured using galaxy shear
and the amplitude of galaxy size correlations measured using the fundamental plane residuals (A�3

),
for di↵erent subsamples of LOWZ (a) and CMASS (b). Di↵erent colors represent di↵erent splits
and di↵erent markers represent di↵erent subsamples (labels for color and luminosity subsamples are
consistent across two panels). Under the model assumed in section 7.2, size correlations are caused
by intrinsic alignments in conjunction with projection e↵ects and we expect A�3

/ AIA/2 (shown
by dashed black line). Solid cyan line shows the best fit linear model with parameter as shown in
the figures. Data prefers A�3

/ 4AIA, which suggests that in addition to projection e↵ects, galaxy
sizes themselves are a↵ected by the tidal field, such that �3 / r2

�, with similar constants as the IA
model.

Our results suggest that the galaxy size correlation (as measured by FP) include contribu-
tions beyond the e↵ects of intrinsic alignments and the projection e↵ects. These contributions
can come from physical processes such as stronger feedback in over dense regions or obser-
vational systematics a↵ecting the estimation of size, magnitude and velocity dispersions of
galaxies (eg. errors in PSF modeling, small fiber size used in spectroscopic measurements).
The interpretation of these results is further complicated by the fact that IA also depends
on the shape measurement methods. As shown in [244], de Vaucouleurs shape results in
⇠ 15� 20% larger IA amplitude though de Vaucouleurs shapes were also shown to be a↵ected
by systematics in the same study because of which we use the re-gaussianzation shapes to
measure the IA in this chapter. Hence, it is di�cult to fully explain the origin and the
magnitude of the size correlation amplitudes and a detailed exploration of the physical origin
of these e↵ects will require further study with realistic simulations.

Multipoles

In figure 7.9 we show the measurements of the multipoles of the galaxy clustering and
galaxy-FP cross correlation measurements. The monopole and quadrupole of the galaxy
clustering are consistent with the expectations from the redshift space distortion measurements.
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Figure 7.9: Measurements of the multipoles of galaxy clustering (upper panels) and galaxy-� (lower
panels) cross correlation functions for LOWZ (blue) and CMASS (orange) samples. Open points
and dashed line shows the monopole and the best fit model for the monopole (` = 0) while closed
points and lines show the same for quadrupole (` = 2). Vertical cyan lines mark the range over
which the model was fit.
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Here we fit the simple Kaiser model to fit both the monopole and quadrupole moments and
we will present more detailed analysis of galaxy clustering multipoles in the next section. The
galaxy bias obtained from these fits is consistent with the values obtained from the projected
correlation functions. Since the model does not include the e↵ects of non-linear corrections,
it does not fit data well on small scales and hence we only use 30 < s < 70h�1Mpc to fit the
galaxy-galaxy correlation functions and we further fix the growth rate to the value expected
from our fiducial cosmology f = 0.665(0.77) for LOWZ (CMASS). Since our focus in this
section is to study the anisotropy of the galaxy-FP correlation function, we prefer to use a
simpler model with few parameters over a more detailed RSD model presented in the next
section.

In the lower panel, we present the measurements and the fits for the galaxy-FP cross
correlation function. We detect both the monopole and the quadrupole moments of the
correlation functions, pointing to significant line of sight anisotropy in these measurements.
Some level of anisotropy is expected as the the galaxy positions are measured in redshift
space and the FP residuals are weighted with galaxy density field in the redshift space. To
estimate the anisotropy contributions from the FP residuals, we fit for the anisotropy factor,
�� (see eq. (7.25)) (galaxy anisotropy �g is obtained from clustering). The best fit values of
�� we obtain are consistent with zero, contrary to the expectations from the model which
predicts �� = �3 (�� = �3 predicts positive quadrupole moments at large scales ). These
conclusions are not changed even if we fit with growth rate f as a free parameter, if we vary
the minimum scale used in the fits (rp,min = 20 or 40h�1Mpc) and even if we include the
hexadecapole measurements.

While our measurements appear to rule out the influence of IA on the FP residuals, we
note here that this is only true within the model we assumed in this work. Both IA and FP
residuals are also weighted by the galaxy density field, which is measured in the redshift space
and introduces higher order terms which can have significant contributions to the measured
correlation functions. Furthermore, these higher order terms also contain the line of sight
anisotropy terms which can in principle a↵ect the �� constraints. Modeling these higher order
terms accurately is out of the scope of this work and can be attempted in a future work.

IA e↵ects on RSD

In this section we present the measurements of the galaxy power spectrum multipoles
in Fourier space. In figure 7.10, we show the measured monopole P0(k), quadrupole P2(k),
and hexadecapole P4(k) of the LOWZ NGC and CMASS NGC galaxies, using the FFT-
based galaxy power spectrum estimator described in section 7.2. We then fit the RSD
model presented in section 7.2 to the measured multipoles and find that the power spectrum
multipoles are accurately modeled, down to scales of k = 0.4hMpc�1, in agreement with [105].
The fits to the SGC galaxies are not shown in the figure, but we also find a good agreement
between the model and the SGC samples. We include the hexadecapole P4(k) because this
improves RSD constraints significantly, as reported earlier in [37], [96], and [105]. In our fits,
we set the minimum wavenumber kmax to 0.05 and 0.02 hMpc�1, respectively for LOWZ and
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CMASS, in order to minimize any large-scale e↵ects of the window function. As described
in section 7.2, we fix the AP distortion parameters to their fiducial values and constrain
11 free parameters, of which two are primarily of our interests: the growth rate f and the
amplitude of matter fluctuations �8. Fitting this RSD model to the BOSS DR12 multipole
measurements, we obtain a tight constraint on the growth of structure, and more detail can
be found in [282].

Fundamental plane cuts

In this section we fit FP to the LOWZ and CMASS samples, for NGC and SGC regions
separately, and then split each galaxy sample into two subsamples according to the sign of
the FP residuals, with the mean FP residual subtracted from each sample, following [180].
Samples with positive (negative) FP residuals correspond to galaxies larger (smaller) than
the FP-predicted size. We then fit the galaxy power spectrum model to each of the two
subsamples, constraining 11 free parameters in the RSD model presented in section 7.2.

In the analysis, we consider di↵erent types of FP residuals: FP fit with Nz = 1 (�1),
FP fit with Nz = 1 in narrow redshift bins (�1,zb), FP fit only dependent on the surface
brightness with the velocity dispersion measurements ignored (�I

1; still with with Nz = 1), FP
fit equivalent to the one in [180] (�M

1 ), FP fit with Nz = 3 (�3). Figure 7.11 shows how the
model fits to each of the two subsamples of the LOWZ NGC galaxies. The subsample with
positive FP residuals (henceforth called the “positive” subsample) has higher galaxy bias than
the subsample with negative FP residuals, in agreement with the results in [180]. We also
find that disregarding the velocity dispersion in the FP definition causes a larger deviation in
the galaxy bias between subsamples. Some deviation in the galaxy bias is expected from the
correlations between the FP and the galaxy properties as discussed in section 7.4. Since the
“positive” sample preferentially selects brighter galaxies, it is expected to have larger bias.

The monopole P0(k) and the quadrupole P2(k) scale as (b1�8)2 and b1f�2
8, respectively.

Hence, we can roughly estimate the ratio of f�8 and b1�8 values between two subsamples
of the FP fit from the ratios of the monopoles and quadrupoles. The square rooted ratio
of the monopoles scales as b1�8; for the LOWZ NGC sample, the subsample with positive
�I

1 has this ratio ⇡ 10% larger than the subsample with negative �I

1. Adding the velocity
dispersion term to the FP definition reduces such deviation to ⇡ 6%. We can also take
the quadrupole ratio between two samples and divide it by the square rooted ratio of their
monopoles to remove the bias dependence. This quantity roughly determine the ratio of f�8

values between two samples. Figure 7.12 plots the ratios 1) between the full LOWZ NGC
sample and the subsample with positive FP residuals (blue) and 2) between the full LOWZ
NGC sample and the subsample with negative FP residuals (red). The measured ratios are
well within 1� from each other, particularly on the scales where non-linear, small e↵ects are
not important, suggesting that measurements of the di↵erence in RSD constraints between
the FP fit subsamples are not statistically significant.

RSD model fits in figure 7.13 are in agreement with the above observation. For each
galaxy sample, we fit the RSD model to the multipoles of positive and negative (FP fit)
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Figure 7.10: The measured galaxy power spectrum multipoles in Fourier space (data points) and
the best-fit theory curves (solid lines) for LOWZ NGC (upper panel) and CMASS NGC (lower
panel) samples. We fit the model to the monopole (blue), quadrupole (orange), and hexadecapole
(green), over the wavenumber range k = 0.05� 0.4 and 0.02� 0.4hMpc�1 for LOWZ and CMASS
galaxies, respectively. Multipoles are accurately modelled, down to k = 0.4hMpc�1. Although not
shown in the figure, we also find an excellent model fit to the SGC samples.
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Figure 7.11: Multipole measurements of the LOWZ NGC subsamples with positive (blue) and
negative (red) FP residuals, with di↵erent types of FP fits. Multipoles of the full LOWZ NGC
sample (black) are also provided as a reference, and open circular points and closed triangular
points display the monopoles and quadrupoles, respectively. We show the measured multipoles
(data points) and the best-fit theory curves (solid lines) for positive and negative subsamples with
two di↵erent FP definitions: FP fit without velocity dispersion (�I

1; upper panel) and FP fit in
narrow redshift bins (�1,zb; lower panel). The RSD model fits well to all subsamples, and other
subsamples with di↵erent FP definitions similarly have good model fits, although not shown in
the figure. The monopoles of positive and negative subsamples clearly have di↵erent amplitudes,
suggesting the di↵erence in their galaxy biases.
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Figure 7.12: A rough estimate of the ratio of f�8 values between the full LOWZ NGC sample and
FP fit subsamples, as quantified by the quadrupole ratio (P2,↵)/(P2,full) divided by

p
(P0,↵)/(P0,full),

where ↵ denotes the FP fit subsample. Open circular points show the measured ratios, while the
dotted lines show the ratios from the best-fit theory curves. The di↵erence in the measured ratios
of the two subsamples is not statistically significant, especially on the scales where non-linear, small
e↵ects are not important.

subsamples, for both NGC and SGC regions, and then measure the di↵erence in f�8 and
b1�8 constraints between two subsamples. With the convention that the value in the positive
subsample is subtracted from the value in the negative subsample, we consider di↵erent
types of the FP residuals (�I

1, �1, �1,zb, �3, and �M

1 ). In figure 7.13, FP fit subsamples
selected in the same redshift range and sky region are marked in the same color, and such
samples are are not independent, all correlated with one another. First, we find that all
positive subsamples have larger galaxy biases than negative subsamples, as expected from
figure 7.11, thereby resulting in the sign of �b1�8 positive in all FP fits. On the contrary, the
signs of �f�8 measurements are not consistent across all samples and all within 1� of the
measurements, statistically consistent with the null result. This suggests that there is no
evidence of significant bias in RSD measurements due to IA, in tension with the results from
[180], which showed a consistent o↵set in �f between the FP fit subsamples. In section 7.2,
the model expects that �bg + 1

3�f ⇡ 0, where bg and f are galaxy bias and growth rate
parameters, respectively. However, as shown in figure 7.13, the null model (�f ⇠ 0) is
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favored over such theory prediction by the data points. Similarly, figure 16 and 18 in [180]
also show a deviation between the model and measured data points.

[180] defined the ratios of the measurements to theoretically predicted values in the
following way,
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and presented that Obs/Theory = 0.61 ± 0.26. Assuming the model in [180], we repeat the
analysis and obtain Obs/Theory = �0.05 ± 0.33, consistent with zero.

In figure 7.13, we use the MultiDark-Patchy mock catalogues to estimate the size of the
error bars of RSD constraints for the FP fit subsamples. In this work, we consider four
di↵erent galaxy samples: LOWZ NGC, LOWZ SGC, CMASS NGC, and CMASS SGC. For
each sample, we take 100 PATCHY mocks and separate each mock into two subsamples,
depending on their stellar masses, as the stellar mass is correlated with the luminosity, which
in turn is correlated with the FP residuals and also correlated with the galaxy alignment
strength [134, 241]). Consequently, we have 100 subsamples with their stellar masses larger
than the mean stellar mass of the sample and 100 subsamples with their stellar masses smaller
than the mean. For each galaxy sample, we then perform fits to the measured multipoles of
PATCHY mocks, and the best-fitting parameters for each of the 200 subsamples are obtained
by maximum a posterior (MAP) estimation using the LBFGS algorithm. Subsequently, we
measure the standard deviation of the best-fitting values of f�8 and b1�8 and obtain the
propagated error for �f�8 and �b1�8.

Luminosity/color cuts

In fig 7.14, with luminosity cuts as described in section 7.3, we divide the LOWZ NGC
sample into four subsamples, with L1 being brightest and L4 being faintest, and show how
the RSD model fits the galaxy power spectrum multipoles of all subsamples. Similarly the
lower panel plots the quadrupole measurements of all subsamples. The measured multipoles
and the best-fit theory model of other samples, such as LOWZ SGC, CMASS NGC, and
CMASS SGC, show a similar trend and therefore not shown in the figure.

Fig 7.15 presents the monopole and quadrupole measurements of the LOWZ NGC
subsamples based on the color cut, with colors going redder from C5 to C1. A redder
subsample is shown to have a higher bias. However, the quadrupole measurement of C1

clearly deviates from those of other subsamples, and fitting the RSD model to all color
subsamples, we find that its f�8 constraint is significantly di↵erent from f�8 measurements
of other subsamples.

In figure 7.17, we show the correlations between the constraints on f�8(ze↵), the product
of f and �8, each evaluated at the e↵ective redshift of each sample, and the rescaled FP
residual amplitude A�3

, computed at the fiducial �8. We divide each f�8(ze↵) measurement
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Figure 7.13: The measured di↵erence in f�8 and b1�8 between positive and negative subsamples,
with di↵erent definitions of FP fits (indicated with di↵erent markers), for the LOWZ (upper panel)
and CMASS (lower panel) galaxies in NGC (blue) and SGC (green) regions. Data points highlighted
with red rectangles are using the FP measurements from Martens et al. (2018). Note that samples
in the same color are all correlated with one another; we take the same galaxy sample and split
them into the FP fit subsamples based on di↵erent FP definitions. The di↵erences in f�8 values are
all statistically consistent with the null results, while the signs of �b1�8 is consistently positive. For
both LOWZ and CMASS, the theory prediction (red dotted lines) from section 7.2, �f ⇡ �3�b1,
is not favored by the data points relative to the null model (�f ⇠ 0).
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with the predictions from the Planck 2015 data, to present f�8 measurements independent
of the e↵ective redshifts of our samples. To make direct comparisons with the model in
section 7.2, we rescale A�3

and then multiply it with a factor �/ffid, where � is the response
parameter as described in section 7.2. The measured � values (assuming �NS

3 , where ‘NS’
denotes fitting NGC and SGC seprately.) are shown in figure 7.16. 3

As shown in figure 7.17, we also find that there is only a weak evolution of the growth
rate measurements with the FP residual amplitude. This agrees with the conclusion in
section 7.4 that no significant bias in RSD measurements due to IA is evident. We quantify
this correlations by fitting a linear relation between the growth rate f and the FP residual
amplitude, and the following are the best-fit models: (f�8/f�8,fid) = (�0.05±0.02)�(�0.36±
0.14)·[��A�3

⇣/ffid] for NGC and (f�8/f�8,fid) = (�0.07±0.03)+(�0.10±0.04)·[��A�3
⇣/ffid]

for SGC, clearly in tension with the model in section 7.2, which predicted that the growth
rate f is larger for a larger FP amplitude; we find such correlations in the opposite direction
for both NGC (left panel) and SGC (right panel) samples. Moreover, the slope of this
fit is largely driven by the LOWZ C1 outlier. Without the LOWZ C1 sample, the slope
would be closer to zero. Comparing the measurements to the null detection of IA e↵ects
on RSD measurements (shown by brown lines), we obtain �2 values of 27.6 and 14.6 for
18 NGC and 18 SGC sub-samples, respectively. For the NGC samples, this corresponds to
probability-to-exceed (PTE) of ⇡ 7%, which indicates that the measurements are consistent
with the null result.

7.5 Conclusions

In this work we have presented the estimations of the FP of the BOSS galaxies and the
dependence of FP residuals on the galaxy redshift, environment and luminosity. We show
that the redshift evolution of the FP observed in earlier works [135, 228] is primarily driven
by the redshift evolution of the surface brightness of the galaxies and correcting for this
redshift implies that the FP is primarily a relation between the size, luminosity and velocity
dispersion of the galaxies. The FP residuals are also strongly correlated with the luminosity of
the galaxies and the luminosity evolution of the FP is primarily responsible for the apparent
environment dependence of the FP residuals as was first detected by [135]. We also show
that the FP residuals are correlated with the observational systematics, most notably the
goodness of the galaxy profile fits, the PSF flux and in the case of CMASS sample the stellar
density weights.

In section 7.4 we presented the measurements and analysis of the correlations between
the FP residuals and the galaxy density field, wg�. FP residuals for BOSS Lowz and CMASS
samples show similar correlations with the density field. We showed that these correlations
are driven by the correlations between the galaxy properties and the galaxy density field.
Galaxy luminosity, size and velocity dispersion are positively correlated with the density

3Assuming the FP definition in [180], we get � = -0.21±0.03, 0.11±0.04, 0.18±0.02, 0.22±0.04 for LOWZ
NGC, LOWZ SGC, CMASS NGC, and CMASS SGC respectively.
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Figure 7.14: The measured galaxy power spectrum multipoles (data points) of four luminosity
subsamples, for the LOWZ NGC sample. Solid lines indicate the best-fit theory curves. The
monopole measurements (upper panel) show a decreasing trend of bias with luminosity; this suggests
that a brighter subsample has a higher galaxy bias. The quadrupole measurements (lower panel) of
all luminosity subsamples are within 1 sigma of the quadrupole of the full sample.
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Figure 7.15: Similar to figure 7.14. The multipoles of five color subsamples for LOWZ NGC and the
best-fit theory model (solid lines). The monopole measurements (upper panel) show that a redder
subsample has a higher bias.
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Figure 7.16: Comparison of the FP residuals A�3
and the selection dependence factor � for di↵erent

subsamples of LOWZ NGC and CMASS NGC. Di↵erent colors represent di↵erent splits, and di↵erent
markers represent di↵erent subsamples. No correlation between A�3

and � is evident in the figure.

field while the surface brightness is negatively correlated. The negative correlation of surface
brightness is a non-trivial result and is potentially important for HOD modeling, relating
galaxies to the halos as well for the modeling of galaxy bias as function of redshift.

We also studied the dependence of the wg� as function of galaxy environment, luminosity
as well as color. Brighter galaxies show strong positive correlations between the FP residuals
and the density field while the correlation amplitude is lower for fainter samples with the
lowest luminosity sample showing negative correlations. Similar trends are also observed for
the color splits, with strong positive correlations for the red galaxies with lower correlations for
bluer samples. Combining all the samples together, we show that there is strong correlation
between the galaxy bias and the amplitude of wg�. This implies that the galaxies in more over
dense regions show stronger correlations between the FP/size residuals and the environment.

We also compare the amplitude of wg� measurements from model fits with amplitude of
the intrinsic alignment (IA) measurements. Since our model assumes that the size correlations
are sourced by the e↵ects of IA in three dimensions projected onto the two dimensional plane
of the sky, the amplitudes of IA and wg� measurements measurements are expected to be the
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Figure 7.17: Comparison of the RSD measurements of the growth of structure and the rescaled FP
residual amplitude, for di↵erent subsamples of LOWZ (open markers) and CMASS (solid markers)
galaxies in NGC (left panel) and SGC (right panel) regions. Each measurement of f�8(ze↵) is divided
by the predicted value assuming the fiducial Planck 2015 cosmology (y-axis), and the amplitude
of galaxy size correlations measured using the FP residuals (A�3

) is rescaled and multiplied by
��⇣/ffid(ze↵) of each sample (x-axis) so that the expected correlation coe�cient between two
variables is 1, according to �f = ��A�⇣ (eq. 7.42). Green lines represent the expected relation
between the FP residual and RSD measurements for the full LOWZ (dotted lines) and CMASS
(solid lines) sample, and similarly brown lines show the growth of structure measurements for the
full LOWZ and CMASS samples. We find that there is only a weak evolution of the growth of
structure measurements with the FP residual amplitude, thereby suggesting that no significant bias
in RSD measurements due to IA is evident.

same. Though there is considerable scatter, our results are in tension with this prediction.
We further tested the model by measuring the multipole moments of the correlation functions,
finding again that the measured multipole moments are in tension with the model predictions.
We note that our modeling has a limitation as we do not include the density weighting e↵ects.
Thus while measurements are in tension with the incomplete model, it is di�cult to conclude
that the IA does not have any impact on the size correlations as estimated using the FP.

Furthermore, in section 7.4 we presented the correlations between FP residuals and RSD
constraints, in particular on the growth rate parameter. Splitting the BOSS LOWZ and
CMASS galaxies into subsamples based on FP residuals, we fitted the RSD model to the
measured multipoles of each subsample and showed that the di↵erences in RSD constraints,
across all subsamples, are statistically consistent with the null result. We hence conclude
that there is no evidence of significant impact in RSD measurements due to IA, contrary to
conclusions drawn by [180]. Moreover, the RSD measurements of the BOSS samples split by
luminosity and color further strengthens this argument; despite some scatter, we find only a
weak evolution of the RSD constraints with the FP residual amplitude, and in comparison
with the model from [180], we find this e↵ect in the opposite direction. This suggest that
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there can be other overwhelming e↵ects that impact the FP, and it can be di�cult to simply
disentangle the relation among FP, IA, and RSD measurements from other e↵ects.

Our work is a step towards improved understanding of FP to use it as a tool for studying
galaxies as well as cosmology. The scatter in the FP is similar to the scatter in the ellipticities
of the galaxies, suggesting that it can be developed as a probe of gravitational lensing and
beyond with similar potency as the galaxy ellipticities (shear). There are notable impediments
to such applications as the FP is dependent on the galaxy properties, environment, selection
e↵ects and photometry errors. A deeper understanding of the impact of galaxy physics on the
FP will require a similar study as ours using realistic cosmological simulations that we plan
to pursue in near future. A detailed understanding of observational e↵ects will require image
simulations as were performed for the context of galaxy shape measurements [e.g. 178]. A
more detailed modeling for the FP correlations with density field also needs to be developed
to capture the information from small scales that we ignored in this work as well as to
capture the impact of density weighting terms. The promise of galaxy sizes for cosmological
applications and the upcoming large dataset from DESI, LSST, Euclid and WFIRST makes
it an opportune moment to study FP and galaxy sizes in general in more detail.
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[30] Rachel Bean and Olivier Doré. “Probing for Dark Energy Perturbations using the
CMB and Large Scale Structure?” In: AIP Conference Proceedings. Vol. 743. 1. AIP.
2004, pp. 88–95.

[31] Mariangela Bernardi et al. “Early-Type Galaxies in the Sloan Digital Sky Survey. III.
The Fundamental Plane”. In: The Astronomical Journal 125.4 (Apr. 2003), pp. 1866–
1881. doi: 10.1086/367794. arXiv: astro-ph/0301626 [astro-ph].

[32] G. Bertin and M. Lombardi. “Looking at the Fundamental Plane through a Gravita-
tional Lens”. In: ApJ 648 (Sept. 2006), pp. L17–L20. doi: 10.1086/507298. eprint:
astro-ph/0606672.

[33] D. Bertolini et al. “Non-Gaussian covariance of the matter power spectrum in the
e↵ective field theory of large scale structure”. In: Phys.Rev.D 93.12, 123505 (June
2016), p. 123505. doi: 10.1103/PhysRevD.93.123505. arXiv: 1512.07630.

[34] M. Betancourt. “A Conceptual Introduction to Hamiltonian Monte Carlo”. In: ArXiv
e-prints (Jan. 2017). arXiv: 1701.02434 [stat.ME].

[35] Michael Betancourt. “A conceptual introduction to Hamiltonian Monte Carlo”. In:
arXiv preprint arXiv:1701.02434 (2017).

[36] F. Beutler et al. “The 6dF Galaxy Survey: baryon acoustic oscillations and the local
Hubble constant”. In: MNRAS 416 (Oct. 2011), pp. 3017–3032. doi: 10.1111/j.1365-
2966.2011.19250.x. arXiv: 1106.3366.

[37] Florian Beutler et al. “The clustering of galaxies in the completed SDSS-III Baryon
Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space”. In:
Mon. Not. Roy. Astron. Soc. 466.2 (2017), pp. 2242–2260. doi: 10.1093/mnras/
stw3298. arXiv: 1607.03150 [astro-ph.CO].

[38] Florian Beutler, Emanuele Castorina, and Pierre Zhang. “Interpreting measurements
of the anisotropic galaxy power spectrum”. In: JCAP 03 (2019), p. 040. doi: 10.1088/
1475-7516/2019/03/040. arXiv: 1810.05051 [astro-ph.CO].

https://doi.org/10.1088/1475-7516/2018/06/015
https://arxiv.org/abs/1711.07467
https://doi.org/10.1088/1475-7516/2017/11/051
https://arxiv.org/abs/1705.01092
https://doi.org/10.1093/mnras/sty1971
https://doi.org/10.1093/mnras/sty1971
https://arxiv.org/abs/1802.04462
https://doi.org/10.1086/367794
https://arxiv.org/abs/astro-ph/0301626
https://doi.org/10.1086/507298
astro-ph/0606672
https://doi.org/10.1103/PhysRevD.93.123505
https://arxiv.org/abs/1512.07630
https://arxiv.org/abs/1701.02434
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://arxiv.org/abs/1106.3366
https://doi.org/10.1093/mnras/stw3298
https://doi.org/10.1093/mnras/stw3298
https://arxiv.org/abs/1607.03150
https://doi.org/10.1088/1475-7516/2019/03/040
https://doi.org/10.1088/1475-7516/2019/03/040
https://arxiv.org/abs/1810.05051


BIBLIOGRAPHY 160

[39] Florian Beutler and Patrick McDonald. “Unified galaxy power spectrum measurements
from 6dFGS, BOSS, and eBOSS”. In: JCAP 11 (2021), p. 031. doi: 10.1088/1475-
7516/2021/11/031. arXiv: 2106.06324 [astro-ph.CO].

[40] Florian Beutler et al. “The 6dF Galaxy Survey: z ⇡ 0 measurements of the growth
rate and �8”. In: Monthly Notices of the Royal Astronomical Society 423.4 (2012),
pp. 3430–3444.

[41] Davide Bianchi et al. “Measuring line-of-sight dependent Fourier-space clustering
using FFTs”. In: Mon. Not. Roy. Astron. Soc. 453.1 (2015), pp. L11–L15. doi:
10.1093/mnrasl/slv090. arXiv: 1505.05341 [astro-ph.CO].

[42] C. Blake, P. Carter, and J. Koda. “Power spectrum multipoles on the curved sky:
an application to the 6-degree Field Galaxy Survey”. In: MNRAS 479 (Oct. 2018),
pp. 5168–5183. doi: 10.1093/mnras/sty1814. arXiv: 1801.04969.

[43] C. Blake et al. “The WiggleZ Dark Energy Survey: the growth rate of cosmic structure
since redshift z=0.9”. In: MNRAS 415 (Aug. 2011), pp. 2876–2891. doi: 10.1111/j.
1365-2966.2011.18903.x. arXiv: 1104.2948.

[44] M. R. Blanton et al. “An E�cient Targeting Strategy for Multiobject Spectrograph
Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm”. In: AJ 125 (Apr. 2003),
pp. 2276–2286. doi: 10.1086/344761. eprint: arXiv:astro-ph/0105535.

[45] J. Blazek, M. McQuinn, and U. Seljak. “Testing the tidal alignment model of galaxy
intrinsic alignment”. In: J. Cosmology Astropart. Phys. 5, 010 (May 2011), p. 10. doi:
10.1088/1475-7516/2011/05/010. arXiv: 1101.4017 [astro-ph.CO].

[46] Jonathan Blazek, Zvonimir Vlah, and Uroš Seljak. “Tidal alignment of galaxies”. In:
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