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ABSTRACT
This paper considers the problem of estimating the autoregressive
parameter in discretely observed Ornstein–Uhlenbeck processes. Two
consistent estimators are proposed: one obtained by maximizing
a kernel-based likelihood function, and another by minimizing a
Kolmogorov-type distance from independence. After establishing
the consistency of these estimators, their finite-sample performance
and possible normality in large samples, is investigated by means
of extensive simulations. An illustrative example to credit rating is
discussed.
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1. Introduction

A continuous stationary process {X(t), t ≥ 0} is defined to be of the Ornstein–Uhlenbeck
type (OU for short) if it is the solution of the stochastic differential equation

dX(t) = −λX(t)dt + dZ̀(t) (1)

here λ > 0, and Z̀(t) is a homogeneous Lévy process, commonly referred to as the background
driving Lévy process (BDLP), which satisfies the condition E[log(1 + |Z̀(1)|)] < ∞ (see,
e.g., Barndorff-Nielsen and Shephard 2001). Modeling via the use of general Lévy processes,
other than Brownian motion, allows one to introduce specific non-Gaussian distributions for
the marginal law of X(t), and has received considerable attention in recent literature in an
attempt to accommodate features such as jumps, semi-heavy tails and asymmetry, which are
quite evident in real phenomena and are of practical interest in fields of application such as
finance and econometrics.

AQ1

Most notable examples include OU processes with marginal distributions such as the
normal inverse Gaussian and the inverse Gaussian (Barndorff-Nielsen 1998), the variance
gamma (Seneta 2004), the Meixner (Schoutens and Teugels 1998), the t-distribution (Heyde
and Leonenko 2005), the normal, the stable and the gamma distributions. OU processes
with positive jumps with marginal distributions such as the inverse Gaussian are often used
as building blocks in stochastic volatility models (see, e.g., Barndorff-Nielsen and Shephard
2001).

A key concept related to these processes is that of self-decomposability. Recall that a
random variable X with characteristic function ψ(ζ ), is said to be self-decomposable if, for
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2 S. R. JAMMALAMADAKA AND E. TAUFER

all c ∈ (0, 1), there exists a characteristic function ψc(ζ ) such that ψ(ζ ) = ψ(cζ )ψc(ζ ).
Self-decomposability is closely related to stationary linear autoregressive time series of order
1, i.e. an AR(1) process: essentially the only possible AR(1) processes are those for which
the one-dimensional marginal law is self-decomposable and similarly for the OU process, i.e.
an “AR(1)” in continuous time. For further details on self-decomposable, infinitely divisible
distributions and Lévy processes see Sato (1999).

This paper is concerned with estimation of the autoregressive parameter λ. Maximum
likelihood estimation of λ is generally infeasible except for a few special cases and the large
availability of marginal distributions for X calls for efficient estimation in a broad range of
situations. To this end we propose two estimators: an estimator using a kernel estimate of the
likelihood; another based on minimum distance from independence, which addresses some
of the problems that the kernel-based estimator encounters in certain cases.

Suppose we observe the process Eq. (1) at equi-spaced time points 0 < t1 < · · · < · · · tn
with � = tj − tj−1, j = 1, . . . n, t0 = 0. In order to slightly simplify notation, denote the
observation at time tj, X(tj), by Xj. It follows from the discussion in Wolfe (1982) that, for self- AQ2
decomposable distributions, a discrete AR(1) process can be embedded into a continuous OU
process. In our case, this amounts to saying that the discretely observed OU process Eq. (1)
can be written as

Xj = e−λ�Xj−1 + εj, j = 1, 2, . . . , n (2)

where the εj’s are i.i.d. random variables. Note that in practical applications, determining
the timing of observations is quite arbitrary, which amounts to saying that from a practical
point of view one is not able to distinguish between � and λ. In this paper, contrary to other
approaches where � is assumed to be known, we will actually consider estimation of, say,
λ′ = λ� so that, from now on it will be assumed without loss of generality that � = 1.
Denote θ = e−λ� and rewrite Eq. (2) as

Xj = θXj−1 + εj, θ ∈ �, � = (0, 1), j = 1, 2, . . . , n (3)

With X0 having distribution corresponding to the characteristic function ψ(ζ ), model Eq. (3)
is strictly stationary with marginal distribution having characteristic function ψ(ζ ) and i.i.d.
innovations with characteristic function ψθ(ζ ) = ψ(ζ )/ψ(θζ ).

Estimation of these models and in particular the estimation of the parameter θ (or λ) has
attracted considerable interest in recent literature. When X is normal, the sample counterpart
of the auto-correlation Cor(X1, X2) provides, after transformation, the maximum likelihood
estimator of λ. This turns out to be an estimator widely used in practice; Long (2009) has
shown that the auto-correlation (AC) estimator is consistent for the model Eq. (3) with stable
innovations with index of stability 1 < α < 2 with � = �n = 1/n when n → ∞ and
dispersion approaching 0. Zhang and Zhang (2013) show that the AC-based estimator of λ

to be consistent for symmetric α-stable innovations for 0 < α < 2 either for fixed � and
� → 0. Again, Hu and Long (2009) consider a least squares estimator for the case of α-
stable innovations and show its consistency for 1 < α < 2 and � → 0. These approaches
are equivalent when � → 0. Notwithstanding, the AC estimator turns out to be inefficient in
many non-normal cases; to correct this situation Koul (1986) introduced a class of L2-distance
estimators of θ when the errors have an unknown symmetric distribution.
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Jongbloed, Van der Meulen, and Van der Waart (2005) have proposed a highly efficient
estimator of θ for the case where model Z̀ is a subordinator, i.e., a process with positive
increments. In this case, for the discretely observed model Eq. (3), θ̂ = min1≤j≤n Xj/Xj−1
which had also been discussed by Nielsen and Shephard (2003) in a model with exponential
innovations. For other estimation problems for non-negative Lévy-driven OU processes, see
Brockwell, Davis, and Yang (2007).

Restricting attention to non-negative Lévy-driven OU processes, however, excludes a
whole range of possible marginal distributions for the model Eq. (1). A general paramet-
ric approach is considered by Taufer and Leonenko (2009a) which uses the characteristic
function to estimate θ together with the parameters of the marginal distribution of X, while
Andrews, Calder, and Davis (2009) discuss estimation of α-stable auto-regressive processes;
see also Taufer, Leonenko, and Bee (2011) and Meintanis and Taufer (2012) for extensions
to stochastic volatility models. Other papers of interest here are those of Diop and Yode
(2010) who study a minimum distance estimator of θ when dispersion of the innovations
approaches 0, and Ma (2010) who shows that the results of Long (2009) hold also under
weaker conditions and Zhang, Lin, and Zhang (2015) which discuss LSE estimation for Lévy-
driven moving averages.

The problem discussed here is closely connected to the works on adaptive estimation;
in particular of direct relevance here are the papers of Kreiss (1987), Drost, Klaassen, and
Werker (1997), Koul and Schick (1997) and Hallin et al. (2000) in time series contexts;
Linton and Xiao (2007), Linton, Sperlich, and Van Keilegom (2008), and Yao and Zhao
(2013) in semi-parametric and regression contexts; these approaches have in common the
requirement that a preliminary consistent estimator of the parameter of interest is available
while the approach proposed here has a one-step structure without using any preliminary
estimator: only Eq. (3) is exploited and a simple maximization of a kernel density estimator is
required. In this sense, the paper closest to our approach is Yuan and De Gooijer (2007) which
considers a one-step adaptive procedure in the regression context. The problem discussed
here may be seen as an extension to the dependent case of Yuan and De Gooijer (2007),
although we adopt different techniques and require a minimal set of conditions, such as not
requiring symmetry and placing very mild moment conditions in proving consistency of the
estimators which generally hold in a large variety of self-decomposable distributions for OU
processes. AQ3

As for our second estimator based on the minimum distance to independence, previous
related literature dates back to Manski (1983), Brown and Wegkamp (2002), and Linton,
Sperlich, and Van Keilegom (2008); in these papers a minimum mean squared distance to
independence is considered; this approach would require the existence of a finite mean, while
here with the aim of requiring a minimal set of conditions, we use a Kolmogorov-type distance
instead; the use of this distance has been discussed by Manski (1983) for the case where a
parametric form of the distribution function is given while here a semi-parametric setting is
discussed.

In the next section we will precisely define the estimators and present the main results.
In Section 3 the small sample performance of the estimators will be analyzed my means of
extensive simulations. An Appendix presents the proofs of the results.

In the paper we will use the notation Xn = Op(an) meaning that, for any ε > 0 there exists
a finite M such that P(|Xn/an| > M) < ε ∀n and Xn = op(an) meaning that, for any ε > 0,
limn→∞ P(|Xn/an| > ε) = 0. Xn →D X is used to indicate convergence in distribution.
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4 S. R. JAMMALAMADAKA AND E. TAUFER

2. Semi-parametric estimators for θ and main results

If we denote by θ0 ∈ � the true parameter value, then the sequence of innovations εj =
Xj − θ0Xj−1, j = 1, 2, . . . , n is i.i.d. More generally, define the residuals ej = eθ

j = Xj − θXj−1,
j = 1, 2, . . . , n. Note that only the choice θ = θ0 assures that X is strictly stationary with
i.i.d. innovations ε; other choices of θ will lead to dependent innovations e. In fact, writing
ej = (θ0 − θ)Xj−1 + εj, j = 1, 2, . . . , n we note that the sequence of the ej’s is not independent
due to the dependence of the Xj’s.

2.1. A Kernel-based estimator

Let fθ = fθ (e) denote the density of the residuals and, for θ = θ0, fθ0 = fθ0(ε) denotes the
density of the innovations. Also, let fθ (x0, x1) be the bivariate density of X0 and X1.

Define the kernel estimator of fθ , based on ej, j = 1, 2, . . . , n, as

f̂θ (x) := 1
nh

n∑
j=1

K

(
x − eθ

j

h

)
(4)

where K is a scalar kernel and h = h(n) is a bandwidth sequence. The following estimator of
θ is proposed:

θ̂1 = arg max
θ∈�

∑
i∈S

log f̂θ (ei) := arg max
θ∈�

Ln(θ) (5)

where S is a subset of {1, 2, . . . , n} and it is introduced in case it is felt necessary to trim out
some summands. Typically S will coincide with the full set {1, 2, . . . , n}, i.e. all observations
are used to estimate fθ however, in some instances, one could get very small positive estimates
of f̂θ which can cause numerical problems due to un-boundedness of the logarithmic function
near the origin. Also, negative estimates of f̂θ could arise if higher order kernels are used.

To avoid these problems it is quite common in entropy estimation to assume that the
support of fθ is bounded, see, e.g. Hall (1986), van Es (1992), Hall and Morton (1993), and
Yuan and De Gooijer (2007). This is not the approach followed here where OU processes
require unbounded distributions.

From a purely practical point of view it might be a sensible precaution to exclude those ei
such that f̂θ (ei) < b for some prescribed positive b or, alternatively, omitting those ei such
that |ei| > M.

In our simulations (Section 3) in all but the stable cases with index of stability less than
1 the whole set of data was used without noticing any problem. When some trimming is
necessary, this is usually quite evident as one gets unreasonable estimates of θ , i.e. 0 or 1 or
a seemingly unbounded numerical likelihood. In the simulations we have set some common
level of trimming for a given distribution. For an actual application, close inspection of data
and estimates would suggest which data values should be excluded from the computations.

From a theoretical point of view, in order to ensure consistency one needs to allow arbitrary
values of b or M. This point will be discussed more fully in the appendix. For showing the
consistency of θ̂1, we need the following standard conditions in kernel estimation:
A1 The sequence {Xi}0≤i≤n follows model Eq. (3) and is strictly stationary with non-

degenerate self-decomposable marginal distribution such that, for some p > 0
E(Xp

0) <∞.
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A2 The density fθ (x) is bounded away from 0 and Lipschitz continuous wrt θ on compact
intervals of x ∈ R and supe fθ (e) < ∞ for any θ .

A3 The joint density fθ (x0, x1), is bounded away from 0 on compact sets of x0, x1 ∈ R and
supx0,x1 fθ (x0, x1) < ∞ for any θ .

A4
∫ ∞
−∞ | log fθ (x)|fθ (x)dx < ∞ for any θ .

A5 |K(u)| < ∞,
∫ ∞
−∞ |K(u)|du < ∞,

∫ ∞
−∞ |uK(u)|du < ∞.

A6 For some M1 < ∞ and M2 < ∞, either K(u) = 0 for |u| > M2 and for all u, u′ ∈ IR,
|K(u) − K(u′)| ≤ M1|u − u′| or K(u) is differentiable, |(∂/∂u)K(u)| ≤ M1, and for
some ν > 1, |(∂/∂u)K(u)| ≤ M1|u|−ν for |u| > M2.

A7 h → 0, nh → ∞ as n → ∞.
Assumption A1 specializes the situation to the context of OU processes and has some

relevant consequences for our results. First of all we note that any non-degenerate self-
decomposable distribution is absolutely continuous (Sato 1999, Thm. 27.13). This, in turn,
together with the postulated conditions on boundedness of the density and its derivatives (A2
and A10 below) implies that the density f = fθ belongs to the class of densities that satisfies

sup
x

f (x) + sup
x,x′

|f (x) − f (x′)|
|x − x′| ≤ M, 0 < M < ∞ (6)

Second, from Masuda (2004, Theorem 4.3) it follows that {Xi}0≤i≤n is ergodic and β-mixing
with coefficients, for some a > 0, βX(t) = O(e−at). Recall that if X is a strictly stationary
Markov process with initial distribution π and tth step transition probability Pt(x, .), then the
β-mixing coefficients are defined as

βX(t) =
∫

||Pt(x, .) − π(.)||π(dx)

where ||μ|| denotes the total variation norm of a signed measure μ. The fact that {Xi}0≤i≤n
is α-mixing follows from the inequality 2α(t) ≤ β(t). Conditions A2 and A3 require that
all densities involved are bounded and A4 introduces a very mild tail restriction. Conditions
A5 and A7 are quite standard in kernel density estimation while A6, introduced in Hansen
(2008), is satisfied by most kernels including the normal one.

Our proof of consistency has a very mild restriction on existence of moments (A1 and A4)
and uses boundedness and continuity (but not differentiability) conditions on the densities
involved (A2, A3). On the other hand, it will require that the density estimates be restricted
on a compact interval {x : |x| ≤ cn} with cn → ∞ as n → ∞ so that, ultimately, consistency
will hold on a set of probability 1. The truncating device is defined in the Appendix.

Theorem 1. Assume conditions A1–A7; then |θ̂1 − θ0| = op(1).

Asymptotic normality of θ̂1 appears to need additional regularity assumptions, as well as
existence of third order moments of X. This issue is investigate further in the simulations
section.

2.2. A minimum distance to independence estimator

As we will see, a kernel based estimator suffers some problems when distributions with very
heavy tails are involved. In such cases it may be sensible to resort to an alternative; here, in
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6 S. R. JAMMALAMADAKA AND E. TAUFER

order to provide an estimator which could be used under a minimal set of conditions and
which could be a computationally attractive competitor, we introduce an estimator based on
a minimum distance from independence. Define, with IIA being the indicator function of A,

F̂θ (t) = 1
n

n∑
j=1

II(eθ
j ≤t) (7)

and

F̂θ (t1, t2) = 1
n(n − 1)

n∑
i	=j

II(eθ
j ≤t1)

II(eθ
i ≤t2)

(8)

An estimator of θ can be obtained as

θ̂2 = arg min
θ∈�

sup
t1,t2∈IR

∣∣∣F̂θ (t1, t2) − F̂θ (t1)F̂θ (t2)
∣∣∣ (9)

The use of the sup norm rather than other measures of distance is dictated by the desire to
construct an estimator based on a minimal set of conditions on F. We then have (see Appendix
for the proof).

Theorem 2. Assume A1 then |θ̂2 − θ0| = op(1).

In terms of computing θ̂2, one may note that

F̂θ (t1, t2) − F̂θ (t1)F̂θ (t2) = 1
n(n − 1)

n∑
i	=j

II(ej≤t1)II(ei≤t2) − 1
n2

n∑
i,j=1

II(ej≤t1)II(ei≤t2)

= 1
n2(n − 1)

n∑
i	=j

II(ej≤t1)II(ei≤t2) − 1
n2

n∑
i=1

II(ei≤t1)II(ei≤t2)

The actual computation of the estimators θ̂1 and θ̂2 can be done by a simple grid search.

3. Performance in finite samples

In this section the finite-sample performance of the proposed estimators is analyzed by
simulations. The base-line to which we will compare the performance of our estimators will be
the AC based estimator which is equivalent to several approaches proposed in the literature
(see the introductory section for discussion about this) and, for the case of processes with
positive increments, with the highly efficient estimator θ̂ = min1≤j≤n Xj/Xj−1 proposed by
Jongbloed, Van der Meulen, and Van der Waart (2005); it is expected that θ̂1 and θ̂2 will
not perform better than θ̂ however it is of interest here to give an overall evaluation of their
performance.

Distributions over the real line such as the normal, the normal inverse Gaussian, the
t-Student and the stable are considered; inverse Gaussian and stable OU processes with
positive increments will also be used. The notation used will be a standard one, i.e., a normal
distribution with mean μ and variance σ 2 will be denoted as N(μ, σ 2); the normal inverse
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Gaussian distributions is indicated with NIG(α, β , μ, σ) where α, β , μ and σ are related,
respectively, to the tail, asymmetry, location and scale, 0 ≤ β ≤ α, μ ∈ IR, σ > 0; tν stands
for a t-Student distribution with ν degrees of freedom while S(α, β , μ, σ) denotes a stable
distribution with index of stability α, and where β , μ and σ indicate, respectively, asymmetry,
location and scale; here we have 0 < α ≤ 2, 0 ≤ β ≤ 1, μ ∈ IR, σ > 0; the inverse Gaussian
distribution with mean μ and shape σ will be indicated by IG(μ, σ).

As to the choice of kernel, we will compare two possibilities: a normal kernel, which is a
standard choice in many computer packages, as well as a heavy tail kernel which should work
better for heavy tailed distributions, namely

K(u) = 1
2

e−|u| (10)

The choice of the smoothing bandwidth h exhibits a strong influence on the resulting estimate
and it may not be optimal to consider automatic choices in running extensive simulations.
Several alternatives have been compared: Silverman’s rule of thumb, least squares cross
validation, Sheather-Jones, over-smooth rule, standard deviation; we found that the choice of
simply using the standard deviation as bandwidth works generally quite well for our problem
and here we report estimation results based on that choice without any changes on single
cases; this will allow a fair comparison on the estimators.

We found that the kernel-based estimators suffer some problems when facing distributions
with heavy tails, where it is clear that in some cases the estimation procedure is failing
completely, e.g. illogical results or improper kernel estimates. Hence implementation of
formula Eq. (5) was carried out by eliminating those data for which e > M for a given M.
In the tables, simulated results with trimming and without trimming are reported; the value
of M is indicated in the tables by writing e ≤ M, i.e. all values e > M have been eliminated.
The choice of M is the result of a trial and error procedure by which the problems noted
above are eliminated. For non-stable distributions no trimming was used. In the simulations,
to prevent any bias in the comparison of the estimators we have chosen a general rule for
trimming outliers and report the results as they are; we suspect that considering data-driven
techniques would improve substantially the performance of the kernel-based method in the
case of heavy-tailed distributions.

The OU processes with given marginal distribution have been generated according to the
technique suggested in Taufer and Leonenko (2009b). All simulations have been run using
the Mathematica � 8 software and the commands there automatically defined for kernel
density estimation (“Smooth Kernel Distribution” with the “Standard deviation” bandwidth
selection method) as well as for random number generation. The grid search for the value
of θ maximizing the estimated likelihood or minimizing the Kolmogorov distance from
independence has been set from 0.01 to 0.99 with 0.01 increments.

Tables 1–7 respectively report the estimation results for OU processes with marginal
distributions: 1) N(0, 3); 2) NIG(2, 1.7, −1, 1); 3) t4; 4) S(1.5, −0.8, 0, 1); 5) S(0.5, 0.5, 0, 1);
6) S(0.8, 1, 0, 1); 7) IG(2, 2), the last two cases being positive distributions. For all cases but
the IG one, where λ = 0.5, λ has been set to one. The examples proposed cover a variety of
cases with symmetric and asymmetric, heavy and semi-heavy tailed marginal distributions.
The Monte Carlo estimates of the mean and mean squared error (M̂SE) of the estimators of
θ = e−λ are based on 1000 simulations of samples with sizes n = 50, 100, 200, 300, where,
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Table 1. Monte Carlo simulation results: N(0,3); θ = 0.3679 (λ = 1). Mean, MSE and Relative efficiency (RE)
of the estimators with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.3236 0.3445 0.3560 0.3591
MSE 0.0191 0.0953 0.0047 0.0027

SE Mean 0.4476 0.3969 0.3784 0.3732
RE 0.3086 0.6677 0.5550 0.5746

NO Mean 0.3312 0.3476 0.3577 0.3603
RE 1.0240 0.9777 0.9857 0.9958

HT Mean 0.3297 0.3473 0.3576 0.3602
RE 0.9822 0.9295 0.9487 0.9790

Table 2. Monte Carlo simulation results: NIG(2,1.7,−1,1); θ = 0.3679 (λ = 1). Mean, MSE and Relative
efficiency (RE) of the estimators with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.3188 0.3403 0.3544 0.3588
MSE 0.0170 0.0087 0.0041 0.0028

SE Mean 0.4120 0.3759 0.3721 0.3694
RE 0.5532 1.0148 1.1043 1.2807

NO Mean 0.3319 0.3511 0.3619 0.3642
RE 1.1018 1.3368 1.9082 2.0078

HT Mean 0.3194 0.3590 0.3638 0.3632
RE 1.1059 2.6348 2.7717 2.5150

Table 3. Monte Carlo simulation results: t4; θ = 0.3679 (λ = 1). Mean, MSE and Relative efficiency (RE) of
the estimators with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.3171 0.3375 0.3531 0.3590
MSE 0.0180 0.0097 0.0045 0.0031

SE Mean 0.4235 0.3832 0.3717 0.3670
RE 0.3757 0.5184 0.6946 0.7699

NO Mean 0.3302 0.3451 0.3568 0.3611
RE 1.2514 1.2296 1.2833 1.2597

HT Mean 0.3301 0.3462 0.3576 0.3617
RE 1.2134 1.2472 1.3492 1.2905

for an estimator θ̂ :

M̂SE(θ̂) = 1
M

M∑
i=1

(θ̂i − θ0)
2 (11)

with θ̂i the estimator obtained at the i-th Monte Carlo replicate, i = 1, 2, . . . , M.
Each table reports: mean and M̂SE for the auto-correlation estimator (AC); mean and

relative efficiency (RE) with respect to the AC estimator for:
1. the minimum distance to independence estimator θ̂2, indicated with SE;
2. the normal kernel-based θ̂1 estimator, indicated with NO;
3. the Eq. (10) kernel-based θ̂1 estimator, indicated with HT;
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Table 4. Monte Carlo simulation results: Stable(1.5,–0.8,0,1); θ = 0.3679 (λ = 1). Mean, MSE and Relative
efficiency (RE) of the estimators with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.3156 0.3427 0.3565 0.3594
MSE 0.0152 0.0071 0.0032 0.0023

SE Mean 0.4341 0.3941 0.3783 0.3735
RE 0.3864 0.5180 0.6030 0.7908

NO Mean 0.3398 0.3561 0.3646 0.4271
RE 1.5493 1.7451 1.3533 0.0660

HT Mean 0.3436 0.3592 0.3660 0.4279
RE 1.6244 1.8969 1.4965 0.0670

HTC Mean 0.3435 0.3592 0.3642 0.3670
e ≤ 50 RE 1.6141 1.8171 1.8012 1.4878

Table 5. Monte Carlo simulation results: Stable(0.5, 0.5, 0,1); θ = 0.3679 (λ = 1). Mean, MSE and Relative
efficiency (RE) of the estimator with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.3276 0.3462 0.3569 0.3622
MSE 0.0085 0.0042 0.0024 0.0004

SE Mean 0.3920 0.3763 0.3720 0.3706
RE 1.4754 4.6537 14.960 16.7523

NO Mean 0.3568 0.3598 0.4931 –
RE 2.9792 2.9395 0.0383 –

HT Mean 0.3704 0.3698 0.4977 –
RE 4.9750 3.2251 0.0384 –

HTC Mean 0.3788 0.3701 0.3652 0.3687
e ≤ 500 RE 0.6538 0.7316 0.7937 0.5607

Table 6. Monte Carlo simulation results: S(0.8,1,0,1); θ = 0.3679 (λ = 1). Mean, MSE and Relative efficiency
(RE) of the estimators with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.3238 0.3476 0.3582 0.3611
MSE 0.0096 0.0038 0.0017 0.0009

SE Mean 0.3855 0.3759 0.3725 0.3704
RE 1.5854 3.3078 4.6422 4.7578

NO Mean 0.3545 0.3625 0.4432 –
RE 2.8035 3.6082 0.0480 –

HT Mean 0.3683 0.3707 0.4459 –
RE 6.3683 15.2199 0.0485 –

HTC Mean 0.3654 0.3636 0.3640 0.3684
e ≤ 100 RE 3.7733 2.8597 2.0772 2.1075

RA Mean 0.4025 0.3851 0.3761 0.3728
RE 4.0470 5.9336 10.3867 15.7843

4. the ratio-estimator of Jongbloed, Van der Meulen, and Van der Waart (2005) is indicated
with RA.

In the case of stable distributions for which, as mentioned, automatic simulations with stan-
dard settings suffered some problems, results for the kernel-based estimator HT computed
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Table 7. Monte Carlo simulation results: IG(2,2); θ = 0.6065 (λ = 0.5). Mean, MSE and relative efficiency
(RE) of the estimators with respect to AC. Estimates based on 1000 replications.

n = 50 n = 100 n = 200 n = 300

AC Mean 0.5491 0.5763 0.5927 0.5953
MSE 0.0129 0.0058 0.0028 0.0020

SE Mean 0.6493 0.6298 0.6151 0.6077
RE 0.6597 0.6625 0.9352 0.9704

NO Mean 0.5759 0.5904 0.6001 0.6008
RE 1.9786 1.9568 1.8757 1.8876

HT Mean 0.5881 0.5968 0.6034 0.6036
RE 3.5109 3.8107 3.8725 4.0709

RA Mean 0.6327 0.6282 0.6238 0.6222
RE 15.9005 10.9213 8.6006 7.3762

with extremes outliers censored out are reported; this is indicated as HTC and the level M
above which residuals have been eliminated is indicated as e ≤ M.

The choice of reporting the RE with respect to the AC estimator is in order to emphasize the
comparisons with respect to a cornerstone for all estimators. If θ̂AC denotes the AC estimator
and θ̂O denotes any other estimator used in the simulations, then

RE(θ̂O) = M̂SE(θ̂AC)

M̂SE(θ̂O)
(12)

An RE higher than one results in a better performance of the estimator under analysis with
respect to the AC estimator.

In terms of investigating whether these estimators are asymptotically normal, Figures 1–4
show the distribution of the estimators for some of the cases discussed in the tables, namely
we consider the OU processes with N(0, 3) and IG(2, 2) marginal distribution either where λ

is estimated using the normal kernel or the heavy kernel Eq. (10). In each figure the histogram
of the standardized data is super-imposed with the standard normal density and PP and QQ
plots for normality are reported. As we note from the figures, a normal approximation works
quite well in all cases for sample sizes of around n = 100.

To summarize, the results in the tables and the figures are quite clear and indicate that
generally the NO and HT estimators perform better with respect to the AC estimator having
some problems only in the case of extremely heavy tails where in this case the SE estimator
performs very well. Specifically we can summarize the results as follows:
a) in the Normal case the relative efficiency of NO and HT is always quite close to unity

essentially indicating (as suggested by the theoretical results) no loss in efficiency with
respect to the maximum likelihood estimator AC, even for small sample sizes.

b) In all other cases the performance of NO and HT is generally better with respect to AC
and relative efficiency can be quite high. In the stable case, some distinction needs to be
made: it appears that, as sample size increases, the large number of extreme observations
has a serious effect on the efficiency of the estimators, trimming can improve the
situation. The tables, reporting the results of standardized simulations, may not show
the effective performance of NO and HT in these cases.
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c) The performance of HT is generally better than NO and its relative efficiency can be much
higher in semi-heavy or heavy tail cases.

d) In the case of OU processes with positive increments, the performance of RA is generally
better than all the other estimators and its efficiency can be substantially larger than one.
Note however that the HT estimator can perform extremely well for small sample sizes
in the stable case and overcome the performance of RA.

e) The performance of SE is generally poorer with respect to the other estimators but in the
case of distributions with very heavy tails, e.g. stable with α < 1, for which SE does not
suffer from the presence of extremely large observations.

f) A general rule, which seems to be efficient in a large variety of cases is the following: use
SE if very heavy tails are present otherwise use HT. The RA estimator should be used for
OU processes with positive increments.

g) Asymptotic normality seems to hold very well in all cases discussed.

4. An example

Moody’s trailing 12-month default rates are widely monitored indicators of corporate credit
quality and are a good source either for theoretical and empirical studies. For example,
Amerio, Muliere, and Secchi (2004) have studied the historical distributions of one-year
default rates for Ba-rated, B-rated and Caa-rated defaulters during the period 1970–1999;
Keenan, Sobehart, and Hamilton (1999) and Taufer (2007) have used either the entire
Moody’s rated universe (all-corporate, AC) and a sub-grouping, i.e., the speculative-grade
(SG) monthly data respectively from 1970 to 1999 and from 1920 to 2004 in order to provide
forecasting models.

In this example we are going to consider the SG yearly data for the period 1920–2011 for
a total of 92 observations ranging from a minimum value of 0 to a maximum of 15.641. The
data are taken from Moody’s website and are freely available.

To begin with, we have a look at the linear plots of the series in Figure 5(a). The path
does not appear to be non-stationary, however the high spikes suggests non normality of
the data, which is confirmed by analytical tests and normality plot (not shown here). The
auto-correlation and partial auto-correlation function in Figures 1(b) and 1(c) suggests that
a (discretely observed) OU model could be appropriate for this data.

If normality is excluded, using the AC estimator maybe inappropriate; instead, one could
consider some alternative approaches. Following the results of the simulations, for positive
distributions, the highly efficient ratio estimator (RA) of Jongbloed, Van der Meulen, and
Van der Waart (2005) should be used. Note however that the presence of several null values
in the data makes it impossible its calculation. Also, the minimum distance estimator (SE)
seems inappropriate here as there is no evidence of heavy tails and it is generally less efficient
with respect to the kernel ones. Then, following the recommendations given in Section 3 we
proceed to compute the HT estimator with no trimming. In this case the AC and the HT
estimator are in good agreement, giving an estimate of 0.64 and 0.63 respectively. A further
estimation on subsets of the data with 12 series of length 80 give values of the AC and HT
estimators within a range of 0.63 and 0.71. Even though in this example the two estimators
are very close, using alternative approaches is important in order to substantiate our empirical
analysis.
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Appendix

For the proof of the results, a preliminary lemma due to Hansen (2008), specialized to our set-up, is
needed.

Lemma A1. Assume conditions A1–A7; then, for cn = O((ln n)n1/2),

sup
|x|≤cn

∣∣∣f̂θ (x) − fθ (x)

∣∣∣ = Op

((
ln n
nh

)1/2
+ hq

)
, ∀θ ∈ � (A1)

where q denotes the order of the kernel.

Lemma A1 follows directly from Theorem 2 and Theorem 6 in Hansen (2008) by noting that, from
Masuda (2004), the sequence X0, . . . Xn following model Eq. (2) is β-mixing with geometric rate; we
therefore can take in the theorems of Hansen (2008), θ = 1. The result of Lemma 1 can be strengthened
to almost sure convergence and convergence over the whole real line by strengthening the assumptions;
but the present version will suffice for our purposes.
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In the proof of the results, a smooth trimming function Gb will be used, where

Gb(x) =

⎧⎪⎨⎪⎩
0, x < b∫ x

b gb(z)dz, b ≤ x ≤ 2b
1, x > 2b

(A2)

Here gb(x) = 1
b g(x/b−1) with b > 0 a trimming parameter and g any density function with support in

[0, 1], g(0) = g(1) = 0. This approach has been followed, for example, by Linton and Xiao (2007) and
Yao and Zhao (2013) and a proper choice of g allows to use standard Taylor series arguments; for
example, if g(z) = czα(1 − z)α , z ∈ [0, 1] α > 0 and c an appropriate normalizing constant, then
Gb is α + 1 times continuously differentiable on [0, 1]. Note also that supx Gb(x)/xk ≤ 1/bk.

Lemma A2. Assume conditions A1–A7, then,
a)

max
1≤i≤n

∣∣∣∣ f̂θ (ei) − fθ (ei)

fθ (ei)

∣∣∣∣ = op(1), ∀θ ∈ � (A3)

b)

sup
|θ1−θ2|≤ε

max
1≤i≤n

∣∣∣∣ f̂θ1(ei) − f̂θ2(ei)

f̂θ2(ei)

∣∣∣∣ = op(1) + O(ε) (A4)

Proof of Lemma A2. For the proof of part a), consider first a trimmed version

max
1≤i≤n

∣∣∣∣ f̂θ (ei) − fθ (ei)

fθ (ei)

∣∣∣∣Gb(fθ (ei)) ≤ max
1≤i≤n

|f̂θ (ei) − fθ (ei)|
b

(A5)

using the fact that supx Gb(x)/x ≤ 1/b. Next, for II(x) the indicator function, note that

max
1≤i≤n

∣∣∣f̂θ (ei) − fθ (ei)
∣∣∣ II(|ei|≤cn) ≤ sup

|x|≤cn

∣∣∣f̂θ (x) − fθ (x)

∣∣∣ (A6)

hence Lemma A1, as n → ∞, implies that Eq. (A5) is op(1)O(1/b) and the result follows as the choice
of b is arbitrary.

As far as part b) is concerned, using part a) we have,

max
1≤i≤n

∣∣∣∣ f̂θ2(ei)

fθ2(ei)
− 1

∣∣∣∣ = op(1) and max
1≤i≤n

∣∣∣∣ f̂θ1(ei) − fθ1(ei)

fθ2(ei)

∣∣∣∣ = op(1) (A7)

Next note that

f̂θ1(e)
f̂θ2(e)

= f̂θ1(e)/fθ2(e)
f̂θ2(e)/fθ2(e)

=
fθ1 (e)
fθ2 (e) + f̂θ1 (e)−fθ1 (e)

fθ2 (e)

1 + f̂θ2 (e)−fθ2 (e)
fθ2 (e)

(A8)

results in Eq. (A7) imply that

max
1≤i≤n

∣∣∣∣ f̂θ1(e)
f̂θ2(e)

− fθ1(e)
fθ2(e)

∣∣∣∣ = op(1) (A9)

Based on the above results we obtain

sup
|θ1−θ2|≤ε

max
1≤i≤n

∣∣∣∣ f̂θ1(ei) − f̂θ2(ei)

f̂θ2(ei)

∣∣∣∣
≤ sup

|θ1−θ2|≤ε

max
1≤i≤n

∣∣∣∣ f̂θ1(ei)

f̂θ2(ei)

− fθ1(ei)

fθ2(ei)

∣∣∣∣ + sup
|θ1−θ2|≤ε

max
1≤i≤n

∣∣∣∣ fθ1(ei)

fθ2(ei)
− 1

∣∣∣∣
≤ op(1) + Cε

b
; ∀b

(A10)
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where the first term on the r.h.s. of the above expression is from Eq. (A8) whereas the second is again
obtained by truncation and from condition A2. Again we can make the above term as small as desired
as the choice on b and ε are arbitrary.

Proof of Theorem 1. In order to prove consistency of θ̂1 we need to show that:
a) there is a function, say L(θ), such that supθ∈� |Ln(θ) − L(θ)| = op(1);
b) L(θ) is uniquely maximized by θ0.

In order to prove part a) we need to verify that: (i) the parameter space is compact; (ii) Ln(θ) →P
L(θ) point wise; (iii) equicontinuity in probability, i.e. there exists δ > 0 such that sup|θ1−θ2|≤δ |Ln(θ1)−
Ln(θ2)| = op(1).

As far as point (i) is concerned note that although � = (0, 1) is not compact we can consider a
compact set K such that θ0 ∈ K ⊂ (0, 1). In order to verify (ii), define Mn = Mn(θ) = 1

n
∑n

j=1 log fθ (ej)
and L(θ) = E(ln fθ (e)). Then, since X1, . . . , Xn is ergodic, under Assumption A4 it follows that Mn →P
L(θ), ∀θ ∈ �. Since | ln(1 + x)| ≤ 2|x| in an neighborhood of x = 0, a sufficient condition for
Ln − Mn →P 0, is

max
1≤i≤n

∣∣∣∣∣ f̂θ (ei)

fθ (ei)
− 1

∣∣∣∣∣ = op(1) ∀θ ∈ � (A11)

which follows from Lemma A2a. It follows that Ln(θ) →P L(θ) point-wise. Similarly, to show iii) note
that,

sup
|θ1−θ2|≤εn

max
1≤i≤n

|Ln(θ1) − Ln(θ2)| = sup
|θ1−θ2|≤εn

max
1≤i≤n

1
n

∣∣∣∣ n∑
i=1

log

(
1 + f̂θ1(eθ1

i ) − f̂θ2(eθ2
i )

f̂θ2(eθ2
i )

) ∣∣∣∣
≤ 2 sup

|θ1−θ2|≤εn

max
1≤i≤n

∣∣∣∣ f̂θ1(eθ1
i ) − f̂θ2(eθ2

i )

f̂θ2(eθ2
i )

∣∣∣∣
which is op(1) by Lemma A2b for suitably chosen εn. In order to prove part b), define L(θ) = −H(εθ )

where H is the Shannon’s entropy (see, e.g., Kapur and Kesavan 1992). Then,

H(εθ ) = H(εθ0 + (θ0 − θ)X0)

≥ H(εθ0 + (θ0 − θ)X0|X0)

= H(εθ0 |X0)

= H(εθ0)

(A12)

where we have used, in order, the facts that; conditioning reduces entropy; a constant does not change
entropy; εθ0 and X0 are independent. It follows that L(θ) is uniquely maximized by L(θ0).

Proof of Theorem 2. Denote for simplicity supt1,t2∈IR |F̂θ (t1, t2)− F̂θ (t1)F̂θ (t2)| = ρ(F̂, θ). The proof of
the theorem follows from Theorem 2 in Manski (1983) if we verify the following conditions:
B1 The parameter space � is compact.
B2 ρ(F, θ) = 0 if and only if θ = θ0.
B3 (Assumption 4 in Manski (1983) - continuity and uniform convergence). ρ(F, θ) is continuous as

a function on �. Also, ρ(F̂, θ) converges in probability to ρ(F, θ) uniformly over �.
As far as B1 is concerned, as already discussed, one can consider a compact set K such that θ0 ∈ K ⊂

(0, 1). B2 follows form the discussion in Section 2, as the sequence {eθ
i }1≤j≤n is i.i.d only if θ = θ0.

The firs part of B3 can be verified by first noting that F, being self-decomposable, is absolutely
continuous (Sato 1999, Them 27.13) and exploiting the first part of the corollary to Theorem 2 in Manski
(1983) by noting that g(X1, X0, θ) = X1 − θX0 is continuous on S × � where S ∈ IR2 is some compact
and convex set.

The second part follows if we prove that

sup
θ∈�

sup
t1,t2∈IR

∣∣∣∣F̂θ (t1, t2) − F̂θ (t1)F̂θ (t2) − Fθ (t1, t2) + Fθ (t1)Fθ (t2)

∣∣∣∣ = op(1) (A13)
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In order to do this, note that∣∣∣∣F̂θ (t1, t2) − F̂θ (t1)F̂θ (t2) − Fθ (t1, t2) + Fθ (t1)Fθ (t2)

∣∣∣∣
≤

∣∣∣∣F̂θ (t1, t2) − Fθ (t1, t2)

∣∣∣∣ + F̂θ (t1)

∣∣∣∣F̂θ (t2) − Fθ (t2)

∣∣∣∣ + Fθ (t2)

∣∣∣∣F̂θ (t1) − Fθ (t1)

∣∣∣∣ (A14)

Note that since the sequence {Xi}0≤i≤n is ergodic and the class of functions F = {ft = II(−∞,t], t ∈ IR2}
are Glivenko–Cantelli (see, e.g. Van der Vaart 1998, p. 270), we have that

sup
t1,t2∈IR2

∣∣∣∣F̂θ (t1, t2) − Fθ (t1, t2)

∣∣∣∣ = op(1), and sup
t∈IR

∣∣∣∣F̂θ (t) − Fθ (t)
∣∣∣∣ = op(1) ∀θ ∈ � (A15)

We claim that

sup
θ∈�

sup
t∈IR

∣∣∣∣F̂θ (t) − Fθ (t)
∣∣∣∣ = op(1) (A16)

sup
θ∈�

sup
t1,t2∈IR

∣∣∣∣F̂θ (t1, t2) − Fθ (t1, t2)

∣∣∣∣ = op(1) (A17)

The proof of Eqs. (A16) and (A17) together with compactness of � and Eq. (A15) will prove Eq. (A13).
In order to prove Eqs. (A16) and (A17) we’ll exploit Theorem 3 in Chen, Linton, and Van Keilegom

(2003) which provides primitive conditions for equicontinuity: we’ll have to show that their condition
(3.2) is satisfied, which require in our case to show that[

E

(
sup

|θ1−θ2|≤δ

∣∣∣∣II{X1−θ1X0≤t} − II{X1−θ2X0≤t}
∣∣∣∣r

)]1/r

≤ Kδs (A18)

[
E

(
sup

|θ1−θ2|≤δ

∣∣∣∣II{X1−θ1X0≤t}II{X2−θ1X1≤t} − II{X1−θ2X0≤t}II{X2−θ2X2≤t}
∣∣∣∣r

)]1/r

≤ Kδs (A19)

for all θ ∈ �, all small positive values δ = o(1), r ≥ 2 and s ∈ (0, 1] and that the bounds hold
for μ-almost all (t1, t2). Consider Eq. (A18) and note that the expectation of the absolute value in the
expression is the probability of the union of the events {t + θ1X0 < X1 < t + θ2X0} and {t + θ2X0 <

X1 < t + θ1X0} which consider all possibilities arising from the cases θ1 ≤ θ2 or θ1 > θ2, X0 ≤ 0 or
X0 > 0. Since X0 is bounded in probability there is a compact set with probability greater that 1 − ε,
ε > 0, for which there is some upper bound c such that sup|θ1−θ2|≤δ |θ1X0 − θ2X0| ≤ δc. For some
δ > 0 we have then

E

(
sup

|θ1−θ2|≤δ

∣∣∣∣II{X1−θ1X0≤t} − II{X1−θ2X0≤t}
∣∣∣∣
)

≤ 2P (t − δc + θX0 < X1 < t + δc + θX0)

= 2Fθ (t − δc) − Fθ (t + δc)
≤ Kδ

(A20)

for some constant K < ∞, from continuity of F. Therefore condition (3.2) of Theorem 3 in Chen,
Linton, and Van Keilegom (2003) is satisfied with r = 2 and s = 1/2. The proof of Eq. (A19) resorts to
an analogous device.
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